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Abstract
We develop a general framework to study hyperuniformity of various mathe-
matical models of quasicrystals. Using this framework we provide examples of
non-hyperuniform quasicrystals which unlike previous examples are not limit-
quasiperiodic. Some of these examples are even anti-hyperuniform or have a positive
asymptotic number variance. On the other hand we establish hyperuniformity for a
large class of mathematical quasicrystals in Euclidean spaces of arbitrary dimension.
For certain models of quasicrystals we moreover establish that hyperuniformity holds
for a generic choice of the underlying parameters. For quasicrystals arising from the
cut-and-project method we conclude that their hyperuniformity depends on subtle
diophantine properties of the underlying lattice and window and is by no means auto-
matic.

1 Introduction

In an influential article in 2003 [27], Torquato and Stillinger initiated a systematic
study of point processes with reduced long-wavelength density fluctuations under the
name of hyperuniformity. 1 Over the last 20 years hyperuniform point processes have
been studied intensely from a mathematical point of view and found applications in
physics, materials science, chemistry, engineering and even biology; we refer to the
survey of Torquato [28] for an extensive bibliography. In particular, the question of
hyperuniformity has been investigated for various mathematical models of quasicrys-
tals [1, 2, 23, 24].

1 In some parts of the literature the term superhomogeneity is used.
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This article investigates hyperuniformity (and various related properties) for a class
of pure point diffractive jammed hard-core point processes known as cut-and-project
processes, which in dimensions 2 and 3 provides one of the most widely accepted
mathematical models for quasicrystals. It was observed by Oğuz, Socolar, Steinhardt
and Torquato [23] (see also related work by Baake and Grimm [1]) that many one-
dimensional cut-and-project processes are hyperuniform. On the other hand, it was
already pointed out in [24] by the same authors that not all cut-and-project processes
are hyperuniform. However, the previously known counterexamples seem to be of a
very special form, namely limit-quasiperiodic.

In the present article we provide examples of cut-and-project processes which
are not hyperuniform (in a very strong quantitative sense) without being limit-
quasiperiodic. On the other hand,we also establish hyperuniformity for large classes of
cut-and-project processes (in arbitrary dimension) with spherical Euclidean (or more
generally, Fourier smooth) windows, and for such cut-and-project processes we even
prove that hyperuniformity holds for generic choices of the underlying lattice. The
main upshot of our discussion will be that hyperuniformity of quasicrystals depends
on subtle diophantine properties of the underlying data and is by no means automatic.

1.1 On the definition of hyperuniformity

Denote by BR the Euclidean ball of radius R around 0 in R
d . A locally-square inte-

grable invariant point process � in R
d is called geometrically hyperuniform (with

respect to Euclidean balls) if its asymptotic number variance

ANV(�) := lim
R→∞

Var(#(� ∩ BR))

Vold(BR)

exists and is equal to 0. Here the denominator Vold(BR) can be interpreted as the
number variance of a suitably normalized Poisson process�Pois, and hence geometric
hyperuniformity corresponds to a sub-Poissonian number variance for large balls. This
property can also be expressed spectrally: Given a bounded measurable function f on
R
d with bounded support, we denote by P� f (ω) = ∑x∈�ω

f (x) the corresponding
linear statistic. Then there exists a unique positive-definite signed measure η� on R

d

such that

η�( f ∗ f ∗) = Var(P� f ),

and we denote by η̂� its Fourier transform.2 For example, if�Pois is a Poisson process
on R

d , then up to scaling we have η̂�Pois = Vold . We then say that � is spectrally
hyperuniform (with respect to Euclidean balls) if η̂� decays near 0 faster than a Poisson
process, i.e.

2 η̂� can be obtained from the diffraction measure of � by removing the atom at 0. If η̂� has a density
with respect to Lebesgue measure, then this density is called the structure factor of the process; however,
the processes considered in this article will have pure point diffraction, hence their structure factor is not
defined.
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Hyperuniformity and non-hyperuniformity of quasicrystals

lim
ε→0

η̂�(Bε)

η̂�Pois (Bε)
= lim

ε→0

η̂�(Bε)

Vold(Bε)
= 0.

The following result was previously established in various special cases (see e.g. [12,
Proposition 2.2]); we provide a proof of a more general statement in Theorem 3.6
below.

Theorem 1.1 (Geometric vs. spectral hyperuniformity) A locally-square integrable
invariant point process � in R

d is geometrically hyperuniform if and only if it is
spectrally hyperuniform.

Weemphasize that Theorem1.1 only holdswith respect toEuclidean balls. For general
balls, spectral hyperuniformity implies geometric hyperuniformity, but as observed by
Kim and Torquato [17] the standard lattice Z

2 in R
2 is spectrally hyperuniform, but

not geometrically hyperuniformwith respect to balls in the �∞-metric (cf. [12, Section
2.1]).

1.2 Cut-and-project processes and their generalizations

The point processes whose hyperuniformity we investigate in the present article
arise from the field of aperiodic order and are related to quasicrystals. Given two
locally compact abelian groups G and H (for example, Euclidean spaces), a lattice
� < G×H and a relatively compact subsetW ⊂ H one can construct a point process
�(G, H , �,W ) in G by the following cut-and-project construction. Choose a random

Fig. 1 Cut-and-project data

Fig. 2 Cutting a strip from a lattice

Fig. 3 Projecting the lattice points in the strip
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translate of � in G × H (as in Fig. 1), intersect it with the “strip” G ×W (as in Fig. 2)
and project the resulting point set to G (as in Fig. 3).

Let us assume for simplicity that G = R
d , that � projects injectively to G and

densely to H and thatW has non-empty interior. Under these assumptions the resulting
point process is an ergodic jammed hard-core process, i.e. its instances are uniformly
discrete and relatively dense in R

d , and its diffraction is a pure point measure with
a dense set of atoms. We refer to a point process with these properties as a mathe-
matical quasicrystal,3 and more specifically to processes of the form �(G, H , �,W )

as cut-and-project processes. We will see that in certain situations the question of
hyperuniformity of cut-and-project processes can be related to diophantine properties
of the underlying lattice.

We will also consider a slightly wider class of jammed hard-core processes which
naturally arise as thinnings of cut-and-project processes. We recall that a subset � ⊂
R
d is called aMeyer set if it is relatively dense and if�−� is uniformly discrete; any

such set can in fact be realized as a subset of a cut-and-project set [21]. Accordingly,
we refer to an ergodic point process whose instances are Meyer sets as a Meyerian
point process. While such processes do not need to have pure point diffraction, their
diffraction still has a relatively dense set of uniformly large atoms [1].

1.3 Non-hyperuniform cut-and-project processes

The diffraction of a cut-and-project process � = �(G, H , �,W ) depends very much
onwhether the “internal space” H is connected or not. If the internal space has a totally
disconnected factor, then the corresponding cut-and-project process may happen to
be limit quasi-periodic [3], and it was already established in [24, Section B] that such
processes need not be hyperuniform. In fact, the authors of [24] manage to construct
a limit-quasiperiodic random quasicrystal � and a lacunary sequence (Rn) of radii
such that

lim
n→∞

Var(#(� ∩ BRn ))

Vold(BRn )
> 0. (1.1)

They also establish many other interesting results concerning one-dimensional limit-
quasiperiodic quasicrystals. On the contrary, the following two fundamental problems
have not been addressed so far:

Problem 1.2 Does there exist a non-hyperuniform cut-and-project process with con-
nected internal space?

3 As the terminology suggests, cut-and-project processes in dimensions 2 and 3 are related to physical
quasicrystals, by which we mean pure point diffractive materials with a dense set of Bragg peaks. The
latter condition implies in particular that quasicrystals are aperiodic and hence their diffraction may admit
non-crystallographic symmetries. The occurrence of such exotic diffraction symmetries was in fact how
quasicrystals were initially discovered, and hence some authors insist on exotic symmetries as part of
the definition of a quasicrystal. Most cut-and-project processes do not admit any diffraction symmetries
(crystallographic or otherwise), but they are still considered as quasicrystals in most of the mathematical
literature, and we will follow this convention.
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(Here the assumption of a connected internal space excludes limit-quasiperiodic exam-
ples.)

Problem 1.3 Does there exist a Meyerian point process with positive asymptotic num-
ber variance?

(For the non-hyperuniformexamples from [24]wedonot knowwhether the asymptotic
number variance exists, since the limit in (1.1) is only along a lacunary sequence of
radii.)

In this article, we resolve both problems by answering both questions in the affirmative.
The following consequence of Theorem 4.5 below solves Problem 1.2.

Theorem 1.4 (Cut-and-project processes need not be hyperuniform)There exists a cut-
and-project process with parameters (R, R, �,W ) and centered diffraction η̂ such that
W ⊂ R is an interval and

lim
ε→0

η̂(Bε)

εα
= ∞ for every α > 0.

Theorem 1.4 says that, even in one dimension (and one “internal” dimension), there
exist cut-and-project processes for which the diffraction of small balls of radius ε

converges to 0 more slowly than any positive power of ε along some sequence of
radii. In our proof this sequence of radii will be extracted (using an equidistribution
result) from a sequence constructed using diophantine properties of�.While this latter
sequence could be made explicit for certain choices of the parameters, the former is
certainly not explicit. Moreover, we have absolutely no control over the behaviour
of the diffraction along any other sequence of radii, since our estimates become very
poor as soon as the radii are no longer connected to certain diophantine exponents of
the parameters.

To resolve Problem 1.3, we thus consider a different class of examples. Using
mixing dynamical systems, we construct in Sect. 6 below a class of Meyerian point
process�o inZwhich are 2-syndetic in the sense that two translates of (�o)ω cover Z

for every ω. Via suspension, we can extend any such process �o to a Meyerian point
process in � in R, which is a 2-syndetic subset of a random translate of Z in R. The
following theorem is then a consequence of Theorem 6.6 below.

Theorem 1.5 (Meyerian point processes may have positive asymptotic number vari-
ance) There exists a Meyerian point process � in R, which is 2-syndetic in a random
translate of Z and for which the asymptotic number variance ANV(�) exists and is
strictly positive.

1.4 Hyperuniform cut-and-project processes

Many of the classical cut-and-project processes �(G, H , �,W ) (as found e.g. in [1])
arise from a very special class of lattices �, namely arithmetic lattices and their duals
(see Example 5.2 below). For the associated cut-and-project processes with spherical
window, Corollary 5.4 below implies the following:

123



M. Björklund, T. Hartnick

Theorem 1.6 (Arithmetic cut-and-project processes are hyperuniform) Let � <

R
d1+d2 be a lattice, whose dual lattice �⊥ is arithmetic, and let W ⊂ R

d2 be a
Euclidean ball. Then the cut-and-project process with parameters (Rd1 , R

d2 , �,W )

is hyperuniform and its centered diffraction η̂ satisfies

η̂(Bε)

εd1
	 ε

d1
d2 .

This provides plenty of explicit examples of hyperuniform cut-and-project processes.
Given that there exist both hyperuniform and non-hyperuniform quasicrystals, the
question becomes relevant which of the two behaviours is “generic”. To make this
question precise, we observe that every lattice in R

d is of the form AZ
d for some

(invertible) matrix A ∈ R
d×d . We then say that a set L of lattices in R

d is conull if the
set {A ∈ R

d×d | AZ
d ∈ L} is a Lebesgue-conull set in R

d×d . With this terminology
understood, the following is a special case of Theorem 5.5 below:

Theorem 1.7 (Generic cut-and-project processes are hyperuniform) Let W be a
Euclidean ball. Then for every δ > 0 there exists a conull set of lattices � < R

d1+d2

such that the cut-and-project process with parameters (Rd1 , R
d2 , �,W ) is hyperuni-

form and its diffraction η̂ satisfies

η̂(Bε)

εd1
	δ ε

d1(1−δ)

d2+δ .

Thus, as far as hyperuniformity is concerned, generic lattices are onlymarginallyworse
than arithmetic ones. To keep the formulation simple, we have formulated Theorems
1.6 and 1.7 only for Euclidean balls. For cut-and-project processes with more general
windows the decay rate of the diffraction at 0 depends in an explicit way on the Fourier
decay of the window. One thus obtains hyperuniformity as soon as the window has
sufficient Fourier decay (see Corollary 5.4 and Theorem 5.5). Both Theorems 1.6 and
1.7 (and their generalizations to windows with sufficient Fourier decay) are based on
a hyperuniformity criterion which uses the following notion of repellence of lattices
in products.

Definition 1.8 A lattice� < R
d1 ×R

d2 is β-repellent on the right if there exists εo > 0
such that for every (γ1, γ2) ∈ �\{(0, 0} and all ε < εo,

‖γ1‖∞ < ε �⇒ ‖γ2‖∞ ≥ ε−β.

With this notion,we have the following sufficient condition for hyperuniformity,which
is a special case of Theorem 5.1 below:

Theorem 1.9 (Sufficient condition for hyperuniformity) Let W be a Euclidean ball
and let η̂ denote the diffraction of the cut-and-project process with parameters
(Rd1 , R

d2 , �,W ). If the dual lattice �⊥ of � is β-repellent on the right for some
β > 0, then for all sufficiently small ε > 0 we have

η̂p(Bε)

Vold1(Bε)
	 εβ(d2+1)−d1
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In particular, the quasicrystal is hyperuniform provided that β > d1
d2+1 .

Again, the theorem applies also to more general windows, but then the exponent
will depend on the Fourier decay of the window (see Theorem 5.1). Notably, the
lattices appearing in Theorem 1.6 and Theorem 1.7 satisfy the repellence condition
of Theorem 1.9. On the other hand, our construction of non-hyperuniform cut-and-
project processes for Theorem 1.4 starts from a lattice, whose dual lattice is not
sufficiently repellent for the criterion to apply. However, since repellence is only suf-
ficient and not necessary for hyperuniformity, additional work is required to produce
non-hyperuniform cut-and-project processes, and in particular the choice of window
plays a crucial role.

1.5 Number rigid cut-and-project processes

We recall that a locally square-integrable invariant point process � in R
d is called

number rigid if for every Borel set B ⊂ R
d the number #(B ∩ �) of points in B

depends almost surely only on �|Bc . While number rigidity is neither implied by
nor implies hyperuniformity, the two properties are nevertheless related. In Lemma
7.4 below we adapt an argument of Ghosh and Peres [14] to establish the following
spectral criterion for number rigidity in the spirit of spectral hyperuniformity.

Lemma 1.10 (Spectral criterion for number rigidity) A locally-square integrable
invariant point process � in R

d is number rigid, provided there is a sequence εn ↘ 0
such that the centered diffraction of p satisfies

η̂p(Bεn ) 	 ε2d+δ
n .

Compared to spectral hyperuniformitywe require amuch stronger decaywith exponent
2d + δ rather than d + δ; on the other hand, this decay is only required along one
specific sequence. The decay required to applyLemma1.10 ismuch stronger thanwhat
we establish for generic (or even arithmetic) cut-and-project-processes with spherical
window above. However, it is well-known that one can obtain stronger decay by
making very specific choices of windows (often related to self-similarity phenomena).
For example, by a result of Baake and Grimm [1, Proposition 3.1], the Fibonacci cut-
and-process process (d = 1) satisfies the condition of the lemma with δ = 2. We
deduce:

Corollary 1.11 (Number rigid cut-and-project processes) The Fibonacci cut-and-
project process is number rigid. ��
At least with known methods, it is not possible to verify the criterion from Lemma
1.10 for cut-and-project processes which are obtained from the Fibonacci process by
modifying the window (see the discussion in [2, Section 7]). However, this does
not mean that such processes are not number rigid. Neither is the criterion from
Lemma 1.10 necessary, nor is it possible with current techniques (including ours)
to provide lower bounded for the centered diffraction of a cut-and-project process
along all sequences of radii. The following problem therefore remains open:

Question 1.12 Do there exist cut-and-project processes which are not number rigid?
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1.6 Stealthy cut-and-project processes

Cut-and-project processes and their centered diffraction measures can not only be
considered in R

d , but also in other locally compact abelian groups. This wider context
sometimes leads to new and unexpected phenomena, notably in the p-adic case. To
illustrate some of the peculiarities of the p-adic setting, we recall that a locally square-
integrable random measure p on a locally compact abelian group is called stealthy if
its centered diffraction η̂p vanishes identically on some open set. A recent, and quite
surprising, result [9, Theorem 3] says that every stealthy point process inZ is periodic.
Stealthy random measures on R

d have been thoroughly investigated in [26] and [13].
Since the Fourier transform of a compactly supported function in Euclidean space

does not vanish on any open set, it follows from the Meyer diffraction formula (see
Theorem 2.9 below) that cut-and-project processes in R

d can never be stealthy. This
property of the Euclidean Fourier transform is, however, not shared by the p-adic
Fourier transform, and this difference between the two Fourier transforms can be
exploited to establish the following result (cf. Corollary 8.4):

Theorem 1.13 (Stealthy p-adic cut-and-project processes) There exists a stealthy cut-
and-project process in Qp (with R as internal space) for every prime p.

1.7 Organization of the article

This article is organized as follows: In a preliminary Sect. 2 we collect various basic
facts concerning autocorrelation and diffraction measures of invariant point processes
(or, more generally, invariant randommeasures). In Sect. 3 we discuss the definition of
hyperuniformity and establish Theorem 1.1. Sections4–6 form the core of the article
and discuss examples of hyperuniformand non-hyperuniform quasicrystals. In Sect. 4
we establish Theorem 1.4, in Sect. 5 we establish Theorem 1.9 and derive Theorems
1.6 and 1.7 and in Sect. 6 we establish Theorem 1.5. The remainder of the article then
discusses various related properties: In Sect. 7 and Sect. 8 we construct cut-and-project
processes which are number rigid and stealthy respectively, thereby proving Lemma
1.10 and Theorem 1.13.

For the convenience of the reader we include two appendices. Appendix A explains
the well-known diffraction formulas for Poisson processes and cut-and-project pro-
cesses, whereas Appendix B contains an introduction to the general formalism of
transverse point processes, a wide class of hard-core point processes recently intro-
duced in [7], which contains all of the point processes considered in this article.

1.8 Notations and conventions

Given non-negative real-valued functions f and g on some space X we write f (x) 	
g(x) if there exists a constant C > 0 such that f (x) ≤ Cg(x) for all x ∈ X . We write
f (x) 	α g(x) to indicate that C depends on some parameter α. If these inequalities
only hold in some asymptotic sense, then we use the usual Landau notation o and O ,
where indices like Oα indicate again parameters on which the constants depend.
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The letter G will always be reserved for a locally compact second countable (lcsc)
group, which is always assumed to be unimodular and often assumed to be abelian.
We will denote by L∞

c (G) the space of bounded complex-valued Borel functions on
G which vanish outside a compact subset ofG and byCc(G) its subspace of complex-
valued compactly supported continuous functions. Dually we denote by M(G) the
space of signed Radon measures on G. Given a space F of functions or measures on
which G acts, we denote by FG ⊂ F the subspace of G-invariants.

All probability spaces considered in this article are standard, i.e. the underlying
Borel space is standard.Given a probability space (�,B, P)wedenote by L2(�, P) the
corresponding L2-space and by L2

o(�, P) the orthogonal complement of the constant
functions. If an lcsc group G acts on � preserving P, we say that the action is pmp; in
this case, L2(�, P) and L2

o(�, P) are unitary G-representations.

2 Preliminaries on autocorrelation and diffraction

2.1 Autocorrelation of invariant randommeasures

In this article we are mainly interested in certain invariant simple point processes in
Euclidean spaceR

d of arbitrary dimension d. However, it is convenient to define some
of the basics notions related to point processes in their natural generality.

Thus let G be a unimodular lcsc group with Haar measure mG acting probability-
measure preservingly (pmp) on a probability space (�,F , P). Every f ∈ L∞

c (G)

defines a function

P f : M(G) → C, p �→ p( f )

on the space of signed Radon measures, called the associated linear statistic, and we
equip M(G) with the smallest σ -algebra BM(G) for which all of these linear statistics
are measurable. Then a G-equivariant measurable map

p : � → M(G), ω �→ pω

is called an invariant4 random measure on G with distribution μp := p∗P ∈
Prob(M(G))G . We say that p is ergodic if P is ergodic and refer to the moments
of μp as the moments of p.

An invariant randommeasure p is called an invariant point process if pω isP-almost
surely supported in a locally finite subset of G and simple if moreover all atoms of pω

have size 1. In this case we can identify pω with its support and thereby think of p as
an invariant random locally finite subset of G.

Example 2.1 (Cut-and-project processes) Let G and H be unimodular locally com-
pact second countable (lcsc) groups, let � < G × H be a a lattice which projects
injectively to G and densely to H and let W ⊂ H be a relatively compact subset with

4 In the probabilistic literature the term “stationary” is sometimes used instead of invariant.

123



M. Björklund, T. Hartnick

dense interior. We define � := �\(G × H) and denote by P the unique G-invariant
probability measure on � (cf. [8]). One can show that the map

p = p(G, H , �,W ) : (�, P) → M(G), �(g, h) �→ δ�(G,H ,�,Wh−1)g

is a well-defined Borel map, hence defines a simple hard-core point process. This
is a special case of a general construction discussed in more detail in Appendix B.
Generalizing the definition from the introduction, we refer to p(G, H , �,W ) as a
cut-and-project process with parameters (G, H , �,W ). If G = R

d1 and H = R
d2 ,

then the space � is a torus of dimension d1 + d2, and the G-orbits form a foliation of
this torus by d1-dimensional leaves, which are dense embeddings of R

d1 .

Note that cut-and-project processes automatically satisfy the following assumption.

Assumption 2.2 All invariant randommeasures in this article are assumed to be locally
square-integrable in the sense that

E[pω(B)2] < ∞ (B ⊂ G bounded Borel set).

From now on p will always denote a locally square-integrable invariant random mea-
sure with distributionμp. This assumption ensures that the first twomoment measures
M1

p ∈ M(G)G and M2
p ∈ M(G × G)G of p exist. By definition these two moment

measures are then given by

M1
p(A) := E[pω(A)] and M2

p(B) := E[(pω ⊗ pω)(B)]

for bounded Borel sets A ⊂ G and B ⊂ G × G. Since M1
p is invariant, there exists

a constant i p, called the intensity of the random measure p with respect to mG , such
that

M1
p = i(p) · mG (2.1)

Similarly, since M2
p is G-invariant, under the identification (G × G)/�(G) → G

given by [(g1, g2)] �→ g1g
−1
2 it corresponds to a Radon measure η+

p on G called its
autocorrelation (cf. [8]). This measure satisfies

η+
p ( f1 ∗ f̌2) = M2

p( f1 ⊗ f2) ( f1, f2 ∈ L∞
c (G)),

and if ρ is a non-negative Borel function on G with bounded support, normalized to
mG(ρ) = 1, then for every bounded Borel function f on G with bounded support we
have

η+
p ( f ) =

∫

G×G
f (g1g

−1
2 )ρ(g2) dM

2
p(g1, g2), (2.2)
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independently of ρ. The measure η+
p is positive-definite, since for f1, f2, f ∈ Cc(G)

we have

η+
p ( f1 ∗ f ∗

2 ) = 〈pω( f1), pω( f2)〉L2(�,P), and hence

η+
p ( f ∗ f ∗) = ‖pω( f )‖2L2(�,P)

≥ 0. (2.3)

It turns out that the measure η+
p is closely related to the variance Var p of the process

p, where, by definition, Var p(A) = Var[PχA] is just the variance of the real-valued
random variable ω �→ pω(A) for any bounded Borel set A ⊂ G. The connection
becomes apparent if we define a signed Radon measure on G by the formula

ηp( f ) := η+
p ( f ) − i(p)2 · mG( f ) ( f ∈ L∞

c (G)). (2.4)

Proposition 2.3 (Variance vs. autocorrelation) The signed measure ηp satisfies

ηp( f ∗ f ∗) = Var p( f ) ( f ∈ L∞
c (G))

and is uniquely determined by this property. In particular, it is positive-definite.

Proof It is convenient to introduce the covariance of p as the signed measure given
by the centered second moment

Covp( f1 ⊗ f2) = E [(pω( f1) − E[pω( f1)]) (pω( f2) − E[pω( f2)])]
= M2

p( f1 ⊗ f2) − M1
p( f1)M

1
p( f2) ( f1, f2 ∈ L∞

c (G)).

Since this isG-invariant, it corresponds to a signed measure ηp onG such that ηp( f1∗
f̌2) = Covp( f1 ⊗ f2), and we claim that this signed measure satisfies formula (2.4).
Indeed, for all f , g ∈ L∞

c (G) we have

ηp( f ∗ g∗) = M2
p( f ⊗ ḡ) − M1

p( f )M
1
p(g) = η+

p ( f ∗ g∗) − i(p)2 · mG( f )mG(g).

Now let (Un) be a nested sequence of compact identity neighbourhoods converging to
{e} and let ρn be a non-negative function supported in Un and normalized to integral
1. Then (ρn) is an approximate identity and hence

ηp( f ) = lim
n→∞ ηp( f ∗ ρ∗

n ) = lim
n→∞

(
η+
p ( f ∗ ρ∗

n ) − i(p)2 · mG( f )mG(ρn)
)

= η+
p ( f ) − i(p)2 · mG( f ).

This proves (2.4), and the latter determines η+
p uniquely. Finally,

ηp( f ∗ f ∗) = Covp( f ⊗ f̄ ) = E
[|pω( f ) − E[pω( f )]|2] = Var(pω( f )) = Var p( f ).

��
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Both of the closely related (signed) measures η+
p and ηp are sometimes called the

autocorrelation measure of p (or μp) in the literature. We will reserve this term for
the measure η+

p and refer to ηp as the centered autocorrelation measure.

2.2 Diffraction of invariant randommeasures on LCA groups

We now assume that G is an abelian lcsc group and denote by Ĝ its Pontryagin dual.
We then normalize Haar measures mG and mĜ such that Fourier inversion becomes

f (x) =
∫

Ĝ
f̂ (χ)χ(x) dmĜ(x), where

f̂ (χ) =
∫

G
f (x)χ(x) dmG(x), (2.5)

for all sufficiently regular functions on G. Given a positive definite signed Radon
measure η on G we denote by η̂ its Fourier transform (cf. [6, Theorem 4.5]), which is
a (positive) Radon measure on Ĝ.

From now on let p be a locally square-integrable invariant random measure on
R
d with autocorrelation η+

p and centered autocorrelation ηp. Since these are positive-
definite, we can take their respective Fourier transforms η̂+

p and η̂p.

Definition 2.4 η̂+
p is called the diffraction of p, and η̂p is called the centered diffraction

of p.

We note that by definition

η̂+
p (| f̂ |2) = η+

p ( f ∗ f ∗) = ‖pω( f )‖2L2(�,P)
and

η̂p(| f̂ |2) = ηp( f ∗ f ∗) = Var p( f ), (2.6)

for all sufficiently regular functions f , including all compactly supported continuous
functions. A straightforward approximation argument then shows that (2.6) holds for
all f ∈ L∞

c (G).

Proposition 2.5 (Diffraction vs. centered diffraction) If p is ergodic, then the diffrac-
tion and the centered diffraction are related by the formula

η̂p = η̂+
p − η̂+

p ({1}) · δ1.

Here, 1 ∈ Ĝ denotes the trivial character. Note that, by (2.4) we have for all f ∈
L∞
c (G),

η̂p(| f̂ |2) = ηp( f ∗ f ∗) = η+
p ( f ∗ f ∗) − i(p)2 · mG( f ∗ f ∗)

= η̂+
p (| f̂ |2) − i(p)2 · | f̂ |2(0).

Thus Proposition 2.5 reduces to the following lemma:
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Lemma 2.6 (Intensity formula)The intensity and the diffraction of a square-integrable
ergodic random measure p are related by the formula

η̂+
p ({1}) = i(p)2.

We say that a sequence (βn) of probability measures on G is weakly ergodic if for
every strongly continuous unitary G-representation (H, π) we have convergence

lim
n→∞〈π(βn)u, u〉 = ‖ProjG(u)‖2H, for all u ∈ H,

where ProjG denotes the orthogonal projection onto the space ofG-invariants. Weakly
ergodic sequences of boundedly supported measures exist on every LCA group. For
example, if (Fn) is any Følner sequence inG, then by the weak mean ergodic theorem,
the sequence

dβn = χFn

mG(Fn)
dmG

is weakly ergodic. In the case G = R
n we may e.g. choose Fn to be the Euclidean ball

of radius n around 0. If (βn) is any weakly ergodic sequence of probability measures
on G and if 1 ∈ Ĝ denotes the trivial character, then by definition we have

lim
n→∞ β̂n(ξ) = 0 for all ξ ∈ Ĝ\{1}. (2.7)

Proof of Lemma 2.6 Let p : (�, P) → M(G) be a random measure; we consider
the unitary representation π of G on H := L2(�, P). Since P is ergodic, for every
f ∈ Cc(G) the associated linear statistic P f satisfies

ProjG(P f ) =
∫

�

P f dP = E[pω( f )] = M1
p( f ) = i p · mG( f ).

Now let (βn) be a weakly ergodic sequence such that βn has bounded support for every
n. Then, for every non-negative f ∈ Cc(G) and all n ∈ Nwe haveβn∗ f ∗ f ∗ ∈ Cc(G)

and, by polarization,

ι2p · | f̂ (1)|2 = ι2p ·
(∫

G
f dmG

)2

= ‖ProjG(P f )‖2 = lim
n→∞〈π(βn)P f ,P f 〉L2(�,P)

= lim
n→∞ η+

p (β̌n ∗ f ∗ f ∗) = lim
n→∞ η̂+

p

(
β̂n · | f̂ |2

)
.

Now β̂n → δ1 by (2.7), and since f̂ ∈ L2(̂η+
p ) we can apply dominated convergence

to obtain

ι2p · | f̂ (1)|2 = η̂+
p ({1}) · | f̂ (1)|2.
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If we choose f with f̂ (1) �= 0, then we can cancel | f̂ (1)|2 and obtain ι2p = η̂+
p ({1}).

��
In the sequel, we will be interested mostly in the Euclidean case where G = R

d

for some (arbitrary) dimension d ∈ N. In this case we will identify G with Ĝ by
identifying ξ ∈ G with the character x �→ e2π i〈x,ξ〉. Under this identification we may
then choose both mG and mĜ to be d-dimensional Lebesgue measure Vold . We will
later need the following a priori estimate concerning the centered diffraction of large
balls.

Lemma 2.7 (Dimension estimate) Let p be a square-integrable invariant random
measure on R

d and denote by BR the Euclidean ball in R
d . Then the centered diffrac-

tion η̂p satisfies the estimate η̂p(BR) 	d Rd for all R ≥ 1.

Proof For every R ≥ 1, we can find a finite subset FR ⊂ R
d such that

|FR | 	d Rd and BR ⊂
⋃

ξ∈FR

B(ξ, 1) =
⋃

ξ∈FR

(B1 + ξ).

Hence,

η̂p(BR) 	d Rd sup
ξ∈Rd

η̂p(B1 + ξ).

Since ηp is positive definite, [6, Prop. 4.9] implies that η̂p is translation-bounded, and
thus the supremum on the right-hand side is bounded. ��

2.3 Diffraction formulas

To illustrate the above definitions, we recall two examples of explicit diffraction
formulas, one for Poisson processes and one for cut-and-project processes. For the
convenience of the reader we include proofs in Appendix A.We first consider the case
of a Poisson process. Recall that if (Y ,m) is a σ -finite Borel measure space, then a
Borel probability measure μ on the space of σ -finite Borel measures on Y is called
m-Poisson if

(i) for every Borel set B ⊂ Y with finite and positive m-measure,

μ ({p ∈ Mσ (Y ) : p(B) = k}) = m(B)k e−m(B)

k! , for all k ∈ No.

(ii) for every r ≥ 1, and for all disjoint Borel sets B1, . . . , Br ⊂ Y the corresponding
linear statistics PχB1 , …, PχBr are μ-independent.

A point process is then called an m-Poisson process if its distribution is m-Poisson.
Such a process exists for every σ -finite Borel measure space (Y ,m) (see [19, Theorem
3.6]) and is unique up to equivalence (see [19, Prop. 3.2]). Here we will be interested
in the case where (Y ,m) = (G,mG). In this case it follows from invariance ofmG that

123



Hyperuniformity and non-hyperuniformity of quasicrystals

the mG-Poisson measure is also G-invariant, hence there is an invariant mG-Poisson
process p, unique up to equivalence.

Proposition 2.8 (Poisson diffraction) For any lcsc group G the following hold.

(i) The centered autocorrelation of the mG-Poisson process p on G is given by ηp =
δe.

(ii) If G is abelian, then the centered diffraction is given by η̂p = mĜ.

Here, the normalization of mĜ is determined by (2.5). For example, if (G,mG) =
(Rd ,Vold), then the Poisson process satisfies

η̂p(Br ) = Vold(Br ) = Vold(B1) · rd . (2.8)

In particular, the centered diffraction of any invariant Poisson process on R
d is abso-

lutely continuous with respect to Lebesgue measure. On the contrary, we will see that
the centered diffraction of any cut-and-project process is pure point. To make this
precise we consider a cut-and-project process p = p(G, H , �,W ) as in Example
2.1 with the additional assumption that G and H are abelian. We use the notation
from Example 2.1, so that in particular � = �\L , where L := G × H . We fix Haar
measures mG and mH on G and H respectively and denote mL := mG ⊗ mH . We
also fix a Borel fundamental domain F ⊂ L for �; then covol(�) := mL(F) depends
only on �. Finally, we denote by

L̂ = Ĝ × Ĥ and �⊥ := {ξ ∈ L̂ : ξ |� = 1}

the Pontryagin dual of L and dual lattice of � respectively. We then have the following
formula, which, in essence, goes back to Meyer [21].

Theorem 2.9 (Cut-and-project diffraction) The diffraction η̂+
p of p = p(G, H , �,W )

satisfies

η̂+
p = 1

covol(�)2
·

∑

ξ=(ξ1,ξ2)∈�⊥
|χ̂W (ξ2)|2 · δξ1 ,

and consequently, the centered diffraction η̂p is given by

η̂p = 1

covol(�)2
·

∑

ξ=(ξ1,ξ2)∈�⊥\{(0,0)}
|χ̂W (ξ2)|2 · δξ1 .

3 Definitions of hyperuniformity

3.1 Spectral vs. geometric hyperuniformity

Consider a locally square integrable invariant random measure p : � → M(Rd)

with associated centered autocorrelation ηp and associated centered diffraction η̂p. It
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follows from Proposition 2.5, that if (Un) is a nested sequence of compact identity
neighbourhoods in Ĝ with

⋂
Un = {1}, then

lim
n→∞ η̂p(Un) = 0, (3.1)

and (spectral) hyperuniformity is concerned with the speed of this convergence. Given
t > 0 and a subset W ⊂ R̂

d we write tW := {t x | x ∈ W }.
Definition 3.1 Let W ⊂ R̂

d be a bounded identity neighbourhood. The random mea-
sure p is spectrally hyperuniform with respect to W if

lim
t→0

η̂p(tW )

td
= 0.

It is called spectrally hyperuniform if it is spectrally uniform with respect to the
Euclidean unit ball in R̂

d .

In view of (2.8), the denominator td can be interpreted (up to a constant) either as the
Lebesgue volume of tW or as the diffraction measure of tW with respect to a Poisson
process. Hyperuniformity thus corresponds to “sub-Poissonian” spectral behaviour
near 0. A dual approach to hyperuniformity, which is often crucial for applications, is
via the number variance of p.

Definition 3.2 Let V ⊂ R
d be a bounded identity neighbourhood. The random mea-

sure p is geometrically hyperuniform with respect to V if

lim
t→∞

Var p(tV )

td
= 0.

It is called geometrically hyperuniform if it is geometrically uniform with respect to
the Euclidean unit ball in R

d .

Proposition 3.3 (Spectral vs. geometric hyperuniformity) A locally square integrable
invariant random measure is spectrally hyperuniform if and only if it is geometrically
hyperuniform.

Special cases of Proposition 3.3 have been observed in different levels of generality by
many people, see e.g. [12, Prop. 2.2]. Lacking a reference in the present generality, we
will include a full proof. In fact, we will provide a more precise version in Theorem
3.6 below; see also Theorem 3.7 for a quantitative version.. It is important to note that
a hyperuniform invariant random measure need not be geometrically hyperuniform
with respect to balls of a non-Euclidean metric, as the following example shows.

Example 3.4 Let � < R
d be a lattice and let δ : R

d/� → M(Rd) be the associated
periodic simple point process. We claim that δ is spectrally hyperuniform. Indeed, by
Poisson summation the support of its centered diffraction is�⊥\{0}, where�⊥ denotes
the dual lattice of �, and thus the centered diffraction vanishes in a neighbourhood of
0. By Proposition 3.3 it is thus geometrically hyperuniform with respect to Euclidean
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balls. On the other hand, even for Z
2 ⊂ R

2 this process is not geometrically hyper-
uniform with respect to �∞-balls in R

2, see [12, Section 2.1]. However, �∞-balls are
not Fourier smooth in the sense of the following remark.

Remark 3.5 (Fourier smoothness of balls) If Br denotes the Euclidean ball in R
d , then

its Fourier transform satisfies the estimate

|χ̂Br (ξ)| 	 (1 + ‖ξ‖)−(d+1)/2 for all ξ ∈ R̂
d ,

In this article we will often consider the wider class of Borel sets B ⊂ R
d whose

Fourier transforms satisfy the estimate

|χ̂B(ξ)| 	 (1 + ‖ξ‖)−(d+ϑ)/2 for some ϑ > 0 and all ξ ∈ R̂
d .

Such sets will be called Fourier smooth with exponent ϑ in the sequel. With this
terminology, Euclidean balls are thus Fourier smooth with exponent 1. By [16, Thm.
2.16], a compact, convex and symmetric subset B ⊂ R

d is Fourier smooth if its
boundary is (d + 3)/2-times differentiable and its principal curvatures do not vanish.
On the other hand, �∞-balls in R

2 are not Fourier smooth.

As the following theorem shows, the problems encountered above with �∞-balls do
not occur for Fourier smooth sets.

Theorem 3.6 Let p : � → M(Rd) be a locally square integrable invariant random
measure.

(i) If p is geometrically hyperuniformwith respect to someboundedBorel set V ⊂ R
d ,

then it is spectrally hyperuniform.
(ii) If p is spectrally hyperuniform for some bounded Borel set W ⊂ R̂

d with 0 in
their interior, then it is spectrally hyperuniform with respect to any such set and
in particular spectrally hyperuniform.

(iii) If p is spectrally hyperuniform, then it is geometrically hyperuniform with respect
to every Fourier smooth bounded Borel set V .

Proof We are going to use the fact that, by (2.6) and since χ̂tV (ξ) = td · χ̂V (tξ), we
have

Var p(tV ) = η̂p(|χ̂tV |2) = t2d ·
∫

Rd
|χ̂V (tξ)|2 dη̂p(ξ) (3.2)

for any bounded Borel set V ⊂ R
d and every t > 0.

(i) Since V is bounded, the Fourier transform χ̂V is continuous. Since moreover
χ̂V (0) = Vold(V ), there thus exists a constant c > 0 such that

|χ̂V (ξ)|2 ≥ Vold(V )2

2
for all ξ ∈ Bc.
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Using (3.2) and the fact that η̂p is a positive measure we have for all t ≥ 1,

Var p(tV )

td
= td ·

∫

Rd
|χ̂V (tξ)|2 dη̂p(ξ) ≥ td ·

∫

Bc/t
|χ̂V (tξ)|2 dη̂p(ξ)

≥ Vold(V )2

2
· td · η̂p(Bc/t ),

i.e. for t ≥ 1 we have

η̂p(Bc/t ) ≤ 2

t2d
· Var p(tV )

Vold(V )2
.

Setting ε := c/t this yields

lim
ε→0+

η̂p(Bε(0))

εd
≤ lim

t→∞
td

cd
· 2

t2d
· Var p(tV )

Vold(V )2
= 2

cd · Vold (V )2
· lim
t→∞

Var p(tV )

td
= 0.

(ii) IfW andW ′ are boundedBorel setswith 0 in its interior, then there exist R > r > 0
such that

rW ⊂ W ′ ⊂ RW �⇒ r · η̂p(r tW )

r t
≤ η̂p(tW ′)

t
≤ R · η̂p(RtW )

Rt
for all t > 0.

This shows that

lim
t→∞

η̂p(tW )

t
= 0 ⇐⇒ lim

t→∞
η̂p(tW ′)

t
= 0.

(iii) In view of (3.2) and the assumption of Fourier smoothness of V we have for all
R > 1,

Var p(RV )

Rd
= Rd ·

∫

Rd
|χ̂B(Rξ)|2 dη̂p(ξ)

	 Rd ·
∫

Rd
(1 + R‖ξ‖)−(d+ϑ) dη̂p(ξ)

= Rd ·
∫ 1

0
η̂p

({
ξ ∈ R

d : (1 + R‖ξ‖)−(d+ϑ) ≥ t
})

dt

If we set �(s) := (1 + s)−(d+ϑ) and u := R−1�−1(t), then the condition under
the integral is given by

�(R‖ξ‖) ≥ t ⇐⇒ ‖ξ‖ ≤ u ⇐⇒ ξ ∈ Bu, and

dt = R · � ′(Ru) du = (−d − ϑ)R

(1 + Ru)d+ϑ+1 du,
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and hence the substitution t �→ u yields

Var p(RV )

Rd
	 Rd+1 ·

∫ ∞

0
FR,d,ϑ (u) du, where

FR,d,ϑ (u) := η̂p (Bu)

(1 + Ru)d+ϑ+1 . (3.3)

To estimate the integral on the right, we will break the domain of integration into
three parts. From now on we fix ε > 0. We then choose q in the open interval
(0, ϑ

d+ϑ+1 ). Since q > 0 we can find, by spectral hyperuniformity, a constant
Rε(q) such that

η̂p(Bt/R) ≤ ε (t/R)d for all R ≥ Rε(q) and for all 0 ≤ t ≤ R1−q .

Using Lemma 2.7 we have

η̂p(Bu) 	 ud for all u ≥ M ≥ 1.

For all R ≥ Rε(q) we then have, by the very definition of Rε(q),

I1 := Rd+1 ·
∫ R−q

0
FR,d,ϑ (u) du = Rd

∫ R1−q

0

η̂p(Bt/R)

(1 + t)d+ϑ+1 dt

≤ ε

∫ R1−q

0

td

(1 + t)d+ϑ+1 dt 	 ε. (3.4)

Secondly, by our choice of q we have

I2 := Rd+1 ·
∫ M

R−q
FR,d,ϑ (u) du ≤ Rd+1 · M · η̂p(BM )

(1 + R1−q)d+ϑ+1
R→∞−−−→ 0, (3.5)

and, finally, by our choice of M we have

I3 := Rd+1 ·
∫ ∞

M
FR,d,ϑ (u) du

	 Rd+1
∫ ∞

M

td

(1 + Rt)d+ϑ+1 dt =
∫ ∞

RM

td

(1 + t)d+ϑ+1 dt
R→∞−−−→ 0. (3.6)

Plugging (3.4), (3.5) and (3.6) into (3.3) then yields

lim
R→∞

Var p(RV )

Rd
	 ε,

and since ε > 0 was chosen arbitrarily, the theorem follows.

��
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Note that (i) and (iii) imply Proposition 3.3 (and hence Theorem 1.1 from the intro-
duction). In the sequel we say that p is hyperuniform if it is spectrally, or equivalently
geometrically hyperuniform.

3.2 Quantitative bounds

Let V be a bounded Borel set containing 0 in its interior. If V is Fourier smooth, then
Theorem 3.6 states that

lim
R→∞

Var p(RV )

Vold(RV )
= 0 ⇐⇒ lim

ε→0

η̂p(Bε)

Vold(Bε)
= 0.

From the proof one can actually obtain a more quantitative relation between the vari-
ance of large balls and the centered diffraction measure of small balls.We collect these
relations in the following theorem, and leave the proof to the reader.

Theorem 3.7 Let p be a locally square-integrable random measure and let V be a
bounded Borel set containing 0 in its interior.

(i) There is a constant cV > 0 such that for every function ρ : [1,∞) → (0,∞),

Var p(RV ) = O(Rdρ(R)), R → ∞ �⇒ η̂p(Bε) = O(εdρ(cV /ε)), ε → 0+.

(ii) If V is Fourier smooth with exponent ϑ and 0 ≤ γ < ϑ , then

Var p(RV ) = O(Rd−γ ), R → ∞ ⇐⇒ η̂p(Bε) = O(εd+γ ), ε → 0+.

The same statements hold for o instead of O.

3.3 Counterexamples in dimension 1

Theorem 3.6.(iii) rests on Fourier smoothness of the set V . Example 3.4 shows that this
assumption is indeed necessary in dimensions d ≥ 2. To see that it is also necessary
in dimension d = 1 one can use a construction of Brown, Glicksberg and Hewitt
[10]. More precisely, we show that for a large class of one-dimensional locally square
integrable invariant random measures (including periodic and quasi-crystalline ones),
there is always a compact subset of the real line with respect to which these processes
are not geometrically hyperuniform.The following result can be found in [10, Example
C].

Lemma 3.8 (Brown–Glicksberg–Hewitt) There exist a compact subset V ⊂ R and a
sequence (ξn) in (0,∞) such that ξn → +∞ and

lim
n→∞ ξ

1/2
n · |χ̂V (ξn)| > 0, as n → ∞.

��
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Note that V is not Fourier smooth for any positive exponent. We can now prove:

Lemma 3.9 (Automatic geometric non-hyperuniformity)
Let V and (ξn) be as in Lemma 3.8, and fix a point ξo ∈ (0,∞). Then, for every

locally square integrable invariant random measure p : � → M(R) for which ξo is
an atom of η̂p, we have

lim sup
n→∞

Var p(RnV )

Rn
> 0,

where Rn = ξn
ξo

→ ∞ as n → ∞.

Proof Note that if Rn = ξn/ξo, then

Var p(RnV )

Rn
= Rn ·

∫ ∞

−∞
|χ̂V (Rnξ)|2 dη̂p(ξ) ≥ Rn · |χ̂V (Rnξo)|2 · η̂p({ξo})

= η̂p({ξo})
ξo

·
(
ξ
1/2
n · |χ̂V (ξn)|

)2
.

By our assumptions on V and (ξn), the limsup of the right-hand side is strictly positive,
and the proof is done. ��

4 Cut-and-project processes which are not hyperuniform

4.1 Centered diffraction for a class of cut-and-project processes

Given dimension parameters d1, d2, every choice of lattice � < R
d1+d2 and window

W ⊂ R
d2 gives rise to a cut-and-project process p(Rd1 , R

d2 , �,W ) (see Example
2.1). In this section we are going to show that, already in the smallest possible case
where d1 = d2 = 1, it is possible to choose the lattice � and the window W in such a
way, that the resulting point process is non-hyperuniform in a very strong quantitative
sense. We are going to choose lattices of the form

�a := gaZ
2 < R

2, where ga = 1

2a

(
1 −a
1 a

)

for some a > 0,

andwindows for the formWb := [−b, b] for some b > 0.Wewill choose a ∈ R\Q, so
that �a is irreducible. We then denote by pa,b = p(R, R, �a,Wb) the corresponding
cut-and-project process. As a special case of Theorem 2.9 we have:

Corollary 4.1 Let a, b > 0 with a ∈ R\Q. Then the centered diffraction η̂a,b of the
process pa,b is given by

η̂a,b([−u, u]) = 4a2 ·
∑

(m,n)∈Z2\{(0,0}
χ[−1,1]

(
am − n

u

)

· ∣∣χ̂[−b,b](am + n)
∣
∣2 .

(4.1)
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Proof Since det(ga) = 1
2a and Z

2 is unimodular, we have covol(�a) = 1
2a , hence it

suffices to observe that

g−T
a =

(
a −1
a 1

)

and �⊥
a = g−T

a Z
2 =

{(
am − n
am + n

)

: m, n ∈ Z

}

.

��
To obtain anti-hyperuniform examples, we need to derive lower bounds for this central
diffraction. The following key estimate will be proved at the end of this section. Here,
given a real number θ and u ∈ (0, 1) we set

{θ}Z := min{|θ + n| : n ∈ Z} ∈ [0, 1/2] and Qu := {m ∈ Z\{0} : {am}Z ≤ u/2} .

Lemma 4.2 (Lower bound for centered diffraction) For all a, b > 0 with a ∈ R\Q

we have

η̂a,b([−u, u]) ≥ 1

2
·
∑

m∈Qu

(
sin(4πabm)

πm

)2

+ Oa,b(u) for all 0 < u < 1. (4.2)

4.2 Choice of parameters

Assuming Lemma 4.2 for the moment, the main idea behind our construction of
anti-hyperuniform cut-and-project processes is as follows: If (mk) is an unbounded
sequence of positive integers such that {amk}Z ≤ f (mk) for some function f , then
we havemk ∈ Quk , where uk := 2 f (mk), and thus the lemma yields the lower bound

η̂a,b([−uk, uk])
uδ
k

� m−2
k f (mk)

−δ · sin2(4πabmk) + Oa,b(u
1−δ
k ).

If f is sufficiently rapidly decaying, then the first factor is unbounded and the O-term
converges to 0; to obtain divergence along the sequence of radii (uk), one thus only
has to arrange for the second factor to remain bounded away from 0, which can be
achieved (up to passing to a subsequence) using standard equidistribution results. This
motivates to choose a as a Liouville number; we recall the definition.

Definition 4.3 An irrational number a ∈ R\Q is γ -approximable for some γ > 0 if
there exists an integer sequence (mk) such that

mk → ∞ and {mka}Z ≤ m−γ

k for all k; (4.3)

it is called a Liouville number if it is γ -approximable for any γ > 0.

Remark 4.4 Note that the second assumption of (4.3) means that there exist integers
pk such that

∣
∣
∣
∣a − pk

mk

∣
∣
∣
∣ ≤ m−γ−1

k ,
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hence Liouville numbers are very well approximable by rational numbers. There exist
uncountably many Liouville numbers, for example the numbers

∞∑

n=1

an · 10−n! with ai ∈ {0, . . . , 9}.

If a is a Liouville number then by diagonalization we find an integer sequence mk

such that

mk → ∞ and {mka}Z ≤ m−k
k for all k. (4.4)

Theorem 4.5 (Liouville implies anti-hyperuniformity) If a > 0 is a Liouville number,
then there is a conull a Lebesgue-conull subset Ea ⊂ (0, 1/2a) such that for every
b ∈ Ea we have

lim
u→∞

η̂a,b([−u, u])
uδ

= ∞ for all δ ∈ (0, 1).

More precisely, if (mk) is as in (4.4) and uk := 2m−k
k , then for every b ∈ Ea there

exists a subsequence (uk j ) such that

lim
j→∞

η̂a,b([−uk j , uk j ])
uδ
k j

= ∞ for all δ ∈ (0, 1).

Note that Theorem 1.4 from the introduction is an immediate consequence of this
theorem. If one is only interested in non-hyperuniformity of pa,b, then it is actually
sufficient for a to be γ -approximable for some γ > 2 (rather than Liouville):

Theorem 4.6 (2 + ε)-(approximability implies non-hyperuniformity) If a is γ -
approximable for some γ > 2, then there is a Lebesgue-conull subset Ea ⊂ (0, 1/2a)

such that for every b ∈ Ea, we have

lim
u→∞

η̂a,b([−u, u])
uδ

= ∞ for all δ ∈
(
2

γ
, 1

)

.

More precisely, if mk is as in (4.3) and uk := 2m−γ

k , then for every b ∈ Ea there is a
subsequence (uk j ) such that

lim
j→∞

η̂a,b([−uk j , uk j ])
uδ
k j

= ∞ for all δ ∈
(
2

γ
, 1

)

.

Proofs of Theorem 4.5 and Theorem 4.6modulo Lemma 4.2 For the proof of Theorem
4.5 we choose (mk) as in (4.4), and for the proof of Theorem 4.6 we choose (mk) as in
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as in (4.3); we then set uk := 2m−k
k , respectively uk := 2m−γ

k so that, by definition,
mk ∈ Quk . Then uk → 0 and, by Lemma 4.2,

η̂a,b([−uk, uk]) �
(
sin(4πabmk)

mk

)2

+ Oa,b (uk) , for all k.

In particular, for all δ ∈ (0, 1) and k ∈ N we deduce that

η̂a,b([−uk, uk])
uδ
k

�
⎧
⎨

⎩

mk−2
k · sin2(4πabmk) + Oa,b

(
u1−δ
k

)
if a is Liouville;

mδγ−2
k · sin2(4πabmk) + Oa,b

(
u1−δ
k

)
if a is γ -approximable.

Note that since 0 < δ < 1, the O-term tends to zero when k → ∞ is both cases. In
the first case we have mk−2

k → ∞, and in the second case we have mδγ−2
k → ∞ as

long as δ > 2
γ
.

We deduce that η̂a,b([−uk, uk])/uδ
k diverges to infinity along a subsequence (k j ) as

long as the second factor sin2(4πabmk j ) stays bounded uniformly away from 0 along
this subsequence. This can be arranged by the following standard equidistribution
result. ��
Lemma 4.7 (Equidistribution) For every a ∈ R\{0} and sequence (mk) of integers
such that mk → ∞ as k → ∞, there exist a Lebesgue conull subset Ea ⊂ (0, 1/2a)

with the property that for every b ∈ Ea, there is a sub-sequence (k j ) such that

lim
j→∞ sin(4πabmk j ) = 1.

Proof Let (mk) be an integer sequence such that mk → ∞ when k → ∞. By [18,
Chapter 1, Theorem 4.1] we can find a conull subset E ⊂ (0, 1) such that (mkα) is
equidistributed modulo 1 for every α ∈ E . In particular, for every α ∈ E , we can find
a subsequence (k j ) such that mk j α → 1

4 mod 1. Define

Ea :=
{

b ∈
(

0,
1

2a

)

| 2ba ∈ E

}

Then for every b ∈ Ea we find a sequence (mk j ) such that 2bamk j → 1
4 mod 1 and

hence

sin(4πabmk j ) → sin

(

2π · 1
4

)

= 1.

Since E is conull in (0, 1), the set Ea is conull in (0, 1/2a), and we are done. ��
We have thus reduced the proofs of Theorems 4.5 and 4.6 to Lemma 4.2. The

remainder of this section is devoted to deducing this lemma from the diffraction for-
mula (Corollary 4.1).
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4.3 Proof of Lemma 4.2

We now turn to the proof of Lemma 4.2. For this it will be convenient to abbreviate

ϕ1(x) := χ[−1/2,1/2] ∗ χ[−1/2,1/2](x) and ϕ2(x) = |χ̂[−b,b](x)|2 :=
(
sin(2πbx)

πx

)2

.

(4.5)

Note that

ϕ̂1(ξ) =
(
sin(πξ)

πξ

)2

and ϕ̂2(ξ) = (χ[−b,b] ∗ χ[−b,b])(ξ).

From the diffraction formula we can derive a lower bounded for η̂a,b([−u, u]) in terms
of the functions

Hm(u) := u ·
∞∑

k=−∞
e−2π iamk ·

∫ 2b

−2b
ϕ̂1(u(x + k)) ϕ̂2(x)e

−4π iamx dx, for m �= 0.

(4.6)

Lemma 4.8 For all u > 0,

η̂a,b([−u, u]) ≥ 4a2 ·
∑

m �=0

Hm(u).

Proof Since the diffraction formula (4.1) only involves non-negative terms, we have

η̂a,b([−u, u]) = 4a2 ·
∑

(m,n)∈Z2\{(0,0}
χ[−1,1]

(
am − n

u

)

· ∣∣χ̂[−b,b](am + n)
∣
∣2

≥ 4a2 ·
∑

m �=0

( ∞∑

n=−∞
χ[−1,1]

(
am − n

u

)

· ∣∣χ̂[−b,b](am + n)
∣
∣2
)

.

Wewould like to apply Poisson’s summation formula to the inner sum, but sinceχ[−1,1]
does not have sufficient Fourier decay, we cannot do this directly. Instead, using the
simple estimate χ[−1,1] ≥ χ[−1/2,1/2] ∗ χ[−1/2,1/2], we get a new lower bound:

η̂a,b([−u, u])

≥ 4a2 ·
∑

m �=0

( ∞∑

n=−∞
χ[−1/2,1/2] ∗ χ[−1/2,1/2]

(
am − n

u

)

· ∣∣χ̂[−b,b](am + n)
∣
∣2
)

.
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The functions in the inner sum on the right hand side do now have the right Fourier
decay for for Poisson’s summation formula to be applied. For a fixed m �= 0, we
denote the inner sum by Hm(u), and note that

Hm(u) =
∞∑

n=−∞
ψam(n; u) where ψα(x; u) = ϕ1

(
α − x

u

)

ϕ2(α + x), α > 0.

We leave it to the reader to check that

ψ̂α(ξ ; u) = u · e−2π iαξ ·
∫ ∞

−∞
ϕ̂1(u(x + ξ)) · ψ̂2(x)e

−4π iαx dx,

and thus Hm(u) is really given by (4.6). ��
The key estimate concerning the functions Hm is as follows:

Lemma 4.9 For all u ∈ (0, 1) and m �= 0,

Hm(u) =
( ∞∑

n=−∞
ϕ1

(
am + n

u

))

· ϕ2(2am)

−
( ∞∑

n=−∞
(am + n) · ϕ1

(
am + n

u

))

· ϕ′
2(2am) + O

( u

m2

)
.

Assuming this estimate for the moment, let us complete the proof:

Proof of Lemma 4.2 assuming Lemma 4.9 Upon combining these two lemmas, we get

η̂a,b([−u, u]) ≥ 4a2 ·
∑

m �=0

( ∞∑

n=−∞
ϕ1

(
am + n

u

))

· ϕ2(2am)

− 4a2 ·
∑

m �=0

( ∞∑

n=−∞
(am + n) · ϕ1

(
am + n

u

))

· ϕ′
2(2am) + O (u) .

(4.7)

For the first sum, we note that ϕ1 ≥ 1
2 · χ[−1/2,1/2], and thus the inner sum over n is

bounded from below by 1
2 · χQu . Hence,

4a2 ·
∑

m �=0

( ∞∑

n=−∞
ϕ1

(
am + n

u

))

· ϕ2(2am) ≥ 4a2

2
·
∑

m∈Qu

(
sin(4πabm)

2πam

)2

= 1

2

∑

m∈Qu

(
sin(4πabm)

πm

)2

.
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For the second sum, we note that since supp(ϕ1) ⊂ [−1, 1] and ‖ϕ1‖∞ ≤ 1, the only
terms which contribute to the inner sum are the ones for which |am + n| ≤ u. Since
u ∈ (0, 1), there are at most two such indices n. Hence,

∣
∣
∣
∣
∣

( ∞∑

n=−∞
(am + n) · ϕ1

(
am + n

u

))∣∣
∣
∣
∣
≤

∑

n∈Z|am+n|≤u

|am + n| ≤ 2u,

for all m. Since |ϕ′
2(x)| 	 x−2, we see that |ϕ′

2(2am)| 	 m−2, and thus

4a2 ·
∑

m �=0

( ∞∑

n=−∞
(am + n) · ϕ1

(
am + n

u

))

· ϕ′
2(2am) = O(u).

Upon plugging this into (4.7), and merging the two O(u)-terms, we are done. ��
We have thus reduced the proof of our theorems further to Lemma 4.9, which is a
purely analytic statement about the functions ϕ1, ϕ2 and their Fourier transforms.

4.4 Proof of Lemma 4.9

We break the proof of Lemma 4.9 into four lemmas involving the auxiliary function

Fθ (x; u) =
∞∑

k=−∞
e−2π iθk (ϕ̂1(u(x + k)) − ϕ̂1(uk)) , x ∈ [−2b, 2b],

where θ ∈ R and u > 0 are parameters.

Lemma 4.10 For all u > 0 and m �= 0,

Hm(u) =
( ∞∑

n=−∞
ϕ1

(
am + n

u

))

· ϕ2(2am) + u ·
∫ 2b

−2b
Fam(x; u) ϕ̂2(x) e

−4π iamx dx .

Lemma 4.11 For every θ ∈ R and u > 0,

Fθ (x; u) = x · 2π i
u

·
∞∑

n=−∞
(n + θ) · ϕ1

(
θ + n

u

)

+ ϕ̂1(ux) − ϕ̂1(0)

+ u2 · L1(x; u, θ) − iu3 · L2(x; u, θ),

for all x ∈ [−2b, 2b], where L1 and L2 are of the form

L1(x; u, θ) =
∫ x

0

∫ y

−y
G1(z; u, θ) dz dy
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and

L2(x; u, θ) =
∫ x

0

∫ y

0

∫ z

−z
G2(w; u, θ) dw dz dy,

for certain continuous functions G1,G2 : R × R
+ × R → C which satisfy

sup
{|G j (x; u, θ)| : x ∈ [−2b, 2b], u > 0, θ ∈ R

}	 1

u
, j = 1, 2.

Lemma 4.12 For all m �= 0,

sup
u∈(0,1]

∣
∣
∣
∣

∫ 2b

−2b
(ϕ̂1(ux) − ϕ̂1(0)) · ϕ̂2(x)e

−4π iamx dx

∣
∣
∣
∣	

1

m2 ,

where the implicit constants are independent of m.

Lemma 4.13 For all u > 0 and m �= 0,

∣
∣
∣
∣

∫ 2b

−2b
L j (x; u, am)ϕ̂2(x)e

−4π iamx dx

∣
∣
∣
∣	

1

um2 , j = 1, 2,

where the implicit constants are independent of m and u.

Proof of Lemma 4.9 assuming Lemmas 4.10, 4.11, 4.12 and 4.13 By Lemma 4.10 it suf-
fices to show that

u ·
∫ 2b

−2b
Fam(x; u)e−4π iamx dx

=
( ∞∑

n=−∞
(am + n) · ϕ1

(
am + n

u

))

· ϕ′
2(2am) + O

( u

m2

)
. (4.8)

By Lemma 4.11 (applied with θ = am) we have

u ·
∫ 2b

−2b
Fam(x; u)e−4π iamx dx =

(

2π i
∫ 2b

−2b
x · ϕ̂2(x)e

−4π iamx dx

)

·

·
∞∑

n=−∞
(am + n) · ϕ1

(
am + n

u

)

+ u ·
∫ 2b

−2b
(ϕ̂1(ux) − ϕ̂1(0)) ϕ̂2(x) e

−4π iamx dx

−
2∑

j=1

u(−iu)1+ j
∫ 2b

−2b
L j (x; u, am)ϕ̂2(x)e

−4π iamx dx .
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Note that

2π i
∫ 2b

−2b
x · ϕ̂2(x)e

−4π iamx dx = −ϕ′
2(2am), for all m.

By Lemma 4.12,

∣
∣
∣
∣u ·

∫ 2b

−2b
(ϕ̂1(ux) − ϕ̂1(0)) ϕ̂2(x) e

−4π iamx dx

∣
∣
∣
∣ = O

( u

m2

)
,

and by Lemma 4.13,

∣
∣
∣
∣
∣
∣

2∑

j=1

u(−iu)1+ j
∫ 2b

−2b
L j (x; u, am)ϕ̂2(x)e

−4π iamx dx

∣
∣
∣
∣
∣
∣
= O

(
u2

m2

)

.

Since u ∈ (0, 1), the last O-term can be absorbed by the first O-term, and thus we
have proved (4.8). ��
We are thus left with the proof of the four lemmas.

4.5 Proof of Lemmas 4.10 and 4.11

Lemmas 4.10 and 4.11 are both applications of the Poisson summation formula:

Proof of Lemma 4.10 We recall from (4.6) that

Hm(u) = u ·
∞∑

k=−∞
e−2π iamk ·

∫ 2b

−2b
ϕ̂1(u(x + k)) ϕ̂2(x)e

−4π iamx dx,

for all u > 0 and m �= 0. Hence,

Hm(u) = u ·
( ∞∑

k=−∞
e−2π iamk ϕ̂1(uk)

)

·
∫ 2b

−2b
ϕ̂2(x)e

−4π iamx dx

+ u ·
∫ 2b

−2b

( ∞∑

k=−∞
e−2π iamk (ϕ̂1(u(x + k)) − ϕ̂1(uk))

︸ ︷︷ ︸
=Fam (x;u)

)
· ϕ̂2(x)e

−4π iamx dx

By Poisson’s summation formula, and since ϕ is even,

u ·
∞∑

k=−∞
e−2π iamk ϕ̂1(uk) =

∞∑

n=−∞
ϕ1

(
am + n

u

)

.
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Furthermore, since supp(ϕ̂2) ⊂ [−2b, 2b], we have
∫ 2b

−2b
ϕ̂2(x)e

−4π iamx dx =
∫ ∞

−∞
ϕ̂2(x)e

−4π iamx dx = ϕ2(2am),

for all m, which finishes the proof. ��
The argument for Lemma 4.11 is more involved, and we need the following lemma to
bound the functions G1 and G2:

Lemma 4.14 Let ρ : R → [0,∞) be a bounded function such

ρ(u) 	 |u|−2, for all |u| ≥ 1,

Let M > 0. Then, for all u ∈ (0, 1),

sup
|w|≤M

∞∑

n=1

ρ(u(n + w)) 	M,ρ

1

u
,

where the implicit constants only depend on M and ‖ρ‖∞.

Proof Fix u ∈ (0, 1) and |w| ≤ M and define

S− := {n ∈ N : u|n + w| ≤ 1}

and

S j := {n ∈ N : 2 j < u|n + w| ≤ 2 j+1}, for j ≥ 0.

Then,

∞∑

n=1

ρ(u(n + w)) ≤ ρ(0) +
∑

n∈S−
ρ(u(n + w)) +

∞∑

j=0

⎛

⎝
∑

n∈S j
ρ(u(n + w))

⎞

⎠ .

(4.9)

Since |w| ≤ M , we see that

|S−| ≤ 1

u
+ M and |S j | ≤ 2 j+1

u
+ M, for j ≥ 0.

Hence,

∑

n∈S−
ρ(u(n + w)) ≤ |S−| · ‖ρ‖∞ ≤

(
1

u
+ M

)

· ‖ρ‖∞,
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and

∑

n∈S j
ρ(u(n + w)) 	 |S j | · 4− j ≤

(
2 j+1

u
+ M

)

· 4− j

Upon summing over all j , and plugging the resulting estimates into (4.9), we are done.
��

Proof of Lemma 4.11 Since ϕ1 is even and real-valued, so is ϕ̂1. If we take out the term
corresponding to k = 0 in the sum defining Fθ (x; u) and split the remaining sum into
real and imaginary parts, we get

Fθ (x; u) = ϕ̂1(ux) − ϕ̂1(0)

+
∞∑

k=1

(ϕ̂1(u(k + x)) − 2 · ϕ̂1(uk) + ϕ̂1(u(k − x))) · cos(2πθk)

− i ·
∞∑

k=1

(ϕ̂1(u(k + x)) − ϕ̂1(u(k − x))) · sin(2πθk).

Note that ϕ̂1 is smooth, and thus

ϕ̂1(u(k + x)) − 2 · ϕ̂1(uk) + ϕ̂1(u(k − x)) = u2 ·
∫ x

0

∫ y

−y
ϕ̂′′
1 (u(k + z)) dz dy

and

ϕ̂1(u(k + x)) − ϕ̂1(u(k − x)) = u ·
∫ x

−x
ϕ̂′
1(u(k + y)) dy

= u ·
∫ x

0

(
ϕ̂′
1(u(k + y)) + ϕ̂′

1(u(k − y))
)
dy

= u ·
∫ x

0

(
ϕ̂′
1(u(k + y)) − 2 · ϕ̂′

1(uk)

+ϕ̂′
1(u(k − y))

)
dy + 2ux · ϕ̂′

1(uk)

= u3 ·
∫ x

0

∫ y

0

∫ z

−z
ϕ̂′′′
1 (u(k + w)) dw dz dy

+ 2ux · ϕ̂′
1(uk),

for all x ≥ 0, and similarly for x < 0. We conclude that

Fθ (x; u) = ϕ̂1(ux) − ϕ̂1(0)

+ u2 ·
∫ x

0

∫ y

−y

( ∞∑

k=1

ϕ̂′′
1 (u(k + z)) · cos(2πθk)

)

dz dy
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− iu3 ·
∫ x

0

∫ y

0

∫ z

−z

( ∞∑

k=1

ϕ̂′′′
1 (u(k + w)) · sin(2πθk)

)

dw dz dy

− x · iu ·
∞∑

k=−∞
ϕ̂′
1(uk) sin(2πθk).

By Poisson’s summation formula, and since ϕ is even,

∞∑

k=−∞
ϕ̂′
1(uk) sin(2πθk) = π

u2
·

∞∑

n=−∞

(

(n − θ) · ϕ1

(
n − θ

u

)

−(n + θ) · ϕ1

(
n + θ

u

))

= −2π

u2

∞∑

n=−∞
(n + θ) · ϕ1

(
n + θ

u

)

.

Define

G1(z; u, θ) =
∞∑

k=1

ϕ̂′′
1 (u(k + z)) · cos(2πθk)

and

G2(z; u, θ) =
∞∑

k=1

ϕ̂′′′
1 (u(k + w)) · sin(2πθk).

Since |ϕ̂(p)
1 (x)| 	p x−2 for all p ≥ 0, these sums converge uniformly for fixed u and

θ , and thus define continuous (hence bounded) functions on [−2b, 2b]. To see that
these functions actually satisfy the bounds specified in the lemma we apply Lemma
4.14 with M := 2b and ρ := max(|ϕ̂′′

1 , |ϕ̂′′′
1 |). If we now define L1 and L2 in terms of

G1 and G2 as stated in the lemma, then we can write

Fθ (x; u) = x · 2π i
u

·
∞∑

n=−∞
(n + θ) · ϕ1

(
θ + n

u

)

+ ϕ̂1(ux) − ϕ̂1(0)

+ u2 · L1(x; u, θ) − iu3 · L2(x; u, θ),

for all x ∈ [−2b, 2b], which finishes the proof. ��

4.6 Proofs of Lemmas 4.12 and 4.13

The two remaining lemmas are a consequence of the following standard result, which
can be obtained by applying partial integration twice.
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Lemma 4.15 Let g be piecewise twice continuously differentiable function with com-
pact support, and suppose that F ∈ C2(supp(g)). Then, for all real λ,

∣
∣
∣
∣

∫ ∞

−∞
F(t) · g(t) · eiλt dt

∣
∣
∣
∣ ≤

3

|λ|2 · max{‖F ( j)‖∞‖g(2− j)‖∞ : j = 0, 1, 2},

where the ‖ · ‖∞-norms are restricted to C(supp(g)\Q), where Q denotes the end
points of the intervals on which g is twice continuously differentiable.

Proof of Lemma 4.12 For a fixed u ∈ (0, 1), apply Lemma 4.15 to

F = ϕ̂1(ux) − ϕ̂1(0) and g = ϕ̂2 and λ = −4πam.

Then F is smooth, supp(g) = [−2b, 2b] and ‖F ( j)‖∞ 	 1 for j = 0, 1, 2, with
implicit constants independent of u. ��

Proof of Lemma 4.13 Since

L1(x; u, θ) =
∫ x

0

∫ y

−y
G1(z; u, θ) dz dy and L2(x; u, θ)

=
∫ x

0

∫ y

0

∫ z

−z
G2(w; u, θ) dw dz dy,

and both G1(·; u, θ) and G2(·; u, θ) are continuous (hence bounded) on [−2b, 2b],
we see that both L1(·; u, θ) and L2(·; u, θ) are twice continuously differentiable on
[−2b, 2b], and

‖L( j)
k (·; u, θ)‖∞ 	b ‖Gk(·; u, θ)‖∞, for j = 0, 1, 2 and k = 1, 2,

where the ‖ · ‖∞-norms are restricted to the interval [−2b, 2b]. By Lemma 4.11,

‖Gk(·; u, θ)‖∞ 	 u−1, for k = 1, 2,

so by Lemma 4.15, applied with F = Lk(·; u, θ) and g = ϕ̂2 and λ = 4πam, we
have

∣
∣
∣
∣

∫ 2b

−2b
Lk(x; u, θ)ϕ̂2(x)e

−4π iamx dx

∣
∣
∣
∣	 (m2u)−1,

for all m �= 0, which finishes the proof. ��
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5 Quasicrystals which are hyperuniform

5.1 Hyperuniformity from repellence

We now study cut-and-project-processes p(Rd1 , R
d2 , �,W ) as in Example 2.1 for

arbitrary dimension parameters d1 and d2. For such processes we provide a sufficient
condition for hyperuniformity along the lines of Theorem 1.9, based on the notion of
repellence of lattices (cf. Definition 1.8). As demanded in Example 2.1 we will always
assume that � projects injectively to R

d1 and densely to R
d2 . As for W , we are going

to assume that W is Fourier smooth in the sense of Remark 3.5. We then have the
following criterion, which will be established in Subsection 5.4 below.

Theorem 5.1 (Sufficient condition for hyperuniformity) Let p = p(Rd1 , R
d2 , �,W ),

where W ⊂ R
d2 is Fourier smooth with exponent ϑ . Assume that the dual lattice �⊥

of � is β-repellent on the right for some β > 0. Then for all sufficiently small ε > 0
we have

η̂p(Bε) 	 εβ(d2+ϑ), and hence
η̂p(Bε)

Vold1(Bε)
	 εβ(d2+ϑ)−d1 (5.1)

In particular, p is hyperuniform provided that β > d1
d2+ϑ

.

Since Euclidean balls are Fourier smooth with exponent 1, this contains Theorem 1.9
from the introduction as a special case. Before we turn to the proof of the criterion,
we apply it to establish more general versions of Theorems 1.6 and 1.7 from the
introduction.

5.2 Hyperuniformity of arithmetic cut-and-project processes

Arithmetic lattices are an important class of lattices arising from algebraic number
theory which are not only (discrete, cocompact) subgroups of R

n but also subrings
under coordinatewise multiplication. For the benefit of the reader not familiar with
algebraic number theory we discuss the simplest example:

Example 5.2 The ring Z[√2] = {a + b
√
2 | a, b ∈ Z} (or, equivalently, its quotient

field Q[√2]) has precisely two embeddings (i.e. injective ring homomorphisms) into
R, namely

σ1(a + b
√
2) = a + b

√
2 and σ2(a + b

√
2) = a − b

√
2,

and both σ1 and σ2 have dense image. If, however, we combine these two embeddings
into a single embedding σ1 × σ2 : Z[√2] → R

2, then its image

� = (σ1 × σ2)(Z[√2]) =
(
1

√
2

1 −√
2

)

Z
2 < R

2.

is a lattice.
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This procedure of turning an arithmetically defined ring into a lattice in some
Euclidean space can be generalized as follows (cf. [22]): If K is a totally real number
field (all embeddings into C are contained in R, as is the case for Q[√2]), then it has
d := dimQ K different embeddings σ1, . . . , σd : K → R. The ring of integers OK

of K (which generalizes Z[√2] in the example above) embeds densely under each of
these embeddings, but its image under the product embedding σ1 ×· · ·×σd is always
a lattice. We refer to such lattices as arithmetic lattices.

Observe that if a, b ∈ Z, then

(a + b
√
2)(a − b

√
2) = a2 − 2b2 ∈ Z.

More generally, if OK is the ring of integers of a totally real number field of degree
d, then for all γ ∈ OK the so-called norm

N(γ ) := σ1(γ ) · · · σd(γ )

is an integer, which is non-zero if γ �= 0. This implies:

Lemma 5.3 If �⊥ < R
d1 × R

d2 is an arithmetic lattice, then it is d1
d2
-repellent.

Proof Let d := d1 + d2 and assume that �⊥ is given by the image of OK under the
diagonal embedding σ1 ×· · ·×σd : OK → R

d . By the previous remark we then have
ξ1 · · · ξd ∈ Z\{0} and hence |ξ1 · · · ξd | ≥ 1 for all ξ = (ξ1, . . . , ξd) ∈ �⊥\{0}.

We deduce that if ξ ∈ �⊥\{0} and |ξ1|, . . . , |ξd1 | < ε, then by the arithmetic–
geometric mean inequality we have

‖(ξd1+1, . . . , ξd1+d2)‖∞ � ‖(ξd1+1, . . . , ξd1+d2)‖1 ≥ d2 · |ξd1+1 · · · ξd1+d2 |
1
d2

= d2 · |ξ1|−
1
d2 · · · |ξd1 |−

1
d2 |ξ1 · · · ξd |

1
d2 ≥ d2 · ε

− d1
d2 ,

hence �⊥ is d1
d2
-repellent. ��

Corollary 5.4 (Hyperuniformity from arithmeticity) Let p = p(Rd1 , R
d2 , �,W ),

where W ⊂ R
d2 is Fourier smooth with exponent ϑ > 0. Assume that �⊥ is an

arithmetic lattice as above. Then p is hyperuniform with

η̂p(Bε)

Vold1(Bε)
	 ε

d1ϑ

d2 .

Proof Since �⊥ is β-repellent with β := d1
d2
, this follows from Theorem 5.1 and the

inequality

β(d2 + ϑ) − d1 = d1(d2 + ϑ) − d1d2
d2

= d1ϑ

d2
> 0.

��
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Since Euclidean balls are Fourier smooth with exponent 1, this specializes to Theorem
1.6 from the introduction. The main interest in Corollary 5.4 lies in the fact that is
provides explicit examples of hyperuniform cut-and-project processes. However, the
underlying lattices are of a very special kind. To complement Corollary 5.4 we are
thus going to consider generic lattices in the next subsection.

5.3 Hyperuniformity of generic model sets

In this subsection we establish the following genericity result for cut-and-project pro-
cesses with Fourier smooth windows.

Theorem 5.5 (Hyperuniformity for generic cut-and-project processes) Let W ⊂ R
d2

be Fourier smooth. Then for almost every lattice � the cut-and-project process
p = p(Rd1, R

d2 , �,W ) is hyperuniform. More precisely, if W is Fourier smooth
with exponent ϑ , then for every δ > 0 and almost every � we have

η̂p(Bε)

Vold1(Bε)
	δ ε

d1(ϑ−δ)

d2+δ .

For Euclidean balls, Theorem 5.5 specializes to Theorem 1.7 from the introduction.
We now turn to the proof. Throughout, let � and W be as in Theorem 5.1. We write

�⊥ =
(
A B
C D

)

Z
d1+d2 (5.2)

for matrices A, B,C, D of appropriate sizes. We can then express β-repellence in
terms of these matrices.

Definition 5.6 A real (d1 × d2)-matrix E is α-repellent if there exists QE > 0 such
that

‖p + Eq‖∞ ≥ ‖q‖−α∞ for all (p, q) ∈ Z
d1 × Z

d2 such that ‖q‖∞ ≥ QE .

Lemma 5.7 Let �⊥ be given by (5.2) and assume that

det(A) �= 0 and det(D − CA−1B) �= 0. (5.3)

If A−1B is α-repellent, then �⊥ is β-repellent on the right, for every β < 1
α
.

Proof By assumption, every ξ = (ξ1, ξ2) ∈ �⊥ can be written as

(ξ1, ξ2) = (Ap + Bq,Cp + Dq) for some (p, q) ∈ Z
d1 × Z

d2 .

Let ε > 0, and suppose that

‖ξ1‖∞ = ‖A(p + A−1Bq)‖∞ < ε.
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Since det(A) �= 0 we have ‖p + A−1Bq‖∞ 	 ε, and since A−1B is α-repellent, we
further have

‖q‖−α∞ ≤ ‖p + A−1Bq‖∞ 	 ε, for all p ∈ Z
d1 and ‖q‖∞ � 1.

In particular, for all sufficiently small ε we have

‖q‖∞ � ε−1/α.

Finally, note that

‖ξ2‖∞ = ‖Cp + Dq‖∞ = ‖CA−1λ1 + (D − CA−1B)q‖∞
� ‖(D − CA−1B)q‖∞ − ε.

Since det(D − CA−1B) �= 0 we have

‖(D − CA−1B)q‖∞ � ‖q‖∞ � ε−1/α.

We conclude that if ε is sufficiently small (so that ε−1/α � ε), then

‖ξ2‖∞ ≥ ε−β for all β <
1

α
.

In particular, �⊥ is β-repellent on the right. ��
Corollary 5.8 If W ⊂ R

d2 is Fourier smooth with exponent ϑ and �⊥ is given by (5.2)
with A, B,C, D satisfying (5.3) and A−1B is α-repellent for some α < d2

d1
+ δ with

δ ∈ (0, ϑ), then p := p(Rd1 , R
d2 , �,W ) satisfies

η̂p(Bε)

Vold1(Bε)
	δ ε

d1(ϑ−δ)

d2+δ .

In particular, if W is Fourier smooth and A−1B is α-repellent for some α < d2
d1

+ ϑ ,

then p(Rd1 , R
d2 , �,W ) is hyperuniform.

Proof If we set β := d1
d2+δ

, then it follows from Lemma 5.7 that �⊥ is β-repellent on
the right. We then dedue from (5.1) that

η̂p(Bε)

Vold1(Bε)
	 εβ(d2+ϑ)−d1 = ε

d1
(
d2+ϑ

d2+δ
−1
)

= ε
d1(ϑ−δ)

d2+δ .

Since

β(d2 + ϑ) = d1(d2 + ϑ)

d2 + δ
> d1,

the corollary follows from Theorem 5.1. ��
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We have thus reduced the proof of Theorem 5.5 to showing that the set

{

g =
(
A B
C D

)

∈ GLd1+d2 (R) : det(A), det(D − CA−1B) �= 0, A−1B is α-repellent

}

,

or equivalently (since det(g) = det(A) det(D −CA−1B) if det(A) �= 0), that the set

Cα =
{(

A B
C D

)

∈ GLd1+d2(R) : det(A) �= 0, A−1B is α-repellent

}

(5.4)

is conull with respect to the Haar (or, equivalently, Lebesgue) measure class for all
α > d2

d1
. For this we use following consequence of the Khintchine–Groshev theorem:

Lemma 5.9 (Khintchine–Groshev) For every α > d2
d1

the set

Ĉα := {E ∈ R
d1×d2 | E is α-repellent}

is conull with respect to Lebesgue measure class.

Proof We apply the version of the Khintchine–Groshev theorem on p. 2 of [5] with
ψ(x) := x−α . Since d2 − 1 − αd1 < −1 we have

∞∑

q=1

qd2−1ψ(q)d1 =
∞∑

q=1

qd2−1−αd1 < ∞,

hence the theorem states (in our notation) that

Eα := {E ∈ R
d1×d2 | ‖(p, Eq)‖∞ < ‖q‖−α holds for infinitely many p ∈ Z

d1 , q ∈ Z
d2\{0}}

is a Lebesgue nullset in R
d1×d2 . We claim that the complement of Eα is contained in

Ĉα . Indeed, if E /∈ Eα and

QE := max{‖q‖∞ | ‖(p, Eq)‖∞ < ‖q‖−α, p ∈ Z
d1 , q ∈ Z

d2\{0}},

then for q ∈ Z
d2 with ‖q‖∞ > QE we have ‖p + Eq‖∞ ≥ ‖q‖−α , hence E is

α-repellent. ��
The proof of the theorem now follows:

Proof of Theorem 5.5 Denote by m a probability measure on GLd(R) in the measure
class of Haar measure. Note that the open set

GLd1+d2(R)� :=
{(

A B
C D

)

∈ GLd1+d2(R) : det(A) �= 0

}

⊂ GLd1+d2(R).
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is m-conull. We further observe that the map

σ : GLd1+d2(R)� → Matd1,d2(R),

(
A B
C D

)

�→ A−1B

satisfies

σ

((
A B
C D

)(
S 0
0 T

))

= S−1σ

((
A B
C D

))

T ,

and hence σ∗m is quasi-invariant under GLd1(R) × GLd2(R), whence of Lebesgue
measure class. By Lemma 5.9 we deduce that Ĉα is conull with respect to σ∗m, hence
σ−1(Ĉα) = Cα is conull with respect to Haar measure class. ��

5.4 Proof of the hyperuniformity criterion

Wenow turn to the proof of Theorem 5.1.We need an estimate for sums over uniformly
discrete point sets.

Lemma 5.10 For every d ≥ 1 and ϑ > 0 there exists a constant Cd,ϑ with the
following property: If R > 1 and �R ⊂ R

d\{0} such that �R ∪ {0} is R-uniformly
discrete, then

∑

δ∈�R

max(1, ‖δ‖∞)−(d+ϑ) 	d,ϑ R−(d+ϑ).

Proof Fix R > 1 and let �R ∪ {0} ⊂ R
d be R-uniformly discrete. This implies that

min
δ∈�R

‖δ‖∞ ≥ R. (5.5)

We now consider the disjoint decomposition

R
d =

⊔

k∈Zd

R

2
·
(
[−1/2, 1/2)d + k

)
.

Intersecting with �R and using that R > 1 we obtain

�R =
⊔

‖k‖∞≥2

(

�R ∩ R

2
·
(
[−1/2, 1/2)d + k

))

︸ ︷︷ ︸
=:�R(k)

,

where for each k with ‖k‖∞ ≥ 2 there is at most one point in the intersection �R(k).
Also note that if δk ∈ �R(k), then by the triangle inequality

min{1, ‖δk‖∞} ≥ R(‖k‖∞ − 1/2).
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Hence,

∑

δ∈�R

max{1, ‖δ‖−(d+ϑ)∞ } ≤
∑

‖k‖∞≥2

(R(‖k‖∞ − 1/2))−(d+ϑ)

	d R−(d+ϑ)
∞∑

l=2

ld−1

(l − 1/2)d+ϑ

	d R−(d+ϑ) ·
∞∑

l=2

l−(1+ϑ),

where the implicit constants only depend on d. Since ϑ > 0, the sum on the right hand
side converges to a constant depending only on ϑ . ��

To apply this lemma we observe:

Lemma 5.11 Let � as in Theorem 5.1 and let ε ∈ (0, 1). If

� :=
{
ξ2 : (ξ1, ξ2) ∈ �⊥\{(0, 0)}, ‖ξ1‖∞ < ε

}
,

then � ∪ {0} is (2ε)−β -uniformly discrete.

Proof Since �⊥ is β-repellent on the right, we have

‖ξ2‖∞ ≥ ε−β > (2ε)−β, for all ξ2 ∈ �.

Furthermore, if

(ξ1, ξ2) �= (ξ ′
1, ξ

′
2) ∈ �⊥\{(0, 0)} and ‖ξ1‖∞, ‖ξ ′‖∞ < ε,

then

(ξ1 − ξ ′
1, ξ2 − ξ ′

2) ∈ �⊥\{(0, 0)}, and ‖ξ1 − ξ ′
1‖∞ < 2ε,

and thus ‖ξ2 − ξ ′
2‖∞ ≥ (2ε)−β . ��

Proof of Theorem 5.1 Assume that W is Fourier smooth with exponent ϑ > 0. With
� defined as in Lemma 5.11 we have

η̂(B̂ε(0)) =
∑

ξ2∈�

|χ̂W (ξ2)|2 	
∑

ξ2∈�

max(1, ‖ξ2‖)d2+ϑ ,

an since � � {0} is (2ε)−β -uniformly discrete we may apply Lemma 5.10 (with R :=
(2ε)−β ) to obtain

η̂(Bε(0)) 	 εβ(d2+ϑ),

for all sufficiently small ε > 0. ��

123



Hyperuniformity and non-hyperuniformity of quasicrystals

6 Meyerian point processes with positive asymptotic number
variance

6.1 A criterion for positive asymptotic number variance of suspension processes

Construction 6.1 Assume that T is an invertible ergodic pmp transformation of a
standard probability space (Z ,B, θ) and that B ⊂ Z is a Borel subset such that⋃

n T
−n B = Z . We then obtain a invariant simple point process in Z by

pZ : (Z , θ) → M(Z), z �→ δ�Z
z
, where �Z

z = {n ∈ Z | T nz ∈ B}.
This is a special case of the general construction of a transverse process as discussed
in Appendix B. The point process in pZ gives rise to an invariant hard-core simple
point process in R via suspension: If we set � := (R × Z)/Z, where Z acts on R × Z
on the right by (t, z).n := (t − n, T nz), and denote by q : R × Z → � the canonical
projection, then P := q∗(Vol1 |[0,1) ⊗ θ) is an invariant ergodic probability measure
on � and the suspended process is given by

p : (�, P) → M(R), p[t,z] = δ�Z
z −t .

We refer to p as the suspension process with parameters (Z , θ, T , B). This process
is again a transverse process in the sense of Appendix B, cf. Example B.7, and since
�Z

z − t ⊂ Z − t it is contained in a random translate of Z. In particular, a suspension
process is Meyerian provided �Z is almost surely relatively dense in Z.

Definition 6.2 A function class f ∈ L2
o(Z , θ) is called an L2-coboundarywith respect

to T if there exists F in L2(θ) such that f = F − F ◦ T .

Proposition 6.3 (Coboundary criterion) Let p be a suspension process with parame-
ters (Z , θ, T , B). Assume that

∞∑

n=1

n · |θ(B ∩ T−n B) − θ(B)2| < ∞, (6.1)

Then the limit ANV(p) exists, and we have ANV(p) = 0 if and only if the function
fB ∈ L2

o(Z) given by fB := χB − θ(B) · 1 is an L2-coboundary.

In the situation of the proposition one can actually give an explicit formula forANV(p)
in terms of the function fB . For this we recall that the asymptotic variance of a function
f ∈ L2

o(Z , θ) is defined as

σ 2( f ) :=
∞∑

n=−∞
〈 f ◦ T n, f 〉L2(θ).

With this notation we are going to show that ANV(p) = σ 2( fB). The proposition is
a straight-forward consequence of a lemma of Conze and Le Borgne (cf. [11, Lemma
2.2]). Since our notation is quite different, we include the proof below.
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Lemma 6.4 (Conze–Le Borgne) Let f ∈ L2
o(Z , θ) with asymptotic variance σ 2( f )

such that

C f :=
∞∑

n=1

n · |〈 f ◦ T n, f 〉L2(θ)| < ∞.

Then,

sup
R>0

∣
∣
∣
∣
∣

∞∑

n=−∞
ρR(n)〈 f ◦ T n, f 〉L2(θ) − 2R · σ 2( f )

∣
∣
∣
∣
∣
≤ 12C f + ‖ f ‖2L2(θ)

,

and if σ 2( f ) = 0, then f is an L2-coboundary.

Proof of Proposition 6.3modulo Lemma 6.4 Let � := (R × Z)/Z, where the right-
action ofZ onR×Z is given by (t, z).n := (t−n, T nz), and denote byq : R×Z → �,
(t, z) �→ [t, z] the canonical quotient map. We use the fact that, by Example B.7, the
process p is a transverse process with underlying cross section T := q({0} × B) and
corresponding Palm measure ν := q∗(δ0 ⊗ θ |B). By Corollary B.9 we thus have

Var p(BR) =
⎛

⎝
∑

λ∈�T

ρR(λ) · ν(T ∩ λ−1.T )

⎞

⎠− ν(T )2 · Vol1(ρR)

=
( ∞∑

n=−∞
ρR(n) · θ(B ∩ T−n B)

)

− θ(B)2 · (2R)2

=
( ∞∑

n=−∞
ρR(n)(θ(B ∩ T−n B) − θ(B)2)

)

︸ ︷︷ ︸
:=S1(R)

−θ(B)2 ·
(( ∞∑

n=−∞
ρR(n)

)

− (2R)2

)

︸ ︷︷ ︸
:=S2(R)

where ρR(t) = (χBR ∗ χBR )(t) = (2R − |t |)χ[−2R,2R](t), and hence

ANV(p) = lim
R→∞

Var p(BR)

Vol1(BR)
= lim

R→∞
S1(R)

2R
+ θ(B)2 · S2(R)

2R
(6.2)

By the Poisson summation formula we have

S2(R) = R2 ·
∑

m �=0

(
sin(2πRm)

πRm

)2

=
∑

m �=0

sin2(2πmR)

π2m2 ,
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which is bounded in R, hence the second summand in (6.2) vanishes. On the other
hand we can write the first summand as

S1(R)

2R
= 1

2R

∞∑

n=−∞
ρR(n)〈 fB ◦ T n, fB〉L2(θ),

hence we deduce from the first part of Lemma 6.4 that ANV(p) = σ 2( fB). In partic-
ular, ANV(p) exists, and by the second part of the lemma its vanishing implies that
fB is an L2-coboundary. Conversely, σ 2 vanishes on all L2-coboundaries, hence the
proposition holds. ��
Proof of Lemma 6.4 Let N be a positive integer and define

SN f =
N∑

n=0

f ◦ T n .

Note that

‖SN f ‖2L2(θ)
=

N∑

m,n=0

〈 f ◦ Tm−n, f 〉L2(θ) =
∑

|n|≤N

(N + 1 − |n|) · 〈 f ◦ T n, f 〉L2(θ),

hence,

‖SN f ‖2 − (N + 1) · σ 2( f ) = −
∑

|n|≤N

|n| · 〈 f ◦ T n, f 〉L2(θ)

− (N + 1) ·
∑

|n|>N

〈 f ◦ T n, f 〉L2(θ),

and thus

∣
∣
∣‖SN f ‖2 − (N + 1) · σ 2( f )

∣
∣
∣ ≤ 2 ·

∞∑

n=1

n · |〈 f ◦ T n, f 〉L2(θ)| = 2C f .

Fix R > 0, and write R = NR + uR for unique NR ∈ No and uR ∈ [0, 1). Then, from
the formula for ‖SN f ‖2

L2(θ)
above,

∞∑

n=−∞
ρR(n) · 〈 f ◦ T n, f 〉L2(θ) =

∑

|n|≤2R

(2R − |n|) · 〈 f ◦ T n, f 〉L2(θ)

=
∑

|n|≤2NR

(2NR − |n|) · 〈 f ◦ T n, f 〉L2(θ)

+ 2(R − NR) ·
∑

|n|≤2NR

〈 f ◦ T n, f 〉L2(θ)
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+
∑

2NR<|n|≤2R

(2R − |n|) · 〈 f ◦ T n, f 〉L2(θ)

= ‖S2NR f ‖2L2(θ)
+ L(R),

where

L(R) = 2(R − NR) ·
∑

|n|≤2NR

〈 f ◦ T n, f 〉L2(θ) +
∑

2NR<|n|≤2R

(2R − |n|) · 〈 f ◦ T n, f 〉L2(θ).

Note that

|L(R)| ≤ 2 · C f + 6 · C f = 8 · C f ,

since there are at most 3 terms in the last sum. We conclude that

∞∑

n=−∞
ρR(n) · 〈 f ◦ T n, f 〉L2(θ) − 2R · σ( f )

=
∞∑

n=−∞
ρR(n) · 〈 f ◦ T n, f 〉L2(θ) − ‖S2NR f ‖2L2(θ)

+ ‖S2NR f ‖2L2(θ)
− (2NR + 1) · σ 2( f )

+ (2NR + 1 − 2R) · σ 2( f ).

Since σ 2( f ) ≤ ‖ f ‖2
L2(θ)

+ 2C f , we see from above that

∣
∣
∣
∣
∣

∞∑

n=−∞
ρR(n) · 〈 f ◦ T n, f 〉L2(θ) − 2R · σ( f )

∣
∣
∣
∣
∣
≤ 12C f + ‖ f ‖2L2(θ)

,

uniformly in R. Finally, note that if σ 2( f ) = 0, then from the inequalities above, we
see that ‖SN f ‖2

L2(θ)
is a bounded sequence. Hence, if we set

FM := 1

M

M∑

N=1

SM f ,

then there is a sub-sequence (Mk) such that (FMk ) weakly converges to an element F
in L2(θ). Furthermore, since

SN f ◦ T = SN f − f + f ◦ T N+1

F − F ◦ T = lim
k

(FMk − FMk ◦ T ) = lim
k

⎛

⎝ f − 1

Mk

Mk∑

N=1

f ◦ T N+1

⎞

⎠ .
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Since T is ergodic and f ∈ L2
o(Z , θ), the last averages tend to zero in L2(Z , θ) by the

mean ergodic theorem, and thus F − F ◦T = f , showing that f is an L2-coboundary.
��

To summarize:

Remark 6.5 Assume that p is a suspension process with parameters (Z , θ, T , B) such
that

∞∑

n=1

n · |(θ(B ∩ T−n B) − θ(B)2)| < ∞,

and fB := χB −θ(B) ·1 ∈ L2
o(Z , θ) is not an L2-coboundary with respect to T . Then

p has positive asymptotic number variance and in particular is not hyperuniform.

6.2 Themain construction

The main idea in order to construct a suspension process with positive asymptotic
number variance is to choose the parameters (Z , θ, T , B) as amixing system.A typical
example of a mixing transformation is given by the “×2”-map on the circle T = Z\R,
i.e. by the map To([x]) := [2x]. However, since the continuous endomorphisms To :
T → T is not invertible, we will have to work with an invertible (2-adic) extension.

Denote by Q2 (respectively Z2) the field of 2-adic numbers (respectively ring of
2-adic integers). Every y ∈ Q2 can be written uniquely as y = m + k/2N for some
m ∈ Z2 and for some N ≥ 1 and odd integer k, and we write {y}2 := k/2N . We now
consider the compact abelian groups

K := (R × Q2)/Z[1/2] and M := ({0} × Z2) + Z[1/2] < K

We equip these groups with the corresponding Haar probability measuresmK andmM

respectively. We observe that the map M\K ∼= T, [(x, y)] + M �→ x − {y}2 + Z is
an isomorphism of topological groups, and denote by

π : K → M\K ∼= T, [x, y] �→ x − {y}2 + Z

the canonical projection. Then the endomorphism To of T lifts via π to a continuous
automorphism T ∈ Aut(K ) given by T ([x, y]) := [2x, 2y] such that the diagram

K

π

T
K

π

T
To

T

commutes. Given q ∈ (1/2, 3/4] we now define subsets

B(q)
o := ([0, 1/2] ∪ (q, 1)) + Z ⊂ T and B(q) := π−1(B(q)

o ) ⊂ K .
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We observe that

B(q)
o ∪ T−1

o (B(q)
o ) = T, and hence B(q) ∪ T−1(B(q)) = K . (6.3)

For any q ∈ (1/2, 3/4] we consider the suspension process p(q) with parameters
(K ,mK , T , B(q)). It follows from (6.3) that for all q ∈ (1/2, 3/4) and all x ∈ K the
set

�Z

x = {n ∈ Z | T nx ∈ B(q)}

satisfies �Z
x ∪ (�Z

x + 1) = Z and thus �Z
x is 2-syndetic in Z. We are going to show

the following result, which in particular implies Theorem 1.5 from the introduction.

Theorem 6.6 (Quasicrystals with positive asymptotic number variance) There exists a
dense subset S ⊂ (1/2, 3/4] such that for all q ∈ S the quadruple (K ,mK , T , B(q))

satisfies the conditions of Remark 6.5. In particular, for all q ∈ S the asymptotic
number variance ANV

(
p(q)
)
exists and is strictly positive.

6.3 Proof of Theorem 6.6

Given q ∈ (1/2, 3/4] we define

ψ
(q)
o = χ

B(q)
o

− mT(B(q)
o ) and ψ(q) = ψ

(q)
o ◦ π = χB(q) − mT(B(q)).

According to Remark 6.5 the following two lemmas combine to prove Theorem 6.6.

Lemma 6.7 For every q ∈ (1/2, 3/4] we have
∞∑

n=1

n · |(mK (B(q) ∩ T−n B(q)) − mK (B(q))2)| =
∞∑

n=1

n|〈ψ(q) ◦ T n, ψ(q)〉| < ∞.

(6.4)

Lemma 6.8 There is a dense subset S ⊂ (1/2, 3/4] such that for every q ∈ S the
function ψ(q) ∈ L2(K ) is not an L2-coboundary for T .

We now turn to the proof of these lemmas.

Proof The first equality in (6.4) holds by definition. For the second equality, fix q ∈
(1/2, 3/4] and set ψo := ψ

(q)
o and ψ := ψ(q). We observe that ψo is a function of

bounded variation on T with zero integral, hence by [15, Proposition 3.3.14] we have

|ψ̂o(k)| 	 1

|k| for all k �= 0. (6.5)

Now for all n ≥ 0 we have
∫

K
ψ(T n(x))ψ(x) dmK (x) =

∫

T

ψo(T
n
o (x))ψo(x) dmT(x)
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=
∑

k �=0

ψ̂o(2
nk)ψo(k).

Applying Cauchy–Schwartz and using (6.5) twice we thus find for all n ≥ 0,

|〈ψ(q) ◦ T n, ψ(q)〉| =
∣
∣
∣
∣

∫

K
ψ(T n(x))ψ(x) dmK (x)

∣
∣
∣
∣

≤
⎛

⎝
∑

k �=0

|ψ̂o(2
nk)|2

⎞

⎠

1/2⎛

⎝
∑

k �=0

|ψ̂o(k)|2
⎞

⎠

1/2

≤
⎛

⎝
∑

k �=0

|2nk · ψ̂o(2nk)|2
22nk2

⎞

⎠

1/2⎛

⎝
∑

k �=0

1

k2

⎞

⎠

1/2

	
⎛

⎝2−2n ·
∑

k �=0

1

k2

⎞

⎠

1/2

	 2−n .

The lemma then follows by multiplying by n and summing over n. ��
For the proof of Lemma 6.8 we need to find a condition that ensures that some M-
invariant function ψ (in our case the function ψ(q) for certain values of q) is not
a coboundary. This is provided by the following lemma. Here we denote by T ∗ ∈
Aut(K̂ ) the automorphism of the dual group K̂ given by

T ∗(ξ)(k) = ξ(T−1(k)), for ξ ∈ K̂ and k ∈ K .

We also denote by M⊥ ⊂ K̂ the annihilator of M and note that T (M) � M .

Lemma 6.9 Assume that ψ is an M-invariant L2-coboundary with respect to T . Sup-
pose that there exists ξ† ∈ M⊥ such that

(i) limn→±∞ T ∗n(ξ†) = ∞ (i.e. the sequence (T ∗n(ξ†)) leaves any finite subset of
K̂ )

(ii) T ∗n(ξ†) /∈ M⊥, for all n ≥ 1.

Then,

0∑

n=−∞
|ψ̂(T ∗n(ξ†))| < ∞ �⇒

0∑

n=−∞
ψ̂(T ∗n(ξ†)) = 0.

Proof By assumption there exists ϕ ∈ L2(K ) such that

ψ = ϕ − ϕ ◦ T .
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We deduce that for all ξ ∈ K̂ and n ∈ Z we have

ψ̂(T ∗n(ξ)) = ϕ̂(T ∗n(ξ)) − ϕ̂(T ∗(n+1)(ξ)). (6.6)

Now fix ξ† ∈ K̂ satisfying the Conditions (1) and (2) of the lemma and define

βn := ψ̂(T ∗n(ξ†)) and γn := ϕ̂(T ∗n(ξ†)).

By (6.6) we then have βn = γn − γn+1 for all n ∈ Z. Since ϕ ∈ L2(K ) we have
ϕ̂ ∈ co(K̂ ). It thus follows from (1) that

lim
n→±∞ γn = 0. (6.7)

Now since ψ is M-invariant, we have ψ̂(ξ) = 0 for all ξ /∈ M⊥. By (2) we thus have
ψ̂(T ∗n(ξ†)) = 0 for all n ≥ 1. Thus if

∑0
n=−∞ |βn| converges, then (βn) is absolutely

summable. Since βn = γn − γn+1 we then deduce from (6.7) that

0∑

n=−∞
βn = 0.

��
Remark 6.10 We are going to apply Lemma 6.9 to the function

ξ†(x, y) = e2π i(x−{y}2), for [x, y] ∈ K .

This is well-defined, since e2π i(x−{y}2) vanishes on the diagonally embedded Z[1/2],
and satisfies ξ†|M = 1, i.e. ξ† ∈ M⊥. We claim that ξ† satisfies Properties (1) and (2)
of Lemma 6.9. Concerning (1) we first observe that if we define

α(x) := e2π i{y}2 , y ∈ Q2 and β(x) := e−2π iy, x ∈ R,

and if we set αx (·) = α(x ·) and βy(·) = β(y·), then, by [4, Proposition D.4.5], we
obtain an isomorphism

R × Q2 → R̂ × Q2, (x, y) �→ βx ⊗ αy,

and K̂ can be identified with a discrete subset of R × Q2. Given [x, y] ∈ K we have

(T ∗nξo)([x, y]) = e2π i(2
−n x−{2−n y}2),

which under the above identification corresponds to the sequence (2−nx, 2−n y) ∈
R × Q2. Now if n → −∞ then the first component leaves any compact subset of R,
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and if n → ∞, then the second component leaves any compact subset of Q2, hence
ξo satisfies (1). Furthermore, for all n ≥ 1 and every odd integer m we have

(T ∗nξo)(0,m) = ξo(0, 2
−nm) = e−2π im/2n �= 1,

thus T ∗n(ξo) /∈ M⊥, which is (2).

Proof of Lemma 6.8 We define ξ† ∈ M⊥ as in Remark 6.10. Given q ∈ (1/2, 3/4] we
then set β

(q)
n := ψ̂(q)(T ∗n(ξ†)). By Lemma 6.9 and Remark 6.10 it then suffices to

show that for all q in a dense subset S ⊂ (1/2, 3/4) we have

0∑

n=−∞
|β(q)

n | < ∞ and
0∑

n=−∞
β

(q)
n �= 0. (6.8)

To describe the coefficients β
(q)
−n for n ≥ 0 we denote by ξ

†
o ∈ M̂\K the unique

character such that ξ† = ξ
†
o ◦ π . Then for all n ≥ 0 we have

β
(q)
−n =

∫

K
ψ(q)(x)(T ∗(−n)ξ†)(x) dmK (x) =

∫

K
ψ(q)(x)ξ†(T n(x)) dmK (x)

=
∫

M\K
ψ

(q)
o (Mx)ξ†o (T n

o (Mx)) dmK\M (Mx).

In view of the explicit form of ξ† and To this implies that β(q)
−n = ψ̂

(q)
o (2−n), and hence

we have to show that for all q in a dense subset S ⊂ (1/2, 3/4) we have

∞∑

n=0

|ψ̂(q)
o (2−n)| < ∞ and

∞∑

n=0

ψ̂
(q)
o (2−n) �= 0. (6.9)

The first condition actually holds, by the same argument as above, for all q ∈
(1/2, 3/4), since ψ

(q)
o is of bounded variation. Now assume for contradiction that

the second condition of (6.9) does not hold on a dense subset S ⊂ (1/2, 3/4). We
then find an open interval I in the complement of S such that

∞∑

n=0

ψ̂
(q)
o (2−n) = 0 for all q ∈ I . (6.10)

We now define a periodic function

θ : R → C, θ(q) :=
∞∑

n=0

e−2π i2nq

2n
.
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We then deduce from (6.10) and the fact that

ψ̂
(q)
o (2−n) = χ̂[0,1/2](2n) + χ̂(q,1)(2

n) = χ̂[0,1/2](2n) + 1

2π i

(
e−2π i2nq

2n
− 1

2n

)

,

that θ(q) is constant on I , hence in particular differentiable on I . Since θ is given by a
lacunary Fourier series, it then follows from a classical result of Hardy [15, Proposition
3.6.2] that

2n · θ̂ (−2n) → 0.

This contradicts the fact that, by the explicit formula, θ̂ (−2n) = 1
2n . ��

7 Number rigidity

7.1 An abstract rigidity criterion

Let p be a locally square-integrable random measure on R
d . Given a Borel subset

B ⊂ R
d we denote by Bc its complement.

Definition 7.1 A Borel function f : R
d → R is called a rigidity statistics for p if for

every bounded Borel set B ⊂ R
d there exists a conull set �B ⊂ � such that for all

ω ∈ �B the integral

∫

B
f dpω

only depends on the restriction pω|Bc .

In particular, a point process p is number rigid as defined in the introduction if and
only if the constant function f = 1 is a rigidity statistics in the sense of Definition
7.1. We will need the following rigidity criterion, which has some history. An early
version of it was established by [14, Theorem 6.1]. We refer to [12] for an informative
survey of rigidity for point processes.

Lemma 7.2 Let p : (�, P) → M(Rd) be a locally square-integrable randommeasure
on R

d and let f : R
d → R be a Borel function. Suppose that there exists a sequence

( fn) of bounded Borel functions such that

(i) P fn ∈ L2(�, P) for every n.
(ii) fn → f pointwise as n → ∞.
(iii) Var p( fn) → 0 as n → ∞.

Then f is a rigidity statistics for p.

Proof Let cn := E[P fn]. Since Var p( fn) = Var(P fn) = E[(P fn − cn)2] = ‖P fn −
cn‖2L2(�,P)

, we deduce from (iii) that P fn − cn converges to 0 in norm in L2(�, P).
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We thus find a subsequence (nk) and a conull subset �o ⊂ � such that

pω( fnk ) − cnk → 0 for all ω ∈ �o.

Now for every bounded Borel set B ⊂ R
d and every ω ∈ �o we obtain

∫

B
f dpω = lim

k→∞

∫

B
fnk dpω = lim

k→∞
(
pω( fnk ) − cnk

)+ lim
k→∞

(

cnk −
∫

Bc
fnk dpω

)

= lim
k→∞

(

cnk −
∫

Bc
fnk dpω

)

.

Wemay thus set �B := �o for all bounded Borel sets B and since the right-hand side
only depends on pω|Bc , f is a rigidity statistics for p. ��
Specializing to the case f := 1 we obtain:

Corollary 7.3 A locally square-integrable random measure p : (�, P) → M(Rd) on
R
d is number rigid if there exists a sequence ( fn) of bounded Borel functions such

that

(i) P fn ∈ L2(�, P) for every n.
(ii) fn → 1 pointwise as n → ∞.
(iii) Var p( fn) → 0 as n → ∞.

��
Based on this criterion, we can now establish our spectral criterion for number rigidity,
which is Lemma 1.10 from the introduction.

Lemma 7.4 If there exists a sequence εn ↘ 0 such that

η̂p(Bεn ) 	 ε2d+δ
n , (7.1)

for some δ > 0, then p is number rigid.

Proof We want to construct a sequence ( fn) of Schwartz functions on R
d satisfying

Conditions (i)–(iii) of Corollary 7.3. For this let ϕ(u) = e−πu2 and ϕt (x) = ϕ(t‖x‖),
for t > 0 and x ∈ R

d . Then, ϕt is a Schwarz function on R
d and ϕt (x) → 1 for all

x as t → 0, hence if tn ↘ 0, then the sequence fn := ϕtn satisfies Conditions (i) and
(ii) of Corollary 7.3. We are going to show that (iii) holds for some specific choice of
sequence tn ↘ 0. To find such a sequence tn we observe that

ϕ̂t (ξ) = t−dϕ(‖ξ‖/t), for ξ ∈ R
d ,

and thus

Var p(ϕt ) =
∫

Rd
|ϕ̂t (ξ)|2 dη̂p(ξ) =

∫

Rd
t−2dϕ(‖ξ‖/t)2 dη̂p(ξ)
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= t−2d
∫ ∞

0
η̂p({ξ | ϕ(‖ξ‖/t) ≥ √

u}) du.

Since ϕ is monotone decreasing on [0,∞) we have

ϕ(‖ξ‖/t) ≥ √
u ⇐⇒ ‖ξ‖ ≤ w := tϕ−1(

√
u) ⇐⇒ ξ ∈ Bw

Since u = ϕ(w/t)2 we have du = 2ϕ(w/t)ϕ′(w/t)t−1dw and thus a substitution
yields

Var p(ϕt ) = t−(2d+1) ·
∫ ∞

0
η̂p(Bw)2ϕ(w/t)|ϕ′(w/t)| dw.

Now let εn as in (7.1) and choose γ with 0 < γ < δ
2d+1 . If we set tn := ε

1+γ
n , then

tn ↘ 0 and the functions fn := ϕtn satisfy

Var p( fn) ≤ t−(2d+1)
n ·

∫ εn

0
η̂p(Bw)2ϕ(w/tn)|ϕ′(w/tn)| dw

+ t−(2d+1)
n ·

∫ ∞

εn

η̂p(Bw)2ϕ(w/tn)|ϕ′(w/tn)| dw

	 t−(2d+1)
n · εn · η̂μ(Bεn ) · ‖ϕ‖∞‖ϕ′‖∞

+ t−(2d+1)
n ·

∫ ∞

εn

wd · ϕ(w/tn)|ϕ′(w/tn)| dw

	 t−(2d+1)
n · ε2d+1+δ

n +
∫ ∞

εn/tn

(
u

tn

)d

· ϕ(u)|ϕ′(u)| du

	 tδ−γ (2s+1)
n +

∫ ∞

ε
−γ
n

(
uε

−(γ+1)
n

)d · ϕ(u)|ϕ′(u)| du.

The first term clearly tends to zero as n → ∞. Concerning the second term,we observe
that

∫ ∞

ε
−γ
n

ud · ϕ(u)|ϕ′(u)| du ≤
(∫

ε
−γ
n

ud |ϕ(u)|2 du
)1/2

·
(∫

ε
−γ
n

ud |ϕ′(u)|2 du
)1/2

,

and, since ϕ(u) = e−πu2 ,

∫ ∞

ε
−γ
n

ud · |ϕ( j)(u)| du 	 e−πε
−γ
n , for j = 1, 2,

where the implicit constants are independent of n. Since ε
−d(γ+1)
n e−πε

−γ
n → 0 as

n → ∞, we conclude that the second term above also tends to zero, which finishes
the proof. ��
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8 A p-adic cut-and-project process

Example 8.1 (A p-adic cut-and-project process) For any fixed prime number p we
consider the cut-and-project process p = p(G, H , �,W ) in Qp with parameters

G = Qp, H = R, � = {(γ, γ ) ∈ G × H : γ ∈ Z[1/p]} and W = [−1/2, 1/2].

Note that F = Zp × [0, 1) is a fundamental domain for �, so if we normalize the
Haar measures so that mR([0, 1)) = 1 and mQp (Zp) = 1, then the covolume of � is
equal to one.

To compute the diffraction of this process we need to parametrize the Pontryagin dual
of L := G × H .

Remark 8.2 Every y ∈ Qp can be written uniquely as x = m+ k/pN , wherem ∈ Zp,
N ≥ 1 and k is an integer coprime to p. We then set {x}p := k/pN and define
characters on Qp and R respectively by

α(x) := e2π i{x}p , x ∈ Qp and β(y) := e−2π iy, y ∈ R,

and if we set αx (·) = α(x ·) and βy(·) = β(y·), then, by [4, Proposition D.4.5], we
obtain an isomorphism

L → L̂, (x, y) �→ αx ⊗ βy .

If we use this isomorphism to identify L with L̂ , then our lattice � becomes self-dual
in the sense that �⊥ = {(x, y) ∈ L : (αx ⊗ βy)|� = 1} = �.

In view of Remark 8.2, Theorem 2.9 specializes as follows to the case at hand:

Corollary 8.3 The centered diffraction of the cut-and-project process p from Example
8.1 is given by

η̂p =
∑

γ∈Z[1/p]\{0}
|χ̂W (γ )|2 δγ .

��
From this we deduce the following result, which implies Theorem 1.13 from the
introduction.

Corollary 8.4 (Stealth) The centered diffraction of the cut-and-project process p from
Example 8.1 vanishes on Zp. In particular, p is stealthy.

Proof Under our standing identification of R̂ with R we have

χ̂W (y) =
∫ 1/2

−1/2
e2π iyt dt = sin(π y)

π y
, y ∈ R.
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Since Zp ∩ Z[1/p] = Z we deduce from Corollary 8.3 that

η̂μ(Zp) =
∑

n �=0

(
sin(πn)

πn

)2

= 0.

��
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Appendix A. Poisson vs. cut-and-project diffraction

In this appendix we collect the well-known proofs of the diffraction formulae from
Proposition 2.8 and Theorem 2.9.

A.1 Poisson diffraction

The proof of Proposition 2.8 is based on the following lemma.

Lemma A.1 If (Y ,m) is a σ -finite measure space and p is an m-Poisson process on
Y , then Var p( f ) = mG(| f |2) for all f ∈ L2(Y ,m).

Proof It suffices to show the formula for real-valued functions f . By definition, the
variance measure Var p satisfies

Var p( f ) = Var(P f ) = E[(P f )2] − E[P f ]2,

where P f denotes the linear statistics of f , hence it suffices to show that, for an
m-Poisson measure μ and a non-negative bounded real-valued function f ,

E[P f ] =
∫

Y
f dm and E[(P f )2] =

∫

Y
f 2 dm +

(∫

Y
f dm

)2

. (A.1)
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By a standard approximation argument it suffices to establish (A.1) in the case where

f =
r∑

k=1

ckχBk (Bk ⊂ Y Borel, ck ∈ R). (A.2)

Now, by Property (i) of a Poisson measure, we have

E[PχB] =
∞∑

k=0

k · μ ({p : p(B) = k}) =
∞∑

k=0

k · m(B)k e−m(B)

k! = m(B),

for any bounded Borel set B ⊂ Y , and similarly

E[(PχB)2] =
∞∑

k=0

k2 · μ ({p : p(B) = k}) =
∞∑

k=0

k2 · m(B)k e−m(B)

k! = m(B)(m(B) + 1).

For f as in (A.1) we deduce from linearity of the expectation that

E[P f ] =
r∑

k=1

ckm(Bk) =
∫

Y
f dm,

and using Property (ii) of a Poisson measure we obtain

E[(P f )2] =
r∑

k,l=1

ckcl E[(PχBk ) · (PχBl )] =
r∑

k=1

c2k · m(Bk)(m(Bk) + 1)

+
∑

k �=l

ckcl · m(Bk)m(Bl) =
∫

Y
f 2 dm +

(∫

Y
f dm

)2

.

��
Proof of Proposition 2.8 Specializing the lemma to the case (Y ,m) = (G,mG)we see
that

ηp( f ∗ f ∗) = Var p( f ) =
∫

G
| f |2 dmG = ( f ∗ f ∗)(e),

which implies (i), and then (ii) follows by taking Fourier transforms. ��

A.2 Cut-and-project diffraction

We now turn to the proof of Theorem 2.9; we keep the notation of the theorem. Given
a bounded Borel function F : L → C with bounded support we may define its
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�-periodization

Per�(F) : � → C, Per�(F)(�g) =
∑

γ∈�

F(γ g),

which is bounded on � and hence in L2(�, P). Note that for every bounded Borel
function F on L with bounded support we have

∫

L
F dmL =

∫

F
Per�(F) dmL = mL(F) · E[Per�(F)], (A.3)

Lemma A.2 For any bounded Borel function F : L → C with bounded support we
have

‖Per�(F)‖2L2(�,P)
= 1

mL(F)2

∑

ξ∈�⊥
|F̂(ξ)|2.

Proof Every ξ ∈ �⊥ descends to a bounded measurable function on �, which we
denote by the same letter; then L2(�, P) = ⊕̂

ξ∈�⊥C · ξ . For ξ ∈ �⊥ we have

Per�(F) · ξ = Per�(F · ξ), hence (A.3) yields

〈Per�(F), ξ〉L2(�,P) = 1

mL (F)

∫

F
Per�(F · ξ) dmL = 1

mL (F)

∫

L
F · ξ dmL = F̂(ξ)

mL (F)
.

Since Per�(F) ∈ L2(μ), we conclude from Parseval’s Theorem that

‖Per�(F)‖2L2(�,P)
=
∑

ξ∈�⊥
|〈Per�(F), ξ 〉L2(�,P)|2 = 1

covol(�)2

∑

ξ∈�⊥
|F̂(ξ)|2.

��
Proof of Theorem 2.9 By definition, we have for every f ∈ L∞

c (G) that

η̂+
p (| f̂ |2) = η+

p ( f ∗ f ∗) = M2
p( f ⊗ f̄ ) = E[|pω( f )|2] =

∫

�

∣
∣δ�ω( f )

∣
∣2 dP(ω)

The key observation is now that

δ�ω( f ) =
∑

g∈�ω

f (g) = Per�( f ⊗ χW )(ω), ω ∈ �.

With Lemma A.2 we deduce that

η̂+
p (| f̂ |2) = ‖Per�( f ⊗ χW )‖2L2(�,P)
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= 1

covol(�)2

∑

(ξ1,ξ2)∈�⊥
| f̂ (ξ1)|2 · |χ̂W (ξ2)|2.

This establishes the formula for the diffraction, and the formula for the centered
diffraction then follows from Proposition 2.5. ��

Appendix B. Transverse point processes

In this appendixwedescribe a large class of hard-core point processes called transverse
point processes, which were introduced in [7]. It will turn out that all of the processes
considered in this article, in particular cut-and-project processes, fall into this class.

B.1 Transverse point processes and transverse measures

Wework in the following setting:We consider a pmp action of a unimodular lcsc group
G on a standard probability space (�,F , P). Given a measurable subset T ⊂ � and
an element ω ∈ � we define subsets

�ω := {g ∈ G | g.ω ∈ T } ⊂ G and �T :=
⋃

ω∈T
�ω ⊂ G; (B.1)

the latter is called the return time set of T .

Definition B.1 T is called a cross section if it intersects every orbit in a non-empty
and at most countable set. Given an identity neighbourhood U in G, we say that T is
U-separated if �T ∩U = {e}. It is called separated if it is U -separated for some U .
We say that T is cocompact if � = K .T for some compact subset K ⊂ G.

Theorem B.2 (Conley) For every pmp action of a unimodular lcsc group G on a
standard probability space (�,F , P) there exists a cocompact separated cross section
T .

For the proof see [25, Theorem 2.4]. If T is a separated cross section (not necessarily
cocompact), then we say that (�, P,G, T ) is a transverse system. Following [7] we
associate a transverse point process and a transverse measure with every transverse
system; in probabilistic language this transverse measure is just the Palm measure of
the transverse point process.

Proposition B.3 [7, Lemma 3.3] For every transverse system (�, P,G, T ) the map

p : (�, P) → M(G), ω �→ pω := δ�ω,

where �ω is defined as in (B.1), defines an invariant simple hard-core point process.

Definition B.4 The point process p from Proposition B.3 is called the transverse point
process associated with the transverse system (�, P,G, T ).
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With every transverse system (�, P,G, T ) one can also associate a transversemeasure
ν on T , the Palm measure of the associated transverse process p [7, 20]. This measure
admits the following two characterizations [7, Thm. 1.14]: If T is U -separated and
V ⊂ G is an identity neighbourhood with VV−1 ⊂ U , then

P(V .Y ) = mG(V ) · ν(Y ) (Y ⊂ T Borel).

Alternatively, given a non-negative Borel function ϕ on G × T such that {(g, ω) ∈
G × T | ϕ(g, ω) > 0} projects to a bounded set in G, we may define

Tϕ(ω) =
∑

g∈�ω

ϕ(g−1, g.ω), ω ∈ �.

Then Tϕ is a bounded Borel function on � and

E[Tϕ] = (mG ⊗ ν)(ϕ). (B.2)

B.2 Examples of transverse point processes

The simplest kind of transverse point processes are periodic point processes:

Example B.5 (Periodic case) Let G be an lcsc group and let � be a lattice in G. Then
G acts on � := �\G via g.�h := �hg, and this action preserves a unique invariant
probability measure P. Moreover, (�, P,G, {�e}) is a transverse system, with Palm
measure is of the form ν = 1/ covol(�) · δ�e and the transverse point process is given
by p�g = δ�g .

It turns out that cut-and-project processes can also be seen as transverse point pro-
cesses:

Example B.6 (Cut-and-project process) LetG, H be lcsc group,� < G×H be a lattice
projecting injectively to G and densely to H and W ⊂ H be a relatively compact set
with non-empty interior. We define a (minimal) action of G on � := �\(G × H) by
g1.(�(g, h)) := �(gg−1

1 , h); this action admits a unique invariant probability measure
P (cf. [8]). If we now denote by q : G × H → � the canonical projection and set
T := q({e} × W ), then (�,P,G, T ) is a transverse system with Palm measure

ν = 1

covol(�)
· q∗(δe ⊗ mH |W ).

and associated transverse process p(G, H , �,W ), the cut-and-project process with
parameters (G, H , �,W ).

Our third example concerns suspensions of transverse point processes in Z.

Example B.7 (Suspended transverse system) We consider a transverse system
(Z , θ, Z, B), i.e. Z is a standard Borel space, Z acts measurably on Z by powers
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of an invertible measurable transformation T : Z → Z and B ⊂ Z is a Borel set such
that

⋃
n T

−n B = Z . We then obtain a transverse system (�, P, R, T ) via suspension:
We define a right-action of Z on R × Z by (t, z).n := (t − n, T nz) and define

� := (R × Z)/Z; we denote by q : R × Z → �, (t, z) �→ [t, z] the canonical
quotient map. Then R acts on � by x .[t, z] := [x + t, z] preserving the probability
measure P := q∗(Vol1 |[0,1) ⊗ θ), and if we set T := q({0} × B), then (�, P, R, T )

is a transverse system, called the suspension of (Z , θ, Z, B).
One checks that the Palmmeasure of this transverse system is ν := q∗(δ0⊗θ |B) and

that if pZ : Z → M(Z) denotes the transverse process associated with (Z , θ, Z, B)

and �Z := supp(pZ), then the transverse process associated with (�, P, R, T ) is
given by

p : � → M(R), p[t,z] = δ�Z
z −t .

In particular, supp(p[t,z]) ⊂ Z − t , i.e. p is contained in a random translate of Z.

A.3 Auto-correlation and variance of transverse point processes

We now derive a formula for the autocorrelation and variance of a transverse process
in terms of the corresponding Palm measure. Thus let (�, P,G, T ) be a transverse
system with transverse point process p and Palm measure ν. Given f ∈ L∞

c (G) we
denote by

PT f : T → C, PT f (ω) :=
∑

g∈�ω

f (g)

the restriction of the linear statistic of f to the cross section T .

Proposition B.8 (Palm formula for autocorrelation)Forany transverse system (�, P,G, T )

with transverse process p and Palm measure ν we have

η+
p ( f ) = ν(PT f ) and ηp( f ) = ν(PT f ) − ν(T )2 · mG( f ) ( f ∈ L∞

c (G)).

Proof Fix f ∈ L∞
c (G) and let ρ be a non-negative normalized Borel function on G

with bounded support. We define

ϕ : G × T → C, ϕ(g, ω) := ρ(g−1)PT f (ω).

Since the point process pω is given by

pω( f ) =
∑

g∈�ω

f (g),
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we deduce that for fρ(g1, g2) := f (g1g
−1
2 )ρ(g2) we have

Tϕ(ω) =
∑

g2∈�ω

ρ(g2)PT f (g−1
2 .ω)

=
∑

g2∈�ω

ρ(g2)
∑

g1∈�ω

f (g1g
−1
2 ) = (pω ⊗ pω)( fρ),

and hence, by (2.2) and (B.2),

η+
p ( f ) = E[(pω ⊗ pω)( fρ)] = E[Tϕ]

= (mG ⊗ ν)(ϕ) = mG(ρ̌) · ν(PT f ) = ν(PT f ).

This establishes the formula for η+
p . In order to obtain the formula for ηp it remains

to show, in view of (2.4), that i(p) = ν(T ). For any Borel set V we have

M1
p(V ) = E[pω(V )] = E

⎡

⎣
∑

x∈�ω

χV (x)

⎤

⎦ = E[χV .T ] = P[V .T ].

If we now choose an identity neighbourhood V in G with VV−1 ⊂ U , then

i(p) · mG(V ) = M1
p(V ) = P(V .T ) = mG(V ) · ν(T ),

and hence i(p) = ν(T ) as desired. ��
As a corollary we derive the following formula for the variance.

Corollary B.9 (Palm formula for the variance) Let ρR := χBR ∗ χBR . Then

Var p(BR) =
⎛

⎝
∑

λ∈�T

ρR(λ) · ν(T ∩ λ−1.T )

⎞

⎠− ν(T )2 · mG(ρR).

Proof We first observe that

Var p(BR) = Covp(χBR ⊗ χBR ) = ηp(χBR ∗ χBR ) = ηp(ρR).

With Proposition B.8 we deduce that

Var p(BR) = ν(PT ρR) − ν(T )2mG(ρR). (B.3)

Now for all ω ∈ T we have

PT ρR(ω) =
∑

λ∈�ω

ρR(λ) =
∑

λ∈�T

ρR(λ) · χT ∩λ−1.T (ω),

hence integrating over ν yields the desired formula. ��
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