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Abstract
We consider an inverse medium scattering problem for the Helmholtz equation
in a closed cylindrical waveguide with penetrable compactly supported scat-
tering objects. We develop novel monotonicity relations for the eigenvalues
of an associated modified near field operator, and we use them to establish
linearized monotonicity tests that characterize the support of the scatterers in
terms of near field observations of the corresponding scattered waves. The
proofs of these shape characterizations rely on the existence of localized wave
functions, which are solutions to the scattering problem in the waveguide that
have arbitrarily large norm in some prescribed region, while at the same time
having arbitrarily small norm in some other prescribed region. As a byproduct
we obtain a uniqueness result for the inverse medium scattering problem in
the waveguide with a simple proof. Some numerical examples are presented to
document the potentials and limitations of this approach.
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1. Introduction

Inverse scattering problems in closed cylindrical waveguides inherit several interesting fea-
tures that are not present in free space inverse scattering problems. For instance one has to
distinguish between propagating and evanescent modes, the latter being virtually undetectable
far away from the scatterer for all practical purposes. Moreover, due to the waveguide geo-
metry the available near field scattering data are usually of very limited aperture, which typ-
ically increases the instability in reconstruction algorithms. Nevertheless, inverse scattering
problems in waveguides are of practical relevance and have thus received increasing attention
in recent years. For instance, sampling-type reconstruction methods, which are closely related
to the approach considered in this work, have been discussed in [6–9, 42] (see also [40, 44]
for inverse scattering problems modeled by Maxwell’s equations). A sampling method for a
multi-frequency inverse scattering problem has recently been proposed in [41], and a time-
domain sampling method has been established in [43]. Furthermore, optimization schemes
have, e.g. been considered in [49, 50].

In this work we extend the results on monotonicity-based shape reconstruction and loc-
alized wave functions for the inverse medium scattering problem in unbounded free space
from [20] to an inverse scattering problem in a closed straight cylindrical waveguide with
Neumann boundary conditions featuring all the obstructions mentioned before. Our goal is to
detect and recover the support of one or more penetrable scattering objects from a knowledge
of near field scattering data using a monotonicity-based reconstruction scheme. Although we
focus on a simple model problem, we expect that everything presented here can be general-
ized to other types of obstacles, other kinds of boundary conditions, and to more complex
geometries.

Monotonicity-based shape reconstruction has been proposed in [47] for an inverse problem
in electrical impedance tomography. The starting point for this method has been the obser-
vation that if σ1 and σ2 are positive functions representing electric conductivities in some
bounded domain Ω⊆ Rd such that σ1 ⩽ σ2, then the associated Neumann-to-Dirichlet operat-
ors Λσ1 and Λσ2 on ∂Ω satisfy Λσ1 −Λσ2 ⩾ 0 in the sense that the self-adjoint compact linear
operator Λσ1 −Λσ2 is positive semidefinite, i.e. with respect to the Loewner order. A rigorous
theoretical justification of the method has been established in [29]. This analysis combines
monotonicity estimates for Neumann-to-Dirichlet maps (see also [31, 32] for earlier contri-
butions in this direction) with the existence of localized potentials for the Laplace equation
that has been shown in [19]. Localized potentials are solutions to the Laplace equation in Ω
that have arbitrarily large norm in some prescribed region B⊆ Ω, while at the same time hav-
ing arbitrarily small norm in a different prescribed region E⊆ Ω. A regularization strategy
and numerical realizations for monotonicity-based shape reconstruction in electrical imped-
ance tomography have been considered in [16–18]. The case of impenetrable conductivity
inclusions has been discussed in [11]. Recently the method from [29] has been extended to
an inverse boundary value problem for the Helmholtz equation in [27, 28] and to an inverse
scattering problem with compactly supported penetrable scattering objects in unbounded free
space in [20]. These results have been generalized to time-harmonic Maxwell’s equations in
[2, 26]. Inverse scattering problems with impenetrable obstacles and an inverse crack detec-
tion problem have been considered in [1, 14], and the connection to the factorization method
[33, 35] has been further clarified in [15].Monotonicity-based shape reconstruction techniques
for eddy current problems and magnetic induction tomography have been proposed in [45, 46,
48], fractional order Schrödinger equations have been discussed in [23, 24], and nonlinear
materials have been studied in [10, 13, 22, 25]. Furthermore, we refer to [5, 36, 38] for studies
of related monotonicity principles from a different view point.
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In contrast to [20], where the monotonicity relation has been shown for a modified far
field operator, we deal with near field observations in the waveguide setting. Accordingly, our
analysis of the monotonicity relation as well as the proof of the existence of localized wave
functions require a near field variant of the scattering operator appears that is not unitary as in
the far field setting, but we show invertibility. Describing the radiation condition in the wave-
guide by means of modal expansions of the associated Dirichlet-to-Neumann operators, the
corresponding terms in the monotonicity relations can be estimated more directly than in [20],
which allows to carry over estimates of the dimension of the finite dimensional subspaces that
have to be excluded in the monotonicity relations from [28]. However, the improved dimension
bounds from [27] do not seem to be applicable straightforwardly. Comparing these theoretical
dimension bounds with the number of propagating modes of the waveguide we find that the
dimension of the finite dimensional subspaces that have to be excludedmight growmuch faster
than the number of propagating modes when increasing the wave number, in particular if the
refractive index of the scatterer is large, or if the scatterer is not just contained in a very nar-
row section of the waveguide (see example 3.14). On the other hand, in our numerical results
we observe that the method works reasonably well even if we work with propagating modes
only.

This paper is organized as follows. In section 2 the governing equations for the scattering
problem in the Neumann waveguide are presented. In section 3 we show the monotonicity
relation for the near field operator in terms of the Loewner order up to a finite-dimensional
subspace. We also discuss the dimension of this subspace and compare it to the dimension
of the subspace of propagating modes of the waveguide. In section 4 we extend the existence
result for localized and simultaneously localizedwave functions from [20, 21] to thewaveguide
setting. In this section we also give a uniqueness result for the inverse scattering problem in the
waveguide that is proved using the monotonicity relation and the existence of localized wave
functions. Section 5 contains the theoretical justification of linearized monotonicity tests for
shape reconstruction for both sign-definite and sign-indefinite scattering configurations. Some
numerical results to illustrate our findings are provided in section 6, and we conclude with
some final remarks.

2. Scattering by an inhomogeneous obstacle

We are concerned with acoustic wave propagation in a closed straight cylindrical waveguide.
The interior of the waveguide will be denoted as Ω := R×Σ, where Σ⊆ Rd−1, d= 2,3, is
the cross section. We assume that Σ= (0,h) with h> 0 when d= 2, while Σ is a bounded
connected Lipschitz domain when d= 3. For x ∈ Ω, we use the notation x=: (x1,xΣ) with
x1 ∈ R and xΣ ∈ Σ. Often, we will only consider a finite section of the waveguide. Fixing
some R> 0, let ΩR := (−R,R)×Σ. We also use the notation C±

R := {±R}×Σ, and we write
CR := C+

R ∪C−
R for the boundary section ∂ΩR \ ∂Ω. We will frequently identify L2(CR) with

L2(C+
R )×L2(C−

R ).
The propagation of time harmonic acoustic waves in the homogeneous waveguide is gov-

erned by the Helmholtz equation with Neumann boundary conditions

∆u+ k2u = 0 in Ω ,
∂u
∂ν

= 0 on ∂Ω , (2.1)

where k> 0 is the wavenumber. Throughout, we understand Helmholtz equations such as (2.1)
to hold in the weak sense with solutions in some Sobolev space, e.g. H1

loc(Ω) such that bound-
ary conditions have to be understood in the trace sense. We assume that an incident field ui,
satisfying (2.1) inΩ \ CR, is scattered by an inhomogeneous object within the waveguide. This
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scatterer is described by the refractive index n2 = 1+ q with a contrast function q ∈ L∞R,+(Ω),
where L∞R,+(Ω) denotes the space of essentially bounded real-valued functions on Ω that are
larger than −1 almost everywhere in Ω and vanish identically outside ΩR. The total field uq is
then a superposition of the incident and the scattered field due to the inhomogeneity,

uq = ui + usq ,

such that uq is a weak solution to the Helmholtz equation with inhomogeneous coefficient,

∆uq+ k2(1+ q)uq = 0 in Ω \CR ,
∂uq
∂ν

= 0 on ∂Ω .

Moreover, usq is assumed to solve

∆usq+ k2(1+ q)usq = −k2qui in Ω ,
∂usq
∂ν

= 0 on ∂Ω , (2.2)

and to be outgoing.
In a waveguide, the notion of outgoing fields is defined via a representation obtained by

separation of variables. It is well known that there exists a complete orthonormal system of
Neumann eigenfunctions (θm)m∈N0 ⊆ L2(Σ) of −∆ in Σ, and that the corresponding eigen-
values (k2m)m∈N0 form a non-negative, non-decreasing sequence accumulating at∞. A simple
application of Green’s first identity inΣ shows that the sequence (θm)m∈N0 is also orthogonal in
H1(Σ) with ‖θm‖2H1(Σ) = 1+ k2m. Thus expanding φ =

∑∞
m=0〈φ,θm〉L2(Σ)θm, and using inter-

polation techniques [39, p 329], we find that the norms

‖φ‖2Hs(Σ) =
∞∑
m=0

(1+ k2m)
s|〈φ,θm〉L2(Σ)|2 , 0⩽ s⩽ 1 , (2.3)

on Hs(Σ) are equivalent to the standard norms. By duality, this extends to −1⩽ s< 0. From
now on we assume that k ∈ (kN,kN+1) for some N ∈ N0, and for any m ∈ N0 we set βm :=√
k2 − k2m. Throughout this work, the square root is such that for any z= |z|ei arg(z) ∈ C with

arg(z) ∈ [−π/2,3π/2) we have√z=
√
|z|ei arg(z)/2. Then, the functions

u±m (x) := θm(xΣ)e
±iβmx1 , x ∈ Ω , m ∈ N0 ,

are solutions to (2.1), called the modes of the waveguide. For m= 0, . . . ,N, the mode u±m
propagates along the waveguide from x1 =∓∞ to ±∞, while for m>N, u±m is exponentially
decaying as x1 →±∞ and exponentially growing as x1 →∓∞. The radiation condition is that
outside the finite section ΩR, the scattered field usq satisfies

usq(x) =
∞∑
m=0

α±
m u

±
m (x) , x ∈ Ω , ±x1 ⩾ R , (2.4)

for some (α±
m )N0 ⊆ C.

It is often advantageous to formulate this radiation condition via Dirichlet-to-Neumann
maps. Given a function φ± on C±

R , we define(
Λ±φ

±)(±R, ·) := ∞∑
m=0

iβm〈φ±(±R, ·),θm〉L2(Σ)θm .
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Identifying Hs(C±
R ) with Hs(Σ) for s=±1/2 and using the norms (2.3), we obtain that

Λ± : H1/2(C±
R )→ H−1/2(C±

R ) is bounded. If we denote the unit outward normals on C±
R with

respect to ΩR by ν, the radiation condition (2.4) is equivalent to the boundary conditions

∂usq
∂ν

∣∣∣∣
C+
R

= Λ+u
s
q and

∂usq
∂ν

∣∣∣∣
C−
R

= Λ−u
s
q . (2.5)

Remark 2.1. The dual operators Λ∗
± : H1/2(C±

R )→ H−1/2(C±
R ) satisfy(

Λ∗
±φ

±)(±R, ·) = −
∞∑
m=0

iβm〈φ±(±R, ·),θm〉L2(Σ)θm . (2.6)

Accordingly, Λ± −Λ∗
± : H1/2(C±

R )→ H−1/2(C±
R ),

(Λ± −Λ∗
±)φ :=

N∑
m=0

2iβm〈φ±(±R, ·),θm〉L2(Σ)θm , (2.7)

has finite dimensional range. Therefore, Λ± −Λ∗
± is also bounded and compact as an operator

from H1/2(C±
R ) to L

2(C±
R ). ♢

To simplify the notation, we introduce Λ : H1/2(CR)→ H−1/2(CR),

Λφ :=
(
Λ+φ|C+

R
,Λ−φ|C−

R

)
,

where we identify H±1/2(CR) with H±1/2(C+
R )×H±1/2(C−

R ). Accordingly, we will write
〈·, ·〉CR for the associated anti-dual bracket (with complex conjugation on the second argu-
ment). Therewith, we can state the weak formulation of the scattering problem in the wave-
guide, which is to find uq ∈ H1(ΩR) such thatˆ
ΩR

(
∇uq ·∇v− k2(1+ q)uqv

)
dx−〈Λuq,v〉CR

=

〈
∂ui

∂ν

∣∣∣∣−
CR

−Λui,v

〉
CR

for all v ∈ H1(ΩR) . (2.8)

As usual, an additional superscript + or − at a Neumann trace indicates that the trace is taken
from the outside or the inside of ΩR, respectively.

Throughout this paper, we will assume that (2.8) admits a unique solution. This, of course,
is not the case for all positive k. To obtain solvability results, one may proceed as done in [3, 4]
for a related waveguide problem by proving that the operator associated with the bilinear form
in (2.8) admits a Garding inequality and establishing analytic dependence on k of the Dirichlet-
to-Neumann map Λ except along branch cuts of

√
k2 − k2m, m ∈ N0. Analytic Fredhom theory

then implies that the scattering problem is uniquely solvable for all k except for a sequence
(k̂j)j∈N0 with ∞ as its only accumulation point. We will always assume that k 6= k̂j for all
j ∈ N0.

An important tool to represent solutions to waveguide problems are volume and layer poten-
tials. Hence we introduce the Green’s function of the waveguide, defined as

G(x,y) := −
∞∑
m=0

eiβm|x1−y1|

2iβm
θm(xΣ)θm(yΣ) , x,y ∈ ΩR , x 6= y , (2.9)

see, e.g. [8]. In particular we have that

G(x,y) = Φ(x,y)+ψ(x,y) , x,y ∈ ΩR , x 6= y ,

5
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where ψ is an analytic function in ΩR×ΩR and Φ denotes the fundamental solution to the
Helmholtz equation in free space, i.e.

Φ(x,y) :=


i
4H

(1)
0 (k|x− y|) , x,y ∈ R2 , x 6= y ,

eik|x−y|

4π |x−y| , x,y ∈ R3 , x 6= y ,

where H(1)
0 denotes the Hankel function of the first kind of order zero.

We will consider incident fields of the form

uig(x) :=
ˆ
CR

G(x,y)g(y)ds(y) , x ∈ ΩR , (2.10)

where g ∈ L2(CR).

Remark 2.2. Our analysis below requires incident fields as in (2.10) that are non-physical.
However, it has been shown for a related problem in [4] (see also [34]) that these non-physical
incident waves can be approximated by superpositions of physical fields arbitrarily well. ♢

The incident field uig solves (2.1) in ΩR \CR and thus it is a valid incident field in (2.8).
Denoting the associated solution of (2.8) by uq,g and the scattered field by usq,g = uq,g− uig, we
define the near field operator Nq : L2(CR)→ H1/2(CR) by

Nqg := usq
∣∣
CR
. (2.11)

In the next lemma we establish some integral identities for Nq.

Lemma 2.3. (a) Let q ∈ L∞R,+(Ω) and g ∈ L2(CR). For any v ∈ H1(ΩR),

ˆ
ΩR

(
∇usq,g ·∇v− k2(1+ q)usq,gv

)
dx−

〈
∂usq,g
∂ν

∣∣∣∣
CR

,v

〉
CR

= k2
ˆ
ΩR

quigvdx . (2.12)

(b) Let q ∈ L∞R,+(Ω) and g,h ∈ L2(CR). Then,

ˆ
CR

hNqgds = k2
ˆ
ΩR

quihuq,g dx . (2.13)

(c) Let q1,q2 ∈ L∞R,+(Ω) and g,h ∈ L2(CR). Then, for any j, l ∈ {1,2},

ˆ
CR

h
(
N∗
qj(Λ−Λ∗)Nql

)
gds =

〈
∂usql,g
∂ν

∣∣∣∣
CR

,usqj,h

〉
CR

−

〈
∂usqj,h
∂ν

∣∣∣∣
CR

,usql,g

〉
CR

. (2.14)

(d) Let q ∈ L∞R,+(Ω). Then,

Nq−N∗
q = N∗

q (Λ−Λ∗)Nq . (2.15)

Proof. (a) The scattered field usq,g satisfies (2.2), and (2.12) is the weak form of this equation.
(b) We obtain from (2.2) that usq,g satisfies the Lippmann–Schwinger equation

usq,g(x) = k2
ˆ
ΩR

q(y)uq,g(y)G(x,y)dy , x ∈ CR ,

6
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whereG denotes theGreen’s function introduced in (2.9) (see, e.g. [12, theorem 8.3], where
this result is shown for the inhomogeneous medium scattering problem in unbounded free
space), and thus

ˆ
CR

hNqgds =
ˆ
CR

husq,g ds = k2
ˆ
ΩR

q(y)uq,g(y)
ˆ
CR

h(x)G(x,y)ds(x)dy .

Together with (2.10) this gives (2.13).

(c)

ˆ
CR

h
(
N∗
qj(Λ−Λ∗)Nql

)
gds =

ˆ
CR

Nqjh(ΛNql)gds−
ˆ
CR

(ΛNqj)hNqlgds

=

〈
∂usql,g
∂ν

∣∣∣∣
CR

,usqj,h

〉
CR

−

〈
∂usqj,h
∂ν

∣∣∣∣
CR

,usql,g

〉
CR

.

(2.16)

(d) If qj = ql = q, then (2.16), (2.2) and (2.13) give

ˆ
CR

h
(
N∗
q (Λ−Λ∗)Nq

)
gds =

〈
∂usq,g
∂ν

∣∣∣∣
CR

,usq,h

〉
CR

−

〈
∂usq,h
∂ν

∣∣∣∣
CR

,usq,g

〉
CR

=

ˆ
ΩR

(
usq,h∆usq,g− usq,g∆u

s
q,h

)
dx = −k2

ˆ
ΩR

q
(
usq,huig− usq,gu

i
h

)
dx

= −k2
ˆ
ΩR

q
(
uq,huig− uq,gu

i
h

)
dx = −

ˆ
CR

gNqhds+
ˆ
CR

hNqgds .

Since g,h ∈ L2(CR) is arbitrary, we have shown (d).

We also define the bounded linear operator Sq : L2(CR)→ L2(CR) by

Sq := I+(Λ−Λ∗)Nq . (2.17)

In the analysis of the monotonicity properties of the near field operator Nq in section 3 below,
the operator Sq takes the role of the scattering operator in the corresponding analysis for the
inverse medium scattering problem from [20]. Recalling (2.7) we note that Sq changes ele-
ments of the subspace of propagating modes only, while it coincides with the identity on the
subspace spanned by the evanescent modes.

Lemma 2.4. The operator Sq has a bounded inverse.

Proof. In remark 2.1 we have seen that Λ−Λ∗ is compact from H1/2(CR) to L2(CR), thus Sq
is a Fredholm operator with index zero. Accordingly, it suffices to establish injectivity of Sq
in order to prove that Sq has a bounded inverse.

Suppose g ∈ L2(CR) with Sqg= 0. Then (2.17) shows that g=−(Λ−Λ∗)Nqg, and denot-
ing byW := span{θ0, . . . ,θN} ⊆ L2(CR) the subspace of propagating modes, the identity (2.7)
implies that g ∈W. Furthermore, again by (2.17) and (2.7), Sq maps W to W, and we denote

its restriction to W by Sq|W. Accordingly, let S̃q :W→W be defined by

S̃q := (Λ−Λ∗)−1/2Sq|W . (2.18)

7
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Here, (Λ−Λ∗)−1/2 :W→W is given by

(Λ± −Λ∗
±)

−1/2h :=
N∑

m=0

1√
2eiπ/4

√
βm

〈φ,θm〉L2(C±
R )θm , h ∈W .

Therewith we find that

S̃q
∗
S̃q =

(
(Λ∗ −Λ)−1/2 +N∗

q (Λ
∗ −Λ)1/2

)(
(Λ−Λ∗)−1/2 +(Λ−Λ∗)1/2Nq

)
= i(Λ−Λ∗)−1 + i

(
Nq−N∗

q −N∗
q (Λ−Λ∗)Nq

)
.

Applying (2.15) shows that

S̃q
∗
S̃q = i(Λ−Λ∗)−1 ,

which is injective, and thus we have shown that S̃q is injective. Therefore, (2.18) implies that
Sq|W is injective, andwe obtain that g= 0. Accordingly,Sq is injective and thus it has a bounded
inverse.

Remark 2.5. From (2.15) we find that

Nq = N∗
q (I+(Λ−Λ∗)Nq) = N∗

q Sq .

Substituting this into (2.17) gives

Sq = I+(Λ−Λ∗)N∗
q Sq = S−1

q Sq+(Λ−Λ∗)N∗
q Sq .

Accordingly,

S−1
q = I− (Λ−Λ∗)N∗

q = (I+Nq(Λ−Λ∗))
∗
. (2.19)

This will be used in the proof of theorem 4.4 below. ♢

3. A monotonicity relation for the measurement operator

We discuss a monotonicity relation for the near field operator with respect to the refractive
index of the scatterer. This relation will be formulated in terms of the following extension
of Loewner order from [28]. Let A,B : X→ X be compact self-adjoint operators on a Hilbert
space X, and let r ∈ N. We say that

A ⩽r B for some r ∈ N0 ,

if B−A has at most r negative eigenvalues. Moreover, we write A⩽fin B if A⩽r B holds for
some r ∈ N. The following characterization of this partial ordering has been established using
the min-max principle in [28, corollary 3.3].

Lemma 3.1. Let A,B : X→ X be self-adjoint compact linear operators on a Hilbert space X
and r ∈ N. Then A⩽r B if and only if there is a finite dimensional space V⊆ Xwith dim(V)⩽ r
such that

〈v,(B−A)v〉X ⩾ 0 for all v ∈ V⊥ .

We denote by I : H1(ΩR)→ H1(ΩR) the identity operator, and by J : H1(ΩR)→ L2(ΩR) the
compact imbedding. Accordingly, we define for any q ∈ L∞R,+(Ω) the compact self-adjoint
operators K : H1(ΩR)→ H1(ΩR) and Kq : H1(ΩR)→ H1(ΩR) by

Kv := J∗Jv and Kqv := J∗((1+ q)Jv) , v ∈ H1(ΩR) .

8
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Then, for any v ∈ H1(ΩR),〈
(I−K− k2Kq)v,v

〉
H1(ΩR)

=

ˆ
ΩR

(
|∇v|2 − k2(1+ q)|v|2

)
dx . (3.1)

The following definition from [28] is used to describe the dimension of the subspace of
H1(ΩR) where this sesquilinear form is positive semidefinite.

Definition 3.2. Let q ∈ L∞R,+(Ω), consider the eigenvalues of K+ k2Kq that are larger than 1,
and letV(q)⊆ H1(ΩR) be the sum of the associated eigenspaces.We define d(q) := dim(V(q)).

It follows immediately from the spectral theorem for compact self-adjoint operators that
d(q) is finite, and thatˆ

ΩR

(
|∇v|2 − k2(1+ q)|v|2

)
dx ⩾ 0 for all v ∈ V(q)⊥ .

Now we establish a monotonicity relation between the index of refraction and the near field
operator.

Theorem 3.3. For any q1,q2 ∈ L∞R,+(Ω), there is a subspace V⊆ L2(CR) with dim(V)⩽ d(q2)
such that

Re

(ˆ
CR

gS∗
q1(Nq2 −Nq1)gds

)
⩾ k2

ˆ
ΩR

(q2 − q1)|uq1,g|2 dx for all g ∈ V⊥ . (3.2)

In particular, q1 ⩽ q2 implies that Re(S∗
q1Nq1)⩽d(q2) Re(S∗

q1Nq2).

Remark 3.4. Using (2.17), we find for any q1, q2 ∈ L∞R,+(Ω) that

Re
(
S∗
q1(Nq2 −Nq1)−S∗

q2(Nq2 −Nq1)
)
= −Re

(
(N∗

q2 −N∗
q1)(Λ

∗ −Λ)(Nq2 −Nq1)
)
= 0 .

Therefore, (3.2) remains true if we replace by S∗
q1 by S∗

q2 in this formula. ♢
Exchanging the roles of q1 and q2, except for Sq1 (see remark 3.4), we obtain the following

corollary.

Corollary 3.5. For any q1,q2 ∈ L∞R,+(Ω), there is a subspace V⊆ L2(CR)with dim(V)⩽ d(q1)
such that

Re

(ˆ
CR

gS∗
q1(Nq2 −Nq1)gds

)
⩽ k2

ˆ
ΩR

(q2 − q1)|uq2,g|2 dx for all g ∈ V⊥ . (3.3)

Remark 3.6. Choosing q1 = 0 and q2 = q in theorem 3.3, the monotonicity relation (3.2)
shows that q⩾ 0 implies Re(Nq)⩾d(q) 0. Similarly, q1 = 0 and q2 = q in (3.3) shows that
q⩽ 0 implies Re(Nq)⩽d(q) 0. ♢

The proof of theorem 3.3 is obtained from lemmas 3.7–3.10 which we present next.

Lemma 3.7. Let q1,q2 ∈ L∞R,+(Ω) and g ∈ L2(CR). Then,ˆ
CR

gNq2gds−
ˆ
CR

gNq1gds−
ˆ
CR

g
(
N∗
q1(Λ−Λ∗)Nq2

)
gds+ k2

ˆ
ΩR

(q1 − q2)|uq1,g|2 dx

=

ˆ
ΩR

(
|∇(usq2,g− usq1,g)|

2 − k2(1+ q2)|usq2,g− usq1,g|
2
)
dx

−

〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

. (3.4)

9
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Proof. The right hand side of (3.4) can be expanded as
ˆ
ΩR

(
|∇(usq2,g− usq1,g)|

2 − k2(1+ q2)|usq2,g− usq1,g|
2
)
dx

−

〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

=

ˆ
ΩR

(
|∇usq2,g|

2 − k2(1+ q2)|usq2,g|
2
)
dx+

ˆ
ΩR

(
|∇usq1,g|

2 − k2(1+ q2)|usq1,g|
2
)
dx

− 2Re

(ˆ
ΩR

(
∇usq2,g ·∇usq1,g− k2(1+ q2)u

s
q2,gu

s
q1,g

)
dx

)
−

〈
∂
(
usq2,g− usq1,g

)
∂ν

∣∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

. (3.5)

Using (2.12) we find that
ˆ
ΩR

(
|∇(usq2,g− usq1,g)|

2 − k2(1+ q2)|usq2,g− usq1,g|
2
)
dx

−

〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

=

〈
∂usq2,g
∂ν

∣∣∣∣
CR

,usq2,g

〉
CR

+ k2
ˆ
ΩR

q2u
i
gusq2,g dx+

〈
∂usq1,g
∂ν

∣∣∣∣
CR

,usq1,g

〉
CR

+ k2
ˆ
ΩR

q1u
i
gusq1,g dx+ k2

ˆ
ΩR

(q1 − q2)|usq1,g|
2 dx

− 2Re

(〈
∂usq2,g
∂ν

∣∣∣∣
CR

,usq1,g

〉
CR

+ k2
ˆ
ΩR

q2u
i
gusq1,g dx

)

−

〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

= k2
ˆ
ΩR

q2u
i
guq2,g dx− k2

ˆ
ΩR

q1uiguq1,g dx+ k2
ˆ
ΩR

(q1 − q2)|uq1,g|2 dx

+

〈
∂usq1,g
∂ν

∣∣∣∣
CR

,usq2,g

〉
CR

−

〈
∂usq2,g
∂ν

∣∣∣∣
CR

,usq1,g

〉
CR

.

Applying (2.13) and (2.14) gives (3.4).

The real part of the left hand side of (3.2) can be simplified using the following identity.

Lemma 3.8. Let q1,q2 ∈ L∞R,+(Ω) and g ∈ L2(CR).

Re

(ˆ
CR

gNq2gds−
ˆ
CR

g Nq1gds−
ˆ
CR

g
(
N∗
q1(Λ−Λ∗)Nq2

)
gds

)
= Re

(ˆ
CR

g
(
S∗
q1(Nq2 −Nq1)

)
gds

)
.

10
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Proof. Observing that S∗
q1 = I+N∗

q1(Λ
∗ −Λ) and Re(N∗

q1(Λ−Λ∗)Nq1) = 0, we find that

Re
(
S∗
q1(Nq2 −Nq1)

)
= Re

(
Nq2 −Nq1 −N∗

q1(Λ−Λ∗)Nq2
)
. (3.6)

Accordingly, the first three terms on the left hand side of (3.4) satisfy

Re

(ˆ
CR

gNq2gds−
ˆ
CR

g Nq1gds−
ˆ
CR

g
(
N∗
q1(Λ−Λ∗)Nq2

)
gds

)
= Re

(ˆ
CR

g
(
Nq2 −Nq1 −N∗

q1(Λ−Λ∗)Nq2
)
gds

)
= Re

(ˆ
CR

g
(
S∗
q1(Nq2 −Nq1)

)
gds

)
.

Next we discuss the right hand side of (3.4).

Lemma 3.9. Let q1,q2 ∈ L∞R,+(Ω) and g ∈ L2(CR). Then,

−Re

(〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

)
⩾ 0 . (3.7)

Proof. Using the radiation condition (2.5) and the orthogonality of the Neumann eigenfunc-
tions (θm)m∈N0 of −∆ in Σ, we find that

−Re

(〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

)

= −Re

(
∞∑
m=0

iβm

(∣∣∣〈(usq2,g− usq1,g)(−R, ·),θm
〉
L2(Σ)

∣∣∣2 + ∣∣∣〈(usq2,g− usq1,g)(R, ·),θm
〉
L2(Σ)

∣∣∣2))

=

∞∑
m=0

Im(βm)

(∣∣∣〈(usq2,g− usq1,g)(−R, ·),θm
〉
L2(Σ)

∣∣∣2 + ∣∣∣〈(usq2,g− usq1,g)(R, ·),θm
〉
L2(Σ)

∣∣∣2) .

If 0⩽ m⩽ N, i.e. for the propagating modes, we have that Im(βm) = 0, and if m>N, i.e. for
the evanescent modes, Im(βm)> 0. This gives (3.7).

As a consequence of the proof, we note that the propagating part of the left hand side of (3.7)
vanishes identically.

Lemma 3.10. Let q1,q2 ∈ L2(ΩR). Then there is a subspace V⊆ L2(CR) with dim(V)⩽ d(q2)
such that, for all g ∈ V⊥,ˆ

ΩR

(
|∇(usq2,g− usq1,g)|

2 − k2(1+ q2)|usq2,g− usq1,g|
2
)
dx

−Re

(〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

)
⩾ 0 .

Proof. For j = 1,2 let Aqj : L
2(CR)→ H1(ΩR) be the bounded linear operator that maps g ∈

L2(CR) to the restriction of the scattered field usqj,g to ΩR. Combining (3.1) and (3.7) we find
that, for any g ∈ L2(CR),

11
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ˆ
ΩR

(
|∇(usq2,g− usq1,g)|

2 − k2(1+ q2)|usq2,g− usq1,g|
2
)
dx

−Re

(〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

)
⩾
〈
(I−K− k2Kq2)(Aq2 −Aq1)g,(Aq2 −Aq1)g

〉
H1(ΩR)

.

Let V(q2) be the sum of eigenspaces of the compact and self-adjoint operator K+ k2Kq2 asso-
ciated with eigenvalues greater than 1. Then dim(V(q2)) = d(q2) is finite, and〈

(I−K− k2Kq2)w,w
〉
H1(ΩR)

⩾ 0 for all w ∈ V(q2)⊥ .

Since, for any g ∈ L2(CR),

(Aq2 −Aq1)g ∈ V(q2)⊥ if and only if g ∈ ((Aq2 −Aq1)
∗V(q2))

⊥
,

and dim((Aq2 −Aq1)
∗V(q2))⩽ d(q2), choosing V := (Aq2 −Aq1)

∗V(q2) ends the proof.

Proof of theorem 3.3. Taking the real part of (3.4) and substituting (3.6), we find that

Re
(〈

S∗
q1 (Nq2 −Nq1)g,g

〉
CR

)
+ k2
ˆ
ΩR

(q1 − q2)|uq1,g|2 dx

=

ˆ
ΩR

(
|∇(usq2,g− usq1,g)|

2 − k2(1+ q2)|usq2,g− usq1,g|
2
)
dx

−Re

(〈
∂(usq2,g− usq1,g)

∂ν

∣∣∣∣
CR

,usq2,g− usq1,g

〉
CR

)
.

Applying lemma 3.10 shows that there is a subspace V⊆ L2(CR) with dim(V)⩽ d(q2) such
that (3.2) holds.

At the end of this section we now discuss an upper bound for the dimension d(q) of the
subspaces V⊆ L2(CR) that have to be excluded in (3.2) and (3.3). To this end, we quote two
results from [28]. The first lemma relates the dimension d(q) (see definition 3.2) to the number
of negative Neumann eigenvalues of −∆− k2(1+ q) in ΩR.

Lemma 3.11 ([28, lemma 3.10]). Let q ∈ L∞R,+(Ω).

(a) There exists a complete orthonormal system of Neumann eigenfunctions (vm)m∈N0 ⊆
L2(ΩR) of −∆− k2(1+ q) in ΩR, i.e. each vm ∈ H1(ΩR) solves

−∆vm− k2(1+ q)vm = λmvm in ΩR ,
∂vm
∂ν

= 0 on ∂ΩR ,

for some λm ∈ R. The Neumann eigenvalues (λm)m∈N0 form a non-decreasing sequence
accumulating at∞.

(b) d(q) is the number of negative Neumann eigenvalues of −∆− k2(1+ q) in ΩR.

The next lemma is an immediate consequence of definition 3.2.

Lemma 3.12 ([28, lemma 3.9]). Let q1,q2 ∈ L∞R,+(Ω). If q1 ⩽ q2 a.e. in ΩR, then d(q1)⩽
d(q2).

12
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Proof. Let v ∈ V(q1). Then,〈
(K+ k2Kq2)v,v

〉
H1(ΩR)

=

ˆ
ΩR

(1+ k2q2)|v|2 dx ⩾
ˆ
ΩR

(1+ k2q1)|v|2 dx

=
〈
(K+ k2Kq1)v,v

〉
H1(ΩR)

> 1 .

Accordingly, lemma 3.2(b) in [28] implies that d(q2)⩾ dim(V(q1)) = d(q1).

Combining these two lemmas we obtain the following upper bound for d(q) (see also [28,
corollary 3.11]).

Corollary 3.13. Let q ∈ L∞R,+(Ω) with q⩽ qmax a.e. in ΩR for some qmax ∈ R. Then d(q)⩽
d(qmax1ΩR), and d(qmax1ΩR) is the number of Neumann eigenvalues of −∆ in ΩR that are
smaller than k2(1+ qmax).

Next we will explore the relation between the upper bound d(qmax1ΩR) and the number of
propagating modes of the wave guide.

Example 3.14. We consider the two-dimensional case and assume thatΩR = (−R,R)× (0,1),
D⊆ ΩR, and

q(x) =

{
a , x ∈ D ,
0 , x ∈ Ω \D ,

is piecewise constant for some a ∈ (−1,0)∪ (0,∞).
The cross section of the waveguide is Σ= (0,1). The Neumann eigenfunctions of −∆ in

Σ are given by

θm(x2) = cm cos(mπ x2) , m ∈ N0 ,

with c0 = 1 and cm =
√
2 for m⩾ 1. The associated eigenvalues are k2m = m2π2, and accord-

ingly the number of propagating modes is N+ 1= dk/π e.
For l,m ∈ N0 we define vl,m ∈ L2(ΩR) by

vl,m(x1,x2) := blcm cos

(
lπ
R
x1

)
cos(mπx2) , (x1,x2) ∈ ΩR ,

with b0 = 1/
√
2R and bl = 1/

√
R for l⩾ 1. Then,

−∆vl,m = π2

((
l
R

)2

+m2

)
vl,m in ΩR ,

∂vl,m
∂ν

= 0 on ∂Ω ,

i.e. the functions vl,m are Neumann eigenfunctions of −∆ in ΩR and we denote the associated
eigenvalues by λ2l,m := π2((l/R)2 +m2).

Since q⩽ a in Ω, corollary 3.13 says that the number d(q) from definition 3.2 is bounded
by the number of Neumann eigenvalues λl,m that are smaller than k2(1+ a). This is equivalent
to

d(q) ⩽ #

{
(l,m) ∈ N0 ×N0

∣∣∣∣∣ l2R2
+m2 <

(
k
π

)2

(1+ a)

}

⩽ #

{
(l,m) ∈ N0 ×N0

∣∣∣∣∣ l2R2
+m2 < (N+ 1)2(1+ a)

}
.

(3.8)

13
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Wedefine ρa := (N+ 1)
√
1+ a. The constraint on the right hand side of the second line of (3.8)

describes a quadrant of an ellipse with semi-axes of length Rρa and ρa. Accordingly, an upper
bound for d(q) is given by

d(q) ⩽ π

4
(Rρa+

√
2)(ρa+

√
2) =

π

4

(
Rρ2a+

√
2(R+ 1)ρa+ 2

)
,

which grows quadratically in the number of propagating modes N+ 1 as the wave number k
increases unless R(1+ a)≲ 1/(1+N) = 1/dk/π e. This means that the dimension of the finite
dimensional subspaces that have to be excluded might grow much faster than the number of
propagating modes when increasing the wave number, in particular if the refractive index of
the scatterer is large, or if the scatterer is not just contained in a very narrow section of the
waveguide. ♢

4. Localized wave functions

In order to exploit the monotonicity relations from theorem 3.3 and corollary 3.5 in a shape
reconstruction algorithm for the support of the contrast function, we require localized wave
functions. Given two open bounded subsets E,M⊆ ΩR such that E 6⊆M, a localized wave
function has arbitrarily large norm on the set E while at the same time having arbitrarily small
norm on M.

Following [29] we say that a relatively open subset O⊆ ΩR is connected to C±
R if O is

connected and C±
R ∩O 6= ∅.

Theorem 4.1. Let q ∈ L∞R,+(Ω) and E,M⊆ ΩR be open domains such thatΩR \M is connected
to C+

R or C−
R . If E 6⊆M, then for any finite dimensional subspace V⊆ L2(CR) there exists a

sequence (gm)m∈N0 in V
⊥ such that

ˆ
E
|uq,gm |

2 dx→∞ and
ˆ
M
|uq,gm |

2 dx→ 0 as m→∞ ,

where uq,gm ∈ H1(ΩR) denotes the solution of (2.8) with the incident field uigm as in (2.10) with
density g= gm.

We will prove this theorem using two lemmas which are concerned with properties of the
operator

Lq,O : L2(CR)→ L2(O) , g 7→ uq,g|O ,

where we assume that O⊆ ΩR is open. The compact imbedding of L2(CR) in H−1/2(CR)
already tells us that Lq,O is a compact linear operator. We will proceed to characterize the
adjoint operator L∗q,O. To this end, we note that uig is simply the single layer potential on CR
with density g. Hence this function is outgoing outside of ΩR and thus

∂uig
∂ν

∣∣∣∣∣
+

CR

= Λuig .

By (2.6), we have Λ∗φ = Λφ, so we conclude

∂uig
∂ν

∣∣∣∣∣
+

CR

= Λ∗uig .

14



Inverse Problems 39 (2023) 075009 T Arens et al

Lemma 4.2. Let O⊆ ΩR be open. The adjoint operator of Lq,O is

L∗q,O : L2(O)→ L2(CR) , f 7→ S∗
q

(
wq, f|CR

)
,

where Sq is given by (2.17) and wq, f ∈ H1
loc(Ω) is the unique outgoing function satisfying

∆wq, f+ k2(1+ q)wq, f = −f in Ω ,
∂wq, f
∂ν

= 0 on ∂Ω . (4.1)

Proof. We write down the weak formulation of the boundary value problem satisfied by wq, f
with uq,g as the test function and conclude using (2.8) that, for any g ∈ L2(CR) and f ∈ L2(O),ˆ
O
Lq,Og fdx =

ˆ
ΩR

uq,g fdx

=

ˆ
ΩR

(
∇uq,g ·∇wq, f− k2(1+ q)uq,gwq, f

)
dx−

〈
∂wq, f
∂ν

∣∣∣∣
CR

,uq,g

〉
CR

=

〈
∂uq,g
∂ν

∣∣∣∣−
CR

,wq, f

〉
CR

−

〈
∂wq, f
∂ν

∣∣∣∣
CR

,uq,g

〉
CR

.

Using the radiation condition (2.5) and the jump relation for the normal derivative of the single
layer potential, we have

∂uq,g
∂ν

∣∣∣∣−
CR

=
∂uig
∂ν

∣∣∣∣∣
−

CR

+
∂usq,g
∂ν

∣∣∣∣−
CR

= g+
∂uig
∂ν

∣∣∣∣∣
+

CR

+Λusq,g = g+Λ∗uig+Λusq,g .

Noting that wq, f is outgoing, we obtainˆ
O
Lq,Og fdx =

〈
g+Λ∗uig+Λusq,g,wq, f

〉
CR

−〈Λwq, f,uq,g〉CR

=

ˆ
CR

(
g+(Λ−Λ∗)usq,g

)
wq, f ds .

The assertion now follows from the definitions (2.11) and (2.17) ofNq andSq, respectively.

Lemma 4.3. Let q ∈ L∞R,+(Ω) and E, M⊆ ΩR be non-empty open domains such that ΩR \
(E∪M) is connected to C+

R or C−
R and E∩M= ∅. Then R(L∗q,E)∩R(L∗q,M) = {0} and

R(L∗q,E),R(L∗q,M) are dense in L
2(CR).

Proof. First we prove the injectivity of Lq,M, and note that the same proof applies to Lq,E. Sup-
pose Lq,Mg= 0 for some g ∈ L2(CR). It follows that uq,g

∣∣
M
= 0 and from unique continuation

[28, theorem 2.4], we find that uq,g vanishes throughout Ω. As uq,g is the solution of (2.8), it
satisfies the Lippmann–Schwinger equation

uq,g(x) = uig(x)+ k2
ˆ
Ω

q(y)G(x,y)uq,g(y)dy , x ∈ Ω ,

where G denotes the Green’s function introduced in (2.9) (see, e.g. [12, theorem 8.3], where
this result is shown for the inhomogeneous medium scattering problem in unbounded free
space). This implies that uig = 0 inΩ and hence the jumps of the normal derivative of uig vanish
across C±

R . We conclude g= 0 from jump relations of the single layer potential. Thus Lq,M is
an injection, which implies R(L∗q,M) is dense in L

2(CR).
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Next, we prove R(L∗q,E)∩R(L∗q,M) = {0}. Let h ∈R(L∗q,E)∩R(L∗q,M). Then there exist
fE ∈ L2(E) and fM ∈ L2(M) such that h= L∗q,EfE = L∗q,M fM. Let wq, fE and wq, fM denote the cor-
responding outgoing solutions of (4.1). Then,

S∗
q

(
wq, fE

∣∣
CR

)
= S∗

q

(
wq, fM

∣∣
CR

)
= h .

From lemma 2.4, we obtainwq, fE = wq, fM onCR. As these functions are outgoing, their Cauchy
data on CR coincide. Using the variant of Holmgrem’s theorem formulated as stated in part (b)
of [28, theorem 2.4], we obtain wq, fE = wq, fM in Ω \ (E∪M). Define

wq =


wq, fE = wq, fM , x ∈ Ω \ (E∪M) ,

wq, fE , x ∈M ,
wq, fM , x ∈ E .

Then w is the outgoing solution of

∆wq+ k2(1+ q)wq = 0 in Ω ,
∂wq
∂ν

= 0 on ∂Ω .

and thus wq = 0 in Ω. Therefore,

h = S∗
q

(
wq
∣∣
CR

)
= 0 .

We can now carry out the proof of theorem 4.1 which is obtained from straightforward
modifications of the proof of theorem 4.1 in [20].

Proof of theorem 4.1:. We note first that we may assume that E∩M= ∅ and that ΩR \
(E∪M) is connected to C+

R or C−
R . If this is not the case, replace E by E† such that E† ⊆ E and

E† ∩M† = ∅ for some open M† ⊇M.
Let V⊆ L2(CR) denote a finite dimensional subspace and PV : L2(CR)→ V the orthogonal

projection. Assume that R(L∗q,E)⊆R(L∗q,M)+V. As R(L∗q,E)∩R(L∗q,M) = {0}, this implies
dim(R(L∗q,E))⩽ dim(V)<∞ by [28, lemma 4.7]. However, this contradicts that R(L∗q,E) is
dense in L2(CR). Hence

R(L∗q,E) 6⊆ R(L∗q,M)+V = R(L∗q,M)+R(P∗
V) = R

([
Lq,M
PV

]∗)
.

Lemma 4.6 in [28] now implies that there exists no constantC> 0 such that, for all g ∈ L2(CR),

‖Lq,Eg‖2L2(E) ⩽ C2
(
‖Lq,Mg‖2L2(M) + ‖PVg‖2L2(CR)

)
.

Hence there exists a sequence (g̃m)m∈N0 in L
2(CR) with

‖Lq,Eg̃m‖L2(E) →∞ , ‖Lq,Mg̃m‖L2(M) + ‖PVg̃m‖L2(CR) → 0 as m→∞ .
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We now set gm = (I−PV) g̃m ∈ V⊥ and obtain

‖uq,gm‖L2(E) = ‖Lq,Egm‖L2(E)
⩾ ‖Lq,Eg̃m‖L2(E) −‖Lq,E‖‖PVg̃m‖L2(CR) →∞ as m→∞ ,

‖uq,gm‖L2(M) = ‖Lq,Mgm‖L2(M)

⩽ ‖Lq,Mg̃m‖L2(M) + ‖Lq,M‖‖PVg̃m‖L2(CR) → 0 as m→∞ .

As a further consequence of lemma 4.2, one obtains that the L2-norms of total fields for
the same incident field but for two different contrast functions may be estimated against each
other on the support of the difference.

Theorem 4.4. Suppose that q1,q2 ∈ L∞R,+(Ω), and let M⊆ ΩR be open. If q1 = q2 almost
everywhere in ΩR \M, then there exist constants c, C> 0 such that

c
ˆ
M
|uq1,g|2 dx ⩽

ˆ
M
|uq2,g|2 dx ⩽ C

ˆ
M
|uq1,g|2 dx for all g ∈ L2(CR) .

Proof. Let wj denote the outgoing solution of (4.1) for q= qj j = 1,2. Then

L∗q1,M f = S∗
q1(w1|CR) , L∗q2,M f = S∗

q2(w2|CR) . (4.2)

We can rewrite the Helmholtz equations as

∆w1 + k2(1+ q2)w1 = −(f + k2 (q1 − q2)w1) in Ω ,

∆w1 + k2(1+ q1)w2 = −(f + k2(q2 − q1)w2) in Ω .

As supp(q1 − q2)⊆M, it follows that

S∗
q2(w1|CR) = L∗q2,M( f + k2 (q1 − q2)w1) , (4.3a)

S∗
q1(w2|CR) = L∗q1,M( f + k2 (q2 − q1)w2) . (4.3b)

Combining (4.2) and (4.3), we obtain

S−∗
q1 L

∗
q1,M f = (w1|CR) = S−∗

q2 L
∗
q2,M(f + k2(q1 − q2)(w1|CR)) ,

S−∗
q2 L

∗
q2,M f = (w2|CR) = S−∗

q1 L
∗
q1,M(f + k2 (q2 − q1)(w2|CR)) .

From this we concludeR(S−∗
q1 L

∗
q1,M) =R(S−∗

q2 L
∗
q2,M). It remains to show thatR(S−∗

qj L
∗
qj,M) =

R(L∗qj,M) for j = 1,2. Then the assertion follows from lemma 4.6 in [28].

Using (2.19) we find that for any f ∈ L2(ΩR) and j = 1,2,

S−∗
qj L

∗
qj,M f = L∗qj,M f +Nqj(Λ−Λ∗)L∗qj,M f . (4.4)

The definition of the near field operator Nqj shows that Nqj(Λ−Λ∗)L∗qj,M f = usqj,pj, f |CR with
pj, f := (Λ−Λ∗)L∗qj,M f. Since

∆usqj,pj, f + k2(1+ qj)u
s
qj,pj, f = −k2qjuipj, f in Ω ,

∂usqj,pj, f
∂ν

= 0 on ∂Ω ,
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we find using lemma 4.2 that

usqj,pj, f |CR = S−∗
qj L

∗
qj,M(k

2qju
i
pj, f) .

Substituting this into (4.4) and rearranging terms shows that, for any f ∈ L2(ΩR),

L∗qj,M f = S−∗
qj L

∗
qj,M f−S−∗

qj L
∗
qj,M

(
k2qju

i
pj, f

)
,

i.e. R(L∗qj,M)⊆R(S−∗
qj L

∗
qj,M).

Similarly, using (4.2) and (2.19) we have that, for any f ∈ L2(ΩR) and j = 1,2,

S−∗
qj L

∗
qj,M f = S−∗

qj S∗
qj(wj|CR) = S∗

qjS
−∗
qj (wj|CR)

= S∗
qj(wj|CR)+S∗

qjNqj(Λ−Λ∗)(wj|CR) .
(4.5)

Writing pj, f := (Λ−Λ∗)(wj|CR), we obtain as before that

Nqj(Λ−Λ∗)(wj|CR) = uspj, f = S−∗
qj L

∗
qj,M(k

2qju
i
pj, f) .

Substituting this into (4.5) and applying (4.2) we find that, for any f ∈ L2(ΩR),

S−∗
qj L

∗
qj,M f = L∗qj,M f+L∗qj,M(k

2qju
i
pj, f) ,

i.e. R(S−∗
qj L

∗
qj,M)⊆R(L∗qj,M).

Combining the monotonicity relation in theorem 3.3 and the localized wave functions from
theorem 4.1, we can prove the following uniqueness result for the inverse medium scattering
problem in the waveguide which is a variant of the local uniqueness results in [28, theorem 5.1]
and [30, theorem 1.1].

Theorem 4.5. Let q1,q2 ∈ L∞R,+(Ω). Furthermore, let O⊆ ΩR be open such that O is connec-
ted to C+

R or C−
R and q1 ⩽ q2 a.e. in O. If there is a non-empty open subset B⊆ O such that

q1 ⩽ q2 − c a.e. in B for some c> 0 ,

then

Re(S∗
q1Nq1) 6⩾fin Re(S∗

q1Nq2) .

This means that the operator Re(S∗
q1(Nq2 −Nq1)) has infinitely many positive eigenvalues, and

it implies that Nq1 6= Nq2 .

Proof. Assume on the contrary that Re(S∗
q1(Nq2 −Nq1))⩽fin 0 and let V1 denote the finite-

dimensional space spanned by all eigenfunctions corresponding to positive eigenvalues of this
operator. Let V2 denote the space in theorem 3.3 and set V= V1 +V2. Then, by theorem 3.3,
for all g ∈ V⊥,

0 ⩾ Re

(ˆ
CR

gS∗
q1(Nq2 −Nq1))gds

)
⩾ k2

ˆ
ΩR

(q2 − q1)|uq1,g|2 dx

= k2
ˆ
O∩ΩR

(q2 − q1)|uq1,g|2 dx+ k2
ˆ
ΩR\O

(q2 − q1)|uq1,g|2 dx

⩾ ck2
ˆ
E
|uq1,g|2 dx−Ck2

ˆ
ΩR\O

|uq1,g|2 dx ,

(4.6)
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where we have set C := ‖q1‖L∞(Ω) + ‖q2‖L∞(Ω). Let M := ΩR \O. Note that since O is con-
nected to C+

R or C−
R , it holds that ΩR \M is connected to C+

R or C−
R and theorem 4.1 may be

applied. However, this contradicts (4.6), as the theorem guarantees the existence of a sequence
(gm)m∈N0 in V

⊥ such that
ˆ
E
|uq1,gm |

2 dx→∞ ,

ˆ
M
|uq1,gm |

2 dx→ 0 as m→∞ .

It follows that Re(S∗
q1(Nq2 −Nq1)) 6⩽fin 0.

Next we consider a refined version of theorem 4.1, where we establish the existence of
simultaneously localizedwave functions. These have arbitrarily large norm on some prescribed
region E⊆ ΩR while at the same time having arbitrarily small norm in a different regionM⊆
ΩR. In contrast to theorem 4.1 we not only control the total field but also the incident field.

Theorem 4.6. Suppose that q ∈ L∞R,+(Ω), and let E,M⊆ ΩR be open and Lipschitz bounded
such that supp(q)⊆ E∪M, ΩR \ (E∪M) is connected to C+

R or C−
R , and E∩M= ∅. Assume

that there is a connected subset Γ⊆ ∂E \M that is relatively open such that Γ is C1,1-smooth.
Then for any finite dimensional subspace V⊆ L2(CR) there exists a sequence (gm)m∈N ⊆

V⊥ such that ˆ
E
|uq,gm |2 dx→∞ and

ˆ
M

(
|uq,gm |2 + |uigm |

2
)
dx→ 0 as m→∞ ,

where uq,gm ∈ H1(ΩR) denotes the solution of (2.8) with the incident field uigm as in (2.10) with
density g= gm.

The proof of this theorem is the same as the proof of [21, theorem 2.1] with similar modific-
ations as required in the proof of theorem 4.1, when compared to [20]. Therefore it is omitted.

5. Shape reconstruction

In this section, it is our goal to develop an algorithm to recover the support of q using the mono-
tonicity relation for the near field operator that we developed in section 3. In this algorithm, we
will relate the near field operatorNq associated to the unknown scatterer to the Born approxim-
ation of near field operators associated to certain probing domains. For any open set B⊆ ΩR,
the incident field (2.10) naturally defines an operator HB : L2(CR)→ L2(B) by

(HBg)(x) := uig(x) =
ˆ
CR

G(x,y)g(y)ds(y) , x ∈ B .

The scattered field in the Born approximation is obtained by replacing uq,g by uig in the bound-
ary value problem

∆usq,g+ k2usq,g = −k2quq,g in Ω ,
∂usq,g
∂ν

= 0 on ∂Ω .

We consider the case in which q= 1B which gives rise to the operator TB : L2(CR)→ L2(CR),

(TBg)(x) := k2
ˆ
B
G(x,y)uig(y)dy = k2

ˆ
B
G(x,y)

ˆ
CR

G(y,z)g(z)ds(z)dy , x ∈ CR .

(5.1)

Combining both equations, we obtain the representation TB = k2H∗
BHB.
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Wewill now use the operator TB to formulate criteria with which to determine the support of
q. The proofs of these results essentially require no new arguments and are hence rather similar
to similar proofs in [20] for free space scattering. However, in contrast to [20] we establish
upper bounds on the dimensions of the finite dimensional subspaces that have to be excluded
in these criteria (see theorems 5.1–5.3 below) similar to [28]. To begin with, we consider the
special case when the contrast function q is either strictly positive or strictly negative a.e. on
its support. The general case will be treated in theorem 5.3 below.

Theorem 5.1. Let B,D⊆ ΩR be open such that ΩR \D is connected to C+
R or C−

R , and let
q ∈ L∞R,+(Ω) with supp(q) = D. Further suppose that 0⩽ qmin ⩽ q⩽ qmax <∞ a.e. in D for
some constants qmin,qmax ∈ R.

(a) If B⊆ D, then αTB ⩽d(q) Re(Nq) for all α⩽ qmin.
(b) If B 6⊆ D, then for all α> 0, αTB 6⩽fin Re(Nq), and hence the operator Re(Nq)−αTB has

infinitely many negative eigenvalues.

Proof. To show part (a), we apply theorem 3.3 with q1 = 0 and q2 = q. Hence there exists a
subspace V⊆ L2(CR) with dim(V)⩽ d(q) such that

Re

(ˆ
CR

gNqgds

)
⩾ k2

ˆ
D
q|uig|2 dx for all g ∈ V⊥ .

On the other hand, from B⊆ D and α⩽ qmin, for any g ∈ L2(CR), we obtain

α

ˆ
CR

gTBgds = αk2‖HBg‖2L2(B) = k2
ˆ
B
α|uig|2 dx ⩽ k2

ˆ
B
q|uig|2 dx .

For part (b), assume that for some B 6⊆ D and α> 0 there holds αTB ⩽fin Re(Nq), i.e. there
exists a finite dimensional subspace V1 ⊆ L2(CR) such that

αk2
ˆ
D
|uig|2 dx ⩽ Re

(ˆ
CR

gNqgds

)
for all g ∈ V⊥

1 .

We apply corollary 3.5 with q1 = 0 and q2 = q to see that there exists a finite dimensional
subspace V2 ⊆ L2(CR) such that

Re

(ˆ
CR

gNqgds

)
⩽ k2

ˆ
D
q|uq,g|2 dx for all g ∈ V⊥

2 .

Combining both inequalities, we obtain that there exists a finite dimensional subspace V :=
V1 +V2 ⊆ L2(CR) such that

αk2
ˆ
B
|uig|2 dx ⩽ k2

ˆ
D
q |uq,g|2 dx ⩽ k2qmax

ˆ
D
|uq,g|2 dx for all g ∈ V⊥ .

We next apply theorem 4.4 with q1 = 0 and q2 = q to see there exists a constant C> 0 such
that

αk2
ˆ
B
|uig|2 dx ⩽ Ck2qmax

ˆ
D
|uig|2 dx for all g ∈ V⊥ .

However, this contradicts theorem 4.1 with q= 0, E=B, and M=D.

An analogous theorem holds if the contrast function is negative on its support.
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Theorem 5.2. Let B, D⊆ ΩR be open such that ΩR \D is connected to C+
R or C−

R , and let
q ∈ L∞R,+(Ω) with supp(q) = D. Further suppose that −1< qmin ⩽ q⩽ qmax ⩽ 0 a.e. in D for
some constants qmin,qmax ∈ R.

(a) If B⊆ D, then αTB ⩾d(q) Re(Nq) for all α⩾ Cqmax with the constant C> 0 from the-
orem 4.4.

(b) If B 6⊆ D, then for all α< 0, αTB 6⩾fin Re(Nq), and hence the operator Re(Nq)−αTB has
infinitely many positive eigenvalues.

Proof. Let B⊆ D. We use corollary 3.5 and theorem 4.4 with q1 = 0 and q2 = q to show that
there exists a constant C> 0 and a subspace V⊆ L2(CR) with dim(V)⩽ d(q) such that

Re

(ˆ
CR

gNqgds

)
⩽ k2

ˆ
D
q |uq,g|2 dx ⩽ k2qmax

ˆ
D
|uq,g|2 dx ⩽ Ck2qmax

ˆ
D
|uig|2 dx

for all g ∈ V⊥. We immediately obtain the assertion of (a) for α⩾ Cqmax.
For the proof of part (b), we let B 6⊆ D, α< 0 and assume, contrary to the assertion, that

αTB ⩾fin Re(Nq), i.e. there exists a finite dimensional subspace V1 ⊆ L2(CR) such that

αk2
ˆ
D
|uig|2 dx ⩾ Re

(ˆ
S2
gNqgds

)
for all g ∈ V⊥

1 .

From theorem 3.3 for q1 = 0 and q2 = q, we obtain that there exists a finite dimensional sub-
space V2 ⊆ L2(CR) such that

Re

(ˆ
CR

gNqgds

)
⩾ k2

ˆ
D
q|uig|2 dx for all g ∈ V⊥

2 .

Combining both inequalities yields the existence of a finite dimensional subspace V := V1 +
V2 ⊆ L2(CR) such that

αk2
ˆ
B
|uig|2 dx ⩾ k2

ˆ
D
q|uig|2 dx ⩾ k2qmin

ˆ
D
|uig|2 dx for all g ∈ V⊥ .

Noting that α< 0, we again have a contradiction to theorem 4.1 with q= 0, E=B, andM=D.
Thus our assumption was wrong, which finishes the proof of (b).

Finally, we consider the general case when the contrast function q is neither strictly positive
nor strictly negative a.e. on its support. In contrast to the criteria developed in theorems 5.1
and 5.2, which determine whether a probing domain B is contained in the scattering object
D or not, the criterion in theorem 5.3 characterizes whether a probing domain B contains the
scatterer D or not.

Theorem 5.3. Let D⊆ ΩR be open and bounded such that ΩR \D is connected to C+
R or C−

R
and ∂D is piecewise C1,1-smooth. Let q ∈ L∞R,+(Ω)with supp(q) = D, and suppose that−∞<
qmin ⩽ q⩽ qmax <∞ a.e. on D for some constants qmin,qmax ∈ R. Moreover, we assume that
for any x ∈ ∂D, and for any neighborhood U⊆ D of x in D, there exists a relatively open subset
O⊆ ΩR that is connected to C

+
R or C−

R with ∅ 6= E := O∩D⊆ U such that

q|E ⩾ qmin,E > 0 or q|E ⩽ qmax,E < 0 (5.2)

for some constants qmin,E,qmax,E ∈ R.
Let B⊆ ΩR be open such that ΩR \B is connected to C+

R or C−
R , and let TB denote the

corresponding probing operator from (5.1).
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(a) If D⊆ B, then

αTB ⩽d(q) Re(Nq) ⩽d(0) βTB for all α⩽min{0,qmin} , β ⩾max{0,Cqmax}

with the constant C> 0 from theorem 4.4.
(b) If D 6⊆ B, then

αTB 6⩽fin Re(Nq) for any α ∈ R or Re(Nq) 6⩽fin βTB for any β ∈ R .

Remark 5.4. The assumption on the contrast function q in theorem 5.3 basically says that for
any point x ∈ ∂D on the boundary of the scatterer the contrast function is either strictly positive
or strictly negative in a small neighborhood of a boundary segment Γ⊆ ∂D in D that either
contains x in its interior or on its boundary. In particular the theorem is valid, when the contrast
function is either strictly positive or strictly negative near the boundary of the scatterer. ♢
Proof. To show part (a) we assume that D⊆ B, and we apply corollary 3.5 and theorem 4.4
with q1 = 0 and q2 = q. Accordingly, there is a constant C> 0 and a subspace V1 ⊆ L2(CR)
with dim(V1)⩽ d(0) such that, for all g ∈ V⊥

1 and any β ⩾max{0,Cqmax},

Re

(ˆ
CR

gNqgds

)
⩽ k2

ˆ
D
q|uq,g|2 dx ⩽ k2qmax

ˆ
D
|uq,g|2 dx

⩽ k2Cqmax

ˆ
D
|uig|2 dx ⩽ k2β

ˆ
B
|uig|2 dx .

On the other hand, theorem 3.3 with q1 = 0 and q2 = q shows that there exists a subspace
V2 ⊆ L2(CR) with dim(V2)⩽ d(q) such that, for all g ∈ V⊥

2 and any α⩽min{0,qmin},

Re

(ˆ
CR

gNqgds

)
⩾ k2

ˆ
D
q|uig|2 dx ⩾ k2qmin

ˆ
D
|uig|2 dx ⩾ k2α

ˆ
B
|uig|2 dx .

For part (b) we observe that D 6⊆ B implies that U := D \B is not empty. Accordingly, we
choose a point x ∈ U∩ ∂D and an open neighborhood O⊆ ΩR of x with O∩D⊆ U and O∩
B= ∅, such that (5.2) is satisfied with E := O∩D. Without loss of generality we suppose that
O and ΩR \O are connected to C+

R or C−
R .

Suppose that q|E ⩾ qmin,E > 0 and Re(Nq)⩽fin βTB for some β ∈ R. Then we apply the-
orem 3.3 with q1 = 0 and q2 = q to see that there exists a finite dimensional subspace V3 ⊆
L2(CR) such that, for any g ∈ V⊥

3 ,

0 ⩾
ˆ
CR

g
(
Re(Nq)g−βTBg

)
ds ⩾ k2

ˆ
ΩR

(q−βχB) |uig|2 dx

= k2
ˆ
ΩR\O

(q−βχB) |uig|2 dx+ k2
ˆ
ΩR∩O

(q−βχB) |uig|2 dx

⩾ −k2
(
‖q‖L∞(Ω) + |β|

)ˆ
ΩR\O

|uig|2 dx+ k2qmin,E

ˆ
E
|uig|2 dx .

This contradicts theorem 4.1 withM=ΩR \O and q= 0, which guarantees the existence of a
sequence (gm)m∈N ⊆ V⊥

3 withˆ
E
|uigm |

2 dx→∞ and
ˆ
ΩR\O

|uigm |
2 dx→ 0 as m→∞ .

Hence, Re(Nq) 6⩽fin βTB for all β ∈ R.
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If q|E ⩽ qmax,E < 0 and αTB ⩽fin Re(Nq) for some α ∈ R, then the corollary 3.5 with q1 = 0
and q2 = q shows that there is a finite dimensional subspace V4 ⊆ L2(CR) such that, for any
g ∈ V⊥

4 ,

0 ⩽
ˆ
CR

g
(
Re(Nq)g−αTBg

)
ds ⩽ k2

ˆ
ΩR

(
q|uq,g|2 −αχB|uig|2

)
dx

= k2
ˆ
ΩR\O

(
q|uq,g|2 −αχB|uig|2

)
dx+ k2

ˆ
ΩR∩O

(
q|uq,g|2 −αχB|uig|2

)
dx

⩽ k2qmax

ˆ
ΩR\O

|uq,g|2 dx+ k2|α|
ˆ
ΩR\O

|uig|2 dx+ k2qmax,E

ˆ
E
|uq,g|2 dx .

We define M := ΩR \O. Since ∂D is piecewise C1,1 smooth, there is a connected subset Γ⊆
∂E \M that is relatively open and C1,1 smooth. Applying theorem 4.6 we find that there exists
a sequence (gm)m∈N ⊆ V⊥ such thatˆ
E
|uq,gm |2 dx→∞ and

ˆ
ΩR\O

|uq,gm |2 + |uigm |
2 dx→ 0 as m→∞ .

Since qmax,E < 0, this gives a contradiction. Accordingly, αTB 6⩽fin Re(Nq) for all α ∈ R.

6. Numerical examples

To demonstrate the feasibility of the shape reconstruction algorithm, we present some
examples for two-dimensional scattering problems with sign-definite contrast functions. We
consider obstacles with a constant refractive indexwhich differs from the backgroundmedium.
In this case, the scattering problem may be formulated as a transmission problem. The solu-
tion can be obtained by solving a system of two second kind weakly singular boundary integral
equations using the approach of [37]. We solve these integral equations by a Nyström method.

To discretize the operators Nq from (2.11) and TB from (5.1), a suitable subspace of L2(CR)
needs to be chosen. We define a complete orthonormal system on L2(CR) induced by the Neu-
mann eigenfunctions of −∆ on Σ,

g(1)m (x) :=

(
θm(xΣ)

0

)
, g(2)m (x) :=

(
0

θm(xΣ)

)
x ∈ CR , m ∈ N0 .

Here, we identify L2(CR) with L2(C
−
R )×L2(C+

R ). As we consider a two-dimensional problem
in Ω= R× (0,h) in this section, the Neumann eigenvalues are k2m = m2π2/h2, m ∈ N0, with
the corresponding eigenfunctions θ0(y2) =

√
1/h and θm(y2) =

√
2/hcos(kmy2), m ∈ N, for

y2 ∈ Σ. Fixing M ∈ N, we obtain the 2M+ 2 dimensional subspace

XM = span
{
g(1)m , g(2)m

∣∣∣ m= 0,1, . . . ,M
}
⊆ L2(CR) .

The incident fields corresponding to these basis functions are easily worked out using the
modal representation (2.9) of the Green’s function

ui
g(1)m

(x) =
∞∑
ℓ=0

e−iβℓ(R+x1)

2iβℓ
θℓ(x2)〈θm,θℓ〉L2(0,h) =

e−iβm(R+x1)

2iβm
θm(x2) , x ∈ ΩR ,

and likewise

ui
g(2)m

(x) =
e−iβm(R−x1)

2iβm
θm(x2) , x ∈ ΩR .
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We now obtain a discretization Nq := (Nν,µ
q,ℓ,m) ν,ℓ

µ,m
∈ C(2M+2)×(2M+2) of the near field operator

Nq by computing the orthogonal projections of the scattered field on the basis functions of
XM ,

Nν,µ
q,ℓ,m :=

〈
us
g(µ)
m
,g(ν)ℓ

〉
L2(CR)

, ν,µ= 1,2 , ℓ,m= 0, . . . ,M .

In our implementation, these scalar products are computed by the composite trapezoidal rule on
(0,h) which is highly accurate as the integrands extend to even 2 h-periodic smooth functions.
In the examples below, we use a rule with 81 quadrature points.

In what follows, we implement the criteria from theorems 5.1 and 5.2. As the test domain,
we chose a square B= ξ +(−a,a)2 ⊆ ΩR with center point ξ ∈ ΩR and lateral length 2a> 0.
The Born scattering operator TB from (5.1) applied to one of the basis functions g(µ)m of XM
with µ= 1,2 and m ∈ N0 satisfies(

TBg
(µ)
m

)
(x) = −k2

2i

∞∑
ℓ=0

θℓ(x2)
βℓ

ˆ
B
eiβℓ|x1−y1| θℓ(y2)u

i
g(µ)
m

(y)dy , x ∈ CR .

Introducing the coefficients

γℓ,m :=

ˆ ξ2+a

ξ2−a
θℓ(y2)θm(y2)dy2 , ℓ,m ∈ N0 ,

and inserting the expressions for the incident fields, we obtain(
TBg

(µ)
m

)
(x) =

k2

4

∞∑
ℓ=0

γℓ,mθℓ(x2)

βℓβm

ˆ ξ1+a

ξ1−a
eiβℓ|x1−y1| e−iβm(R−(−1)µy1) dy1 , x ∈ CR .

The discretization TB := (Tν,µℓ,m) ν,ℓ
µ,m

∈ C(2M+2)×(2M+2) of TB is again obtained by orthogonal

projection on XM , which gives

Tν,µℓ,m :=
〈
TBg

(µ)
m ,g(ν)ℓ

〉
L2(CR)

=
k2

4
γℓ,m

βℓβm

ˆ ξ1+a

ξ1−a
eiβℓ(R−(−1)νy1)e−iβm(R−(−1)µy1) dy1 .

Both this remaining integral and the coefficients γℓ,m can easily be computed analytically.
In the case q> 0, for a given parameter α, lateral length a, cut off parameter δ and grid of

center points ξ, we compute the indicator function Iα : ΩR → N,

Iα(ξ) := #{λ <−δ |λ is eigenvalue of Re(Nq)−αTB} .

Theorem 5.1 suggests that Iα is larger for test domains B= ξ +(−a,a)2 that do not intersect
the support supp(q) of the scattering object than on test domains B contained in supp(q).
Appropriate value of δ was estimated from a plot of magnitude of the eigenvalues of the matrix
Nq. In all examples below, we have chosen δ = 2 · 10−6.

In a first example, we consider a waveguide of height h= 5 and the wavenumber k= 6.
This corresponds to N= dhk/πe= 10 propagating modes in the waveguide in either direc-
tion. We take one evanescent mode in either direction into account and accordingly, choose
the 22 incident fields generated by the Neuman eigenfunctions θm, m= 0, . . . ,10, on C+

R and
C−
R , respectively, for R= 6. Including these two evanescent modes in our computation slightly

improved the reconstructions. Contributions from further evanescent modes are so small that
they offer no further improvement. The obstacle in this example is an ellipse located near the
center of the waveguide with constant contrast q= 2.

We have chosen equidistant grid points ξ ∈ ΩR with a step width τ = 0.05 and a lateral
length 2a= 0.02 for the test squares. Plots of the corresponding indicator function Iα for four
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Figure 1. Indicator function for an ellipse in a waveguide at wavenumber k= 6 and
contrast q= 2 for lateral pixel size 2a= 0.02 and various values of α. The boundary of
the true obstacle is shown in white.

different values of α are displayed in figure 1. As expected, the value of the indicator function
is lower for points inside or close to the obstacle than for points away from the obstacle.

In the example shown in figure 2, we consider a similar scattering problem, but at the wave
number k= 11. The obstacle is a circle with q= 2 and it is placed towards one of the waveguide
edges. In this example, there are 18 eigenfunctions corresponding to modes propagating in
either direction. These are used in the reconstruction, i.e. we choose 36 incident fields, and
do not include any evanescent modes. Again we plot the indicator function for four different
values of α, but with the same mesh and lateral test domain length as previously.

In the final example, we return to the wavenumber k= 6 but now consider an ellipse shaped
obstacle with a negative contrast q=−0.5. The same 20 propagating modes as before, but no
evanescent modes, are used to discretize the near field operator and the test operator. In this
example, due to the negative contrast in the refractive index, the indicator function needs to be
modified to

Iα(ξ) := #{λ > δ | λ is eigenvalue of Re(Nq)−αTB}

(see theorem 5.1). We again choose δ = 2 · 10−6. The results for various values of α are dis-
played in figure 3.

In all examples, with an appropriately chosen value of α, the indicator function clearly has
lowest values for points located inside or close to the obstacle. Low values of the indicator
function also occur near the waveguide edges. Some of the examples also show that a badly
chosen value of α leads to the appearance of patches with low values of the indicator through-
out the waveguide. A clear reconstruction of the shape of the obstacle appears to be beyond
what can be achieved from the available data. The magnitude of the cutoff value δ had to
chosen significantly larger than for the numerical results presented in [20], mainly due to the
accuracy with which the waveguide Green’s function G is evaluated in the boundary integral
method to generate the scattering data. In particular, at the higher wavenumber, where more

25



Inverse Problems 39 (2023) 075009 T Arens et al

Figure 2. Indicator function for a circle in a waveguide at wavenumber k= 11 and con-
trast q= 2 for lateral pixel size 2a= 0.02 various values of α. The boundary of the true
obstacle is shown in white.

Figure 3. Indicator function for an ellipse in a waveguide at wavenumber k= 6 and
contrast q=−0.5 for lateral pixel size 2a= 0.02 various values of α. The boundary of
the true obstacle is shown in white.
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propagating modes and thus a larger data set are available, the reconstructions are significantly
better.

7. Conclusions

We have shown that the rigorous monotonicity-based shape characterizations for inverse
boundary value and inverse medium scattering problems from [20, 28, 30, 47] can be trans-
ferred to inverse medium scattering problems in closed cylindrical waveguides. In particular
the treatment of the near field operator in the proofs of the monotonicity relation and of the
existence of localized wave functions required some additional nontrivial estimates and the
introduction of a near field equivalent of the scattering operator in the waveguide. Having
established the monotonicity relation and the existence of localized wave functions the final
proofs of the shape characterizations turned out to be rather close to the corresponding proofs
in [20, 28]. In our numerical examples we have seen that the method works reasonably well
using only the propagating part of the scattered fields in the waveguide, which is not covered
by our theoretical results.

In contrast to linear sampling and factorization methods the monotonicity based character-
ization of scattering objects is independent of transmission eigenvalues. Another advantage of
the monotonicity based approach is that it also applies to a large class of indefinite scattering
objects, i.e. when the conductivity contrast takes values larger and smaller than 1 inside the
scattering objects. On the other hand the numerical results that have been reported for linear
sampling and factorization methods in wave guides are superior to the results we obtained for
the monotonicity-based method in this work.
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