ESAIM: M2AN 57 (2023) 865-891 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051 /m2an/2022090 WWW.esalm-m2an.org

A ROBUST COLLISION SOURCE METHOD FOR RANK ADAPTIVE
DYNAMICAL LOW-RANK APPROXIMATION IN RADIATION THERAPY

JoNas KuscHY® AND P1A STAMMERZ®*

Abstract. Deterministic models for radiation transport describe the density of radiation particles
moving through a background material. In radiation therapy applications, the phase space of this
density is composed of energy, spatial position and direction of flight. The resulting six-dimensional
phase space prohibits fine numerical discretizations, which are essential for the construction of accurate
and reliable treatment plans. In this work, we tackle the high dimensional phase space through a
dynamical low-rank approximation of the particle density. Dynamical low-rank approximation (DLRA)
evolves the solution on a low-rank manifold in time. Interpreting the energy variable as a pseudo-time
lets us employ the DLRA framework to represent the solution of the radiation transport equation on a
low-rank manifold for every energy. Stiff scattering terms are treated through an efficient implicit energy
discretization and a rank adaptive integrator is chosen to dynamically adapt the rank in energy. To
facilitate the use of boundary conditions and reduce the overall rank, the radiation transport equation
is split into collided and uncollided particles through a collision source method. Uncollided particles are
described by a directed quadrature set guaranteeing low computational costs, whereas collided particles
are represented by a low-rank solution. It can be shown that the presented method is L2-stable under a
time step restriction which does not depend on stiff scattering terms. Moreover, the implicit treatment
of scattering does not require numerical inversions of matrices. Numerical results for radiation therapy
configurations as well as the line source benchmark underline the efficiency of the proposed method.
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1. INTRODUCTION

Radiation therapy is one of the main tools in cancer treatment. In treatment planning, the set-up of radiation
beams is optimized such that the tumor receives the prescribed dose, while minimizing the damage of surrounding
risk organs or healthy tissue. Here, exact and fast dose calculation is of basic importance. Exact dose calculations
however require the solution of a high dimensional coupled system of linear transport equations. Therefore,
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clinical dose calculation algorithms often rely on simplified pencil bearn models [2], which are based on the
Fermi-Eyges theory of radiative transfer [18]. Although these models are computationally efficient, they can
only describe layered heterogeneities [28]. Thus simulation results are inaccurate, especially in cases including
air cavities or other inhomogeneities [28,33].

More exact dose calculation can be achieved by an appropriate Monte Carlo (MC) algorithm, where individual
interacting particles are directly simulated [4]. However, while recent performance-tuned MC implementations
have achieved large run time improvements, the high computational costs and associated statistical noise still
limit their clinical usage [19,30]. The application of deterministic Boltzmann equations for dose calculation can
achieve similar accuracy as MC simulations, but also exhibit the same computational complexity for grid-based
solutions [6]. Moment models for the Boltzmann equation in radiation dose calculation have for example been
considered in [20,41].

In this work, we tackle the challenges arising from high-dimensional phase spaces in radiation therapy appli-
cations through dynamical low-rank approximation (DLRA) [32]. DLRA represents the solution by a low-rank
ansatz. When the solution is an n by m time-dependent matrix with huge n and m, such a low-rank represen-
tation can be defined by a singular value decomposition (SVD) truncated to a (small) rank r!. Time evolution
equations for each of the low-rank factors of the SVD are then derived by minimizing the residual while main-
taining the solution’s low-rank structure. When the original method requires O(n - m) operations per time step,
the updates of the low-rank factors only require O(r? - (n + m)) operations. Robust integrators for the time
evolution of these factors are the matrix projector—splitting integrator (PSI) [39] and the recently developed
“unconventional” basis-update & Galerkin low-rank matrix integrator of [8]. Unlike the unconventional inte-
grator, the projector—splitting integrator can be extended to high order. However, since it includes a backward
step in time, the projector—splitting integrator can yield instabilities for parabolic equations. Moreover, the
backward time step can result in unstable schemes for hyperbolic problems, which is not an issue for the uncon-
ventional integrator [35]. Following [35], stable discretizations of the PSI can however be constructed by using
the continuous DLRA formulation proposed in [13].

The efficiency of dynamical low-rank approximation has been demonstrated in several applications, includ-
ing kinetic theory [9,11,13-17,35,43,44]. Two main challenges of DLRA in the context of kinetic theory and
radiation transport specifically are the preservation of mass as well as capturing the asymptotic limit. Methods
to guarantee mass conservation include re-scaling strategies [44], a high-order low-order (HOLO) decomposi-
tion [43] and the incorporation of certain basis functions in the tangent space of low-rank functions [15]. An
asymptotic preserving scheme for dynamical low-rank approximation has been proposed in [11]. The key ingre-
dients of this scheme are the ordering of low-rank updates and the choice of an implicit time discretization. A
further method uses a HOLO scheme to guarantee preserving the asymptotic limit [17]. Even though radiation
therapy applications do not exhibit sufficiently strong scattering to fall into the diffusive regime, stiff scattering
terms remain a challenge. While implicit time discretizations guarantee a stable treatment of such terms, their
significantly increased computational costs pose difficulties.

The efficiency of DLRA highly depends on the rank required to capture important solution characteristics.
Choosing this rank sufficiently high to guarantee a satisfactory solution quality while at best maintaining low
computational costs requires a great amount of intuition. Furthermore, a fixed choice of the rank does not
capture the time evolution of the solution complexity. Rank adaptive DLRA integrators which pick the rank in
an automated fashion during run time have for example been proposed in [9,10,26,27,29,45].

This work presents a dynamical low-rank approximation for radiation therapy. To employ the DLRA frame-
work in this setting, we formulate the energy dependency of the continuous slowing down equation as a pseudo-
time. Dynamical low-rank approximation is then used to update the low-rank factors of the solution in energy.
An efficient choice of the rank for every energy is provided through the rank adaptive integrator of [9]. Further
novelties of this work are:

INote that the low-rank solution does not require a diagonal r by r singular value matrix. In fact, DLRA uses dense coefficient
matrices.
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1. A stable and efficient time discretization of stiff scattering terms. Following [35,42], stiff scattering terms
are split from the radiation transport equation. The unconventional integrator is used to time update the
streaming part and the matrix projector-splitting integrator updates the scattering part. According to [35],
the scattering part only requires an update of a single low-rank factor. By using an implicit time discretization
on this part of the integrator and explicit updates on the remainder, we significantly reduce computational
costs while allowing for a less restrictive CFL condition.

2. A first-collision source method to reduce the rank and impose boundary conditions. Boundary conditions in
radiation therapy are often Dirichlet conditions of uncollided particles traveling into a single direction. To
efficiently incorporate this information into our solution ansatz, we perform a collided-uncollided split, see
e.g. [1,25]. Here, collided and uncollided particles are treated in two separate equations. For the uncollided
particles, an Sy method with a directed quadrature set resolving only the small number of relevant directions
can be used. The collided part of the solution is represented through dynamical low-rank approximation.
This strips away highly peaked particle distributions in the low-rank approximation, thereby potentially
reducing the rank. Furthermore, since the density of uncollided particles is zero at the boundary, imposing
boundary conditions becomes straightforward.

3. A multilevel dynamical low-rank approzimation. The collided-uncollided split can be extended to L-collided
splits. This can be interpreted as writing the solution as a telescoping sum. Expecting a reduced rank in
every of these telescoping updates, individual dynamical low-rank approximations are derived for every term.

This paper is structured as follows: Sections 2 and 3 give an overview on methods used in this work to point to
existing work and to fix notation. A general background to the used radiation transport methods, especially the
continuous slowing down equation and numerical methods to solve it is given in Section 2. Section 3 provides
a recap of dynamical low-rank approximation as well as robust integrators for the DLRA evolution equations.
The main method of this work is presented in Section 4. In Section 5, we derive a CFL condition which ensures
stability and extend the results to the rank adaptive unconventional integrator in Section 6.

2. RECAP: MESOSCOPIC TRANSPORT MODELS IN RADIATION THERAPY

2.1. Continuous slowing down equation

In the following, we discuss kinetic transport in the field of radiation treatment planning as well as related
numerical methods used in this work. The task of computational mathematics in radiation therapy is to predict
the transport of radiation particles in cancer patients. An accurate model is provided by the linear Boltzmann
equation, which describes the dynamics of the particle density ¢ on a mesoscopic level [20]. The continuous
slowing down (CSD) approximation [37] to the linear Boltzmann equation reads

Q- Vx(E,x,Q) 4+ p(x)Z:(E)Y(E, %, ) :/ p(X)X(E, Q- Q) (B, x,Q)dY

S2
+ 9 (p(x)S:(E))(E, x,Q)), (1a)
Y(E,x,Q) =¢pc(E,x,9Q) forx € dD, n(x) -2 <0, (1b)
w(Emaxa X, Q) = wmax(xa Q) (].C)

The phase space of the particle density 1) consists of energy E € [0, Epas] C Ry, space x € D C R? and
direction of flight Q € S2. By n : 9D — R3, we denote the outward pointing unit normal at the boundary.
We use S; : Ry — R, to denote the stopping power, which describes the rate at which particles lose energy.
The tissue density of the patient is p : D — R, . Material cross sections ¥; and ¥, describe scattering and
absorption interactions of particles with tissue. Stopping power and material cross-sections are given from
physical databases [24]. The quantity of interest is the dose absorbed by the tissue, which can be determined
from

1 oo
D) =~ /O [ BV, %, Q) dE. (2)
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Since particles are assumed to lose energy continuously, the energy can be interpreted as a pseudo-time t. By
performing a transformation of cross-sections and the particle density, cf. [5], the CSD equation (1) becomes

&g{l)v = —Q : vx% - it{/;+ / is(tv Q : Q/)’IZ(ta X, QI) dQ/ = R(tv /(Z) (3)
S2

We omit phase space dependencies for ease of presentation. The pseudo-time ¢ is defined as

FErax 1 , E 1 ,
HE) ;:/0 s 1F —/0 St 1 )

A tilde is used to denote the transformation of particle densities and cross sections, given by %;(t) = S, (E(t)),
Y (6,92 Q) =3(E(t),Q Q) and

P(t,x, Q) := S(E@)p(x)P(E(t), %, Q). ()

To simplify our presentation, we will from now on omit the tilde and always refer to the transformed quantities
by 9, ¥; and ¥g. Furthermore, the in-scattering operator will be denoted as S, i.e.,

(S¥)(t,%x,Q) ::/ Ye(t, Q- Q)w(t,x, Q) dY. (6)
SQ
2.2. Collision source method

First collision source methods split the solution to the radiation transport equation (3) into a collided and
uncollided part, see e.g. [3,25]. Let us write ¢(¢, x, Q) = 1, (¢, %, Q) +¢.(¢, %, Q), where ¢, represents uncollided
and 1. represents collided particles. Then, the radiation transport equation (3) can be split into

Yu

atwu =-Q- vx? - Et"/}u = Ru(t7wu)7 (73‘)
5#/%: =-Q- Vx% - Et/wc + N (/wu + lﬁc) = Rc(t, wua wc) (7b)

The first equation describes the dynamics of uncollided particles. Since collided particles cannot generate or
deplete uncollided particles, (7a) solely depends on t,,. Furthermore, as uncollided particles that scatter will no
longer be uncollided, only the outscattering term —>;1),, describes interactions with the background material.
Uncollided particles that undergo a collision are added to the collided particles which are described by (7b).
Hence, the inscattering term of uncollided particels S(¢,,) is treated as a source term in the collided equation.
This methodology of representing the solution in terms of collided and uncollided particles can be developed
further: Denoting the particles that have collided ¢ = 0, --- , L times as 1, and particles that have collided more
than L times as 1., we have ¥ = ¥y 4+ 91 + - - - + ¥, + ¥.. Then, we obtain the equations

Optpg = =42 - Vx% — Yo == Ro(t, vo), (8a)
Opthg = =2 - Vx% — Xty + Ste—1 = Ri(t,¥e—1, ), for{=1,---,L, (8b)
6“/)0 =—-Q- Vx% - Etwc + S (¢L + ’(/)c) = Rc(t7 ’(/)La wc) (86)

Boundary conditions for the above equations can be imposed by noting that all particles entering from the
boundary are uncollided. i.e., we have ¥o(E,x,§) = ¢pc(F,x,Q) for x € D and n - < 0. Since no collided
particles will enter the spatial domain from the boundary, we have v, = 0 and ). = 0 at the boundary for
n-Q<0.
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2.3. Angular discretization

To allow for numerical approximations of solutions to the presented equations, time, space and angle need to be
discretized. Numerical artifacts that numerical solutions exhibit crucially depend on the angular discretization.
Deterministic discretizations can be classified into nodal and modal methods. A conventional nodal method
is the discrete ordinates (Sy) [38] method, which evolves the solution on a chosen angular quadrature set.
A conventional modal discretization technique is the spherical harmonics (Py) method [7] which spans the
solution in terms of spherical harmonics basis functions. For degree £ and order k, the spherical harmonics for

an angle Q = (\/1 — p2cosg, /1 — p2sinp, u)7 are defined as

WH1(L—k)
vh@) =[P G R,

where ng are the associated Legendre polynomials. In this work, we use the real spherical harmonics

(—1)* (Yek + (—1)]“}/[’6) ’ k>0,

V2

my =] Y k=0,
—1)k; _

~EL (- (-0, k<o

Let us collect all basis functions up to degree N in a vector
2
m = (m9,my,md,mi, - m{)T e R+

and choose the modal approximation (t,x,Q) ~ u(t,x)"’m(f). The coefficient (or moment) vector u has

m := (N + 1)2 entries. Then, the Py equations for x = (z,y, 2)” read
u(t, x)
Opu(t,x) = —A - Vy x Si(t)u(t,x) + Bu(t, x),
p(x

where A - Vi := A0, + A20y + A30, with A, = sz mm”Q; dQ. The diagonal in-scattering matrix 3 has
entries Y (t) = 27 f[_l 1 Py (1) 25(t, pv) dpp. Note that 3,(t) = £11(¢) > 0 and

am-mwmmm%ﬂ}”&wmw:&w» (9)

‘Ekk(t” S 27‘(/

[7171]
2.4. Spatial discretization

Several benchmarks in radiation transport assume a two-dimensional spatial domain, i.e., the spatial variable
becomes x = (x,y)7. In this setting, we focus on the discretization of the Py equations, since these will become
relevant in the proposed DLRA method. Then, we have

u(t,x) u(t, x)
dpu(t,x) = —A;0 —A,0 + Gu(t,x). (10)
T p(x) Y p(x)
A finite volume discretization splits the spatial domain D into IV, - N, cells. In case of a structured quadrangle
grid, the z and y domains are discretized into uniform one-dimensional grids z; < zo < --- < xy,41 and
y1 < y2 < oo < yn, 41 with grid size Az and Ay respectively. Then, the cell of index (i,j) is defined on
Lj := [z;,xi11] X [yj,yj+1] on which the numerical solution is chosen as

1
w;;(t) ~ Ardy /1 u(t, x) dx.
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In the same manner we compute the patient density p;;. To simplify the presentation of the spatial discretization,
let us collect w;;(t) = (uijk(t));; € R™ fori =1,--- Ny and j = 1,--- , N, into a matrix u(t) € R"*™,
where ng := N, - N,. For this, we define the function idx : N x N — N as idx(¢, j) = (¢ — 1) - N; + j. Then, the
entries of u(t) are defined as wiqy(i,j),k(t) = wijr(t).

With this notation at hand, we can define a finite volume scheme for (10) in compact notation. Let us define

the sparse diffusion stencil matrices LQ; € R=*"e g

(1) _ 1 6 __ 1
@,idx(i,5),idx(i,5) pii Az’ @idx (i) idx(i+1,5) — 95 Az
(1) 1 & 1

Ly,idx(i,j),idx(i,j) = pii Ay’ Ly,idx(i,j),idx(i,jﬂ) = _27piji1Ay’

. . . 2
as well as the sparse advection stencil matrices Lé; € R*=*"= ag

F T S N - S
z,idx(%,7),idx(i£1,5) 2/%&:1 ij’ y,idx(4,5),idx(4,j+1) 2/’1’ j:l:lAy

Furthermore with A, , = Vx,yA%er

T,y

the Roe matrices |A,|, |A,| € R™*™ are defined as
|Az| == V4|A; VL, and |V, ]:= VA [V].

Here, V, , collects the orthonormal eigenvectors of the symmetric matrices A, ,, and A, , = diag(A\]"Y, - - AZY)
are the corresponding real eigenvalues. Then, the semi-discrete finite volume update becomes a huge matrix
differential equation of the form

u(t) = F(u(t)) + G(t,u(t), u(t)),

where
F(u) := L&uAl + L?(f)uAg +LMPulA, T + L?(Jl)u|Ay|T,
G(t,v,u) = — S (t)u+ vX(t).

The costs of evaluating the right-hand side are Cp, < n, - m, when accounting for the sparsity of all stencil,
flux and Roe matrices which leads to linear costs in n, and m of matrix products.

3. RECAP: DYNAMICAL LOW-RANK APPROXIMATION

3.1. Main framework

This section gives a brief overview on dynamical low-rank approximation [32] for matrix differential equations
u(t) = F(t,u(t)). Dynamical low-rank approximation represents and evolves the solution on a manifold of rank
r matrices, which we denote by M.,.. A low-rank representation is given by the SVD-like factorization

u(t) ~ X(t)St)W(t)T, (11)

where X € R"»*" and W € R™*" are basis matrices with orthonormal column vectors and S € R"*" is a dense
coefficient matrix. Time evolution equations for the factors can be defined by imposing

() € TypyM,  such that  [[a(t) — F(t,u(t))|| = min. (12)

We use Ty )M, to denote the tangent space of M, at u(t), i.e., the solution should remain of rank r over
time while minimizing the defect. These conditions yield a time evolution equation for the low-rank solution
Lemma 4.1 of [32], which reads

u(t) = P(u(t))F (¢, u(t)). (13)
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The operator P is the orthogonal projection onto the tangent space, given by
Pg = XX"g - XXTgWW7T + gWWT.

Evolution equations can then be derived for the factors X, S and W, see [32]. However, the resulting equations
depend on the inverse of the commonly ill conditioned coefficient matrix, which substantially limits the permitted
step size [31].

3.2. Robust fixed rank integrators

Two robust integrators have been proposed for the evolution equation (13). First, the matrix projector—
splitting integrator [39] splits (13) by a Lie-Trotter splitting technique, yielding

ar(t) = Flug (1)) WW7, us(to) = ulto), (14a)
il][(t) = —XXTF(II]](t))WWT, U.[[(to) = u1(t1), (14b)
ﬁ]]](t) = XXTF(UIII(t)), uI][(to) = uH(tl). (14(3)

The resulting consecutive movement in the low-rank manifold ensures robustness irrespective of singular values
and thereby allows for increased step sizes [39]. Defining the decompositions uy = KW as well as ur;; = XL
gives the matriz projector-splitting integrator, which updates the low-rank factors X" = X(ty), W° = W (¢y)
and S° = S(tg) to time t; = to + At:

1. K-step: Update X° to X! and S° to S° via
K(t) = FK{HW>T)W?, K(to) = X°8s°. (15)

Determine X! and S® with K(ty) = X180 by performing a QR decomposition.
2. S-step: Update S° to St via

S(t) = ~X'TRX'S(HWOT)W?,  S(t) = §° (16)
and set S! = S(t). B
3. L-step: Update W° to W' and S! to S! via
L(t) = X'TF(X'L(t)),  L(te) = S'WOT. (17)
Determine W' and S! with L(t;) = S'WT by performing a QR decomposition.

Then, the time updated solution is u(t;) = X!S*W1HT, Tt has been noted in [35] that when the flux function
takes the form F (¢, u(t)) = u(t)G(t), the K and S-steps cancel out and only the L-step determines the dynamics.

The second robust integrator is the unconventional integrator, which has recently been introduced in [8]. This
integrator first performs basis updates of X and W in parallel and then updates the coefficient matrix S by a
Galerkin step. This integrator shares the robustness properties of the matrix projector—splitting integrator [8].
It takes the form

1. K-step: Update X° to X! via
K(t) = F KW YW, K(ty) = X°s°. (18)

Determine X' with K(t;) = X'R and store M = X1 TX0.
2. L-step: Update W° to W wia

L(t) = X*TF(XL(t)),  L(ty) = S"W%T, (19)

Determine W1 with L(t;) = WIR and store N = WLT W0,
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3. S-step: Update S° to S! wia
S(t) = XVTR(XIS() WY)W,  S(tg) = MS*NT (20)
and set ST = S(t;).

Unlike the projector—splitting integrator, the unconventional integrator only propagates the solution forward in
time. Thereby, it inherits the structure of the full method, which can for example be used to ensure stability
for hyperbolic and kinetic problems [35]. Therefore, the unconventional integrator yields the same semi-discrete
evolution equations, irrespective of whether the problem is discretized first and then DLRA is applied to the
resulting matrix ODE, or the DLRA projections are first performed on the continuous level and the resulting
continuous evolution equations are then discretized as proposed in [12]. This equivalence holds when the same
spatial and angular discretization is used in both approaches. A disadvantage of the unconventional integrator is
that it cannot be interpreted as a classical splitting method which is why it currently is only first order accurate
in time, if the exactness property Theorem 1 of [8] does not hold.

3.3. Rank adaptive unconventional integrator

The unconventional integrator has recently been extended to allow for rank adaptivity [9]. That is, given a
tolerance parameter ¥, the integrator adapts the rank in time.

Starting from time ¢y where the solution has rank rg, the integrator gives the factored solution at time ¢;
with rank r1 < 2rg. In the following, we use r = ry and use hats to denote matrices of rank 2r. Then the rank
adaptive integrator reads

1. K-step: Update X° € R™*" to X1 € Rm*2" yig
K(t) = FKOW )W’ K(t) = X°S°. (21)

Determine X! with [K(t;),X°] = X'R and store M = X17X0 ¢ R2rxr,
2. L-step: Update W% € R™*" to Wl € R"™*2" yiq

L(t) = X"TF(X°L(t)),  L(to) = S"W"". (22)
Determine W with [L(t;), W°] = WIR and store N = WLTW?.
3. S-step: Update S° € R™*" to St € R?"*?" yiq
S(t) = XVTF(X!'SH)WIT)W!,  S(ty) = MS'NT (23)

and set S! = S(t).
4. Truncation: Determine the SVD S§' = PXQ " where ¥ = diag(cj). For a given tolerance 9, choose the

new rank r; < 2r such that
2r 1/2
(> 2) <o

Jj=r1+1
Compute the new factors as follows: Let S* be the 7; x r; diagonal matrix with the r; largest singular values

and let Py € R?™%"™ and Q; € RQ/T\X” contain the first r; columns of P and é, respectively. Finally, set
X! =X!'P, ¢ R™*"™ and W! = W'Q, € R"¥",

4. A ROBUST COLLISION SOURCE METHOD FOR DYNAMICAL LOW-RANK APPROXIMATION

In this section we present the main method, which aims at providing an efficient and robust alternative to
conventional strategies. Key ingredients for the construction are 1) a collision source method to define a splitting
of the original equation, 2) a further splitting of collision terms which are treated implicitly, 3) computing
individual DLRA updates by using the unconventional integrator for collided particles.
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4.1. Collided-uncollided split

Let us define a discretization in space and angle for the system of the ¢-collided split (8). We start by deriving
moment equations for the collided particles in the collision source method and use an Sy method for uncollided
particles. Without going into detail, we denote the Sy solution of the uncollided particles as 1 and the right-
hand side of a time continuous Sy method for streaming (i.e., particles move without interacting with tissue)
as Fg(1). Then the evolution equations for the semi-discrete solution become

P(t) = Fs(p(t) — Du(t)(t), (24a)
a;1(t) =F(ui(t)) — Ze(H)ur (t) + (1) T X(1), (24b)
() = F(ue(t)) — Ze(t)ue(t) + we—1 (1) X(2), ford=2,---,L, (24c)
uc(t) = Fuc(t)) — Ze(t)ue + (up(t) + uc(t)) B(t), (24d)

where the matrix Tj; maps the nodal solution onto its moments. These L + 2 equations can be solved consecu-
tively. Since radiation therapy commonly investigates the effects of particle beams which enter the computational
domain from the boundary, the Sy equations from the uncollided particles can be solved efficiently by using a
biased quadrature rule. i.e., the quadrature only encodes the small number of possible flight directions. After
the first collision, particles move into all directions. To account for the increased complexity, we describe the
collided solution through dynamical low-rank approximation. Following [35], we split streaming and scattering
parts and use the matrix projector—splitting integrator to update in-scattering in equation (24d) as well as the
unconventional integrator for the remainder.

To simplify our presentation, we start by discussing this strategy for (24b) and then extend it to the remaining
equations. Let us first split streaming and scattering in (24b). Omitting the subscript 1 gives

uy (1) = F(ur(t)), uy (to) = wa(to), (25a)
ﬁ][(t) = —Zt(t)un(t) + ’(/J(tl)TME(t), uu(to) = uI(tl). (25b)
The updated solution at time t; = tg + At is then given as w1 (t1) = uss(¢1). Note that the splitting method
introduces an error of O(At), which can be reduced by high order splitting methods. We start with the derivation
of the basis update and Galerkin step equations of the unconventional integrator for the streaming part (25a).
That is, we derive evolution equations for X7 (t), Sz (t), W (t) such that uz(t) ~ X;(¢t)S;(t)W1(t)T. To simplify
notation let us omit Roman indices in the following. The K-step equation (18) read
K(t) = FK{#)WoT)yw?
= LOKHW TATW + LK () WO AT WO
+LVKOWOTAL "W + LK (WO T A, [TWO
= LPK®)AL + LOK(H)AY + LIVK(1)[A, [ + LIVK(1)|A,|°, (26)
where we use A0 2y = WOTAT WO and |Aw y|0 = WOT A, |"WPO. The numerical costs to compute these
matrices are of O( m) and evaluatlng the right-hand side of the K-step equations has costs of O(r? - n;). To
point out that the spatial basis is not yet updated by the scattering step (25b), we define the superscript 1/2,
i.e., the solution is given as X"/? := X;(t;).
The L-step equation (19) read
L(t) = X*TF(X°L(1))
= XOTLOXOL(H AT + X L XOL(H) AL
+ XOTLOOXOL(8)| A, |7 + XOTLOXOL (1) A, | T
= LOOLAT + LOOL()AT + LIV OL(1)|A, |7 + LIVOL()|A, |7, (27)
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where we use f;ff;o = XO’TL;(L%Z),X0 and ’I\,Q(ng),o = XO’TL;{Z),XO. The numerical costs to compute these matrices
are of O(r? - n,) and evaluating the right-hand side of the L-step equations has costs of O(r? - m). To point
out that the directional basis is not yet updated by the scattering step (25b), we define W'? := W(t,).

The S-step equation (20) read

S(t) = X/»TF(X/*S(t )W/ T YW/
= XPTLAX () WATATW/2 4 XA TLPX 28 ()W /2T AT W2
+ X ATLOOX 28 () WT | A, |TWY2 4+ X2TLOX 28 () W | A | TW /2
= L2S(t) A2 + L /2S(t) A2 + L28(4)| AL |72 + LV 28 (1) A /2. (28)
The numerical costs to compute update matrices and to evaluate the right-hand side of the S-step equations
are of O(1? - (ny +m)). To point out that the coefficient matrix is not yet updated by the scattering step (25b),
we define 872 := S (t1).
In a second step, we use the updated factors as initial condition, i.e., X;7(to) = X7, Sys(to) = SY> and
Wii(to) = W2, Again Roman numbers are omitted in the following. However, we do include a subscript 1

to denote that we are solving for the factors of u;. For the scattering step (25b), determining the K, L and
S-steps is straightforward and leads to

Ki(t) = — SuO)Ki (1) + 9 (t) Ta S W, (292)
Li(t) = — Su(t)La(t) + X7 T (t1) T S(2), (29b)
Si(t) = — Su(H)S1(t) + X1 (1) T E(t)WH. (29¢)

The time updated solution after streaming and scattering is given as u;(t;) = Xi(t1)S1(t1)Wi(¢t1)T. When
the directed Sy quadrature set has n, nodes, computational costs are of O(r - ng - (ng, + m)). Note that since
radiation therapy uses highly peaked particle beams as boundary conditions or source terms, only a limited
number of directions needs to be resolved by the quadrature, i.e., nq is expected to be small.

In the same manner, evolution equations for the factors of the solutions to the remaining moment equa-
tions (24¢) and (24d) are derived. Here, the streaming update can be determined with (26), (27) and (28)
(except for (24a), since for ¢ we use a directed Sy method instead of a dynamical low-rank approximation).

The scattering update for a general £ = 2,--- | L which we denote by a subscript reads
Ko(t) = = Zu(t)Ke() + X, S} Wi B(OW,”,
Ly(t) = — Si(tLe(t) + X7 X}, 8] Wi 5(0),
Se(t) = = Zu(t)Se(t) + X" X}, 8i_ W, 2(H) W

Computational costs are of O(r? - (n, + m)). Lastly, for the fully collided solution u. we perform a further
splitting step. Omitting the subscript ¢, we have

ur(t) = F(t,ur(t)), u;(to) = ua(to), (31a

ﬁ][(t) = uL(tl)E(t), lljj(t()) = U.](t]), (Slb

fl[[[(lf) = —Zt(t)U.[[[(t) + uI[](t)E(t), ll[[[(t()) = u]](tl). (31C

In this case, the K, S, L-equations for inscattering from uy,, i.e., equation (31b) read (omitting Roman indices

K.(t) = X} S W ()W, (32a)
Lo(t) = X2 X S W (1), (32b)

S.(t) = XLTXIstw s (Wl (32¢)
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e factored moments uy(ty) with £ € {1,---,L,c} as X9, S9, W9

i

[compute 1 (t1) from (24a)j
l
)
)

{input e Sy solution () }

[compute factored uy ;(t1) with (26), (27) and (28)}

[compute factored uy (¢1) with (29)}

[compute factored uy r(t1) with (26), (27) and (28)}

'
[E — 0+ 1} [compute factored u,(t1) with (30)}

no

[compute factored u, r(t1) with (26), (27) and (28)]
)
[compute factored u. r7(t1) with (32)}

)
[compute factored u.(t1) with (33)]

|

e Sy solution v (t)
e factored moments uy(t1) with £ € {1,---, L,c} as X},S}, W}

[output

FI1GURE 1. Flowchart of the presented method.

For the in-scattering and out-scattering of the collided flux, i.e., equation (31c) we use the matrix projector—
splitting integrator. Following [35], only the L-step needs to be computed and we are left with

Lo(t) = —X4(OLa(t) + Lo() (). (33)

The costs for the collided particles are again O(r? - (n, +m)). According to the derived steps, the scheme then
consecutively updates the uncollided particles 1, the factors of uy,--- ,ur and lastly the factors of u.. In every
step, the factors are first updated by a streaming step, followed by a scattering step. Lastly, when updating the
factors of the collided flux, the additional L-step is performed to account for self-scattering. This procedure is
repeated until a final time (or minimal energy) is reached. A flow chart to visualize the presented method is
given in Figure 1.
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4.2. Time (or energy) discretization

The presented equations still continuously depend on the pseudo-time (or energy) t. To treat stiff scattering
terms, we use an implicit time update method for the scattering equations. The remainder uses explicit time
discretizations. More specifically, we use implicit and explicit Euler time-discretizations in this work. Let us
start Wlth Xy = X?, S} = SY and W} = VVZ7 where ¢ denotes the individual collision steps, i.e., £ €
{1,- —1,L,c}. The streammg update is the same for all collision steps. Hence, when omitting a spec1ﬁc
collision mdex we obtain

K72 = K° + At ( LOK A + LKA + LIVK(A,[° + LIVK A, ) X'"R; =K', (34a)
L' = L+ At (Lgf%OLOAf +LPOLOAT + LIOOLOA, [T + L(1)70L0|Ay\T) , W'R, =LY7T, (34b)
S72 = §° 4 At ( LR280AY? + L 280RY> + L8| A, 72 + L(V28%)A,, |1/2) (34c)

where SO = X/2TXSOWOTW2 and flux matrices are computed before evaluating the right-hand side. The
collision equations differ for the £ =1 and £ € {2,--- , L} collided fluxes as well as the collided flux. For £ =1,
we have

K! = HA;W (K" + Aty () Ty S(E)W]?) . XIR =KL, (35a)
L= H%tz(tl) (LY + ATy Ta (), WiRs = L7, (35b)
Sl = H%E(tl) ('éi/z + AtX}’TdJ(tl)TME(tl)W}) . (35¢)
For ¢ € {2,---,L} we have
K! = H%tz(tl) (K;“ + AtX;_ls;_lwé;le(tl)W;/z) . XjRi =K, (36a)
L= H%tz(tl) (L + A>T xE 8L WiS()),  WiR, =17, (36D)
Sl — m (éf n AtX;Tx},lS},lwéﬂz(tl)w}) . (36¢)

The collided flux is then updated through

K! = K/ + AtXISIW TS () W2, X!R, = (37a)
L! = L2 + AtX/>TXI ST WET S (1), WIR, = L7, (37h)
S. =8/ + AXITXLSI WIS ()W, (37¢)
Ll = SSWIT(I 4 5, (t)AMT — AtS(4))~),  WISLT = LLT. (37d)

Note that since X is a diagonal matrix, the inversion in (37d) is given explicitly without having to solve a linear
system of equations. The time updated solution is then given by X} ™! = X}, /! = Sl and W} = W},
where ¢ € {1,--- ,L —1,L,c}.

Remark 4.1. The proposed idea of multilevel DLRA can be applied in various settings with various strategies.
The core ingredient is to write the solution as a sum of different contributions

u(t) =uy(t) + ue(t) + -+ ur(t).
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Strategies to write the solution as a sum of different components can be the use of telescoping identities, a split
into symmetric and anti-symmetric solution contributions, a splitting of the original phase space, e.g. particles
that move forward and backward and many more. In a second step, evolution equations for every component
need to be derived. Third, every component u; is represented through a low-rank factorization and evolution
equations for every factor are derived with DLRA.

4.3. Boundary conditions

Boundary conditions for dynamical low-rank approximation are not straightforward to impose. Methods to
realize boundary conditions are to preserve relevant basis functions by excluding such functions from the DLRA
approximation, see e.g. [36,40] or through rank adaptivity [29]. In this work, we shift the complicated structure
of the boundary condition onto a solution component that can be efficiently treated with a conventional method.
A main advantage of using an Sy method for uncollided particles, besides having to resolve a limited number
of beam directions, is that its boundary conditions can be treated in a straightforward manner. Since at the
beam position we have n - Q) < 0 for all directions resolved by the Sy method, we can impose 1y = ¥pc at all
spatial points and ordinates. Hence, we have a simple Dirichlet condition, which can be incorporated into the
Sy method with the use of ghost cells. For the collided solution components, we assume uy; = 0 and u, = 0 at
the boundary. This encodes the fact that no collided particles enter from the boundary and collided particles
that reach the boundary from within the computational domain will not reenter and can therefore be removed.
This Dirichlet condition can be imposed with DLRA in a straightforward manner, see e.g. Section 4 of [36].

5. L2-STABILITY OF THE PROPOSED SCHEME

The derived method is robust in that its time step restriction (or CFL number) does not depend on small
singular values of the coefficient matrix or stiff terms arising in the scattering step. By the choice of the splitting
steps, we ensure that this stability is achieved without having to invert matrices or solve a nonlinear problem,
which is commonly the case for implicit time integration methods. To determine a suitable CFL condition, let
us investigate the L2-stability of the proposed scheme, which follows the approach taken in [35]. In contrast to
[35], the update equations include the inverse density, which will pose a challenge. We first note that the inverse
density can be pulled out of the stencil matrices. For this, we define the sparse diffusion stencil matrices without
density dependence nglg), € R*=*n"= ag

(1) _ _ 1
x,idx(%,5),idx(4,5) — Az’ ,idx(4,7),idx(i£1,5) — 2Ax’
) 1 & _ 1

Ty,idx(i,j),idx(z‘,j):fy’ Ty,idx(i,j),idx(i,j:l:l) _2Ay’

as well as the sparse advection stencil matrices without density dependence Tg?; € RM=X"= a9

@) _g 1 @) 4 1
,idx(%,7),idx(i£1,5) — :l:QAJj’ Ty,idx(i,j),idx(i,j:l:l) - isz

With p~! = diag ((p;ii(i,j))fvj;]fy), we have that ng) = Tgf)p_l. Following [35], we pursue a von Neumann-
like approach and investigate how the scheme amplifies and dampens certain Fourier modes. Let us store these
modes in a matrix E € C™**"* with entries

Eiax(e,k) idx(a,3) = V ArAyexp(iarx,) exp(ifmyr),

where ¢ € C denotes the imaginary unit. This matrix has several properties. First, it is orthonormal, i.e.,
EEY = E¥E = I, where an uppercase H denotes the complex transpose. Second, the matrix E applied to the
spatial flux matrices diagonalizes the scheme:

1,.29)% _ 1,2
T{,YE =ED{,?. (38)
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The diagonal matrices D;(L»l,72) € R"=*"= have entries

D(l) . 1 iamr Az 9 —ianAz s 5 . 1 A ns 5
z,idx(a,3),idx(a’,3") *E (6 —2+e ) aa’0p3" = Fx (COS(OHI’ Qj‘) - ) /0387,
(1) 1 TamA —tamA 1

Dy,idx(a,ﬁ),idx(agﬁ/) ZTAy (e Yy _ 2 + e y) 50604’5,85/ = Ty (COS(O{’/TAy) — ]_) 504(1’5[35’,
2 1 i A —iamA 1 .

Dg(g)i)dx(a7ﬁ)7idx(a/7ﬁz) :E(eza T et x)éaaléﬁﬁ’ = —E sm(aﬂ'Aaj)(Saa/(S@B,,
2 1 iamA —iamA { .

Dy(;,i)dx(a,ﬂ),idx(a/,ﬁ/) :m(e Y—e Y)0aar0ppr = *Afy sin(amAy)daadgp -

With these tools at hand, we can prove stability. Let us start with the streaming steps:

Lemma 5.1. Assume that the CFL condition

Amafl: (Ax,y ) At
Pmin min(Ax, Ay)

1
<3 (39)

holds true. Then, the streaming scheme (34) is L?-stable, i.e.,

||X1/2sl/2wl/2,T |F < ||XOSOWO’T

.

Proof. First, we include the identity EE inside the spatial flux matrices of the S-step (34c):

1) EEHp—1X1/2 (3:8) XI/Q’TED&,{?)JEHP_:LXI/Z,,

T (D,Y/2 _ /2T
L)Y = x/2Tr()

~ 8~

2 H —1~1/2 (38) 1/oT ) pH —1y!
)V EEY p~ X'/ 2 XATED R B pm X2,

8

L2 = x'/»Tr
Then, with p~! := E#p~1E and u = X72S°W"27T | we have
sz = §° + AL (LESOAY + LR VS0R) + LIS A, |12 4+ T8 A, |2)
= XATEEH W + AtX/>TE (Dgf> p'EfuA, + DY ﬁ*lEHu\AmD w2
+ AIXTE (Dg) p'E"uA, + D 5—1EHU\Ay|) WYz,
Taking the norm and noting that for the spectral norm we have |X/>7TE|| = [[W"?|| = 1 yields

I1SY2|F < HEHu A (Dgf);a—lEHuAm + DV E ulA,| + D5 E uA, + D;1>5—1EHU|Ay|) HF

1 ~ ~
<|[zEfu+ At (DPp'EfuA, + DV s 'EF u|A,| (40a)
2 x x F
1 ~ ~
+ H §EHu + At (D(y2)p_1EHuAy + D(yl)p_lEHu|Ay|> (40b)
F

Now we investigate the terms (40a) and (40b) individually. Recall that we have A, = V, yA; VL . Then for
(40a), which we denote by ||e||r, we define w := EffuV, which gives

1 ~ ~
ellrp = ||zwVT + At D(z)p_lwa + D(l)p_lw Al ) VT
2 xr T xr T
F

IN

1 ~ ~
H W + At (Df)pflwa + Dg})pflw\AA)

F
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Note that with e, := (e;x)72; and wy, := (w;x)}2,, we have

m m 1 2

el = llewld = D 5w + At (DP5wirf + D5 wiel 7))
k=1 k=1 2
m 1 . 2
<Y |31+ At (MDD + i - DY) 5| w3,

k=1

where || - ||2 denotes the Euclidean norm. Now, for the spectral norm in the above expression we have the upper

bound

1 ~
H21 + At (x,gDSP + |AF] .Dg)) pt

1 -
< ]2 + At (MDP + N DY) - A (571

We note that Amax(p~") = min; p; ! =: pi . With v := % we have

% + v(cos(anAz) — 1) — i sin(arAz)| - [w]

lle]| r <max
«

1
= max \/4 + v(cos(anAx) — 1) + v2(cos(anAzx) — 1)2 + v2sin*(arAz) - ||w||

[e3%

1
= max \/4 +v(1 —2v)(cos(arAz) — 1) - [|[w] .

To obtain stability, we need |le|z < [|w]| /2, i.e., v < %. In the same way, we can get an estimate for (40D),

which yields ™ PEAE < 1 yyig
Iwllr = B uVe,lr < |ullr = |IX7*S"W/T | r < |I8°]|r,
we know that ||S?||r < ||S%||, which with Parseval’s identity proves the theorem. O
Theorem 5.2. Assume that the CFL conditions (39) and
max L <1 (41)

E 1+ AtZt(t) — AtZ‘kk(t)
hold true for all pseudo-times t € [0,T). Then, the scheme is L?-stable, in the sense that with u} := X1SIWLT

and u} = X%S%W;’T we have

L L
lwille + > luglle + ()l < [[ullle + > ugle + [l(to)]| r-

/=1 (=1

Proof. We start with the collided equations. The last two steps of (37) read
S, =8/ + AXITXLSI WL s (4 )W,
L! = S;WLT(I+ 5,A — AtE) .
Writing this as a single expression gives

L!= (§;/2 + Atx({vTlelengz(tl)v”\’fi) WIT(I 4 S,At — AtE) L.
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We take the norm of the above expression and note that since Iji =SIwLT

AtEkk

! B
1+ AtY — Atk LITE:

1+ AtY; — Atk

ISHr < max 8221+ max

Note that we used

B 1 gk
S - [(I+ ZAtT — AtE) Y| = max Tp, - m = .
IZ]- 1T+ = ) = e e xS T N T A, — Ao

Adding ||S} || to both sides and noting that by Lemma 5.1, we have IS /2||F < ||Sl/2||p < |ISY|| r leads to

! 1S5 + max — TR g1y
max .
1+ AtEt — AtEkk cll¥ E 1+ AtEt — AtZkk LiiF

ISellF +[ISzlIF < max
By (36¢) we have
~1
ISLIlE Sm (||SL/2|F + Atm]?kak“SlLlF)

1

<—rr— (1I8Y| 7 + At max Xy ||ST P
1+ ALY, (” Ll A keS| >
Using the chosen CFL condition gives

Atk
1+ AtY — AtXg,

Icll + ISLlF < [182llr + [SL]F + max ISE—1l-
Recursively continuing this process until £ = 1 gives

AtZkk
14+ At — Aty

IS¢ ||F+Z||Sé||F \SOHF+ZHSeIIF+m,gX
{=1 {=1

b (t1)l -

Adding ||1(t1)||F on both sides, noting that (when choosing an implicit time discretization for scattering of
uncollided particles)

[y E)lr = (o)l 7

14 AtZ
and the use of Parseval’s identity proves the theorem. (Il

Remark 5.3. Commonly, the CFL condition of the scattering step is fulfilled automatically, since g < X
for all k. Therefore, a time step restriction is only imposed by the streaming update through (39).

6. EXTENSION TO RANK ADAPTIVITY

In a last step, we discuss the extension of the proposed scheme to the rank adaptive integrator of [9] and
how it simplifies for a forward Euler time discretization. The core ingredient of this method is to extend
the time updated basis with the basis at time ¢yq. Hence, for the streaming step, the updated basis becomes
X2 = [XO,XI/Q], where X ** is chosen such that the column range of X'/ contains K(t;) from the streaming
K-step and the basis is orthonormal, i.e., X/(\]*TXW =0 and XW’TXI/Q = I. Hence the matrix to compute the
initial condition of the S-step reads M = XY>7X? = [I,0]7 € R?70*™  where r( is the rank at time #y. In
the same manner, we have N = [L,0]T € R?oxro, Hence, as pointed out in [9], we have Xl/zg(to)wl/z’T =
XOS(tg)W%T € M,,. The fact that the initial condition of the S-step is of rank ro can be used to reduce
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computational costs when using an explicit Euler step. The S-step of the rank adaptive integrator for the
streaming step then reads

Sz = [1,0]7 S° [L,0] + At (Ef)’l/QSOKI/Z + TR L T S0R, | +f§”’1/‘Zs°|Ky|l/2) :

x

where the flux matrices are given by
—1 — i . —~
A /2 . WO,TAg’ywl/Q € RT0%2ro |Az,y|1/2 — WO,T|AI7y‘TW1/2 € RT0%2r0

Ty T

7(2)1/2

L%y _ )’il/zyTL(wQ,Z)/XO c RZTO ><r07 Eg(vl,l)jl/z — ﬁ1/2’TL§;1721X0 c RQ’I”QXTO.

Hence, the flux matrices that need to be computed have 272 entries. When using more general time integration
schemes to solve the S-step for the rank adaptive integrator, the flux matrices have 473 entries. We determine the
solution factors after the streaming update X'/2,8"2 and W2 as well as the rank 1/, through the truncation
step of the rank adaptive integrator. For components ¢ € {1,2,---,L,c}, the scattering steps have modified
S-step equations

) : R _
Si= T asn) (I0)™ 8} [L.0] + ALK} 4p(t) TarB(t) W) .

i X 1 ) _

SE= T ampy (MO 8/ 0]+ ARITXL S WS ()W) for £=2,0- L,

S! = [1,0]” SY2 [1,0] + AtXLTXESLWET S (1 )W

For £ € {1,---,L,c} we use X! = [Xz/z,ié], where X; is chosen such that the column range of )A(} contains

. <1.T<
Ky(t1) from the scattering K-step and the basis is orthonormal, i.e., XE/Z’TX; = 0 and X; X; = I. The
directional basis W% is defined analogously. Note that for the scattered particles, we need to do a final L-step
(37d) after having updated the coefficient. In this case, the truncation step of the rank adaptive integrator yields

VA\?E and §i. Since (37d) is constructed through the fixed-rank projector—splitting integrator, it will not modify
the rank.
Besides allowing for a dynamic choice of the rank, the rank adaptive integrator remains L? stable.

Lemma 6.1. Assume that the CFL condition (39) holds true. Then, the streaming scheme of the rank adaptive
integrator is L?-stable, i.e.,

||X1/2sl/2W1/2,T |F < ||XOSOWo,T

P (42)

Proof. The proof follows the steps taken in Lemma 5.1 and Theorem 5.2. We begin with the streaming part.
Using the Fourier matrix E, the spatial flux matrices can be written as

(Y2 S Tm(1) H —1~0 _ 331/2,T (1) H ,—1+0
L, =X7"TTHNEEY p~'X0 = X/*TED() E p~1X°,
—(2),Y2 o1 _ S1 _

L,, =X7/TTREEYp !X’ =X"*TEDZ E" p~'X".

With p~! := E¥p~'E and u, = X/?S'W">7 = X0SOWOT | we have
Sz — X/2Tu, WY + AtX/>TE (Dgf)ﬁ’lEHuaAz T D;”ﬁ*lEHua\AxD Ak

+ AXATE (D@ 5 E A, + D5 B u, A, ) W

Since for the spectral norm we have |X/2TE|| = ||\/7\\71/2|| = 1, taking norms yields the inequality (40) and
the remainder of the proof follows as in Theorem 5.1. Note that instead of u = X/?SOW 2T we now use uy.
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However, this does not impact the derivation, since ||ug|r = | X/*S°W">7||p = ||S°|| p. Finally, we note that
the truncation step of the rank adaptive integrator does not increase the norm of the solution, in fact

IS72) < [IS"2] < [IS°]I-

Lastly, we include scattering contributions.

Theorem 6.2. Assume that the CFL conditions (39) and (41) hold true for all pseudo-times t € [0, T|. Then,
the scheme is L2-stable, in the sense that with ul := X!SIWLT and u} := X%S%W;’T we have

L L
latlle + Y ladlle + ) e < ulle + > [udlle + [ (o)l e

/=1 (=1

Proof. The proof is essentially that of Theorem 5.2. The only difference is that we extend and truncate the
basis and coefficient matrices. However, since both of these operations do not increase the Frobenius norm of
the solution, the stability property is not violated by rank adaptivity. To make this observation more rigorous,
we start with the collided equations. The last two steps of (37) read

St = [L0)" 8 [1,0] + AtX[ X} ST W T S(0) WL,
L! = S.WLT (I + 5, AT — Ats)
Note that ||LL|z = ||S%||r and Hgi”F < |ISL||#. Hence, taking norms of the above equations yields
ISilF < I1SL°11r + At max Sie| S} .

1 1

Sl < Sl = S!
” CHF - mI?X 14+ 3,A0— AtXgy H CHF 14+ 3 At — At maxy, Yk H CHF’
where we used that maxy |Sg,| = maxy Y. Written as a single expression, we have
IS! | < max ! IS 7 + At max Siil|SL |7 (43)
¢ Tk 145 AE— AtYg ¢ k
AtZkk
<||S/? Stle- 44
SIS + max T A S (44)
For the L-collided particles, the coefficient vector reads
~ 1 1
IS4l < I8 1e < s (1871 + At Sual8} ).
Adding ||S} || to both sides of (43) gives
14+ XAt
S! Stlr <|SY? S
I8+ 1Ll <ISY2lLe + max g e S e
1 AtEkk
<||SY/> sY/? st .
SISl + 8+ max s R 8] e
By Theorem 6.1, we have that
AtZkk
S! SHir < |S° S9 F .
IS+ I8} < 82l + 815 + max T T[S}

Continuing recursively and following the last steps of the proof for Theorem 5.2 proves the statement. O
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FIGURE 2. Scalar flux ®(t = 1,x) = [, ¥(t = 1,x,Q)dQ with different methods and analytic
reference solution.
7. NUMERICAL RESULTS

In the following, we demonstrate numerical experiments to compare conventional and the proposed methods.
All results can be reproduced with the openly available code framework [34].

7.1. Line source benchmark

To demonstrate the applicability of the proposed collision source method for dynamical low-rank approxima-
tion in general radiation transport applications, we first take a look at the time dependent radiation transport
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FIGURE 3. Rank evolution in energy for different tolerance parameters . (a) ¥ = 0.3, L = 1.
(b) ¥ = 0.3, L = 4.

equation for the line source benchmark [21,22]

Oph + Q- Vet + Xg0p = %/ P dQ, (x,9Q) € [-1.5,1.5)% x S,
S2

1 ][>
Y(to) = T2 &P (402 )

where ¢ = 1 and ¢ = 0.03. This equation can be recovered from the continuous slowing down approximation
when choosing p = 1 and treating the energy variable as time. The line source benchmark is a common test
case for radiation transport problems, exposing deficiencies of different methods. A comparison of conventional
methods for this benchmark can for example be found in [23]. Common methods require high computational
costs or parameter tuning to yield a satisfactory approximation. Uses of dynamical low-rank approximation
for this benchmark are [9,43, 44], where it is observed that high ranks are needed to achieve a desired level
of accuracy. Nevertheless, in comparison to classical methods, DLRA yields reduced run times and memory
requirements. We use the following computational parameters for our calculations:

(45)

Ng = Ny - Ny = 40000 | number of spatial cells

m = (N +1)?2 =484 | number of spherical basis functions

ng = 968 number of quadrature points for uncollided flux
tenda = 1 end time

We use a CFL number of 0.5 according to (39). That is, the time step size is chosen as At = pmin%. The
scalar flux ®(t = 1,x) = [ ¢(t = 1,x,9Q)dQ computed with different methods can be found in Figure 2. We
observe a significant increase in the solution quality when using L = 4 instead of L = 1 levels. The level 4
approximation with a tolerance parameter of 9 = 0.3 agrees well with the Py solution. Here, we use the term
Py to indicate the use of an Sy solver for uncoolided particles as well as a Py solver for the remainder. While
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FIGURE 4. Dose distribution with different methods.

Py takes 5408 seconds to compute the scalar flux at time ¢ = 1, the DLRA methods with L = 1 and L = 4
levels only require 1009 and 1278 seconds respectively. Since particles move into all directions, a main factor in
this run time is the Sy solution. Taking a look at the rank evolution in time, depicted in Figure 3, we see that
most information is carried by the uncollided flux as well as solution components with little collisions.

7.2. Treatment planning for lung patient

In the following we examine the application of the proposed method to a realistic 2D CT scan of a lung
patient. The patient is radiated with an electron beam of E,.x = 21 MeV. We model this beam as

Yin(E,x,Q) = 10° cexp(—( . — )% /oq,) - exp(—(Fmax — E)? /o)
cexp(— (2. — 2)?/0,) - exp(—(y« —y)*/oy),
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FIGURE 5. Rank evolution in energy for different ¥ = - ||S||#. (a) ¥ = 0.01. (b) ¥ = 0.001.

which is used as boundary condition for the uncollided particle flux. To determine a tissue density p for given
gray-scale values of the CT image, we assume a value of one, i.e., a white pixel to consist of bone material
with density phone = 1.85 g/cm?. The remaining tissue is scaled such that a pixel value of zero corresponds to a
minimal density of pyin = 0.05 g/cm3. Air around the patient is filled with material, since this region does not
impact the dose distribution. The chosen settings are the same as in Section 7.1. Since we are using a directed
particle beam as boundary condition for the uncollided particles, the number of quadrature points n, reduces

by over 59 percent. The remaining parameters are:
number of quadrature points for uncollided flux

ng = 396

Fax =21 energy of beam in MeV

Ty = 7.25,y, = 14.5 | spatial mean of particle beam in cm

Q=1 directional mean of particle beam
inverse directional beam variance

inverse spatial beam variance

-1 _
oq. =175
inverse energy variance

ol =0,1=20
op' =100
We again use a CFL number of 0.5 according to (39), leading to At = pmin%. For this setting we compute

the full P solution, the proposed dynamical low-rank method with a fixed rank of 50 consisting only of collided
and uncollided particles as well as the rank adaptive version with L = 1 intermediate levels. Due to its reduced
computational costs, the DLRA methods show a significantly reduced run time. While the full Py method
runs for 47329 seconds, the DLRA methods have a run time of 4373, 3917 and 5392 seconds respectively. The
resulting dose distribution can be found in Figure 4. All considered variations of the proposed method are
able to capture the effect of heterogeneities in the patient density and agree very well with the Py solution in
the relevant dose areas. The efficiency of the method concerning both time and memory makes it feasible for
practical applications. This includes the generation of optimal treatment plans with gradient-based optimization

methods. It is observed that choosing a low refinement tolerance ¥ = 9 - ||S||r with ¥ = 0.01 leads to a slight
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FIGURE 6. First four dominant spatial modes with fixed rank integrator.

difference to the full solution for the smallest isoline. Note that isolines appearing below and above the main
beam on the right are artifacts by dose values close to zero and are not of interest.

The corresponding ranks at different energies for ¥ € {0.001,0.01} are depicted in Figure 5. It is observed
that the rank of collided particles remains small at low and high energies. At intermediate energies, the rank
reaches its maximum. Particles that have collided once can be described with a small rank throughout the
simulation. Note that particles which have collided once are not present for energies below 15 MeV. The reason
for this is that particles directly enter the patient tissue and are therefore directly subject to scattering.

The first four dominant spatial modes at the lowest energy are depicted in Figure 6 and the first four dominant
directional modes are shown in Figure 7. These modes have been computed by an SVD of the coefficient matrix
S = UDV7”. We then plot the first four columns of XU and WV. It is observed that the directional basis
carries the information that particles are predominantly travelling into the z-direction, i.e. into the direction
of the particle beam. The spatial basis encodes that particles with low energies are situated at the left of the
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W1 W2

F1cURE 7. First four dominant directional modes with fixed rank integrator.

CT scan and can mostly be found in high-density tissue. Note that due to the low energy of these particles, no
significant contribution to the overall dose distribution is observed.

8. SUMMARY AND OUTLOOK

In this work, we proposed a dynamical low-rank approximation for the use in radiation therapy. Instead of
computing the full solution, dynamical low-rank approximation evolves a low-rank factorization of the solution
in time, thereby significantly reducing computational times and memory requirements. The method can be
understood as a Galerkin method, which automatically and dynamically picks basis functions to capture relevant
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information of the solution. Through rank adaptivity, the rank of the solution approximation (that is, the
number of basis functions) decreases or increases in time according to the solution complexity. To use DLRA for
treatment planning applications, we formulate the energy dependence of the governing steady state equations
as a pseudo-time according to the continuous slowing down approximation. A rank adaptive unconventional
integrator is then chosen to update the factorized solution in energy.

Furthermore, a collided-uncollided split is used to evolve only collided particles with a dynamical low-rank
approximation. Thereby, we potentially reduce the required rank while facilitating the implementation of bound-
ary conditions. This approach can be extended to L-collided splits, which can be interpreted as writing the
solution as a telescoping sum. By applying DLRA to each update in this sum, we can decrease the solution
complexity in a multilevel fashion. Additionally, we propose an efficient implicit time discretization for scatter-
ing terms, which allows for increased time step sizes while not requiring the inversion of matrices. The proposed
method is shown to be L2-stable under a CFL restriction which only depends on the streaming term. In our
numerical experiments, we observe that the solution can be captured with a reduction in run times by a factor
of over 12.

In future work, we aim at using the proposed forward method to facilitate optimization and uncertainty
quantification in radiation therapy. To improve the understanding of dynamical low-rank approximation in this
new field of application, further validations, especially in 3D geometries and against the current standard pencil
beam or MC algorithms are necessary. A further advantage of DLRA that needs to be investigated could be
the use of GPU parallelizations which is limited for conventional particle based methods. Our results promise
an approach which is efficient enough for a use in dose optimization, while still taking into account all relevant
physical interactions.
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