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Pollen is known to be the only source of proteins and fats for honey bees. Therefore, it is an important component 
of nutrition, essential for brood care and a good indicator for the availability of resources in a landscape. It is 
also known that a diverse diet is beneficial for bee health, also in relation to winter losses. In this work, an 
app is presented that allows to quantify the pollen from a pollen trap and to determine its colour diversity in 
an automatic way. The colour diversity is closely related to the actual plant diversity. This correlation allows 
conclusions to be drawn on the apicultural importance of a landscape and on biodiversity in general. In this way, 
the app provides beekeepers with important information about the nutritional condition of their colonies, while 
scientists can benefit from aggregated information about local biodiversity. The app is free of use and available 
as a web app on all devices.
1. Introduction

Pollen plays a crucial role in the nutrition of honey bees as it is the 
sole source of proteins and fats [1]. It is also an essential component for 
brood care and serves as a reliable indicator of the quality of a forag-
ing location. Furthermore, a varied diet of pollen helps to increase the 
strength of colonies, which is particularly important for their survival 
during the winter months [1].

Given the importance of a diverse pollen supply, the question arises 
how pollen diversity can be determined. Methods of laboratory analysis 
include the analysis of pollen grains in honey, bee bread or pollen from 
pollen traps [2].

An alternative, which is less costly and requires neither expert 
knowledge nor laboratories, is an approximation of local and temporal 
pollen diversity using the colour diversity of pollen from pollen traps. 
Pollen traps force bees to pass through a grid when entering the hive. 
The grid is designed in a way that the bees lose their pollen load when 
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passing the pollen trap, which accumulates in a container underneath. 
The pollen can then be manually sorted by colour to determine colour 
diversity, a process known as (manual) chromatic assessment. Colour 
diversity, in turn, can be used to indirectly estimate species diversity 
in flowering plants, an approach carried out by Conti et al. [3] for a 
particularly species-rich area in Italy. At intervals of 3 weeks, a to-
tal of 19 pollen samples were collected from three hives using pollen 
traps from April to September for 3 days each. In order to exclude dif-
ferent colour perceptions, a 10 g aliquot was subjected to a manual 
chromatic assessment by the very same expert. A self-made colour chart 
with 30 typical pollen colours served as a reference for sorting. The ac-
tual pollen diversity was then examined in the laboratory. Under these 
conditions, the researchers figured that each new colour found corre-
sponded to 1.52 new species in the sample. It was also investigated 
whether a diversity index (Shannon) obtained by chromatic assessment 
was significantly different from that based on laboratory analyses. Con-
tradictory results were obtained, as there were significant differences in 
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a direct comparison of two differently determined diversity indices, but 
not when looking across all samples using the Wilcoxon matched pair 
test. Kirk [4] summarises his long-term observations as follows: “Does 
colour diversity reflect phylogenetic diversity (...)? The broad phylo-
genetic association with pollen colour found here indicates that colour 
diversity will also broadly reflect phylogenetic diversity.” [4]

Besides the different colour perception of humans (cf. Asano 
et al. [5]) and the influence of the light situation on the observed 
colours [4], the limitations are due to the properties of the pollen: It is 
known that pollen can change its colour depending on the degree of dry-
ness [6], that different species can produce the same pollen colours [7]
and, conversely, different pollen colours can be assigned to the same 
plant species in rare cases [6]. These effects result in fewer colours being 
found in chromatic assessment than species in laboratory analysis [3,2].

Assuming this connection, the spatial and temporal pollen (colour) 
diversity for many European countries was surveyed in 2014 and 2015 
in a large-scale citizen science study named ‘Citizen Science Investiga-
tion on Pollen’ (CSI Pollen) [8]. Here, with the help of 750 beekeepers 
(citizen scientists), almost 18 000 pollen samples were collected and 
undergone manual chromatic assessment [2]. It is evident that a study 
that relies on hundreds of volunteers has to accept some limitations. For 
example, the citizen scientists could not be expected to determine the 
exact size of the colour clusters. Instead, beekeepers were asked to cat-
egorise pollen colours according to their frequency as very rare, rare or 
abundant. The study design also made it inevitable that different peo-
ple were used in the visual evaluation. In the context of differences 
in human colour perception [5], this poses risks that seemed unavoid-
able at the time. The evaluation of the CSI Pollen study showed that 
the most significant random effect was attributed to the beekeeper. 
This means that different beekeepers would likely find different num-
bers of pollen colours in the same pollen sample. This is not surprising, 
since each of the 18 000 samples contained up to 20 g or 2 000 pollen, 
which made the manual chromatic assessment very tedious. Dimou 
and Thrasyvoulou [9] report that sorting a 20 g sample takes an av-
erage of 84 minutes. Depending on patience and concentration, it was 
up to the individual participants to sort the pollen carefully (i.e. to 
form many and therefore homogeneous clusters) or to work fast (i.e. to 
form fewer and more heterogeneous clusters). The authors, unlike Conti 
et al. [3] and Kirk [4], decided not to provide the participating beekeep-
ers with fixed reference colour charts. Without a reference, the decision 
on whether to classify colours as different (or not) was left exclusively 
to the beekeeper. Practical reasons against reference colours are the dif-
ficulties in providing suitable high-quality prints (cf. Kirk [4,10]) and 
possible problems when pollen cannot be clearly assigned to one of 
two reference colours. Hence, no colour name could be assigned to the 
manually sorted pollen in the CSI study. This information and an ex-
act cluster size could not be obtained for practical reasons and were not 
included in the study’s scope.

Nevertheless, the CSI pollen study is of great impact. Through the 
involvement of citizen scientists, the project managed to expand across 
Europe, making it “much larger than individual researchers could ever 
achieve” [2]. While this holds true, further automation is the logical 
consequence of this proven idea.

In this work, we seek to objectify, accelerate and extend the man-
ual chromatic assessment carried out before. By presenting an app 
that allows quantifying pollen load from pollen traps and determining 
their colour diversity objectively and automatically, the aforementioned 
shortcomings of the chromatic assessment can be solved. (1) Compared 
to the human based chromatic assessment approach, the proposed so-
lution allows calibrated cluster colours to be determined, making the 
colours comparable across time and place. With the additionally ob-
tained calibrated pollen colours, conversion factors from colour diver-
sity to species diversity can be found at the level of individual colours, 
as suggested by Conti et al. [3]. This means that samples that show rare 
colours are also likely to contain fewer species in a laboratory analysis 
2

and vice versa. The automated chromatic assessment offers the possi-
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bility to use the general abundance of pollen colours for the prediction 
of local species diversity, which is expected to strengthen the corre-
lation and to improve the prediction accuracy. (2) In addition, colour 
frequency categories can be replaced by real count values easily. Not 
until the cluster sizes are known is it possible to determine popular 
biodiversity indices. (3) By making less of an imposition on citizen sci-
entists, it is likely that even more participants can be reached for even 
longer periods of time with fewer dropouts. Digital support for the bee-
keeper is also called precision beekeeping and has already been used 
successfully elsewhere [11,12].

In this way, the app provides beekeepers with important information 
about the nutritional status of their colonies, while scientists benefit 
from aggregated information about local and temporal biodiversity. The 
web app is freely available on all devices.

2. Materials and methods

The app named ‘Pollenyzer’ allows users, i.e. beekeepers, to analyse 
the colour diversity of pollen samples. At the same time, it invites to 
enrich each pollen analysis with scientifically relevant metadata. The 
software underlying Pollenyzer is open source and publicly available.1

The automatic chromatic assessment includes five steps. (1) A pollen 
trap is mounted and pollen is collected for a typical period of one to 
three days. (2) The collected pollen is placed on an A5 paper (210 mm 
x 297 mm) and photographed. (3) The resulting image is uploaded and 
processed via the app. Optionally, users can provide metadata about 
their pollen samples. (4) The user is presented with visualisations of the 
results. (5) Optionally, users can post-process the automatic clustering 
of pollen colours according to their perception.

The app is implemented as a progressive web app (PWA) that can 
be accessed and, if desired, installed on all devices via the browser us-
ing standard web technologies.2 In addition to the frontend, the app 
consists of three backend components, the implementation of which 
is explained below. Subsequently, we present a study that investigated 
whether image processing of pollen samples can achieve the same study 
results as manual chromatic assessment.

2.1. Pollen load detection

The literature already contains examples of image processing of pho-
tos with pollen loads. For example, Chica and Campoy [13] and Salazar-
González et al. [14] used conventional image processing methods to 
separate the pollen from the background. However, with both methods 
it was not possible (and necessary) to separate individual pollen loads. 
In other words, instead of the positions of individual pollen loads, only 
the area occupied by pollen could be discerned, a disadvantage that can 
be remedied with today’s AI-supported methods.

Convolutional Neural Networks (CNNs) have been successfully used 
for the last decade and are considered state of the art in the field of im-
age processing [15]. In this work, a CNN, more specifically a U-net [16], 
was trained to detect pollen on A5 paper.

The U-net architecture consists of a contracting path that grasps 
context and a corresponding expanding path that allows precise locali-
sation [16]. All convolutional layers have the same kernel size of (3, 3), 
followed by a batch normalisation layer and a rectified linear activation. 
Two such layers form a convolutional block followed by a max-pooling 
layer with stride size of (2, 2). The contracting path consists of four 
such convolutional blocks with 16, 32, 64, and 128 features per con-
volutional layer. The contracting path is similar in structure, but uses 
deconvolution layers instead of max-pooling. The convolutional blocks 

1 https://github .com /pollenyzer /beesypollen, Pollenyzer code base, last ac-
cessed on 13.03.2023.

2 https://pollenyzer .github .io, Pollenyzer web interface, last accessed on 

13.03.2023.
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Fig. 1. Five training samples showing the input image data (top), the annotations (middle) and the neural networks output layer (bottom). Pure white pixels reflect 
a one hundred percent confidence of the neural network that there is a pollen centre at the pixel’s location.
of the contracting path are connected to their corresponding counter-
parts of the expanding path by so called skip connections, which are 
typical building blocks of the U-net architecture. Since the task of de-
tecting pollen is not overly complicated, the size of the network is com-
parably small containing less than two million trainable parameters. 
U-nets were originally designed for image segmentation (e.g. Borling-
haus et al. [12]), but have already been successfully used for object 
detection [17]. In the present case, the network’s output is a single 
layer segmentation map showing the networks confidence that a pixel 
is a pollen’s midpoint. Therefore, to obtain a list of pollen coordinates, 
U-nets require additional blob detection on the segmentation map at 
inference time. Here, blob detection is implemented as a search for 
local maxima on the thresholded segmentation map. To simplify the 
pollen detection, the net was trained to detect pollen on white A5 pa-
per. The paper with known dimensions (210 mm x 297 mm) served 
as a size reference and allows to automatically scale input images ac-
cording to the expected pollen dimensions. The network was trained on 
images of shape 96x96x3 and binary masks as labels. Fig. 1 shows five 
training input images (top), labels (middle) and output segmentation 
maps (bottom). Since detections at the image borders were especially 
hard and error-prone, a workaround was implemented. During training, 
cross-entropy loss was applied only to the 48x48px centre of the image, 
ignoring potential errors that arise in border regions. In Fig. 1c one 
special characteristic of the masks can be noticed. Looking closely, one 
can see that overlapping neighbouring pollen (white circles) were sep-
arated by additional black borders. This was to encourage the network 
to draw clear boundaries between detected pollen on the segmentation 
map, thereby facilitating subsequent blob detection. In the same figure 
(bottom) one sees the benefit of this practice.

The pollen came partly from a commercial pollen mix, partly from 
collected pollen over the course of an entire season and represented a 
high colour diversity. In total there were 19 996 corbicular pollen loads 
in the training data set and 2 629 pollen in the test data set. The pollen 
were taken from a total of 75 images with a resolution of up to 70 MP. 
The annotation was done under certain guidelines. (1) If stacked, only 
pollen mainly located in the uppermost layer and (2) only intact pollen 
parts large enough to extract robust pollen colours were annotated, 
excluding pollen fragments. Fig. 1a illustrates the problem annotators 
faced when the transition from pollen to pollen fragments was seamless. 
3

Thus, it was hardly possible to maintain a very strict annotation style 
across the entire dataset, as in some cases the correct annotation was 
ambiguous. This inconsistency is reflected in the fact that borderline 
cases (cf. Fig. 1a) are assigned a mediocre confidence on the segmenta-
tion map and are included or excluded from the results by the choice of 
confidence threshold. The annotation could be sped up significantly as 
no real pollen segmentations were done. The much faster annotation of 
the pollen midpoints was sufficient to generate mask labels afterwards.

A total of 550 000 96x96px image parts were randomly cropped 
from the annotated dataset and augmented (50k of which were for 
validation purposes). Augmentation included slight scaling, shearing, 
random rotation, slight alteration of contrast, brightness and colour, 
and various blurring algorithms. This data set of over half a million im-
ages, masks and pollen coordinates was published as part of this work 
[18]. The training was stopped after 2 h on an Nvidia RTX 3090 GPU 
(TM), as an increasing overfitting was observed.

Due to the seamless transition from pollen to pollen parts, not only 
labelling but also the determination of performance metrics has become 
more difficult. As the labels were sometimes ambiguous or inaccurate, 
the calculation of intersection over union (IoU), a typical metric for 
recognition and localisation problems, is not well suited. In this case, 
the IoU would mainly quantify the inconsistency of the annotators 
rather than the quality of the detections. Therefore, pollen detection 
was performed on separate test images. An annotator then assessed 
whether a detection fulfilled the previously mentioned criteria. In this 
way, the false-positive, false-negative and true-positive detections were 
determined and more appropriate metrics of precision, recall and f1 
were calculated and are reported in section 3.1.

2.2. Colour extraction

After the pollens’ midpoints have been located, their colours were 
determined. To obtain a robust colour value, the colour values of mul-
tiple pixels needed to be taken into account. However, the naive ap-
proach of averaging the pixels in a certain radius around the pollen 
centre led to poor results. This was due to the observation that pollen 
was usually composed of two colours, the primary colour and the 
secondary colour. The secondary colour (or shade) is inherent to the 
three-dimensionality of the pollen and occurred in any typical light-
ing situation. For this reason, two alternative approaches were tested to 

separate the primary and secondary colour: the Gaussian mixture model 
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(GMM) and the k-means algorithm. While the GMM assumes that the 
colours in the sample are normally distributed around two mean values, 
k-means makes no assumptions about the distribution. The k-means al-
gorithm is not robust to outliers, but it is much faster, often produces 
similar results and is therefore preferable in all cases where users are 
waiting for a timely response. Separating the secondary colour provides 
additional reliability in cases where the detected midpoints are not per-
fectly centred. In such cases the largest cluster’s centroid was considered 
the primary colour and is thus purged of possible deviants.

Results of the colour extraction can be found in section 3.2.

2.3. Colour calibration

Due to the distributed nature of citizen science studies, we can 
not expect beekeepers to adhere to specific experimental constraints 
like matching imaging devices or accurately reproducible illumination. 
Hence, we expected images to be taken under vastly different lighting 
conditions and with varying spectral sensor sensitivities of the cap-
turing devices. As a result, different, so-called device-dependent RGB 
values are assigned to the same pollen colour on different images. This 
not only impairs the comparability of clustering results between im-
ages of distinct participants but also between photographs of a single 
beekeeper, as there exists no known relation between the respective 
device-dependent colour spaces caused by differences in illumination 
and sensor sensitivities. In order to overcome this issue, our goal was to 
find translations of these colour values from device-dependent colour 
spaces to a standardised device-independent colour space. This process 
is commonly referred to as colour calibration [19].

A widely used method for colour calibration is the use of colour 
calibration cards. Such cards are of well-monitored production quality, 
correspondingly expensive and consist of a certain number of colour 
patches for which reference colour values are known in an absolute 
colour space based on the CIE Standard Observer. If placed within an 
image, they allow for a comparison between the observed colour of 
each patch and the respective reference colour. Thereby, a relation be-
tween the device-dependent colour space and the reference colour space 
can be inferred. Using this relationship, image colours can be trans-
formed from device-dependent RGB values to an absolute colour space, 
i.e. CIEXYZ, CIELAB or sRGB. In case of a citizen science study, how-
ever, each participant would have to obtain their individual colour card, 
which would be a significant expense. This places an additional burden 
on the motivation of voluntary participation in such studies. Hence, a 
suitable and severely less expensive alternative needed to be found.

Examples are provided in the literature, where established colour 
checkers were substituted with custom devices that fulfil the require-
ments of a specific domain. Bautista et al. [20] constructed cus-
tom colour patches small enough to be used in whole slide scan-
ning, while Zhang et al. [21] designed a colour card with refer-
ence colours that are particularly prevalent in diagnostic imaging of 
tongues. Salazar-González et al. [14] chose to use designated photo 
equipment under laboratory conditions to ensure pollen colour fastness 
in a food context. Chica and Campoy [13] circumvented the calibration 
by using a special computer vision device to detect non-local pollen 
loads by colour. Our primary constraints, however, were acquisition 
cost and unrestricted availability of the device to participants. We also 
wanted to avoid the expensive production and distribution of self-made 
colour cards. Hence, the object we were searching for should already be 
a commonplace item. Moreover, the replacement needed to comprise a 
collection of standardised colours suited for colour calibration.

An item that met these requirements can be found on the packag-
ing of Kellogg’s (TM) products: the PrintSpec colour strip by Mellow 
Colour (TM), placed on the bottom of most Kellogg’s cereal products. 
It is designed to monitor colour consistency of printers in packaging 
plants and consists of 24 individual colour patches, see Fig. 2. Partici-
pants may easily obtain their copies from a wide array of grocery stores 
4

at a significantly lower price than conventional colour checkers. There 
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Fig. 2. Test image containing (from top to bottom): the Calibr8 ColorChart SG 
XS, a cutout of the PrintSpec colour strip, and a print of representative pollen 
colours.

are a number of factors that can influence the appearance of colours 
during the printing process of such packaging. These include the type 
and colour of the substrate and the specifics of the printing method 
used. For this reason, we obtained the reference colour values for the 
PrintSpec colour strip from the corresponding MediaStandard Print - a 
guideline for standardised printing processes - on which the Kellogg’s 
printing process is based.

To allow colour calibration, the user can roughly cut out the 
PrintSpec colour strip and place it anywhere in the image. Similarly to 
the pollen detection procedure in section 2.1, we employed a U-Net for 
the automatic detection of PrintSpec colour strips in images. Once the
PrintSpec was identified by the network, we performed a perspective 
correction, extracted the colour patches and used these colours in con-
junction with the known CIELAB reference colours for the given packag-
ing material to perform colour calibration. For this task, we employed 
the respective algorithms implemented in the colour correction mod-
ule of the OpenCV-contrib python package (version 4.6.0.66). These 
allowed us to find a linear transformation from the linearised device-
dependent colour space to some absolute colour space - in our case 
linear sRGB - that minimised the CIEDE2000 colour distance between 
reference colours and transformed image colours. Finally, the colour 
correction, represented by a colour correction matrix, was performed by 
simple matrix multiplication. The CIEDE2000 colour difference equa-
tion is the latest evolution of the CIE76 colour distance first proposed 
in 1976 (see Luo et al. [22] on the development of the CIEDE2000 for-
mula and Robertson [23] on the CIE76 colour distance). Both formulae 
calculate distances between colours in the CIELAB colour space and as 
such aim to represent the human perception of colour. In experiments 
by Mokrzycki and Tatol [24] the following was found: CIE76 differences 
of 0 < Δ𝐸 ≤ 1 are not noticed by a human observer, 1 < Δ𝐸 ≤ 2 are no-
ticed only by experienced observers, 2 < Δ𝐸 ≤ 3.5 are also noticed by 
inexperienced observers, 3.5 <Δ𝐸 ≤ 5 are noticed as a clear differences 
in colour while values above 5 are perceived as distinct colours.

To answer the question to what extent an almost free colour correc-
tion with everyday objects can replace a professional colour correction, 
we tested our method on 10 pictures taken at intervals of one hour 
over the course of a day. This test setup was intended to cover the 
natural light changes in our recommended photo setup using indirect 
daylight. As shown in Fig. 2, these images contained a professional 

Calibr8 ColorChart SG XS, a PrintSpec colour strip taken from a com-
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Fig. 3. Illustration of the app’s user interface. Left: Red circles on the input image highlight detected pollen. Middle: All extracted pollen colours are displayed sorted 
by cluster. A slider allows to change the number of clusters and thus their homogeneity. Right: Pollen diversity indices are calculated according to the number of 

clusters.

mon packaging and a print of 16 circular patches of representative 
pollen colours. We performed colour calibration with both the Color-
Chart and the PrintSpec colour strip (our method) and compared the 
results, which are shown in section 3.3.

2.4. Pollen clustering

The clustering of the extracted pollen colours is an essential part 
of the automatic chromatic assessment and can be performed with [3]
and without [2] reference colours. Due to a lack of suitable reference 
colours, a hierarchical clustering of the pollen colours was performed 
and flattened at a inter-centroid distance of 20. With the calibration be-
ing optional, the interpretation of this threshold cannot be more precise 
than that it has been chosen to roughly mimic the clustering of people 
in a typical daylight situation.

It is known that people perceive colours differently and take differ-
ent care when sorting pollen, suggesting that humans do not serve well 
as a universal benchmarks. Therefore, in order to meet the expectations 
of individual users, the possibility is offered to manually adjust the pre-
dicted number of clusters. Although the threshold may seem arbitrary, 
it produces consistent results if a colour calibration strip is provided.

2.5. User interface

The user interface allows interaction with the app on all devices. 
There are two simple user flows for data submission and data analy-
sis. The first flow consists of an explainer, a page with the purpose of 
collecting metadata and the possibility to take or upload a photo. The 
type of metadata inquired is based on the CSI pollen survey mentioned 
earlier and includes information on location, landscape and collection 
duration. Namely, the user is asked to provide the coordinates of the 
apiary, the day of opening the trap, the number of days that the trap 
was closed and to choose the most appropriate habitat type [25]. Af-
ter receiving the server’s response, results are processed and displayed 
to the user as shown in Fig. 3. All detected pollen loads are first high-
lighted on the input image so that users can convince themselves of the 
detection accuracy (left image). The next display illustrates all extracted 
pollen colours for each cluster found. A slider allows to increase or de-
crease the number of clusters if the colours seem too heterogeneous or 
homogeneous. Depending on the number of clusters, the calculated bio-
diversity indices are displayed. In future versions it will be possible to 
5

export the results and display chronological data.
2.6. Reproduction study

To make sure that the app serves its purpose, the study of Conti 
et al. [3] already presented at the beginning was reproduced. There, 
a model was set up to investigate the linear relationship between the 
number of pollen colours observed and the number of species deter-
mined using light microscopy. For both the dependent variable (species 
count) and the independent variable (colour count), we only consid-
ered species or colours that accounted for more than one percent of the 
sample.

Pollen was collected from two full-sized honey bee colonies using 
commercial pollen traps (Heinrich Holtermann KG, Brockel, Germany). 
The traps were placed at the entrance of the hives and activated once a 
week for 24 hours. Sampling took place from April to September 2022 
in Almke near Wolfsburg, Germany. A total of 54 samples were col-
lected, of which 35 samples were palynologically analysed at the Expert 
Centre for Bees and Beekeeping, Mayen, Germany. The results of the 
analysis and a sample preparation protocol can be found in the supple-
mentary, the image material was uploaded to a data repository [26]. 
Mix-ups occurred in two samples and another two samples had to be 
discarded due to the low quantity, so that a total of 31 pollen samples 
were available for further evaluation with the Pollenyzer app.

Each pollen sample was placed on a white A5 paper together with 
a printer test strip and photographed with a smartphone camera (Sam-
sung Galaxy S8) in indirect sunlight at a north-facing window. For a 
high quality reference, the pollen was also scanned at a resolution of 
1200 dpi. Both, photographs and scans were published together with 
this article. The Pollenyzer app was used to detect the pollen pellets, ex-
tract calibrated colours and form clusters. Analogous to Conti et al. [3], 
the simple linear model 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑏0 + 𝑐𝑜𝑙𝑜𝑢𝑟𝑠 ∗ 𝑏1 was estimated from 
the 31 samples and the strength of the linear relationship was compared 
with the original study.

3. Results

The following section summarises the evaluation results of three app 
functions, namely detection, colour extraction and colour calibration. 
The results of the reproduction study are listed at the end of this section.

3.1. Pollen detection

On test images that were not used for training or validation, 1924 
pollen were correctly detected. A correct detection is characterised by 
both annotation guidelines being met. Therefore, the detected pollen 

loads must be placed mainly in the foreground and its size must allow 
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Fig. 4. The illustration shows the quality of the colour extraction. The area between the grey circles is filled with the primary colour that was determined with 
k-means in the vicinity of the detected pollen centres.
Table 1

Testing of pollen detections.

true positives false-positives false-negatives precision recall 𝐹1

1924 24 88 98.77% 95.63 97.17%

robust colour extraction. The latter is not the case, for example, if a 
detection deviates from the pollen centre or pollen fragments of small 
size have been detected as pollen and consequently no colours can be 
extracted. Table 1 shows that in 24 cases false positive and in 88 further 
cases false negative detections were reported. Overall, the precision was 
98.77%, the recall (or sensitivity) was 95.63% and the harmonic mean 
of both values (𝐹1) was 97.17%. It was observed that both false negative 
and false positive errors are more likely to occur with dark pollen, as 
there is a risk of confusion with shadows.

3.2. Colour extraction

Fig. 4 shows exemplary the extracted pollen colours from various 
pollen detections. The area between grey circles is filled with the ex-
tracted primary colour, leaving the inner circle untouched for reference. 
The extracted pollen colour reproduces the pollen colour so well that it 
is hardly possible to distinguish it from the pixels in the inner circle. 
Note the slight shading within the inner circles, that could be iso-
lated by extracting the primary colour, making the colour ring appear 
slightly brighter and purer. This visual examination shows that the cho-
sen method serves its purpose well.

3.3. Colour calibration

The aim of colour calibration was to ensure that a subject always had 
the same colours after calibration, regardless of the lighting conditions 
and hardware used to capture an image. In our particular case, there 
was the additional objective of achieving the same quality during the 
calibration process as when using professional equipment.

To test the extent to which both objectives can be fulfilled by our 
method, a series of images were taken covering typical lighting sce-
narios. Following the procedure of Kirk [4], we recommend taking the 
pollen images in indirect daylight, ideally at a north-facing window. 
This will prevent unnecessary colour variation and give more consis-
tent results. Adhering to this guideline, ten images were taken with the 
same mobile phone camera at one-hour intervals over the course of a 
day. The colours recorded in these images changed according to the po-
6

sition of the sun. Each image included a professional colour chart, a 
Table 2

Colour distances between corresponding colours be-
fore colour calibration.

CIE76 CIEDE2000

mean std max mean std max

5.97 6.44 25.20 3.63 3.85 14.42

Table 3

Colour distances between corresponding colours after colour calibration 
for both methods.

CIE76 CIEDE2000

Calibration Method mean std max mean std max

Calibr8 3.56 3.08 19.15 2.31 2.08 12.58
PrintSpec 3.37 2.76 18.83 2.03 1.52 8.02

PrintSpec colour strip and a high quality print of 16 different typical 
pollen colours (see Fig. 2).

To determine the colour differences caused by light and camera be-
fore any calibration, we calculated the average pairwise distance of all 
16 pollen colours to their nine corresponding pollen colours in each of 
the other nine images. The results are shown in Table 2 and distances 
are reported for both distance metrics CIE76 and CIEDE2000. With av-
erage distances of 5.97 (SD ±6.44) for CIE76 and 3.63 (SD ±3.85) for 
CIEDE2000, equivalent colour patches can be clearly perceived as two 
distinct colours by a human observer [24]. If photographs are taken 
in unfavourable conditions, such as with a flash or candlelight, even 
greater variations in colour can be expected and the need for calibra-
tion becomes even more urgent.

As expected, the colour distances between different images de-
creased after colour calibration (see Table 3). For the Calibr8 colour 
checker, the average pairwise colour distances decreased to 3.56 (SD 
±3.08) for CIE76 and 2.31 (SD ±2.08) for CIEDE2000. Using our 
method, the average pairwise colour distances decreased to 3.37 (SD 
±2.76) and 2.03 (SD ±1.52) respectively.

However, these figures alone do not show whether our method can 
replace a professional colour checker, as they only indicate that colours 
become more consistent across images after calibration, but do not re-
veal anything about the absolute nature of these colours. Therefore, we 
also calculated the average colour distance between the calibration re-
sults of the PrintSpec and Calibr8 colour checker for each image. The 
smaller the distance, the more similar the results of the test strip will 

be to common practice. The results are reported in Table 4. We could 
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Table 4

Colour distances between calibration results of the 
Calibr8 ColorChart and the PrintSpec colour strip.

CIE76 CIEDE2000

mean std max mean std max

4.95 1.68 9.63 3.96 1.37 9.50

Fig. 5. The pollen colour spectrum collected from two bee colonies at a site in 
Almke near Wolfsburg, Germany over the period of one bee year. The colours 
were calibrated using print test strips and were taken from a mobile phone 
camera. The contour lines mark the frequency of the total of 40 918 pollen 
colours shown.

Fig. 6. The regression line shows the correlation of pollen colours and species in 
a pollen sample (𝑁 = 31). The coefficient of determination 𝑅2 = 0.45 is almost 
identical to the original study (𝑅2 = 0.44) and shows that manual and automatic 
chromatic assessment are equally suitable to estimate the number of species 
from the observed pollen colours of a pollen sample.

observe an average distance of 4.95 (SD ±1.68) for CIE76 and 3.96 (SD 
±1.37) for CIEDE2000.

3.4. Reproduction study

Fig. 5 shows the calibrated colours of a total of 40 918 pollen loads 
detected on 31 samples. A dimensional reduction was carried out to 
represent the three-dimensional colour space. The contour lines pro-
vide information about the frequency of the individual pollen colours. 
The dark areas around the purple hue most likely indicate the presence 
of Phacelia (Phacelia tanacetifolia), for which this colour is typical. As 
expected, many different shades of yellow are represented in high abun-
dance. Shades of red are also prominent and, in contrast to light grey, 
7

much more common.
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Following Conti et al. [3], a linear regression was performed to 
explain the dependent variable of species by the independent vari-
able of pollen colours. For the samples studied, the regression equa-
tion 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = 1.65 + 0.39 ∗ 𝑐𝑜𝑙𝑜𝑢𝑟𝑠 with 𝐹 (1, 29) = 24.10, 𝑝 < .000 and 
𝑅2 = 0.45 was obtained. Fig. 6 shows the distribution of the data and 
the regression line.

4. Discussion

At the beginning of this work, it was argued that automating the 
chromatic assessment of pollen from pollen traps has the potential to be 
more objective, reproducible, faster and more comprehensive than the 
status quo. For example, determining the relative size of pollen clusters 
allows more accurate prediction of colour diversity, the faster procedure 
reduces the labour input of study participants and can thus increase 
willingness to participate, and the uniform application of an algorithm 
eliminates the subjectivity of the human factor in assessing colour simi-
larity. All this motivates the implementation of the automatic chromatic 
assessment in the form of an app called Pollenyzer.

The evaluation of the app has shown that pollen loads, if pho-
tographed on a white A5 paper, can be detected and counted almost 
without errors. The data set used to train the pollen detector was pub-
lished along with this work, allowing others to further improve its 
accuracy [18]. In addition, the subsequent colour extraction allows the 
pollen colour to be reproduced in a particularly ‘pure’ way through the 
pixel-by-pixel classification of the colours into primary and secondary 
colours. This procedure also makes the app more robust against impre-
cise detection of pollen midpoints, as outliers up to half of the pixels 
can be effectively eliminated.

Until now, one of the obstacles to automating chromatic assess-
ment has been the colour inconsistency of pollen images from mobile 
phones. We have succeeded in solving this problem with simple means. 
The use of an everyday object, namely a print test strip, makes both a 
photograph under studio conditions or the purchase of an expensive, 
professional colour chart redundant.

Surprisingly, compared to a professional colour chart our method 
achieves slightly better colour consistency, though imperceptible, be-
tween images of the same pollen colours in varying lighting conditions. 
It produces smaller average distances, shows slightly less variation and 
has a smaller maximum deviation than the professional counterpart. 
The unlikely fact that a print test strip leads to better results than a 
professional colour chart might be due to the slightly more central po-
sition of the print test strip in the photo. For both models, the average 
colour differences after calibration was less pronounced, but still notice-
able for inexperienced observers [24]. In addition to the individually 
achieved colour consistency, the models’ interchangeability was also 
studied. As this requires the comparison of two calibrated colourimetric 
values which, as noted above, are not 100% consistent themselves, this 
comparison is limited. All the more surprising is the small CIE76 dif-
ference of 4.95 between the two methods and the comparatively small 
scatter. The calibration results of both methods are, on average, per-
ceived as clearly different but not as different colours [24]. The low 
variation of 1.68 indicates a tendency towards systematic error, which 
could be explained by unwanted differences in the target colour spaces. 
Although the PrintSpec test strip is used to monitor printing processes 
and therefore warrants for consistent colours by design, industry toler-
ances exist and must be taken into account. A deviation from the target 
colours of the print test strip within the respective tolerances could ex-
plain the observed shift between the PrintSpec target colour space and 
the Calibr8 target colour space.

We have therefore shown that, in a typical test setup for this applica-
tion, a PrintSpec colour strip can provide comparable colour calibration 
results to the common practice. It should be emphasised that perfect 
colour consistency could not be achieved in either case and that the 
differences between the two methods are of the order of the general 

inaccuracy of colour calibration. In terms of human perception, an in-
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experienced observer would still see differences between the calibrated 
colours on average, but would no longer perceive them as different 
colours. Given the biological variability of pollen colours and the inher-
ent tolerances of cluster algorithms, it can be claimed that the method 
serves its purpose.

When clustering pollen colours, the use of reference colours instead 
of hierarchical clustering would allow the simple and informative rep-
resentation of the development of pollen colours in measurement series 
over time. However, this procedure would not only require the curation 
of a suitable number of calibrated reference colours, but also make cal-
ibration for any input image mandatory. When curating, it is important 
to note that the selected colours should not only have similar distances 
to each other, but that the distances should also incorporate tolerances 
that reflect the expected colour degradation due to ambient light, sen-
sor capabilities and calibration. The number of reference colours and 
their similarity should adapt to the precision available today. If better 
and better cameras become available in the future, the number of refer-
ence colours can be higher and their colours more similar. Whereas until 
now species diversity has been estimated by colour diversity, the intro-
duction of distinct reference colours would allow species diversity to be 
estimated more accurately by the occurrence of specific pollen colours, 
as proposed by Conti et al. [3]. This notion is based on the following ar-
gument: At a hypothetical apiary, ten plant species are available. Few 
of them produce rare pollen colours (e.g. purple in Germany), many 
of them produce common colours (e.g. yellow in Germany). Given a 
pollen sample from this site that shows only one rare colour (e.g. pur-
ple), one can already assume that even a laboratory analysis will reveal 
only a few or even a single species, because it would be very unlikely to 
find two species at the same location that produce a rare pollen colour. 
Exactly the opposite is true for a sample that shows a single common 
colour (e.g. yellow). Now, one can expect that many species will be 
found under the microscope. Thus, observing a rare colour should have 
a small impact on the prediction of species diversity, whereas observing 
a common colour should have a large impact. However, up to now, only 
the number and proportion of colours have been taken into account but 
not which ones. Please note that in practice a pure yellow pollen sam-
ple is more likely than a pure purple sample, but the rationale holds 
true regardless.

Yet there are also disadvantages to the reference-colour approach 
and reasons that ultimately lead to the choice of implementing a hier-
archical clustering. Firstly, it should be noted that reference colours can 
only show their full strength in the context of colour calibration, which 
is currently offered optionally and is not required by users. Secondly, 
when bees bring in pollen of a species that falls exactly on a colour 
boundary, each pollen of this species will be randomly assigned to one 
cluster or the other according to its natural colour dispersion. If such a 
case occurs, biodiversity indices based on it will be unrealistically high. 
Thirdly, the compilation of pollen colours requires a large database of 
calibrated pollen colours, preferably acquired through the Pollenyzer 
app itself. However, the compilation of such a database will only be-
gin with the release of the Pollenyzer app and will not be available in 
the short term. For these reasons, the implementation of a pollen clus-
tering based on reference colours is considered future work. By then, a 
hierarchical clustering of the pollen was performed and flattened at a 
threshold that approximately mimics the clustering of humans.

The ultimate goal of estimating biodiversity based on observed 
colour diversity is subject to known limitations, regardless of the 
method used. These include the fact that different plant species can 
produce very similar pollen colours and, in rare cases, the same plant 
species can produce different pollen colours [4]. Moreover, pollen 
colours can change with fluctuating humidity and composition [7]. De-
spite these general limitations, a linear relationship between colours 
and species with an 𝑅2 of 0.44 has been established by Conti et al. [3]. 
On the one hand, replacing manual colour assessment with automatic 
assessment introduces two additional sources of error: the need for 
8

pollen detection and colour calibration. We have shown that pollen 
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detection is extremely accurate, even with overlapping and damaged 
pollen. However, colour calibration is more difficult to evaluate as 
PrintSpec colour strips are subject to limited but unknown colour varia-
tions. In our test case, calibration with the PrintSpec colour strip yielded 
slightly different but more consistent colours than the professional al-
ternative at a fraction of the cost.

On the other hand, automating colour assessment also eliminates 
an important source of error: the human factor. Differences in colour 
perception, patience and thoroughness lead to a high degree of subjec-
tivity in pollen sorting. As shown in the CSI pollen study, the random 
factor ‘beekeeper’ is the most important factor influencing the number 
of pollen colours found.

The application of the app on real samples was conducted to show 
whether it also yields plausible results in practice. For this purpose, the 
study on the possibilities of (manual) chromatic assessment by Conti 
et al. [3] was reproduced. When comparing the results, it is noticeable 
that both the intercept (1.65 vs. 3.49) and the coefficient (0.39 vs. 1.52) 
are lower for Pollenyzer. The reason for this is partly due to general dif-
ferences in the environment of the apiaries and partly due to the fact 
that Conti et al. [3] used about 72 hour collection intervals and the 
samples used here were collected in only 24 hours. Shorter collection 
intervals lead to a generally lower number of species and correspond-
ingly lower intercept. Instead of also comparing the coefficients, it is 
more important to compare the coefficients of determination 𝑅2 (0.45 
vs. 0.44), which shows that the manual and the chromatic evaluation 
are equally suitable for determining the species diversity in a pollen 
sample and only differ in the time required.

Therefore, the increased objectivity and the enormous time savings 
make automatic assessment an attractive alternative, despite the poten-
tial introduction of new sources of error. Nevertheless, the accuracy of 
the method should not be overestimated. This also means that the temp-
tation to choose cluster thresholds lower than justified by the natural 
variability of pollen colour, lighting and colour extraction should be 
resisted.

5. Conclusion

Biodiversity monitoring is a task that attracts the attention of re-
searchers, policy makers and other stakeholders worldwide. With the 
Pollenyzer app, beekeepers aren’t the only ones with access to an auto-
mated tool that can determine pollen colour, and thus plant diversity, 
in the landscapes where their bees forage. In other words: We can see 
the landscape through the eyes of bees and identify what is beneficial 
to them. The app is able to calibrate images and make them compara-
ble across time and place. Databases can be created with metadata and 
georeferences to map plant diversity in a standardised way. Since we 
have shown that automatic pollen colour identification can facilitate 
and replace all aspects of manual colour identification, future citizen 
science projects to create pollen databases are easily possible. Nation-
wide projects and eventually PAN European Networks could provide 
an important monitoring tool for the development of bee-relevant plant 
diversity in the EU.
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Data availability

The source code was published on github and the pollen image data 
was uploaded to figshare together with the results of the light micro-
scopic analysis.
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