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A B S T R A C T   

Numerical weather- and climate prediction models rely on soil data to accurately model land surface processes. 
However, as soil data are produced using soil profiles and maps with multiple sources of uncertainty, wide 
discrepancies prevail in global soil datasets. Comparison of four commonly used soil datasets in Earth system 
climate models, i.e., Food and Agriculture Organization soil data, Harmonized World Soil Database, Global Soil 
Dataset for Earth System Model, and global gridded soil information system SoilGrids, yields widespread dif
ferences in southern Africa. This study investigates the simulated land-atmosphere interactions in southern Africa 
in the context of the uncertainties from applying different global soil datasets. We conducted ensemble simu
lations using the fully coupled Weather Research and Forecasting Hydrological Modeling system (WRF-Hydro) 
incorporated with each of the global soil datasets mentioned above. Model simulations were performed at 4-km 
convection-permitting scale from January 2015 to June 2016. By quantifying model’s internal variability and 
comparing the modeling results, results show that the simulated temperature, soil moisture, and surface energy 
fluxes are largely impacted by soil texture differences. For instance, changes in soil texture and associated 
hydrophysical parameters result in large differences in air temperature up to 1.7◦C and surface heat flux up to 25 
W/m2, and disparities in averaged surface soil moisture differ up to 0.1 m3/m3 in austral summer months. 
Differences in soil texture characteristics also regulate local climatic conditions differently in the wet and dry 
seasons as well as in different climatic regions. Furthermore, the thermodynamic differences in surface energy 
fluxes caused by soil texture demonstrate physical feedback perspective on atmospheric processes, resulting in 
distinct changes in planetary boundary layer height. This study demonstrates the non-negligible impact of soil 
data on land surface-atmosphere coupled modeling and highlights the need for consistent consideration of 
modeling uncertainties from soil data in modeling applications.   

1. Introduction 

Land surface, a key component in the Earth system, is recognized to 
have a critical role in the terrestrial and climate systems. Land surface 
characters are relevant to a large variety of different processes within 
the boundary layer, and strongly influence the land-atmosphere in
teractions and coupling (Fatichi et al., 2020; Seneviratne et al., 2010). 
The pedosphere, i.e. the soil, although usually considered a static 
boundary information of the land surface model, exert significant 

feedback on the weather and climate system as a large amount of 
freshwater is stored in this sphere (Dennis and Berbery, 2021; Greve 
et al., 2013; Santanello et al., 2018). Particularly, as the soil is not as 
readily observable as the land use and land cover, it has been long time 
considered as one of the least developed global environmental layers 
with limited data accuracy (Dai et al., 2019; Hengl et al., 2017). In 
recent decades, by organizing and harmonizing vast soil survey infor
mation with different soil mapping approaches, researchers have pro
duced various geospatial soil datasets from a regional to a global scale 
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(Batjes, 2016; FAO, 2013; Hengl et al., 2017; Miller and White, 1998; 
Shangguan et al., 2014). Nevertheless, soil datasets are utilized in mixed 
in Earth system climate model simulations and some older datasets are 
still widely in use, although the data may be out-of-date and their res
olution too coarse to match the model grid (Dai et al., 2019; DY and 
Fung, 2016). Understanding the impact of soil datasets commonly used 
in Earth system climate models can be beneficial for robust modeling 
capabilities. 

Land surface models (LSMs) have grown in complexity to contain a 
wide range of physical functionalities, incorporating the hydrological, 
biophysical, chemical, and radiative aspects, and are integrated with 
weather and climate simulations (Lawrence et al., 2007; Lin and Cheng, 
2016; Niu et al., 2011). Soil data is required in LSMs and in the land 
surface-atmosphere coupled modeling, it is assumed to obtain more 
reliable model predictions through accounting for feedback in the 
soil-vegetation-atmosphere continuum (Dirmeyer et al., 2016; Fisher 
and Koven, 2020; Santanello et al., 2013; Wei et al., 2021). For instance, 
Dennis and Berbery (2021) employed the Weather Research and Fore
casting (WRF) model with the Community Land Model (CLM) to 
investigate the dependence of modeled climate to soil maps over the 
continental United States. Their results demonstrated that widespread 
differences in soil texture affect the soil moisture content, thus eventu
ally leading to regional climate differences. Over an inland river basin in 
northwest China, Gao et al. (2008) replaced the soil information in the 
coupled fifth-generation non-hydrostatic Mesoscale Model (MM5) with 
a local soil map, and found that the area mean bias of simulated monthly 
precipitation was greatly reduced. In the same region, Zhang et al. 
(2019) further found that the streamflow simulation was largely 
improved by updating the soil map in a fully coupled 
atmospheric-hydrological modeling system. In a case study, Pedruzzi 
et al. (2022) illustrated the impact of erroneous or outdated land cover 
and soil texture data in the Numerical Weather Prediction model WRF 
for São Paulo, Brazil, and recommended an update of local land surface 
data for improved weather condition modeling and air quality modeling. 
DY and Fung (2016) compared the default global soil map generated by 
the Food and Agriculture Organization of the United Nations and an 
updated global soil map from Beijing Normal University for the WRF 
model, and examined the differences in near-surface temperature and 
humidity in the model simulations using the Noah LSM. They high
lighted that the soil hydrological properties have a strong effect on soil 
moisture content over a long period of time, and found an improved 
prediction of surface air temperature and relative humidity with an 
updated soil map. Many studies confirmed the board range of soil 
moisture impacts on variations of atmosphere conditions including 
temperature and precipitations (Lin and Cheng, 2016; Seneviratne et al., 
2010; Song et al., 2016), depending on the spatiotemporal scales, syn
optic regimes, seasons, and regions considered. 

Soils in southern Africa are under threat of degradation due to soil 
erosion, reduction of soil nutrients and organic matter, and loss of soil 
biodiversity (du Preez and van Huyssteen, 2020; Gomiero, 2016; 
Tamene et al., 2019). Soil profiles in this area thus have been extensively 
investigated in situ and collected through many soil survey programs 
(Dewitte et al., 2013; Leenaars et al., 2014), with comparatively detailed 
soil data (Batjes, 2016). However, inconsistencies in different global soil 
data are also evident in southern Africa (Dai et al., 2019; DY and Fung, 
2016). Modeling sensitivity studies of LSMs and weather and climate 
models for southern Africa mainly focus on land use/land cover change 
descriptions (Glotfelty et al., 2021), model physical parameterizations 
(Crétat et al., 2012; Laux et al., 2021), and atmospheric initial condi
tions (Crétat et al., 2011). High-resolution climate modeling studies and 
applications in southern Africa are still using outdated and 
coarse-resolution soil data, neglecting the uncertainties associated with 
soil data. Additionally, as more sophisticated hydrological processes are 
included in regional land surface-atmosphere models, i.e., coupled land 
surface-hydrological-atmospheric modeling, soil data as well as their 
hydrophysical properties are expected to have a larger impact on model 

results. Accordingly, assessing the effect of soil data uncertainty is a key 
step towards improving the capability of current state-of-the-art coupled 
models to reproduce fundamental features of key climatic variables. 

To this end, the research question of this study is focused on the 
assessment of uncertainties in climate variables attributable to soil data 
in a high-resolution regional land surface-hydrological-atmospheric 
coupled model in southern Africa. The fundamental hypothesis is that 
there is an apparent and direct impact of commonly used global soil 
datasets. In this study, we consider the following four digital global soil 
datasets: the Food and Agriculture Organization (FAO) Digitized Soil 
Map of the World (FAO, 2013), the Harmonized World Soil Database 
(HWSD, FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), the Global Soil Dataset 
for Earth System Model (GSDE, Shangguan et al., 2014), and the global 
gridded soil information system SoilGrids (Hengl et al., 2017), imple
mented in the Advanced Research version of the WRF Hydrological 
Modeling system (WRF-Hydro). These global soil datasets are selected as 
they are generally acceptably used in climate and weather simulation 
applications. By conducting coupled simulation for the southern Africa, 
south of 19 ◦S, we quantified the internal variability of simulation var
iables that link soil texture and its properties to the surface and 
near-surface states and fluxes. To our knowledge, this is the first effort 
for southern Africa that addresses coupled land 
surface-hydrological-atmosphere modeling uncertainties originating 
from different soil data. The remainder of this article is organized as 
follows: Section 2 describes the method and materials, including a 
model description, experiment design with selected soil data, reference 
data, and analytical methods. The results from coupled modeling are 
shown in Section 3, and the conclusions are discussed in Section 4. 

2. Method and materials 

2.1. Regional land surface-atmosphere coupled model setup 

The fully coupled Weather Research and Forecasting Hydrological 
Modeling system, named WRF-Hydro, is used as the regional land- 
atmosphere coupled model to assess the role of soil texture and associ
ated hydrophysical parameters in regional land-atmosphere in
teractions. The WRF-Hydro is the community research model (Gochis 
et al., 2020) developed by the National Center for Atmospheric Research 
(NCAR), aiming to accurately represent the physical processes of the 
land surface and the atmosphere as well as their two-way interactions. In 
comparison to the conventional numerical weather prediction model 
WRF, WRF-Hydro further considers the lateral terrestrial hydrological 
processes and their atmospheric feedback, thereby improving the real
ism of earth system interactions. As a consequence, WRF-Hydro has been 
commonly used in recent research applications (Arnault et al., 2021a; 
Quenum et al., 2022; Zhang et al., 2022). A detailed description of the 
WRF-Hydro model can be found in Gochis et al. (2020). 

The Advanced Research WRF model version 4.2 with the hydrolog
ical module of WRF-Hydro version 5.1 is conFig.d for this study. The 
model domain is conFig.d with a convection-permitting horizontal res
olution of 4 km with 650 × 500 grid points, covering the southmost part 
of Africa, including e.g., South Africa, Lesotho, Eswatini (domain extent 
is shown in Fig. 1). The WRF-Hydro model is directly forced by ERA5 
reanalysis at 3-hourly time intervals (Hersbach et al., 2020). Down
scaling simulations are performed using single-domain approach at the 
convection-permitting resolution, excluding the uncertainties associated 
with multiple nesting and cumulus parameterization in the outer 
domain. The underneath statics soil textures are different in the 
designed experiments, which will be detailed in Section 2.2. The land 
use and land cover map used in all simulations are the same and are 
based on the Moderate Resolution Imaging Spectroradiometer (MODIS) 
21-class dataset. 

Based on previous climate dynamic downscaling applications over 
southern Africa (e.g., Abba Omar and Abiodun, 2021; Crétat et al., 2012; 
Ratna et al., 2014; Ratnam et al., 2013), the selected set of atmospheric 
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physics schemes includes the shortwave and longwave radiation 
schemes of Dudhia (1989) and Mlawer et al. (1997), the WRF 
single-moment 6-class microphysics scheme of Hong and Lim (2006), 
and the Yousei University planetary boundary layer scheme (Hong et al., 
2006) along with the revised Monin-Obuhkov surface layer scheme 
(Jiménez et al., 2012). As our model grid is within the 
convection-permitting model resolution (Prein et al., 2015), no cumulus 
parameterization scheme is activated. Previous studies also confirmed 
that by using a 4 km grid-spacing the subtropical convection over 
southern Africa can be reproduced (Kendon et al., 2019; Senior et al., 
2021). 

The community land surface model Noah with multi- 
parameterizations (Noah-MP) is used for simulating momentum, heat, 
and water exchanges at the land surface within the WRF-Hydro model 
system. The Noah-MP LSM has four vertical soil layers within a total 2- 
meter soil depth, and parameterizes vertical water and heat transport 
with diffusive Richards’ equation and thermal diffusion equations. De
tails about the Noah-MP land surface model can be found in (Niu et al., 
2011). In addition, WRF-Hydro handles lateral terrestrial water flow to 
parameterize water horizontal movement in the land surface. The 
overland and subsurface lateral flow routing are computed on a sepa
rated 400-m subgrid which represents the refined terrain gradient. The 
4-km WRF-Hydro/Noah-MP grid and the 400-m subgrid interact 

through a disaggregation-aggregation procedure to map surface hy
drological conditions, therefore, the lateral terrestrial water flow also 
has atmospheric feedback in the modeling system (Gochis et al., 2020). 
It is noted that this study aims to compare modeling simulations in order 
to investigate the role of soil data in the regional land-atmosphere 
coupled modeling, rather than to optimize the Noah-MP model 
schemes and hydrological parameter calibration. We therefore keep the 
default schemes and parameter values in Noah-MP and in WRF-Hydro 
water routing modules, without considering channel routing and base
flow bucket modules. 

The model simulations are run for the period from January 2015 to 
June 2016. The first six months of the simulations are designated for 
model spin-up, and the entire austral year from July 2015 to June 2016 
is chosen for analysis. As for the spin-up time, previous studies have 
commonly employed a period of 1–2 months for model spin-up in 
southern African regions (e.g., Crétat et al., 2012; Ratna et al., 2014). 
Accordingly, our choice of 6 months is considered sufficient for the 
model to reach an equilibrium state of surface conditions. 

2.2. Soil datasets 

Four commonly used digital global soil datasets from the Food and 
Agriculture Organization (FAO), the Harmonized World Soil Database 

Fig. 1. WRF-Hydro model domain covering southern Africa and the dominating land use and land cover from MODIS dataset. The gray dots show the location of the 
soil moisture observation stations from ISMN. 
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(HWSD) version 1.2, the Global Soil Dataset for Earth System Model 
(GSDE), and the global gridded soil information system SoilGrids, were 
used in the study. The default soil data provided by WRF/WRF-Hydro 
preprocessing system is generated from the State Soil Geographic 
datasets (STATSGO) for the entire region of the United States and the 
FAO soil dataset for the rest of the world (FAO, 2013; Miller and White, 
1998). Although the FAO soil dataset is ~10–30 years old and may not 
accurately reflect the soil state at the land surface, it remains the most 
widely used in current weather and climate model applications. The 
FAO soil data has a grid spacing of 5 arc minute (~9 km). HWSD is built 
by harmonizing the existing globally available regional and national soil 
databases within the 1:5000,000 scale FAO soil world map using a 
standardized structure (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). To 
further meet the needs of various types of Earth system models, the 
GSDE dataset, designed for the improvement of HWSD, is developed by 
incorporating more local soil maps and soil profiles related to the soil 
maps, and with more soil properties (Dai et al., 2019; Shangguan et al., 
2014). Both HWSD and GSDE have the same grid spacing of 30 
arc-second (~1 km). SoilGrids is a recent global soil information system, 
which is produced by fitting machine-learning prediction models using 
more than 230 000 soil profile observations (Hengl et al., 2017). With a 
resolution of 250 m, SoilGrids provides the spatially most detailed es
timations of global soil distribution. 

In the modeling practice, the Noah-MP LSM requires empirically 
derived soil hydrophysical parameters paired with prescribed soil 
texture for physical parameterization of soil thermodynamic and hy
drological processes. To ensure comparability among the four soil 
datasets with different resolutions and depths, all simulations utilize the 
default option of dominant soil texture. Soil texture is determined based 
on the United States Department of Agriculture (USDA) classification 
system, which classifies soil properties such as the percentages of silt, 
sand, and clay (Soil Survey Staff, 2012). The criteria for classifying the 
twelve soil texture types are shown in Fig. S1b (supplement), along with 
four additional soil categories of organic material, water, bedrock and 
land-ice. Table S1 provides the relevant soil hydrophysical parameters 
of each soil texture, including porosity, saturated matric potential, 
saturated hydraulic conductivity, and retention curve slope. These pa
rameters are set as defaults in both WRF-Hydro and Noah-MP models. 
We emphasize that the configuration of the soil textures compositions 
and their corresponding hydrophysical parameters are driven by the 
particular use for the land surface modeling in our modeling approach. 
The accuracy of the soil texture classification in global soil data is often 
questionable, and the soil hydrophysical parameters are empirical 
derived, predominantly from soil samples collected in the United States 
(Cosby et al., 1984; Kishné et al., 2017). 

2.3. Reference dataset and evaluation protocol 

In the effort to validate the simulations’ performance, four global 
gridded datasets of near-surface temperature, precipitation, land surface 
evapotranspiration, and surface soil moisture are used. These include 
the temperature dataset of Climatic Research Unit grided v4 (CRU) with 
a spatial resolution of 0.5◦ (Harris et al., 2020), the precipitation of 
climate hazards infrared precipitation with stations data v2 (CHIRPS) 
with a spatial resolution of 0.05◦ (Funk et al., 2015), the land evapo
transpiration dataset of Global Land Evaporation Amsterdam Model 
v3.5 (GLEAM) with a spatial resolution of 0.25◦ (Martens et al., 2017), 
and the surface soil moisture from European Space Agency Climate 
Change Initiative (ESA-CCI) with a spatial resolution of 0.25◦ (Dorigo 
et al., 2017). These datasets are chosen because they are 
observational-based and produced using data assimilation and physical 
algorithms. They have been demonstrated to have the ability to repre
sent the spatial variability of climate variables in the southern African 
region (Al-Yaari et al., 2019; Khosa et al., 2019; Landman et al., 2018; 
Pitman and Bailey, 2021). To enable direct comparison and calculation 
of biases and correlations, the variables from simulations are regridded 

to the grids of the corresponding reference datasets using bilinear 
interpolation. 

In-situ observed near-surface soil moisture dataset from the Inter
national Soil Moisture Network ISMN (Dorigo et al., 2021) are further 
used for soil moisture validation at point scale. In total, data from eleven 
stations throughout the model domain with records covering the 
research period are used. These soil moistures records are retrieved by 
Cosmic-ray probes and GPS receivers. The hourly raw records are 
averaged to daily scales and then compared to the model results. 

Uncertainties in model ensembles to different soil datasets are 
quantified by estimation of the internal variability (Alexandru et al., 
2007; Lucas-Picher et al., 2008). It is measured by the spread among the 
ensemble members during the time of integration. The spread is calcu
lated by the standard deviation between the member of the ensemble, 
that is 

σ2
X(i, j, t) =

1
N

∑N

n=1
[Xn(i, j, t) − X̄(i, j, t)]2. (1)  

Where X(i, j, t) refers to the value of variable X on grid point (i, j) at time t 
and for the member n in the ensemble. N is the total number of ensemble 
members, here N = 4. The term X̄ is the ensemble mean calculated as 

X̄(i, j, t) =
1
N

∑N

n=1
Xn(i, j, t). (2) 

The inter-member variance σ2
X(i, j, t) is calculated for all grid points in 

space and archived for all time steps. To describe the spatial distribution 
of internal variability over the whole simulation period, the measure of 
internal variability is further calculated by the square root of the time- 
averaged σ2

X(i, j, t) in Eq. (1) as 

σ2
X

t
(i, j) =

1
M

∑M

t=1
σ2

X(i, j, t) (3)  

where N is the number of all time steps. σ2
X

t
(i,j)represents the variability 

of the simulated variable over a given period and a given location (i, j). 

3. Results 

3.1. Comparison of soil texture at lower boundary conditions 

The dominant category of top-layer soil texture in each model grid 
cell from four datasets is visualized in Fig. 2, and Table 1 and Fig. S1a 
further summarize the counted corresponding percentage of each soil 
texture category in the study domain. Differences in soil texture between 
the four soil datasets are pronounced. In general, most of the soil texture 
is massively blocky distributed in the model domain. As shown in Fig. 2 
and Table 1, the dominant soil textures in FAO and HWSD are sandy 
loam and sand, comprising 46.6% and 31.0% of the model domain grid, 
respectively. Sandy clay loam is the dominant soil texture in both GSDE 
and SoilGrids, comprising 22.7% and 44.1% of the domain, respectively. 
Spatially, FAO gives the most simplified soil texture, mainly classifying 
the study area as sandy loam, loam, and sandy clay loam (Fig. 2 and 
S1a). SoilGrids also simplifies the soil texture mainly into three cate
gories as loamy sand, sandy loam, and sandy clay loam. The soil textures 
classified in HWSD and GSDE are somewhat similar, partly attributed to 
the fact that the soil data sources are the same and the soil mapping 
approaches are similar (Dai et al., 2019). According to Shangguan et al. 
(2014), GSDE incorporated additional soil profiles and soil maps 
compared to HWSD, therefore the associated improvements are repre
sented in Fig. 2. For example, the soil texture at the border between 
Namibia and South Africa is shown continuously as loam in GSDE, 
instead of being distinctly divided as sandy loam and clay loam by the 
country border in HWSD. These two soil texture categories are not 
adjacent to each other in the USDA soil texture triangle (Fig. S1b). Also, 
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the soil texture over Lesotho is better classified in GSDE than identically 
classified in HWSD, and the soil texture of sand in the south of Botswana 
in HWSD is further classified in GSDE. 

In terms of soil grain size, HWSD and GSDE generally describe a 
coarser grain size composition than FAO and SoilGrids across the study 
area, e.g., from Sand to Sandy Loam over Northwest arid land. Spatially, 
SoilGrids documents an overall continuous decrease in soil grain size 
from northwest to southeast. It is suggested by Dai et al. (2019) and 
Hengl et al. (2017) that Soilgrids largely improves the representative
ness of spatial variations in soil properties at a very high grid resolution. 
Overall, apparent differences in soil texture are observed in the four 
selected global soil datasets over the study area. Given that the soil 
hydrophysical parameters are described differently based on the pre
scribed soil textures, further variations in the simulated hydrometeo
rological fields at the land-atmosphere interface can be expected from 
the model ensembles. 

3.2. Evaluation of model simulations 

The simulation results of dynamically downscaled hydrometeoro
logical fields are evaluated first. The 2-meter air temperature and pre
cipitation of the simulation ensemble are compared with reference 
datasets and are illustrated in Figs. 3 and 4, respectively. The temper
ature observation shows a cool temperature along the Drakensberg 
mountains, stretching to the Cape Fold Mountains in the south of South 
Africa. The coolest temperatures appear in northern Lesotho as a result 
of the significant terrain features. The coastal area and the interior areas 
surrounding the Namib and Kalahari deserts are warmer, with the 
highest temperatures over southern Mozambique (Fig. 3a). Such tem
perature patterns are well reproduced by the model simulations, 
showing the added values associated with the very high model resolu
tion. By conservatively interpolating the simulated temperature into the 
coarser grid of the CRU dataset, temperature bias slightly varies from 
− 3.4 to 3.3◦C over the model domain, with a very small overall bias of 
− 0.56◦C. The temperature discrepancies in the mountainous area are 
relatively large, particular in Lesotho, exhibiting large variations with 
mixed distribution patterns. Apart from the inherent biases from model 
simulations, the regridding process introduces additional biases due to 
the abrupt changes in orography in the region, exacerbating the chal
lenges of interpolation. 

The simulated precipitation from the model ensemble is also com
parable with the CHIRPS precipitation (Fig. 4a-b). The spatial patterns 
are well captured, with more precipitation toward the east range of the 
Drakensberg Mountains over Mpumalanga and KwaZulu-Natal, and the 
southern parts of Eastern Cape and Western Cape. This indicates that 
both the austral summer precipitation in the east of South Africa and the 
winter precipitation of the Mediterranean climate in the southwest 
coastal area are well represented. Additionally, the precipitation 
gradient in the east-west direction is quite comparable between the 

Fig. 2. Four USDA classification based global soil datasets as implemented in the WRF-Hydro model at 4-km resolution, (a) default FAO, (b) HWSD, (c) GSDE and 
(d) SoilGrids. 

Table 1 
Averaged percentage of each soil texture category in the four soil datasets within 
the WRF-Hydro simulation domain, i.e. in southern Africa.  

Soil category FAO HWSD GSDE SoilGrids 

Sand 0% 31.0% 19.1% 1.5% 
Loamy Sand 2.8% 7.3% 11.9% 21% 
Sandy loam 46.6% 22.8% 20.3% 26.6% 
Loam 29.0% 6.0% 12.7% 0% 
Sandy Clay Loam 11.4% 11.3% 22.7% 44.1% 
Silty Clay Loam 0% 0% 1.0% 0% 
Clay Loam 3.6% 16.7% 8.3% 3.1% 
Sandy Clay 0% 0.4% 0.4% 2.4% 
Clay 6.6% 4.5% 3.6% 1.3%  
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simulations and CHIRPS observations. Regarding the precipitation bia
ses, a precipitation dry bias occurs along the west coast, with the highest 
percentage of biases over the Namibia desert (Fig. 4c). Nevertheless, the 
absolute bias over the desert is very small, less than 12 mm over the 
year. The wet precipitation bias is mostly distributed over the Dra
kensberg Mountains, alongside the mountain peaks (Fig. 4c). Overall, 
the model overestimates the mean land precipitation by about 30.2 mm 
compared to the CHIRPS precipitation of 342.4 mm, with a percentage 
bias of 8.7%. Compared with previous regional climate dynamic 
downscaling cases (e.g., Arnault, Jung, et al., 2021; Crétat et al., 2012; 
Crétat and Pohl, 2012; Ratna et al., 2014), these high-resolution 
WRF-Hydro simulations successfully reproduce the key variables of 
temperature and precipitation, and additionally, show somewhat 
improved results in terms of simulation biases, since this 
convection-permitting resolution excludes the uncertainties and biases 
of the convective scheme (e.g., Prein et al., 2015; Senior et al., 2021; 
Zhang et al., 2021). 

Figs. 5 and 6 present spatial comparisons of land evapotranspiration 
and surface soil moisture, respectively. The patterns of both variables 
show slightly higher values in the eastern mountains and low values in 
the interior and western regions, similar to the patterns of precipitation. 
Compared to the reference dataset, the WRF-Hydro ensembles generally 
exhibit negative biases in evapotranspiration and soil moisture over the 
western arid area, with small absolute bias values of − 0.015 mm/day 
and − 0.05 m3/m3 respectively. The evapotranspiration and surface soil 
moisture values over the eastern wetter region are comparable, with 
small mixed biases distributed spatially. 

3.3. Internal variabilities in model ensemble simulations 

The internal variability of each simulated hydrometeorological field 

is estimated using the square root of the time-averaged variance (
̅̅̅̅̅̅̅

σ2
X

t
√

) 
among ensemble members following Eq. (3). For the 2-meter tempera
ture shown in Fig. 3d, a clear increase in internal variability is found in 
the interior region of the study area. This region primarily consists of soil 
texture dominated by sand, loamy sand, and sandy loam, located at the 
left angle of the USDA soil texture triangle (Fig. S1b), characterized by 
the largest grain size. For other areas with soil textures dominated by 
loam and sandy clay loam, the internal variability is very small. 
Although the spatial pattern of temperature is directly influenced by 
terrain elevation (Fig. 3b), topography does not seem to have a large 
effect on the internal variability of simulated temperature. The un
certainties of temperature values are considerably related to the soil 
texture description. 

The internal variabilities of precipitation and evapotranspiration 
relating to soil texture are spatially distributed similarly over the entire 
domain. Higher internal variability is visible in the northern and eastern 
part of interior, whereas lower variability characterizes west and south 
coastal area. Overall, the internal variability of model is higher in the 
interior than in the coastal areas, showing a west-east and south-north 
gradient. In the model simulation, the lateral boundary and sea sur
face temperature are prescribed identically, and the prevailing winds 
carry moisture from the coast to the land, where they interact with the 
land surface and then are increasingly perturbed by soil texture dis
parities. These perturbations are maximized in the inland region, where 
they may lead to greater differences in precipitation representation. 

Fig. 3. Spatial comparison for mean 2-meter air temperature between (a) CRU-TS reference and (b) WRF-Hydro ensemble mean for the period July 2015 to June 

2016. (c) WRF-Hydro ensemble bias regarding CRU-TS reference. (d) Time-averaged variability of 2-meter temperature 
̅̅̅̅̅̅̅̅̅̅̅
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among 4 ensemble members. 
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Precipitation variability is closely linked to the intensity of rainy days as 
well as precipitation location and amount, which are jointly triggered by 
regional-scale convective processes and large-scale synoptic variabil
ities. Consequently, higher internal variability of precipitation is clus
tered to the inland area in the eastern and the subtropical latitudes, 
including the complex terrain region of Drakensberg Mountains, due to 
the strong topography effect on convection triggering. In contrast, 
coastal areas in the west and south exhibit the lowest variability of 
precipitation (Fig. 4d), even though the southern coast experiences high 
precipitation due to the Mediterranean climate (Fig. 4b). The south
eastern coastal areas receive abundant precipitation but exhibit less 
variability, which is also attributed to the fact that moisture sources are 
mostly not perturbated. Overall, simulated evapotranspiration and sur
face soil moisture have low internal variabilities (Figs. 5d and 6d), 
acknowledging the long persistence of soil moisture and the fact that 
coupled WRF-Hydro model spatially redistributes the soil moisture from 
higher to lower areas by lateral flow processes. The high internal vari
ability of evapotranspiration is shown to be partly related to the areas 
with high internal variability of soil moisture, such as the southern 
coastal areas of Mozambique and the areas close to the border of 
Zimbabwe. As shown in Fig. 6d and Fig. 2, the soil textures of sand and 
loamy sand usually exert a larger impact on the internal variability of 
soil moisture. 

The comparison of spatial patterns of simulated precipitation minus 
evapotranspiration (P-E), which represents the terrestrial water avail
ability is shown in Fig. 7. Overall, common features are represented 
among all model ensemble members. The eastern mountain regions 
exhibit a large amount of excess precipitation that forms runoff, while 
the western and central highveld has very small net precipitation. The 

regions with negative net precipitation represent dry land conditions, 
such as the dryness in the lower Limpopo River stretching to 
Mozambique and the significant impact of forestry plantations on 
evapotranspiration. Many studies showed that forest plantations in the 
Kwazulu-Natal and the Eastern Cape of South Africa led to a reduction of 
water resources (e.g., Meijninger and Jarmain, 2014; Tuswa et al., 
2019). These spatial characteristics are well captured by the coupled 
model simulations, although evapotranspiration in Noah-MP and 
WRF-Hydro is accounted for only within a 2-meter soil depth. Response 
to differences in soil textures on the available water are visible among 
model ensemble, clustered in the mountainous area such as Lesotho and 
the eastern flanks of Drakensberg (Fig. 7). Theses difference arise from 
variations in precipitation differences, soil wetness and the redistribu
tion of water flux through lateral water processes. In HWSD and GSDE 
experiments, high net precipitation is evident along the southern coasts 
of Mozambique, associated with soil texture of sand present in the area. 

3.4. Model sensitivity on spatially distributed soil moisture 

A daily time series comparison is conducted to evaluate the simu
lated topsoil moisture against both in-situ observed and satellite- 
retrieved surface soil moisture at 11 sites, as shown in Fig. 8. Some 
gaps are present where in-situ measurements and satellite-retrieved data 
are missing. As soil texture varies among the simulation members, the 
detailed inventory of soil texture in each simulation is listed in Table 2. 
Similar to the findings from previous studies that compared numerical 
models and observations (e.g., Fersch et al., 2020; Greve et al., 2013; Lin 
and Cheng, 2016; Massey et al., 2016; Zhang et al., 2019), systematic 
differences in soil moisture content are observed at some sites. This is in 

Fig. 4. Spatial comparison for daily-averaged precipitation between (a) CHIRPS reference and (b) WRF-Hydro ensemble mean for the period July 2015 to June 2016. 

(c) WRF-Hydro ensemble bias regarding CHIRPS reference. (d) Time-averaged variability of precipitation 
̅̅̅̅̅̅̅
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fact related to the measured depth of soil wetness on the one hand, and 
to the physical properties of the soil on the other. Nevertheless, the 
simulated soil wetness as well as their variabilities are consistent with 
the observations, with the simulation results showing significant cor
relation with the observations (statistically significant at 1% level, 
except for the case of SoilGrids at the Gobabeb site). Additionally, the 
root mean square errors (RMSE) are less than 0.1 m3/m3 at 9 out of 11 
station sites (summarized in Table S2). The occurrence and trends of 
both rapid increases and decreases in soil moisture content are in 
agreement across the simulated time series, indicating the reasonable 
simulated precipitation events in spatial. In general, the simulation re
sults are found to be in better agreement with the ESA-CCI satellite 
observations. 

Regarding the intercomparison among the four model members, soil 
texture is found to have a direct impact on soil moisture content. Spe
cifically, the assigned field capacity and wilting point values for 
different soil textures (Table S1) directly affect the overall soil wetness. 
For instance, overall soil moisture is higher for Clay Loam than for Sandy 
Clay Loam and Loam, as seen in the Cathedral, Baynesfield and 
Sutherland in-situ sites. At the hyper-arid Gobabeb site, differences are 
particularly remarkable, highlight the distinct impact of soil texture 
(Fig. 8). Additionally, soil texture with more sand tends to respond 
rapidly to rainfall, with earlier peaks and quicker drain out. This is partly 
evident in Mapungubwe and Mafikeng sites, where soil moisture in 
HWSD responds faster due to the soil texture of Sand. Generally, soils 
with more clay tend to have a high water-holding capacity and dry out 
slowly, while soils with more sand behave the opposite. These charac
teristics can be derived from these site-scale comparisons, and are 
further comparable to results from standalone LSMs and climate 

modeling (e.g., de Lannoy et al., 2014; DY and Fung, 2016; Lin and 
Cheng, 2016; Yang et al., 2011). It is worth emphasizing that the 
WRF-Hydro model used in this study considers not only soil water ver
tical diffusion and surface evapotranspiration, but also horizontal soil 
water redistribution based on saturated soil exfiltration and overflow 
reinfiltrating (Gochis et al., 2020). As a consequence, these results un
derscore that soil texture exert a distinct influence on soil moisture 
variability even in complex models that account for detailed hydrolog
ical processes. 

3.5. Effects of soil texture differences on land-atmosphere interfaces 

The impact of variations in soil hydrophysical properties on land- 
atmosphere interactions is investigated through a thorough compari
son of two simulation cases. We considered GSDE and HWSD for the 
comparison because they were developed using a similar framework and 
also GSDE was developed with the purpose to improve HWSD’s protocol 
(Shangguan et al., 2014). Our analysis indicates that there are still 
considerable differences in soil texture between the two datasets, despite 
their similar development process (as shown in Fig. 9d). Additionally, 
Fig. 9a-c illustrate the differences in selected soil hydrophysical pa
rameters assigned from the lookup table in the model simulations. It is 
apparent that the hydrophysical parameters differ in space following the 
difference in soil texture. In general, soil moisture at saturation 
(porosity) and hydraulic conductivity are slightly higher in GSDE for 
South Africa and slightly lower for Lesotho (Figs. 9a, c). The parameters 
of wilting point and field capacity (not shown, but spatially similar to 
the wilting point) generally decrease as the soil grain size increases, 
mainly occurring in the Northwest of South Africa (Fig. 9a, d). The 

Fig. 5. Spatial comparison for daily-averaged evapotranspiration between (a) GLEAM reference and (b) WRF-Hydro ensemble mean for the period July 2015 to June 

2016. (c) WRF-Hydro ensemble bias regarding GLEAM reference. (d) Time-averaged variability of evapotranspiration 
̅̅̅̅̅̅̅̅̅
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pronounced differences in soil hydrophysical parameters are mainly to 
be found in the middle of the northern part of the domain, where areas 
are classified in HWSD as Sand compared to as Loamy Sand and Sandy 
Loam in GSDE. 

Because the large seasonal differences in precipitation and temper
ature in the study area (Fig. S2), the impact on variables crucial to land 
surface-atmosphere interactions is investigated in the austral summer 
and winter months, shown in Figs. 10 and 11, respectively. Shown in 
Fig. 10, obvious differences in the variables can be distinguished. In 
terms of surface air temperature and surface skin temperature, lower 
temperatures in GSDE can be identified over the middle of the northern 
part of the domain (MND) and the Northwest of South Africa (NSA) 
(Fig. 10a). Yet the hydrothermal processes associated with them are 
different. Over the area of MND, the soil texture transitions from Sand to 
Loamy Sand and Sandy Loam, increase the soil’s water-holding capacity 
(as shown in Fig. 9). Summer rainfall in this area (spatially ca. 100–300 
mm, Fig. S2a) enhances soil moisture (Fig. 10d) and evapotranspiration/ 
latent heat (Fig. 10g), leading to an enhanced evaporative cooling effect 
(as seen in Fig. 10c), thus decrease the temperature at the surface. Over 
the area of NSA, summer temperature is very high, and rainfall is very 
low < 30 mm (Fig. S2a, c). Under such dry conditions, in most cases, 
surface soil moisture decreases to the wilting point, which can be 
identified in sites Upington and Sutherland in Fig. 8. The soil moisture in 
GSDE is lower than in HWSD (Fig. 10d) due to the decrease in soil pa
rameters representing the wilting point (Fig. 9). Such drier soil moisture 
in GSDE decreases the thermal conductivity, preventing the temperature 
increase in the soil and leading to lower temperatures than HWSD. In the 
area of NSA, as the input energy fails to remove more water from the 
soil, the difference in latent heat follows the precipitation difference, 

and sensible heat increases slightly in the GSDE (Fig. 10g-h). For the 
eastern part of the model domain with more precipitation, differences in 
surface variables are also jointly impacted by the precipitation differ
ence. The differences in runoff mainly occur in temperate areas with 
complex topography (Fig. 10f). As shown in Fig. 10a, the difference in 
planetary boundary layer height (PBLH) was impacted by the surface 
temperature and moisture conditions. 

These results indicated that the spatial variations concerning pre
dicted soil moisture and skin temperature are closely associated with 
differences in soil texture. Previous studies on standalone land surface 
modeling have also demonstrated the significant sensitivity of simulated 
terrestrial water components to input soil texture data (e.g., DY and 
Fung, 2016; Li et al., 2018; Zheng and Yang, 2016). While surface 
moisture variables are much sensitive to water-flux related physical 
processes, such as runoff scheme, groundwater scheme and lateral flow 
(e.g., Gan et al., 2019; Niu et al., 2011; Yang et al., 2021), the present 
results clearly indicate that the spatial characteristics of soil moisture 
primarily depend on the water-holding capacity of the soil, as deter
mined by hydrophysical parameters. The changes induced by soil 
texture to atmosphere (i.e., sensible and latent heat fluxes) are further 
modulated by local climate and moisture conditions, showing decreased 
influences over arid regions, which is comparable to the finding of 
Zheng and Yang (2016). 

Regarding atmospheric feedbacks, Fig. 12 illustrates the differences 
in moisture variables and winds in a vertical cross-section near 28◦ S 
(position indicated in Figs. 10d and 11d). Notable differences in water 
vapor and horizontal, horizontal and vertical wind are observed below 
500 hPa, as depicted in Fig. 12a. It is noted that changes in atmospheric 
water vapor below 850 hPa are closely related to surface soil moisture. 

Fig. 6. Spatial comparison for daily-averaged surface soil moisture between (a) ESA-CCI reference and (b) WRF-Hydro ensemble mean for the period July 2015 to 

June 2016. (c) WRF-Hydro ensemble bias regarding ESA-CCI reference. (d) Time-averaged variability of surface soil moisture 
̅̅̅̅̅̅̅̅̅̅
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Higher soil moisture intensifies water vapor and causes remarkable wind 
differences in the near-surface layer. In the highveld in eastern interior 
region, where summer precipitation is mainly triggered by deep con
vections, changes in atmospheric water vapor have a significant impact 
on convective instability, thus in turn induces large differences in pre
cipitation, as demonstrated in Fig. 10b. Moreover, changes in atmo
spheric horizontal wind suggest that the moisture and energy changes in 
surface soil can further impact atmospheric circulation, and the distinct 
altered low-level wind fields indicate changes in moisture convergence 
and atmospheric water transport through land-atmosphere coupling. 

In austral winter months, the difference in soil texture, i.e., Sand in 
GSDE to Loamy Sand in HWSD, in the dry land of the interior (Fig. S2b, 
d) enhances the cold and dryness of the surface (Fig. 11a, d-e). This 
difference also results in a slight decrease in atmospheric moisture in the 
low atmosphere (Fig. 11c, 12b). The surface heat fluxes are slightly 
increased, which in turn affects the thickness of the planetary boundary 
layer (Fig. 11g-i). Precipitation remains not much affected in the interior 
region (Fig. 11b), owing to the slight change in atmospheric water vapor 
(Fig. 12b). In contrast, the small and fragmented soil texture differences 
in the temperate and subtropical coastal area have a noticeable impact 
on moisture and heat flux variables, which further correspond to model- 
produced runoff differences. Also, the correspondence of changes in 
PBLH and precipitation changes can be partially detected over the 
coastal area. Above results highlight the impact of corresponding 
changes in surface water and heat fluxes due to changes in soil texture on 
land-atmosphere interactions, which are closely related to local climate 
and moisture conditions and are characterized by inter-seasonal 
differences. 

4. Discussions and conclusions 

Global soil dataset, representing one of the boundary conditions of 
Earth system models, have been found to exhibit large disparities in 
many regions around the world. This study examines simulated land- 
atmosphere interface variables in the context of the uncertainties in 
the global soil dataset over Southern Africa. Four commonly used global 
soil data, i.e. the FAO, HWSD, GSDE, and SoilGrids, were implemented 
in the fully coupled regional land surface-hydrological-atmosphere 
model WRF-Hydro model with the aim to (1) quantify the internal 
variability of simulation variables introduced by soil data variations, 
and (2) investigate the impact on land-atmosphere interactions associ
ated with differences in soil texture and its hydrophysical properties. All 
the simulations were performed at convection-permitting high-resolu
tion of 4 km for the period of January 2015 to June 2016, and with 
enhanced lateral hydrological processes compared to the conventional 
weather forecasting model. 

Upon comparing the ensemble simulations with observation-based 
datasets, evaluation results show that the coupled WRF-Hydro model 
represents the spatial patterns of land surface hydrometeorological 
fields reasonably well. Specifically, the overall biases for precipitation 
and air temperature are 0.084 mm/day and − 0.56◦C, and for surface 
evapotranspiration and soil moisture are − 0.015 mm/day and − 0.05 
m3/m3, respectively. Comparison with in-situ soil moisture observations 
reveal plausible spatiotemporal variations of surface moisture condi
tions. These results highlight the model’s applicability in investigating 
land-atmosphere interactions, and in particular, indicate that the 
modeling perform well compared to previous modeling studies (e.g., 
Arnault et al., 2021b; Crétat and Pohl, 2012; Ratna et al., 2014; Ratnam 
et al., 2013). This partly attributes to the fact that using 

Fig. 7. Spatial patterns of simulated water availability (P minus ET) of each WRF-Hydro member.  
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convection-permitting WRF-Hydro on the one hand revokes the un
certainties associated with cumulus schemes (Prein et al., 2015), and on 
the other hand improves the realism of the representation of terrestrial 
hydrological processes (Gochis et al., 2020; Zhang et al., 2022). 

Concerning the impacts of different global soil datasets on simulated 
hydrometeorological variables, the results indicate that the internal 
variability of precipitation is more pronounced in the inland northern 

and eastern areas. This can be attributed to increased model perturba
tions from coastal to inland regions, as well as the topography-induced 
effects that enhance convection triggering. Similarly, the actual evapo
transpiration demonstrates a comparable pattern of internal variability 
to precipitation as it is constrained by the availability of precipitation. 
Temperature and soil moistures are uncertain due to differences in soil 
textures. Higher temperature variability is found over the arid interior 

Fig. 8. Comparison of time series of daily surface soil moisture between in-situ observation, remote sensing observation and WRF-Hydro ensemble members at 11 
ISMN station sites. 
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characterized by coarser soil texture. Larger soil moisture variability is 
mainly associated with high soil wetness and large differences in soil 
hydrophysical parameters. By explicitly comparing two simulations 
with soil data of GSDE and HWSD for austral summer and winter sea
sons, differences in surface variables are associated with difference in 
soil texture and assigned hydrophysical properties. The impact on local 
climate varies seasonally and differs further depending on local climatic 
conditions. For instance, the differences of patches of soil texture attri
bution from Sand to Loamy Sand and Sandy Loam result in cold and wet 
effects during austral summer and cold and dry effects during the winter 

time over the semiarid and arid interior areas. Changes in surface energy 
fluxes also affect atmospheric processes between seasons, as seen in the 
impact of surface conditions on the atmospheric water vapor, and 
Planetary Boundary Layer height, which is a function of turbulent eddy 
growth. 

The results of this sensitivity study emphasize the critical role of 
accurate global soil data in modeling land-atmosphere interactions and 
underscore the need for continued improvements in soil data quality and 
consistency. It is worth noting that the availability of regional datasets 
may offer more realistic land surface characteristics and lead to some 

Table 2 
Station name, location, and soil texture category as represented in four global soil datasets at the location of 11 ISMN station sites.  

Station Name Longitude Latitude Soil texture 

FAO HWSD GSDE SoilGrids 

Mapungubwe 29.39 − 22.19 Loam Sand Loamy Sand Sandy Clay Loam 
Mafikeng 25.54 − 25.81 Sandy Loam Sand Sandy Loam Sandy Loam 
Lichtenburg 26.57 − 26.03 Sandy Loam Sandy Clay Loam Sandy Clay Loam Sandy Clay Loam 
Newcastle 29.98 − 27.77 Loam Sandy Clay Loam Sandy Clay Loam Sandy Clay Loam 
Bethlehem 28.33 − 28.25 Clay Loam Sandy Loam Sandy Clay Loam Sandy Clay Loam 
Cathedral 29.25 − 28.99 Clay Loam Sandy Clay Loam Sandy Clay Loam Clay Loam 
Two-Streams 30.65 − 29.21 Loam Sandy Clay Loam Sandy Clay Loam Clay 
Baynesfield 30.34 − 29.76 Loam Sandy Clay Loam Sandy Clay Loam Clay Loam 
Upington 21.26 − 28.41 Sandy Loam Sand Sandy Loam Sandy Loam 
Sutherland 20.81 − 32.38 Loam Clay Loam Loam Sandy Clay Loam 
Gobabeb 15.05 − 23.55 Loamy Sand Sandy Loam Sandy Loam Loamy Sand  

Fig. 9. Difference of assigned soil parameters of (a) porosity, (b) wilting point and (c) saturation hydraulic conductivity between selected two WRF-Hydro members 
(GSDE minus HWSD). (d) The most common soil texture transitions from WRF-Hydro members HWSD to GSDE. 
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improvements in regional modeling results (e.g., Gao et al., 2008; Lin 
and Cheng, 2016; Pedruzzi et al., 2022). However, generalized global 
soil dataset still continue to be relied upon in weather and climate 
modeling due to their wide availability, standardized information, and 
consistent representation. While the primary objective of this sensitivity 
study was to better understand the influence of soil data variations on 
modeling uncertainties rather than to identify a superior soil dataset, 
utilizing recently developed global soil data (e.g. GSDE, SoilGrids) is 
more likely to be a favorable option for regional modeling approaches 
(Dai et al., 2019). These datasets integrate more soil observations and 
detail the soil properties and characteristics at high spatial information, 
which is particularly important for model simulations at very high res
olution (<4 km). 

However, it is important to recognize that uncertainties related to 
soil data alone do not solely determine land-atmosphere interactions. 
Regional characteristics are also influenced by additional factors such as 

vegetation and local climate overlay. Vegetation types and coverage 
significantly impact albedo, shading of the soil surface, rainfall inter
ception and regulation of root water uptake, playing a vital role in 
modulating the radiation budget and water cycle at the local level even 
extending to surrounding areas (e.g., Boisier et al., 2012; Wang et al., 
2023). Moreover, the interlinkage of vegetation dynamics with soil 
texture and properties is not adequately represented in current weather 
and climate modeling processes. Therefore, further investigation is 
required to better understand the combined effects of soil and vegetation 
on land-atmosphere interactions. Additionally, different physical 
schemes regarding soil thermal and hydrology process are parameter
ized differently in various land surface models (e.g., Gan et al., 2019; 
Van Den Broeke et al., 2018; Zhuo et al., 2019), and the choice of land 
surface model in coupled modeling may yield different responses 
regarding soil data uncertainties. Since this study focuses on specific 
regional coupled modeling study, it is important to consider the location 

Fig. 10. Averaged differences between two WRF-Hydro members (GSDE minus HWSD) for four austral summer months (DJMF) of (a) 2-meter air temperature, (b) 
precipitation, (c) 2-meter specific humidity, (d) top-layer soil moisture, (e) surface skin temperature, (f) surface runoff, (g) surface latent heat flux (LE), (h) surface 
sensible heat flux (H), and (i) PBL height (PBLH). The dashed contour in (a) in black denotes the MND region, and in red denotes the NSA region. 
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of the study area as well as the overlying climate, as they inherently 
determine the baseline characteristics of land-atmosphere interactions, 
and the uncertainties are also influenced by interannual variability. By 
considering these aspects, more holistic understanding of 
land-atmosphere interactions can be achieved, leading to improved ac
curacy and reliability in regional climate modeling. 

Overall, our study underscores the non-neglectable influence of soil 
texture on model-predicted variables at the land-atmosphere interface. 
It is well acknowledged that soil moisture and its memory have sub
stantial impacts on climate simulations both at regional and global 
scales (Dirmeyer et al., 2006; Menéndez et al., 2019; Schär et al., 1999; 
Seneviratne et al., 2006), with signals in soil moisture being transmitted 
to and manifesting in the atmosphere states and processes through 
land–atmosphere coupling. At a regional scale, the magnitude of the 
responses could be large, due to the strong coupling strength over 
different areas, i.e. hot spot regions (Knist et al., 2017; Koster et al., 
2002; Santanello et al., 2011). Specifically, coupling experiments pro
jects have suggested a strong coupling between soil moisture and 

precipitation over the region of southern Africa (Guo et al., 2006; Sen
eviratne et al., 2006), and studies have identified that soil moisture 
exerts both positive and negative feedbacks on precipitation over the 
dryland area in the study area (Cook et al., 2006; Yang et al., 2018; Zhou 
et al., 2021). Therefore, the implications and uncertainties resulting 
from soil data differences extend beyond the surface water and energy 
fluxes shown in this study. A recent study by Dennis and Berbery (2022) 
indicated the changes in soil hydrophysical properties on the simulation 
of North American atmospheric water budget in summer months. 
Building upon their research, our sensitivity experiments have demon
strated the potential impacts of soil datasets on atmospheric circulation, 
water budgets as well as atmospheric instability, emphasizing the 
importance of correctly setting soil information in southern Africa for a 
climate simulation. To conduct a more comprehensive investigation into 
soil uncertainties, particularly regarding precipitation simulations, it 
would be beneficial to implement large ensemble modeling in long-term 
climate studies, provided sufficient computational resources are 
available. 

Fig. 11. Averaged differences between two WRF-Hydro members (GSDE minus HWSD) for the austral winter months (JJA). For details see caption of Fig. 10.  
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