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Abstract
Parameter identification tasks for partial differential equations are non-linear illposed
problems where the parameters are typically assumed to be in L∞. This Banach space
is non-smooth, non-reflexive and non-separable and requires therefore a more sophis-
ticated regularization treatment than themore regular L p-spaces with 1 < p < ∞.We
propose a novel inexact Newton-like iterative solver where the Newton update is an
approximate minimizer of a smoothed Tikhonov functional over a finite-dimensional
space whose dimension increases as the iteration progresses. In this way, all iterates
stay bounded in L∞ and the regularizer, delivered by a discrepancy principle, con-
verges weakly-� to a solution when the noise level decreases to zero. Our theoretical
results are demonstrated by numerical experiments based on the acoustic wave equa-
tion in one spatial dimension. This model problem satisfies all assumptions from our
theoretical analysis.

Mathematics Subject Classification 65J20 · 65J22 · 65N20

1 Introduction

We consider the numerical solution of non-linear illposed and inverse problems where
the underlying non-linearity F maps from a possibly multi-component version of
L∞ into a normed space Y . This scenario appears quite naturally in many parameter
identification tasks for partial differential equations.
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For instance, in electrical impedance tomography (EIT) one wants to identify the
conductivity distribution in a body. To this end, electric currents are applied through
electrodes and the resulting voltages are measured. In the quasi-static regime, an
adapted version of the Laplace equation connects the currents with the voltages, see,
e.g., [1]. Another application is full waveform inversion (FWI), the most advanced
inversion technique in seismic imaging, see, e.g., [2, 3]. Depending on the used math-
ematical model for wave propagation (acoustic, elastic, or visco-elastic regime) the
searched-for parameters include bulk density, pressure and shear wave velocities, and
corresponding relaxation times. Here, a wave field is initiated by a source (explosion
or earthquake) and the parts of thewave field that are reflected from the Earth’s internal
structure are then picked up by receivers on the Earth’s surface or by hydrophones in
the ocean.

From an abstract point of view, in both examples we have to solve an equation

find u ∈ D(F) such that F(u) ≈ yδ (1)

where the non-linear operator

F : D(F) ⊂ L∞(D)� → Y (2)

maps � parameter functions u located on some domain of interest D to the respective
measurements. Further, yδ are the (noisy) measurements satisfying ‖yδ − F(u+)‖Y ≤
δ for one u+ ∈ D(F).

Newton-like regularization schemes are well-established iterations for getting a
meaningful approximate solution of non-linear inverse problems. In this work we
explore the Newton-like solver REGINN∞ which extends REGINN of [4, 5] to a non-
linear inverse problem with generic operators F as in (2). Here, F is required to fulfill
a few specific properties which are satisfied by EIT and, except for one, also by FWI
in all regimes. This not yet verified property of FWI is a structural assumption known
as tangential cone condition (TCC), see (3) below and consult [6] for a first promising
result. Apart from establishing the non-linearity constraint, the main challenge about
regularization in L∞ is its non-reflexive nature. As this space is further non-separable,
convergence of discretization schemes in the strong topology, which is desirable for
practical implementations, cannot be achieved, see [7].

In this work we will exploit the weak-� topology and semi-discrete approximations
to F based on a family {Xn}n of finite-dimensional nested subspaces of L∞(D)�. Such
an ansatz is very close to an implementation and addresses discretization errors directly
in the theory. Apart from minor mathematical restrictions which will be specified
below, the subspaces will also be held quite generic and may reflect features of the
reconstructions onewants to focus on, e.g. using piecewise constant functions tomodel
sharp interfaces. By the well-known limit

‖u‖L∞(D)� = lim
q→∞ ‖u‖Lq (D)� for all u ∈ L∞(D)�,
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Regularization in L∞ 211

for bounded D, Xn can be equivalently furnished with the Lqn (D)�-topology for
properly chosen qn < ∞ such that qn → ∞ as n → ∞. This approach then implies
that theNewton update for the n-th iterate can be obtained as an approximateminimizer
of a smooth (provided Y is smooth) and convex Tikhonov functional over Xn . As a
result, the underlying minimizing procedure can be implemented for general {Xn}n
with classical techniques from smooth and unconstrained optimization.

There is awealth of literature on the analysis ofNewton-like regularization schemes,
mainly in a Hilbert space but meanwhile also in a Banach space setting; we refer only
to the monographs [8, 9] for a first reading. However, most of the Banach space
methods are formulated in abstract spaces requiring smoothness and reflexivity at
least as they rely heavily on duality mappings to mimic the Riesz isomorphism. To
the best of our knowledge, regularization schemes applicable to non-reflexive spaces
are only considered in [7, 10–15]. The first six of these publications consider itera-
tive schemes on the basis of proximal point methods, Morozov, Ivanov, or Tikhonov
regularization, respectively. We will compare our scheme with the somewhat similar
IRGNM-Tikhonov method of [12] in Remark 2.6 below.

Our material is organized as follows: In Sect. 2 we introduce and analyze two
versions of REGINN∞ which differ in what information about the smoothness of the
ground truth is available a priori. Under reasonable assumptions both algorithms are
well defined and terminate with a regularized solution uMδ ∈ D(F) of (1). Further,
we prove the regularization property, that is, weak-� convergence of {uMδ }δ>0 to an
exact solution of F(·) = F(u+) as the noise level δ tends to zero. Our hypotheses
are reasonable in fact as they are met by EIT as well as FWI with exception of the
TCC (Sect. 3) as mentioned above. For FWI in the acoustic regime we are even able to
validate the stronger assumption about the ground truthwhich enters the secondversion
of REGINN∞. Finally, Sect. 4 contains some experiments to identify two parameters
(density and pressure wave velocity) in the acoustic wave equation. Here, all our
assumptions including TCC in a semi-discrete setting actually hold. Some technical
details that would otherwise interrupt the flow of reading have been moved to three
appendices.

2 REGINN∞

For some bounded domain D ⊂ R
d let F : D(F) ⊂ L∞(D)� → Y be Fréchet-

differentiable and satisfy the tangential cone condition (TCC) at u+, i.e., there are a
positive constant ω < 1 and a ball Br (u+) ⊂ D(F) with radius r > 0 such that

‖F(u) − F (̃u) − F ′(̃u)(u − ũ)‖Y ≤ ω‖F(u) − F (̃u)‖Y
for all u, ũ ∈ Br (u

+). (3)

Here, F ′ : D(F) ⊂ L∞(D)� → L(L∞(D)�,Y
)

denotes the Fréchet-derivative of F
and L∞(D)� is endowed with ‖ · ‖2

L∞(D)�
where
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212 L. Pieronek, A. Rieder

‖u‖2Lq (D)�
= ‖(u1, . . . , u�)‖2Lq (D)�

:=
�
∑

j=1

‖ui‖2Lq (D), q ∈ [1,∞].

The TCC, introduced in [16], is a well-established and widely used assumption in the
convergence analysis of a variety of iterative regularization schemes for non-linear
illposed problems; we only refer to the monographs [8, 9]. Nevertheless, only a few
academic examples are reported in the infinite-dimensional setting where it holds, see,
e.g., [8, 17, 18].

For ω < 1/2 we can equivalently restate the TCC as

‖F(u) − F (̃u) − F ′(̃u)(u − ũ)‖Y ≤ L‖F ′(̃u)(u − ũ)‖Y , (4)

with L = ω/(1 − ω) < 1. Since our method will be explicitly based on discretizing
L∞(D)�, we impose the following assumptions on corresponding spaces Xn :

(S1) {Xn}n∈N is a sequence of nested subspaces of L∞(D)�, i.e., Xn ⊂ Xn+1 ⊂
L∞(D)� for all n ∈ N.

(S2) For each Xn there exists a linear projection operator Pn : L∞(D)� → Xn , that
is, Pnu = u for all u ∈ Xn , satisfying ‖Pnu‖L∞(D)� ≤ CP‖u‖L∞(D)� where the
constant CP ≥ 1 is independent of n.

(S3) For any fixed C∞ > 1 we can find a positive increasing sequence {qn}n∈N such
that

‖u‖L∞(D)� ≤ C∞‖u‖Lqn (D)� for all u ∈ Xn .

Note that the L∞(D)�-norm is always stronger than the Lqn (D)�-norm, hence the
magnitude ofC∞ > 1 in (S3) determines how tight the norm equivalence of ‖·‖L∞(D)�

and ‖ · ‖Lqn (D)� is, restricted to Xn . Thus, having set {qn}n∈N once for a fixed feasible
subspace sequence {Xn}n∈N and some C∞ > 1, we can easily switch between non-
smooth and smooth norms. We emphasize that C∞ is independent of n. A family
{Xn}n∈N enjoying (S1)–(S3) is constructed in Appendix A.1 on the basis of tensor
product B-splines (see Appendix A.2 for a possible other construction, which is,
however, not considered further in this work).

To ensure that our discretizations do indeed approximate the actual inverse problem
in L∞(D)� sufficiently well, we require a compatibility condition for F of the form

lim inf
n→∞ ‖F ′(u)

(

û − Pnû
)‖Y = 0 (5)

for all u ∈ D(F) and all û ∈ L∞(D)�. This extra condition is necessary since, in
general, one cannot expect limn→∞ Pnû = û in L∞(D)� strongly (which would
yield (5) by continuity of F ′) because the union of Xn is countable while L∞(D)� is
not separable. However, as a consequence, the closure of the range of F ′(u) must be
separable, in contrast to Y itself, for all u ∈ D(F).
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Regularization in L∞ 213

Additionally, to prove the regularization property of our scheme (Algorithm 1), we
will require either the weak-� closedness of F or the range inclusion

R(F ′(u+)∗) ⊂ L1(D)� (6)

where F ′(u+)∗ : Y ∗ → (

L∞(D)∗
)� denotes the adjoint operator. In Sects. 3.1 and 3.2

below we will verify (5) as well as (6) for the forward maps belonging to EIT and
FWI, respectively.

Asmotivated in the introduction, the guideline for designingour regularization algo-
rithm is to generate uniformly bounded iterates um in L∞(D)� which give sufficiently
small residuals

bδ
m := yδ − F(um), (7)

where yδ ∈ Y is the perturbed datum at hand. We build on an inexact-Newton
framework and find the updates from the linearization approximately via Tikhonov
regularization linked to Xn as follows: Given an initial guess u0 ∈ D(F) and an initial
space Xn0 , we iterate

um+1 = um + sm, m = 0, 1, 2, . . . , (8)

where nm ∈ N with nm ≥ nm−1 and sm ∈ Xnm are chosen such that

Jnm ,m(sm) ≤ μ2
m‖bδ

m‖2Y . (9)

Here, the Tikhonov functional Jn,m : Xn → [0,∞) is

Jn,m(s) := ‖F ′(um)s − bδ
m‖2Y + αm‖s + (um − u0)‖2Lqn (D)�

(10)

with penalty parameters set a posteriori by

αm = ‖bδ
m‖2Y
γ 2 . (11)

We recall from assumption (S3) that an approximate minimizer of (10) is also one of
the corresponding Tikhonov functional with ‖ · ‖L∞(D)�-penalty term and vice versa.
However, given the sequence {qn}n∈N for some C∞ > 1 and a subspace sequence
{Xn}n∈N, we have more flexibility in choosing a numerical method to find sm in (9)
via the smoothed version.

So far, the parameters γ, {μm}m∈N are restricted to fulfill 0 < μm < 1 and γ �= 0.
While μm serves as a stopping criterion in the spirit of an inexact Newton condition
to set the m-th update sm , γ will be responsible for keeping the resulting iterate um+1
sufficiently close to u+: the larger γ is chosen, the better the initial guess has to be. The
effect of the initial discretization level n0 on the iterates is demonstrated in Section 4 by
numerical experiments. We stop the Newton iteration (8) by a discrepancy principle
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214 L. Pieronek, A. Rieder

Algorithm 1 REGINN∞
Input: F ; u0; yδ ; δ; {μm }m ; τ ; γ ; C∞; n0
Output: uM with ‖yδ − F(uM )‖Y ≤ τδ

m := 0
bδ
m := yδ − F(um )

while ‖bδ
m‖Y > τδ do

αm := ‖bδ
m‖2Y /γ 2

find (smallest) n ≥ nm ∈ N such that Jn,m (sm ) ≤ μ2
m‖bδ

m‖2Y for some sm ∈ Xn

um+1 := um + sm
m := m + 1
nm := n
bδ
m := yδ − F(um )

end while
M := m

with constant τ > 1. The resulting inversion scheme REGINN∞ is summarized in
Algorithm1. It iswell definedunder reasonable assumptions according to the following
theorem. Its regularization property is then specified in Theorem 2.3.

Theorem 2.1 (Well-definedness and termination of REGINN∞) Let F : D(F) ⊂
L∞(D)� → Y be as above satisfying (3) with ω < 1/3 in Br (u+) ⊂ int(D(F))

and (5), where {Xn}n∈N and {Pn}n∈N fulfill assumptions (S1)–(S3). Let yδ be given
such that ‖F(u+) − yδ‖Y ≤ δ for one δ > 0. Let 	 ∈ ( 2ω

1−ω
, 1) and set

μmax := (1 − ω)	 − ω.

For

γ ∈
(

0,
r√

C∞μmax

)

and

r0 ∈
(

0,min

{

r −√C∞μmaxγ,
γ

CP

√

μ2
max − ω2

})

choose

τ >
1 + ω

√

μ2
max − C2

Pr
2
0/γ 2 − ω

.

Further, define

μmin :=
√

(

ω + 1 + ω

τ

)2

+ C2
P
r20
γ 2 .

Restrict all tolerances {μm} to (μmin, μmax) and start with some arbitrary n0 ∈ N

and u0 ∈ Br0(u
+). Then, there exists an Mδ ∈ N such that all iterates {u1, . . . , uMδ }
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Regularization in L∞ 215

of REGINN∞ are well-defined and stay in Br (u+). Moreover, ‖bδ
m+1‖Y ≤ 	‖bδ

m‖Y
for m = 0, . . . , Mδ − 1, ‖bδ

Mδ
‖Y ≤ τδ, and Mδ = O(| log δ|) as δ ↘ 0.

Proof Before we begin with the proof we discuss our assumptions on the parameters.
First, observe that the open interval for choosing 	 is non-empty by ω < 1/3. The
lower bound for 	 guarantees that μmax > ω. Together with the upper bound on γ

this yields a positive upper bound for r0. Further, the radicand and the denominator of
the lower bound for τ are positive. Finally, μmin < μmax.

We use an inductive argument and assume therefore that ‖bδ
m‖Y ≤ 	m‖bδ

0‖Y as
well as ‖ui − u+‖L∞(D)� < r for i ≤ m, which holds in particular for m = 0 because
of ‖u0 − u+‖L∞(D)� < r0 < r . If ‖bδ

m‖Y ≤ τδ, REGINN∞ stops with uMδ := um
and nothing else needs to be shown. Otherwise, ‖bδ

m‖Y > τδ and we next show that a
Newton update is well defined by (9). Let sn,m := argmins∈Xn Jn,m(s)which exists as
the unique minimizer of a strictly convex functional over a finite dimensional space.
Then,

Jn,m(sn,m) ≤ Jn,m
(Pn(u+ − um)

)

= ‖F ′(um)Pn(u+ − um) − bδ
m‖2Y

+ αm‖Pn(u+ − um) + (um − u0)‖2Lqn (D)�
.

Recursively, we get um − u0 = s0 + s1 + · · · + sm−1 from which we deduce that
um − u0 is in Xnm−1 as the spaces are nested by (S1). Hence, by (S2),

Pn(um − u0) = um − u0 (12)

for n ≥ nm−1 and by linearity of Pn we may simplify

Jn,m(sn,m) ≤ ‖F ′(um)Pn(u+ − um) − bδ
m‖2Y + αm‖Pn(u+ − u0)‖2Lqn (D)�

≤ ‖F ′(um)Pn(u+ − um) − bδ
m‖2Y + vold(D)2/qnC2

P
r20
γ 2 ‖bδ

m‖2Y .

In the last step we additionally used (11), Hölder’s inequality and ‖Pn(u+ −
u0)‖L∞(D)� ≤ CP‖u+ − u0‖L∞(D)� < CPr0, see (S2). We continue by splitting
the residual term according to

‖F ′(um)Pn(u+ − um) − bδ
m‖Y ≤ ‖F ′(um)(u+ − um) − F(u+) − F(um)‖Y

+ ‖F(u+) − yδ‖Y
+ ‖F ′(um)

(Pn(u+ − um) − (u+ − um)
)‖Y

≤ ‖F ′(um)(u+ − um) − F(u+) − F(um)‖Y + δ

+ ‖F ′(um)
(Pn(u+ − u0) − (u+ − u0)

)‖Y ,
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216 L. Pieronek, A. Rieder

employing again (12) to get the bottom line. Since ‖um−u+‖L∞(D)� < r by induction,
TCC (3) yields

‖F ′(um)Pn(u+ − um) − (yδ − F(um)
)‖Y

≤ ω‖F(u+) − F(um)‖Y + δ + ‖F ′(um)
(Pn(u+ − u0) − (u+ − u0)

)‖Y

and with ‖F(u+) − F(um)‖Y ≤ ‖F(u+) − yδ‖Y + ‖bδ
m‖Y ≤ δ + ‖bδ

m‖Y we deduce
further

‖F ′(um)Pn(u+ − um) − (yδ − F(um)
)‖Y

≤ ω
(

δ + ‖bδ
m‖Y

)+ δ + ‖F ′(um)
(Pn(u+ − u0) − (u+ − u0)

)‖Y .

Taking into account that ‖bδ
m‖Y > τδ, we get

‖F ′(um)Pn(u+ − um) − (yδ − F(um)
)‖Y

≤ ‖bδ
m‖Y

(

ω + 1 + ω

τ

)

+ ‖F ′(um)
(Pn(u+ − u0) − (u+ − u0)

)‖Y

and finally

Jn,m(sn,m) ≤
(

‖bδ
m‖Y

(

ω + 1 + ω

τ

)

+ ‖F ′(um)
(Pn(u+ − u0) − (u+ − u0)

)‖Y
)2

+ vold(D)2/qnC2
P
r20
γ 2 ‖bδ

m‖2L2(D)
. (13)

Since vold(D)2/qn → 1 as n → ∞ and in view of (5), we find that

lim inf
n→∞ Jn,m(sn,m) ≤ ‖bδ

m‖2Y
(

(

ω + 1 + ω

τ

)2 + C2
P
r20
γ 2

)

= μ2
min‖bδ

m‖2Y . (14)

Consequently, condition (9) with μm > μmin is feasible for nm large and appropriate
sm ∈ Xnm\{0}, where sm �= 0 follows by Jn,m(0) ≥ ‖bδ

m‖2Y . Hence, um+1 = um + sm
is well defined and, relying on (S3) as well as (11), we proceed with

‖um+1 − u0‖2L∞(D)�
= ‖sm + (um − u0)‖2L∞(D)�

≤ C∞
Jnm ,m(sm)

αm

≤ C∞
μ2
m‖bδ

m‖2Y
αm

< C∞μ2
mγ 2 .

Hence,

‖um+1 − u+‖L∞(D)� ≤ ‖um+1 − u0‖L∞(D)� + ‖u+ − u0‖L∞(D)�

<
√

C∞μmaxγ + r0 < r
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Regularization in L∞ 217

by the upper bound of r0, yielding um+1 ∈ Br (u+) ⊂ int(D(F)). Finally, we estimate
on the basis of (4) and (9)

‖bδ
m+1‖Y = ‖(bδ

m − F ′(um)sm
)− (F(um+1) − F(um) − F ′(um)sm

)‖Y
≤ ‖bδ

m − F ′(um)sm‖Y + ω

1 − ω
‖F ′(um)sm‖Y

≤ √Jn,m(sm) + ω

1 − ω

(‖bδ
m‖Y + ‖F ′(um)sm − bδ

m‖Y
)

≤ μm‖bδ
m‖Y + ω

1 − ω
(1 + μm)‖bδ

m‖Y (15)

=
(

μm + ω

1 − ω
(1 + μm)

)

‖bδ
m‖Y

<

(

μmax + ω

1 − ω
(1 + μmax)

)

‖bδ
m‖Y < 	‖bδ

m‖Y .

Having thus proven the induction part, REGINN∞ is forced to terminate for any δ > 0
due to ‖bδ

m‖Y ≤ 	m‖bδ
0‖Y ≤ τδ for m sufficiently large. From this estimate, we may

even deduce Mδ = O(| log δ|) as δ ↘ 0. ��
Remark 2.2 (a) The name REGINN∞ for Algorithm 1 is justified by the stopping
condition (9) for determining the Newton update which is, in view of (10) and (11),
equivalent to

‖F ′(um)sm − bδ
m‖2Y

‖bδ
m‖2Y

+
‖sm + (um − u0)‖2Lqn (D)�

γ 2 ≤ μ2
m .

In particular, sm satisfies the stopping condition of REGINN [4], i.e., the above con-
dition without penalty term.
(b) Recall that REGINN fulfills in the Hilbert space setting (and likewise for smooth
reflexive Banach spaces) the error reducing property for the iterates of many inner
linear solvers, keeping thus um ∈ Br (u+) if the initial guess was chosen so. However,
this does not hold any longer for our L∞-tailored REGINN∞ in general. Therefore our
parameters need to be controlled in terms of both ω and r , whereas standard REGINN
only requires the knowledge of ω for defining admissible tolerances μ and stopping
constants τ , see Theorem 3.1 in [19].

In case that F is linear, i.e., F(u) = Au for some A ∈ L(L∞(D)�,Y ), the TCC
holds with ω = 0 and r = ∞. Some observations are in order:

• Although r0 can be arbitrarily large now, to still ensure a finite and uniform L∞-
bound on the iterates, r0 < γ < ∞ needs to be chosen compatibly.

• Because of

‖F ′(um)sm − bδ
m‖2Y = ‖Asm − (yδ − Aum)‖2Y = ‖Aum+1 − yδ‖2Y
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218 L. Pieronek, A. Rieder

the iterate um+1 satisfies

‖Aum+1 − yδ‖2Y + αm‖um+1 − u0‖2Lqnm (D) ≤ μ2
m‖bδ

m‖2Y .

Hence, um+1 can be considered an approximate minimizer of the Tikhonov func-
tional u �→ ‖Au− yδ‖2Y +αm‖u−u0‖2Lqnm (D)

in the set u0+Xnm . Put differently:
in the linear case, REGINN∞ can be viewed as a cascading Tikhonov regular-
ization iterating over nested finite-dimensional spaces where the penalty term is
determined a posteriori by the previous iterate.

Theorem 2.3 (Regularization property ofREGINN∞)Adopt all assumptions andnota-
tions from Theorem 2.1 with Br (u+) ⊂ D(F) and set F(u+) = y. Additionally,
assume that F ′(u+) fulfills (6) or that F is weakly-� sequentially closed, that is,

wn
�

⇀ w in L∞(D)� and F(wn)⇀z imply that F(w) = z. Let {δi }i∈N be a positive
zero sequence and let uMδi

be the output of Algorithm 1 with respect to perturbed

data yδi . Then the set of weak-� accumulation points of the sequence {uMδi
}i∈N is

non-empty and consists of solutions to F(·) = y. If u+ is the only solution in Br (u+),
then even the whole sequence {uMδi

}i∈N converges weakly-� to u+ in L∞(D)�.

Proof By construction in Theorem 2.1 we know that {uMδi
}i∈N yields

‖y − F(uMδi
)‖Y ≤ ‖y − yδi ‖Y + ‖bδi

Mδi
‖Y ≤ (1 + τ)δi → 0 (16)

and is uniformly bounded in L∞(D)�, so there exists weak-� accumulation points in

Br (u+) by sequential weak-�-compactness. Take representatively uMδik

�
⇀ ũ. In case

that F is weakly-� sequentially closed, we can directly deduce F (̃u) = y, hence any
weak-� accumulation point solves the equation. In case that (6) holds, we first note
that the TCC (3) implies by the reverse triangle inequality for any u ∈ Br (u+) that

(1 − ω)‖F(u+) − F(u)‖Y ≤ ‖F ′(u+)(u+ − u)‖Y
≤ (1 + ω)‖F(u+) − F(u)‖Y . (17)

With (6) we then obtain for any g ∈ Y ∗

〈F ′(u+)̃u, g〉Y ,Y ∗ = 〈̃u, F ′(u+)∗g〉L∞(D)�,L1(D)�

= lim
k→∞〈uMδik

, F ′(u+)∗g〉L∞(D)�,L1(D)�

= lim
k→∞〈F ′(u+)uMδik

, g〉Y ,Y ∗

= 〈F ′(u+)u+, g〉Y ,Y ∗ ,

where the last equality above follows by the second inequality in (17) with u = uMδik

and F(uMδik
) → y in Y . We deduce that F ′(u+)(u+ − ũ) = 0 and combining this

relation now with the first inequality in (17) using ũ = u, we may again conclude

123



Regularization in L∞ 219

F (̃u) = y. Finally, if u+ is the only solution to F(·) = y in Br (u+), the weak-�
convergence of the whole sequence {uMδi

}i∈N follows by a standard subsequence
argument, see [20, Prop. 10.13(2)]. ��
Remark 2.4 If F ′(u+) is injective, ‖u‖� := ‖F ′(u+)u‖ constitutes a norm on L∞(D)�

with respect to which {uMδ }δ>0 then converges strongly to u+ according to (17) and
(16) at the rate ‖u+ − uMδ‖� = O(δ) as δ → 0. However, this norm is generally
weaker than ‖·‖L∞(D)� with equivalence if and only if F

′(u+) is boundedly invertible.
However, for locally illposed problems F(·) = y we expect its linearization to be
illposed as well.

Remark 2.5 We discuss how the statements of the theorems from above carry over
to a semi-discrete situation as it appears under an implementation of Algorithm 1.
Typically, one Xnmax represents the finest possible or finest chosen resolution for the
sought-for quantity u+ ∈ Xnmax and models the implementation from a mathematical
point of view.1 Here, Xnmax is equipped with the L∞-topology. Now, Theorems 2.1
and 2.3 apply to

Fnmax : D(F) ∩ Xnmax ⊂ L∞(D)� → Y , u �→ F(u),

where (5) can be omitted due to

F ′
nmax

(u)
(

(u+ − u0) − Pnmax(u+ − u0)
) = 0

since both u0 and u+ are assumed to be in Xnmax . Further, (14) then reads

Jnmax,m(snmax,m) ≤ ‖bδ
m‖2Y

(

(

ω + 1 + ω

τ

)2 + vold(D)C2
P
r20
γ 2

)

and as the only consequence the constant CP needs to be replaced by vold(D)1/2CP
in the definition of corresponding REGINN∞ parameters.

We emphasize that the underlying semi-discrete inverse problem is: given yδ ∈ Y
find uδ ∈ Xnmax such that Fnmax(u

δ) ≈ yδ where yδ now incorporates measurement
noise and discretization error.

Remark 2.6 At first glance the IRGNM-Tikhonovmethod of [12] andREGINN∞ seem
to be quite similar, but they are separated by significant structural differences: In
IRGNM-Tikhonov the penalty parameter is determined a priori and is assigend to a
fixed regularization term, whereas for REGINN∞ the regularization term is explic-
itly n-dependent and relies on an the posteriori parameter choice (11). Further, the
Newton update for the IRGNM-Tikhonov method has to be an exact minimizer of
the Tikhonov functional. In contrast, the Newton update for REGINN∞ only requires

1 Recall that Theorem 2.1 in its original version requires an initial guess u0 ∈ Br0 (u
+). Since L∞(D)�

is not separable, however, there might be no element in Xn for any n ∈ N which satisfies this closeness
condition. As remedywemay even enlarge the parameter space for the semi-discrete problem toU0+Xnmax

where U0 ⊂ L∞(D)� is a proper finite dimensional subspace such that u0 ∈ U0. In this case, we assume
u+ ∈ U0 + Xnmax .
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an approximate minimizer, see (9), which is especially convenient when it comes to
practical realizations. Note also that the discrete spaces Xn are an integral part of
REGINN∞ and its theory, so numerical effects are included in a natural way. As part
of our results, the discrete regularizers uMδi

∈ X
nMδi of Theorem 2.3 converge to

the continuous limit u+ ∈ L∞(D)�. A similar connection of the discrete with the
continuous world is (to our knowledge) still pending for the method in [12].

The previous version of REGINN∞ requires the determination of successive dis-
cretization levels nm ≥ nm−1 for possibly strongly increasing nm so that many
intermediate (almost) minimizers s ∈ Xn of (10) for nm−1 ≤ n ≤ nm need to be
computed before meeting the givenμm-criterion in (9). As this adaptive discretization
strategy can become numerically expensive, we want to present an alternative version
which directly links n to m. A closer look at the proof of Theorem 2.1 reveals that nm
actually depends on the decay of ‖F ′(um)(Pn(u+ − u0) − (u+ − u0))‖Y . Hence, if
we have a concrete upper bound for this discretization residual in terms of n, feasible
choices of nm can be found by simple algebraic manipulation. Such upper bounds can
be deduced on the basis of better initial guesses which are governed by some stronger
norm. For this purpose we state the following refined version of assumption (5):
If X ⊂ L∞(D)� is an embedded normed space such that

‖û‖L∞(D)� ≤ CX‖û‖X for all û ∈ X , (18)

then for any u+ such that B̃r (u+) ⊂ int(D(F)), u ∈ B̃r (u+) and û ∈ X we assume
that

‖F ′(u)
(

û − Pnû
)‖Y ≤ C+‖û‖Xβ(n), (19)

where C+ > 0 and β fulfills β(n) ↘ 0 with β(0) = 1. We think of β as being rather
independent of u ∈ D(F) once X and {Xn}n∈N are set while the magnitude of C+
is strongly B̃r (u+)-dependent. We will verify in Sect. 3.3 below that (19) is satisfied,
for instance, by the modeling assumptions of FWI in the acoustic regime. The next
theorem shows that we can indeed determine nm conveniently for successive Newton
steps of REGINN∞ when replacing condition (5) by (19).

Theorem 2.7 Adopt all assumptions, notations and parameters from Theorems 2.1
and 2.3, and assume that (19) holds—without loss of generality with r̃ = r by shrink-
ing one of the radii otherwise. Start with u0 ∈ L∞(D)� such that ‖u+ − u0‖X <

min{r0/CX , 1/C+} and restrict {μm} to (με
min, μmax), where

με
min :=

√

(

ω + 1 + ω

τ
+ ε

)2

+ max
{

vold(D)2/qn0 , 1
}

C2
P
r20
γ 2 < μmax (20)

for some ε > 0 sufficiently small and qn0 large with n0 ∈ N. Further, let nm be
successively defined by

nm := min

{

n ≥ n0 : β(n) ≤ ε‖bδ
m‖Y

}

. (21)
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Algorithm 2 REGINN∞ for improved initial guesses

Input: F ; u0; yδ ; δ; {μm }m ; τ ; γ ; C∞; n0 ; ε; β
Output: uM with ‖yδ − F(uM )‖Y ≤ τδ

m := 0
bδ
m := yδ − F(um )

while ‖bδ
m‖Y > τδ do

αm := ‖bδ
m‖2Y /γ 2

nm := min
{

n ≥ n0 : β(n) ≤ ε‖bδ
m‖Y

}

determine sm ∈ Xnm : Jnm ,m (sm ) ≤ μ2
m‖bδ

m‖2Y
um+1 := um + sm
m := m + 1
bδ
m := yδ − F(um )

end while
M := m

Then we can find sm ∈ Xnm satisfying (9). In particular, REGINN∞ also terminates
in this case and the regularization property still holds.

Proof First, nm according to (21) is well defined since limn→∞ β(n) = 0. Besides,
since ‖bδ

m‖Y is monotonously decreasing in m, we get that nm is non-decreasing, too.
Using sm := argmins∈Xnm Jnm ,m(s), we may compute with (13) and by (19)

Jnm ,m(sm) ≤
(

‖bδ
m‖Y

(

ω + 1 + ω

τ

)

+ ‖F ′(um)
(Pn(u+ − u0) − (u+ − u0)

)‖Y
)2

+ vold(D)2/qnm
r20
γ 2C

2
P‖bδ

m‖2L2(D)

≤
(

‖bδ
m‖Y

(

ω + 1 + ω

τ

)

+ C+‖u+ − u0‖X
︸ ︷︷ ︸

<1

β(nm)
︸ ︷︷ ︸

≤ε‖bδ
m‖Y

)2

+ max{vold(D)2/qn0 , 1}C2
P
r20
γ 2 ‖bδ

m‖2L2(D)

≤ (με
min)

2‖bδ
m‖2L2(D)

.

The fact that REGINN∞ still terminates and also admits the regularization property
follows by Theorems 2.1, 2.3 and ‖u0 − u+‖L∞(D)� ≤ CX‖u0 − u+‖X < r0. ��

For convenience, we restate REGINN∞ in Algorithm 2 subject to u+ − u0 ∈ X for
which we need to provide ε and β as additional input. This version is especially of
interest if the regularity u+ ∈ X is known a priori so that u0 ∈ X ensures u+−u0 ∈ X ,
as desired.

3 Applications: parameter identification tasks in PDEs

In this section we will verify our abstract assumptions (5) and (6) in the concrete
settings of electrical impedance tomography and time domain full waveform inversion
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(FWI) in the visco-elastic regime which is the state-of-the-art imaging modality in
exploration geophysics, see, e.g., [2, 3]. Both inverse problems are locally illposed.
We will even show that (19) is satisfied in the acoustic regime. Moreover, our results
for FWI carry over to parameter identification tasks for other hyperbolic evolution
equations, such as an inverse problem in electromagnetic scattering.

For all applications we rely on the discrete B-spline spaces constructed in
Appendix A.1.

3.1 Electrical impedance tomography under the complete electrodemodel

Electrical impedance tomography (EIT) entails the determination of the electric con-
ductivity distribution of an object by applying electric currents at the boundary through
electrodes and measuring the resulting voltages at the boundary as well. Potential
applications are, for instance, medical imaging and non-destructive testing.

Let σ : D → [σmin,∞), σmin > 0, be the searched-for conductivity distribution in
the simply connected Lipschitz-domain D ⊂ R

2. Further, the p electrodes are denoted
by E1, . . . , Ep and are assumed to be open subsets of ∂D, the boundary of D, having
positive surface measure: |E j | > 0, j = 1, . . . , p. Moreover, let the electrodes be
connected and separated: Ei ∩ E j = ∅, i �= j . To this electrode configuration we
associate the electrode space

Ep := span{χE1, . . . , χEp } ∩ L2
♦(∂D) ⊂ L2

♦(∂D)

where χEi is the indicator function of the i th electrode and L2
♦(∂D) is the space of

L2-functions on the boundary of D having vanishing mean.
The forward problemof impedance tomographyunder the complete electrodemodel

(CEM) in the weak formulation is based on the bilinear form a : Yp × Yp → R,
Yp := H1(D) ⊕ Ep,

a
(

(v, V ), (w,W )
) :=

∫

D
σ∇v · ∇w dx + 1

z

∫

∂D
(v − V )(w − W ) ds

Given an electrode (mean) current I ∈ Ep and a contact impedance z > 0, find a
voltage potential u ∈ H1(D) and an electrode voltage U ∈ Ep such that

a
(

(u,U ), (w,W )
) =

∫

∂D
I Wds for all (w,W ) ∈ Yp. (22)

The vanishing mean of I and U can be interpreted as conservation of charge and
grounding the potential, respectively. CEM (22) is the most accurate mathematical
model for EIT currently in use and has a unique solution for σ ∈ L∞+ (D), where

L∞+ (D) := {σ ∈ L∞(D) : σ ≥ σmin > 0 a.e. in D}.

The latter follows from the Lax-Milgram theorem, see [21].
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The nonlinear forward operator F describing CEM is

F : L∞+ (D) ⊂ L∞(D) → L(Ep), σ �→ {I �→ U }.

In other words: F(σ ) maps the current I to the voltage U of the solution of (22). Its
Frechét derivative F ′(σ ) ∈ L(L∞(D),L(Ep)

)

is given by

F ′(σ )[h]I = U ′

where (u′,U ′) ∈ Yp uniquely solves

a
(

(u′,U ′), (w,W )
) = −

∫

D
h∇u(I ) · ∇wdx for all (w,W ) ∈ Yp (23)

with u = u(I ) being the first component of the solution of (22) with respect to the
current I , see, e.g., [22]. We will similarly use U (I ) for the second component of the
solution of (22) and u′(I ) for the first component of (23).

We equip L(Ep) with the Hilbert-Schmidt inner product: 〈	,�〉 HS =
∑p−1

j=1 〈	I j , � I j 〉L2(∂D) where {I1, . . . , Ip−1} is an orthonormal basis of Ep. This
inner product is independent of the chosen orthonormal basis.

Lemma 3.1 The adjoint operator F ′(σ )∗ : L(Ep)
∗ → L∞(D)∗ is given by

F ′(σ )∗� = −
p−1
∑

j=1

∇u(� I j ) · ∇u(I j )

where u(� I j ) and u(I j ) denote the solutions of (22) with respect to I = � I j and
I = I j , respectively. As a sum of products of two L2-functions, F ′(σ )∗� is even in
L1(D) ⊂ L∞(D)∗, so that (6) holds.

Proof Set 	 = F ′(σ )[h], 	 j = 	I j , and � j = � I j for one � ∈ L(Ep). Then,

〈	,�〉 HS =
p−1
∑

j=1

〈	 j , � j 〉L2(∂D)

(22)=
p−1
∑

j=1

a
(

(u(� j ),U (� j )), (u
′(I j ),	 j )

)

(23)= −
∫

∂D
h

p−1
∑

j=1

∇u(� j ) · ∇u(I j ) ds = 〈h, F ′(σ )∗�〉L∞(D)×L∞(D)∗

which settles the argument. ��
Lemma 3.2 Let Xn = Xn

N (D), n ∈ N, be the tensor product spline space of
Appendix A.1 with projector Pn defined in (A5). Then, for any σ ∈ L∞+ (D),

lim
n→∞

∥

∥F ′(σ )[h − Pnh]∥∥L(Ep)
= 0 for any h ∈ L∞(D).
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Proof We start with

∥

∥F ′(σ )[h − Pnh]∥∥2L(Ep)
=

p−1
∑

j=1

∥

∥F ′(σ )[h − Pnh]I j
∥

∥

2
L2(∂D)

.

The bilinear form a is bounded and elliptic on Yp. Hence, it follows from (23) that

∥

∥F ′(σ )[h − Pnh]I j
∥

∥

L2(∂D)
�
∥

∥(h − Pnh)|∇u(I j )|
∥

∥

L2(D)
.

Since Pnh
n→∞−−−→ h pointwise a.e. (Appendix B), the norm on the right tends to zero

as n → ∞ by the dominated convergence theorem. ��

So we have validated (5) and (6) for the forward operator of EIT. Moreover, TCC
(3) holds for the semi-discrete version Fnmax of F (Remark 2.5) provided the number
of electrodes is sufficiently large [22, Theorem 4.5].

3.2 Full waveform inversion

Wave propagation in realistic media can be modeled by a visco-elastic wave equation
which accounts for dispersion and attenuation [2, Chapter 5]. Here, we consider the
formulation introduced in [23]: Let D ⊂ R

3 be a Lipschitz domain. Using L ∈ N

damping tensors σ l : [0, T ] × D → R
3×3
sym , l = 1, . . . , L , the evolution of the particle

velocity field v : [0, T ] × D → R
3 and stress tensor σ 0 : [0, T ] × D → R

3×3
sym reads

ρ ∂tv = div
(

L
∑

l=0

σ l

)

+ f in (0, T ) × D, (24a)

∂tσ 0 = C
(

μ,π
)

ε(v) in (0, T ) × D, (24b)

τσ ,l ∂tσ l = C
(

τSμ, τPπ
)

ε(v) − σ l , l = 1, . . . , L, in (0, T ) × D, (24c)

with zero initial conditions2

v(0) = 0 and σ l(0) = 0, l = 0, . . . , L. (24d)

Above, f : (0, T ) × D → R
3 is the volume force, which initiates the wave, and

the functions τP, τS : D → R are scaling factors for the unrelaxed bulk modulus
π : D → R and shear modulus μ : D → R, respectively. Further, ρ : D → R is the
mass density. The linear map C(m, p), m, p ∈ R, is Hooke’s tensor

C(m, p) : R3×3 → R
3×3, C(m, p)M = 2mM + (p − 2m) tr(M)I,

2 Zero initial conditions are not a general restriction. We use them here only to ease the presentation.
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where I ∈ R
3×3 is the identity matrix and tr(M) denotes the trace of M ∈ R

3×3.
Finally,

ε(v) = 1

2

[

(∇xv)� + ∇xv
]

is the linearized strain rate.
Wave propagation is frequency-dependent and the numbers τσ ,l > 0, l = 1, . . . , L ,

model this dependency about the center frequency ω0, see [24, 25]. Introducing the
frequency-dependent phase velocities of P- and S-waves,

v2P = π

ρ
(1 + τPα) and v2S = μ

ρ
(1 + τSα) with α =

L
∑

l=1

ω2
0τ

2
σ ,l

1 + ω2
0τ

2
σ ,l

,

full waveform inversion entails the identification of the five spatially dependent
parameters

u = (ρ, vS, τS, vP, τP)

from partial wave field measurements. For a physically meaningful open subset3

D(F) ⊂ L∞(D)5 the full waveform forward operator

F : D(F) ⊂ L∞(D)5 → L2((0, T ), H), u �→ y := (v, σ 0, . . . , σ L),

is well defined with

H = L2(D,R3) × L2(D,R3×3
sym )1+L

where y ∈ C1([0, T ], H) is the unique classical solution of (24) with source f ∈
W 1,1((0, T ), L2(D,R3)), see [26] (of course, y satisfies boundary conditions, whose
concrete formulations we have omitted for simplicity).

Remark 3.3 Actually, the operator modeling seismic imaging is � = M ◦ F where
M : L2((0, T ), H) → S denotes the measurement operator (S is the space of seismo-
grams). We can reasonably assume that M is linear and bounded. If F satisfies (5) and
(6), so does �.

3 That is, each of the 5 parameters is restricted from below and from above by physically meaningful
bounds. Consult (35) for a concrete example.
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For suitablew = (w,ψ0, . . . ,ψ L) ∈ H we define operators A, B, and Q mapping
into H by

Aw = −

⎛

⎜

⎜

⎜

⎜

⎝

div
(∑L

l=0 ψ l

)

ε(w)

...

ε(w)

⎞

⎟

⎟

⎟

⎟

⎠

, B−1w =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
ρ
w

C
(

μ,π
)

ψ0

C
(

τSμ, τPπ
)

ψ1

...

C
(

τSμ, τPπ
)

ψ L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Qw =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0
1

τσ ,1
ψ1

...

1
τσ ,L

ψ L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

so that (24) collapses to

B∂t y(t) + Ay(t) + BQy(t) = f (t) in (0, T ),

y(0) = 0.
(25)

Note that only B : D(F) ⊂ L∞(D)5 → L(H) depends on the parameters to be
identified: B = B(u). It is Fréchet-differentiable with

B ′(u)[̂u]

⎛

⎜

⎜

⎜

⎜

⎝

w

ψ0

...

ψ L

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ̂ w

− ρ̂
ρ
˜C(μ, π)ψ0 + ρ ˜C ′(μ, π)

[

μ̃

π̃

]

ψ0

− ρ̂
ρ
˜C(τSμ, τPπ)ψ1 + ρ ˜C ′(τSμ, τPπ)

[

μ̂

π̂

]

ψ1

...

− ρ̂
ρ
˜C(τSμ, τPπ)ψ L + ρ ˜C ′(τSμ, τPπ)

[

μ̂

π̂

]

ψ L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(26)

where û = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) and

μ̃ = 2vS

1 + τSα
v̂S − α v2S

(1 + τSα)2
τ̂S, π̃ = 2vP

1 + τPα
v̂P − α v2P

(1 + τPα)2
τ̂P,

μ̂ = 2τS vS

1 + τSα
v̂S + v2S

(1 + τSα)2
τ̂S, π̂ = 2τP vP

1 + τPα
v̂P + v2P

(1 + τPα)2
τ̂P.

Further,

˜C(m, p) := C(m, p)−1 = C

(

1

4m
,

p − m

m(3p − 4m)

)

.
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and

˜C ′(m, p)

[

m̂
p̂

]

= −˜C(m, p) ◦ C(m̂, p̂) ◦ ˜C(m, p). (27)

Both, ˜C(μ, π) and ˜C(τSμ, τPπ) are well defined for u ∈ D(F), see [26, Section 4.1]
for the involved definition of D(F).

Lemma 3.4 Let {̂un}n∈N ⊂ L∞(D)5 be bounded and be convergent to û ∈ L∞(D)5

pointwise a.e. Then, for any u ∈ D(F),

lim
n→∞

∥

∥B ′(u)[̂un − û]h∥∥H = 0 for any h ∈ H . (28)

Proof The L2-space H has inner product

〈

(v, σ 0, . . . , σ L), (w,ψ0, . . . ,ψ l)
〉

H =
∫

D

(

v · w +
L
∑

l=0

σ l : ψ l

)

dx

where the colon indicates the Frobenius inner product on R3×3. Now, in view of (26)
and (27) we see that the integrand of ‖B ′(u)[̂un − u]h‖2H converges to zero pointwise
a.e. Furthermore, as {̂un}n∈N is bounded in L∞(D)5, the absolute value of the integrand
is bounded by an integrable function (as a matter of fact, the integrand is the sum of
products of two L2-functions with an L∞-function). The assertions follows from the
dominated convergence theorem. ��

For completion, we quote a result from [26, Theorem 4.4] which we will need
below.

Lemma 3.5 Under the assumptions from above, F is Fréchet-differentiable at any
u ∈ D(F). For û ∈ L∞(D)5 we have y := F ′(u)̂u ∈ C([0, T ], H) given as the
unique weak solution of

B∂t y(t) + Ay(t) + BQy(t) = −B ′(u)[̂u] (∂t y(t) + Qy(t)) ,

y(0) = 0,

with y = F(u). Further, for any t ∈ [0, T ],

‖y‖C([0,t],H) ≤ C‖B ′(u)[̂u](∂t y + Qy)‖L1((0,t),H), (29)

where C depends continuously on the operator norms of B, B−1, Q, and on T .

We define

Xn = Xn
N × · · · × Xn

N (5 factors) (30)
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as well as

Pn : L∞(D)5 → Xn, Pnu = (Pn
Nu1, . . . ,Pn

Nu5),

where Xn
N and Pn

N are given by the cardinal B-spline spaces in (A3) and (A5), respec-
tively. We point out that also heterogeneous choices for the factors in Xn are possible
as long as Xn keeps nested with respect to n. The convergence properties of {Pn}n ,
see Appendix B, then guarantee (5) according to the next lemma.

Lemma 3.6 Let Xn and Pn be as above. For the full waveform forward operator F
with f ∈ W 1,1((0, T ), L2(D,R3)) we have that

lim
n→∞ ‖F ′(u)

(

û − Pnû
)‖L2((0,T ),H) = 0

for any u ∈ D(F) and all û ∈ L∞(D)5.

Proof The function yn := F ′(u)
(

û − Pnû
)

is the unique weak solution of

B∂t yn(t) + Ayn(t) + BQyn(t) = −B ′(u)
[

û − Pnû
]

(∂t y(t) + Qy(t)) ,

yn(0) = 0,

which according to (29) satisfies

‖F ′(u)
(

û − Pnû
)‖C([0,T ],H) ≤ C‖[B ′(u)

[

û − Pnû
]

(∂t y + Qy)‖L1((0,T ),H).

Since C([0, T ], H) ↪→ L2((0, T ), H) is continuous, the assertion of the theorem
follows if we can show that the right-hand side of the above stability estimate goes to
zero as n → ∞. Applying PropositionB.1 componentwise, we deduce thatPnk û → û
pointwise a.e. for a subsequence {nk}k∈N. Using ‖Pnk û‖L∞(D)5 ≤ CP‖û‖L∞(D)5 and
∂t y + Qy ∈ C([0, T ], H), we see that (26) corresponds to linear combinations of
uniformly bounded functions in t for all k. In particular, we can find g ∈ L1(0, T )

such that

sup
k

‖[B ′(u)
[

û − Pnk û
]

(∂t y + Qy)(t)‖H ≤ g(t).

By (28) we can then apply the dominated convergence theorem for integration in
time which yields ‖B ′(u)

[

û − Pnk û
]

(∂t y + Qy)‖L1((0,T ),H) → 0 as k → ∞. By
uniqueness of the pointwise limit û the latter convergence even holds for the whole
sequence, see [20, Prop. 10.13(2)]. ��

Condition (6), which guarantees the regularization property (Theorem 2.3), was
proven for the visco-elastic case (24) in [26, Theorem 4.5 and Remark 4.6]. Unfor-
tunately, the TCC, which is the remaining condition for the rigorous applicability
of REGINN∞, is subject of current research in the context of FWI and only special
cases are known to hold. For example, in [6] the TCC has recently been shown for a
semi-discrete setting in the acoustic regime, cf. (31) below.

123



Regularization in L∞ 229

Remark 3.7 The findings for the full waveform forward operator in this subsection,
that is, (5) and (6) hold, carry over to parameter identification tasks for other hyper-
bolic evolution equations of the form (25). Examples are the parameter-to-state maps
with respect to the acoustic and elastic wave equations (which are in fact simplifi-
cations of the visco-elastic model). A further example is the Maxwell system where
the components of y = (E,H) are the electric and magnetic fields, respectively. The
involved operators are

A =
(

σ Id −curl
curl 0

)

, B =
(

εId 0
0 μId

)

, Q = 0, and f =
(−Je
Jm

)

where ε, μ, σ : D → R are the (electric) permittivity, the (magnetic) permeability,
and the conductivity. Further, J e, J m : [0,∞) × D → R

3 are the current and mag-
netic densities. See [27, Section 5] for the details to verify (5) and (6) for the map
F : (ε, μ) �→ y.

3.3 A stronger result for FWI in the acoustic regime

Setting μ = 0, τσ ,l = 0, τP = τS = 0 in (24) and introducing the hydrostatic pressure
p = tr(σ 0)/3, we can formally derive the acoustic wave equation as first order system,

ρ ∂tv − ∇ p = f 1 in (0, T ) × D, (31a)

1

ρν2
∂t p − div v = f2 in (0, T ) × D, (31b)

where we allow two source terms and where ν = vP is the compression wave speed.
In our abstract formulation (25), it is represented by y = (v, p) ∈ L2((0, T ), H),
H = L2(D,Rd) × L2(D), and the operators

A = −
(

0 ∇
div 0

)

, B =
(

ρId 0
0 1

ρ ν2
Id

)

, Q = 0. (32)

Further, A is defined on

D(A) = {(v, p) ∈ L2(D,Rd) × H1
0 (D) : div v ∈ L2(D)

}

. (33)

If f = ( f 1, f2) ∈ W 1,1((0, T ), H) then (31) has a unique classical solution in
C1([0, T ], H)∩C([0, T ],D(A)), see [27] (recall that we have zero initial conditions
(24d)).

The parameter-to-state map here is

F : D(F) ⊂ L∞(D)2 → L2((0, T ), H), u = (ρ, ν) �→ y = (v, p), (34)
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with domain of definition

D(F) = {(ρ, ν) ∈ L∞(D)2 : 0 < ρmin < ρ < ρmax < ∞ and

0 < νmin < ν < νmax < ∞ a.e. in D
}

. (35)

As explained in Remark 3.7, F satisfies (5) and (6). In this part we even verify the
stronger compatibility condition (19), that is, for a special choice of Xn and X , see
(18), we will specify the decay function β in Theorem 3.8 below. For this purpose, we
restrict ourselves to the discretization space Xn = Xn

1 × Xn
1 with Xn

1 = Xn
1 (D) from

(A3) with N = 1. Thus, Xn consists of piecewise constant functions in the sequel.
The associated projector onto Xn then reads

Pn : L∞(D)2 → Xn, Pnu = (Pn
1 u1,Pn

1 u2), (36)

whose components are given by

Pn
1 u j =

∑

k∈In
2nd
(

∫

�n
k

u j (x) dx

)

1�n
k

for j ∈ {1, 2} according to (A5). Here,

�n
k := 2−n([0, 1]d + k) (37)

is the translated and dilated unit cube. Further, In = {k ∈ Z
d : �n

k ⊂ D}, see (A4).
We are left to determine X ⊂ L∞(D)2 where the subspace X is governed by a

stronger topology measuring some kind of smoothness. Intuitively, X should be large
enough to still contain a wide class of discontinuous profiles, on the other hand we
need someminimal a priori regularity such that its Xn-projections facilitate a common
decay rate in (19). For s > 0 fixed we set

X := L∞
s (D)2

whose component spaces are characterized by

L∞
s (D) :=

{

w ∈ L∞(D) : sup
h �=0

‖w(· − h) − w‖L2(Dh)

|h|s < ∞
}

(38)

with Dh := {x ∈ D : x − h ∈ D} for any h ∈ R
d . We assign the norm

‖ · ‖L∞
s (D) := ‖ · ‖L∞(D) + [·]Bs

2,∞(D),

where [·]Bs
2,∞(D) is a semi-norm given by the numerical value of the supremum in

(38). Originally, [·]Bs
2,∞(D) emerges from the definition of Hilbertian Besov-Nikolskii
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spaces

Bs
2,∞(D) =

{

w ∈ L2(D) : sup
h �=0

‖w(· − h) − w‖L2(Dh)

|h|s < ∞
}

with ‖ · ‖Bs
2,∞(D) := ‖ · ‖L2(D) + [·]Bs

2,∞(D), see [28]. We set

‖u‖2X := ‖ρ‖2L∞
s (D) + ‖ν‖2L∞

s (D) (39)

and obviously have that ‖u‖L∞(D)2 ≤ ‖u‖X for all u ∈ X .

Theorem 3.8 Let D ⊂ R
d , d ∈ {1, 2, 3}, be a domain with C1 boundary and

assume that f = ( f 1, f2) ∈ W 2,1((0, T ), H) with f (0) = ∂t f (0) = 0 and
f 1 ∈ C([0, T ], Lq(D,Rd)) for some q ∈ (2, qmax), where qmax only depends on
D and the ratio ρmax/ρmin < ∞ of the parameters from the definition of D(F). Let
Pn be as in (36) and let X = L∞

s (D)2 be as above for some 0 < s ≤ 1/2. Then, there
is a neighborhood U of u+ ∈ D(F) such that

‖F ′(u)
(

û − Pnû
)‖L2((0,T ),H) ≤ C+‖û‖X

(

2−s(q−2)/(4d(q−1))
)n

(40)

for all u ∈ U and any û ∈ X.

To prove the theorem, some preparation is required. We start with the observation
that L∞

s (D) ⊂ Bs
2,∞(D) and Xn

1 ⊂ L∞
s (D) if s ≤ 1/2. The latter inclusion can be

seen as follows: Let h = (h1, . . . , hd) with |h| < 2−n . Without loss of generality we
may assume that hi ≥ 0. Now, thanks to the symmetry of the cubes, we estimate

‖1−h+�n
k
− 1�n

k
‖2L2(Dh)

≤ 2vold
(

[

0, 2−n]d\[0, 2−n − h1
]× · · · × [0, 2−n − hd

]

)

= 2
(

2−nd −
d
∏

i=1

(

2−n − hi
)

)

≤ 2
(

2−nd − (2−n − |h|)d
)

≤ d 2−n(d−1)+1|h|

for all k ∈ In , where we used the mean value theorem in the last step.

Lemma 3.9 Let D be a bounded Lipschitz domain and let Pn be as in (36). Then, for
any u ∈ X and 0 < s ≤ 1/2,

‖u − Pnu‖L2(D)2 ≤ C‖u‖X2−ns/d ,

where C only depends on D and the dimension d.
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Proof In view of (39) it suffices to prove the assertion for each component Pn
1 of Pn

and for any w ∈ L∞
s (D). Let � ⊂ R

d be a sufficiently large rectangle containing D.
According to [29] there exists w̃ ∈ Bs

2,∞(�) such that w̃|D = w and ‖w̃‖Bs
2,∞(�) ≤

˜C‖w‖Bs
2,∞(D), where ‖w‖Bs

2,∞(D) can be replaced by the stronger norm ‖w‖L∞
s (D).

Using a dyadic partition of� at level n based on the cubes {�n
k }k (for which we restrict

� to have integer side length), we have

‖w̃ − ˜Pn
1 w̃‖L2(�) ≤ [w̃]Bs

2,∞(�)2
−ns/d ,

see [30], where ˜Pn
1 is defined as in (36) but with respect to the larger index set In(�) =

{k ∈ Z
d : �n

k ⊂ �}. Setting

Dn :=
⋃

k∈In(D)

�n
k ,

we conclude that Pn
1w|Dn = ˜Pn

1 w̃|Dn and Pn
1w|D\Dn = 0. The latter implies

‖w − Pn
1w‖L2(D\Dn)

= ‖w‖L2(D\Dn)
≤ √vold(D\Dn) ‖w‖L∞(D)

≤ √vold(D\Dn) ‖w‖L∞
s (D)

for which we can estimate for some CD < ∞

vol(D\Dn) ≤ CDHd−1(∂D) 2−n

according to the inclusion D\Dn ⊂ ∪x∈∂D
(

x + 2−n[−1, 1]d ]), where Hd−1(∂D)

denotes the d − 1-dimensional Hausdorff measure of ∂D. Altogether, we obtain for
s ≤ 1/2 that

‖w − Pn
1w‖L2(D) ≤ ‖w − Pn

1w‖L2(Dn)
+ ‖w − Pn

1w‖L2(D\Dn)

≤ (˜C2−ns/d +
√

CDHd−1(∂D)2−n/2)‖w‖L∞
s (D)

≤ C‖w‖L∞
s (D)2

−ns/d

which proves the lemma. ��
Lemma 3.10 Under the assumptions of Theorem 3.8, there is a qmax > 2 such that for
any u+ = (ρ+, ν+) ∈ D(F) there exists a neighborhood U of u+ such that

sup
{‖∂t y‖L1((0,T ),Hq ) : y = (p, v) = F(u), u = (ρ, ν) ∈ U

}

< ∞

for any q ∈ (2, qmax) where

Hq := Lq(D) × Lq(D,Rd). (41)
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Here, qmax only depends on D and the ratio ρmax/ρmin < ∞ of the parameters from
the definition of D(F).

Proof The proof makes use of converting higher time regularity to higher spa-
tial integrability. By Theorem 2.6 of [27], we know that for u+ ∈ D(F) we
have ∂t y = (∂t p, ∂tv) ∈ C([0, T ],D(A)) ∩ C1([0, T ], H), in particular ∂t p ∈
L1((0, T ), H1

0 (D)). By Sobolev embedding, see [31], we obtain at least ∂t p ∈
L1((0, T ), L6(D)) for d ∈ {1, 2, 3}. Again by Theorem 2.6 of [27], since the constant
of the stability estimate depends continuously on B and thus on u, we can actually
conclude ‖∂t p‖L1((0,T ),L6(D)) < ∞ uniformly in a neighborhood of u+. Concerning
∂tv, we only have integrability information about its divergence. Therefore, we first
note that by (31) we have

− div

(

1

ρ
∇ p

)

= div

(

f 1
ρ

)

− div ∂tv = div

(

f 1
ρ

)

+
(

∂t f2 − ∂2t p

ρν2

)

in the sense of distributions. As (ρ, ν) ∈ D(F) is bounded away from zero uniformly,
the parameters do not affect the integrability of the right-hand side terms.NowMeyers’
estimate, see [32, Thm. 1], implies for fixed t ∈ [0, T ] and any q ∈ (2, qmax) that

‖∇ p‖Lq (D,Rd ) ≤ C

(‖ f 1‖Lq (D,Rd )

ρmin
+ ‖∂t f2‖L2(D) + ‖∂2t p‖L2(D)

ρminν
2
min

)

,

where qmax depends on D and ρmax/ρmin < ∞, while C additionally depends on q.
Since ‖∂2t p‖L2(D) can be bounded in terms of ‖∂2t f ‖L1((0,T ),H) and a constant which
depends continuously on B, that is, on u, see Theorem 2.6 of [27], we concude that
‖∇ p‖L1((0,T ),Lq (D,Rd )) < ∞ uniformly in a neighborhood of u+. Comparing with
(31), we finally get that also ‖∂tv‖L1((0,T ),Lq (D,Rd )) < ∞ locally uniform in u. This
completes the proof. ��
Finally, we can prove the main result.

Proof of Theorem 3.8 The proof uses a more elaborate analysis of the stability estimate

‖F ′(u)
(

û − Pnû
)

(t)‖L2((0,T ),H) ≤ C‖B ′(u)
(

û − Pnû
)

∂t y‖L1((0,T ),H),

compared to Lemma 3.6. Recall that the constant C depends continuously on the
operator norms of B(u), B−1(u) and on T according to (29). Since also B �→ B−1 is
(locally) continuous,we can assumewithout loss of generality that the above inequality
holds for some fixed C = Cr ′,u+ > 0 for all ‖u − u+‖L∞(D)2 < r ′ by shrinking the
original r ′ > 0 otherwise. Then, for any δ > 0,

‖B ′(u)
[

û − Pnû
]

∂t y‖L1((0,T ),H)

=
∥

∥

∥

∥

B ′(u)

[

û − Pnû

‖û‖X
]

(

∂t y(1{|̂u−Pn û|≥δ‖û‖X } + 1{|̂u−Pn û|<δ‖û‖X })
)

∥

∥

∥

∥

L1((0,T ),H)

× ‖û‖X
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≤ ‖B ′(u)‖L(L∞(D)2,L(H))

‖û − Pnû‖L∞(D)2

‖û‖X
∥

∥∂t y1{|̂u−Pn û|≥δ‖û‖X }
∥

∥

L1((0,T ),H)

× ‖û‖X
+ ‖B ′(u)‖L(L∞(D)2,L(H))δ

∥

∥∂t y1{|̂u−Pn û|<δ‖û‖X }
∥

∥

L1((0,T ),H)
‖û‖X .

Due to ‖û − Pnû‖L∞(D)2 ≤ (1 + CP )‖û‖L∞(D)2 ≤ (1 + CP )‖û‖X by (S2) and
CX = 1 in (18), we obtain, by dropping the complementary indicator function in the
bottom line above, that

‖B ′(u)
[

û − Pnû
]

∂t y‖L1((0,T ),H)

≤ (1 + CP )‖B ′(u)‖L(L∞(D)2,L(H))

∥

∥∂t y1{|̂u−Pn û|≥δ‖û‖X }
∥

∥

L1((0,T ),H)
‖û‖X

+‖B ′(u)‖L(L∞(D)2,L(H))δ ‖∂t y‖L1((0,T ),H) ‖û‖X .

The middle line here can also be directly expressed in terms of δ. To this end, we apply
Hölder’s inequality with exponent q/2 > 1 in view of (41) to get

∥

∥∂t y(1{|̂u−Pn û|≥δ‖û‖X }
∥

∥

L1((0,T ),H)

=
∫ T

0

(∫

D

∣

∣∂t y(t)
∣

∣

2
(x)1{|̂u−Pn û|≥δ‖û‖X }(x) dx

)1/2

dt

≤
∫ T

0

(

∥

∥∂t y(t)
∥

∥

2
Hqvol

({|̂u − Pnû| ≥ δ‖û‖X })(q−2)/q
)1/2

dt

= ‖∂t y‖L1((0,T ),Hq )vol
({|̂u − Pnû| ≥ δ‖û‖X })(q−2)/(2q)

≤ ‖∂t y‖L1((0,T ),Hq )

(‖û − Pnû‖2
L2(D)2

δ2‖û‖2X

)(q−2)/(2q)

,

where we additionally employed Tschebyscheff’s inequality in the bottom line, see
e.g., [33]. With Lemma 3.9 we can further estimate

‖û − Pnû‖2
L2(D)2

δ2‖û‖2X
≤ C‖û‖2X

(

2−(s/d)
)n

δ2‖û‖2X
= C

(

2−(s/d)
)n

δ2
.

Altogether, we get with a similar Hölder-inequality argument for

‖∂t y‖L1((0,T ),H) ≤ ‖∂t y‖L1((0,T ),Hq )vold(D)(q−2)/(2q)

that

‖B ′(u)
[

û − Pnû
]

∂t y‖L1((0,T ),H) ≤ ‖û‖X‖B ′(u)‖L(L∞(D)2,L(H))‖∂t y‖L1((0,T ),Hq )

×
(

(1 + CP )

(

C
(

2−(s/d)
)n

δ2

)(q−2)/(2q)

+ δvold(D)(q−2)/(2q)

)
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which holds for all δ > 0. Optimization in δ then yields δ ∝ (

2−s(q−2)/(4d(q−1))
)n .

By Lemma 3.10 and the continuity of B ′, we can indeed find C+ < ∞ such that (40)
holds. ��

4 Numerical Results

We present numerical experiments4 on a two-parameter reconstruction to demonstrate
the operation of REGINN∞ in a test scenario where all assumptions required for our
analysis in the previous sections are satisfied.

Recall from Theorem 2.3 that, in general, the regularization property holds only in
the weak-� topology permitting a kind of strange convergence behavior. Therefore,
we test Algorithm 1 as the noise level approaches zero and also how it behaves under
different initial spaces Xn0 . We will start with a rather low dimensional Xn0 such that
nm increases successively in the course of the Newton iteration (while-loop) and in
contrast also with some large dimensional Xn0 which corresponds to a more static use
of Tikhonov regularization throughout all iterations.

Our experiments rely on the acousticwave equation in one spatial dimension, d = 1,
where D = (0, 1) and T = 1:

1

ρν2
∂t p − ∂xv = f1 in (0, 1) × (0, 1),

ρ ∂tv − ∂x p = f2 in (0, 1) × (0, 1),

v(0, ·) = p(0, ·) = 0 on (0, 1),

p(·, 0) = p(·, 1) = 0 on (0, 1).

(42)

The source components f1, f2 : [0, 1] × [0, 1] → R are

f1(t, x) = f1(x) = 100
(

x(x − 1)
1

ρ(x)ν(x)2
− π

2
cos
(π

2
x
) )

,

f2(t, x) = 100
(

− t(2x − 1) + sin
(π

2
x
)

ρ(x)
)

,

(43)

where

ρ(x) = 1 + 1

5
1[7/30,17/30](x) and ν(x) = 1 − 1

10
1[13/30,23/30](x). (44)

The corresponding exact data, that is, the solution of (42) and (43), are given by

p(t, x) = 100t x(x − 1) and v(t, x) = 100t sin
(π

2
x
)

. (45)

4 For the reader’s own experiments we provide our MATLAB code on http://www.math.kit.edu/ianm3/
~rieder/media/reginn_infty_fig2.m. Executed in MATLAB (R2021a) on an Intel(R) Core(TM) i5-1035G4
CPU under Windows 10, the code produces the output shown in Fig. 2. In our program we use a routine
by John D’Errico (2021): Piecewise functions (https://www.mathworks.com/matlabcentral/fileexchange/
9394-piecewise-functions), MATLAB Central File Exchange. Retrieved November 29, 2021.
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We solve the appearing wave equations during inversion for the parameters by the
FEM-basedMATLAB (R2021a) command pdepewith 300 spatial and 100 temporal
grid points. Both sets of points are distributed equidistantly in [0, 1].

Our discrete parameter spaces Xn = Xn
1 × Xn

1 are generated by the piecewise
constant cardinal B-spline as explained in Appendix A.1. So, conditions (S1)–(S3)
are fulfilled. Note that the dimension of Xn

1 is 2n . In view of Remark 2.5 we set
nmax = 8 yielding the semi-discrete parameter-to-state map

Fnmax : D(Fnmax) ⊂ L∞(D)2 → L2([0, 1], H), (ρ, ν) �→ (p, v), (46)

where (p, v) ∈ L2([0, 1], H), H = L2(0, 1)2, solves (42) with (43) and (ρ, ν) ∈
D(Fnmax) = Xnmax ∩D(F), see (35) forD(F).Within our computations, ‖·‖L2([0,1],H)

is discretized by the corresponding space-time Euclidean norm and denoted by ‖ · ‖.
Since Fnmax satisfies theTCC (3), seeAppendixC,Theorem2.1 guarantees termination
of REGINN∞ applied to the inverse problem

find (ρ, ν) ∈ Xnmax : Fnmax(ρ, ν) ≈ (pδ, vδ). (47)

To simplify notation we use the same symbols for the continuous and the discrete
versions of functions such as p, v, ρ, ν, etc.

We apply REGINN∞ (Algorithm 1) to (47) where we choose qn = n/ log2 C∞ for
Jn,m from (10) in accordance with the lower bound in (A6) below. For each m the
computation of Newton update candidates sm ∈ Xn is realized—benefiting greatly
from the smoothness of the Tikhonov functionals—by a steepest descent routine with
Armijo stepsize rule in a loop over n until (9) is met. We adapt μm during iteration
according to the rule proposed in [4]: we start with μ1 = μ0 and set

μm =
{

min{1 − jm−2
jm−1

(1 − μm−1), 0.999}, jm−1 ≥ jm−2,

0.9μm−1, otherwise,
m ≥ 2,

whereμ0 ∈ (0, 1) is user-supplied and jm denotes the number of gradient decent steps
needed to compute the update sm . Complementary, the underlying discretization level
n will be increased if the gradient descent loop stagnates on Xn , which we consider to
occur if the ratio of two successive gradient step evaluations does not exceed a fixed
threshold close to 1, say 0.99999. We stop the algorithm either by the discrepancy
principle or if n ≥ nmax happens, that is, if the discretization of Xn would become
finer than the computational grid used in the pdepe-routine for solving the wave
equation. In the latter case, we still perform um+1 = um + s̃m with the last update
candidate s̃m ∈ Xnmax before abortion.We emphasize that s̃m is not a Newton update in
the sense of (9), but the corresponding um+1 might still fulfill the discrepancy principle
unlike um .

In our experiments we especially want to detect the jump regions [7/30, 17/30]
and [13/30, 23/30], where the parameters differ from the homogeneous background
material (ρ0, ν0) = (1, 1) ∈ Xnmax , respectively, that we take as initial guess. Note that
nogrid point of Xn coincideswith either of the jumpdiscontinuity points for alln so that
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Fig. 1 Approximate solutions ρM (blue, left column) and νM (blue, right column) by Algorithm 1 with
initial spaces X2, X5, and X8 (top to bottom) (color figure online)

the error of any reconstruction of ρ and ν will always be at least (max ρ −min ρ)/2 =
1/10 and (max ν − min ν)/2 = 1/20 with respect to the L∞-norm, respectively.

First, we investigate the case of ‘exact’ data, that is, (pδ, vδ) = (p, v) with (p, v)

from (45). Despite of δ = 0 our datamight still be contaminated by some discretization
error with respect to Fnmax since the corresponding analytical solution (ρ, ν) given by
(44) is not contained in Xnmax . Choosing μ0 = 0.7, γ = 0.8, C∞ = 1.1, we run
Algorithm 1 for different n0 to observe how its choice affects the outcome. Note that
setting τ is redundant here because termination is solely forced by n exceeding nmax.
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m nm jm µm ‖b0m‖
0 2 0 0.7 2.56207
1 2 2 0.7 1.31590
2 2 3 0.8 0.67130
3 2 2 0.72 0.43376
4 2 5 0.888 0.29172
5 2 17 0.96706 0.24329
6 3 39 0.98564 0.20439
7 3 1 0.88708 0.17912
8 3 10 0.98871 0.14127
9 3 8 0.88984 0.13206
10 4 70 0.98741 0.10649
11 4 7 0.88867 0.09944
12 4 10 0.92207 0.08374
13 4 9 0.82986 0.07341
14 4 20 0.92344 0.05562
15 4 16 0.83109 0.04895
16 4 36 0.92493 0.03842
17 4 33 0.83244 0.03383
18 6 327 0.98309 0.02641
19 7 190 0.88478 0.02493
20 8 57 − 0.02442

11 12 13 14 15 16 17
0.6

0.7

0.8

0.9

1

0

10

20

30

40

‖b0m‖/‖b0m−1‖
µm−1
jm

Fig. 2 Left: Convergence history for exact data case n0 = 2 from Fig. 1. Peaks for jm arise whenever the
discretization level nm is increased as cumulative contribution. Right: Graphical presentation of the values
jm (blue) and μm−1 (black dashed) as functions of m ∈ {11, . . . , 17} where nm = 4. Moreover, we have
included the quotient ‖b0m‖/‖b0m−1‖ (red) which is always below μm−1. This illustrates that (15) holds for
a tiny ω (color figure online)

Figure1 displays the exact parameter functions ρ and ν (red) and the corresponding
outputs ρM and νM (blue) of Algorithm 1 when starting with n0 ∈ {2, 5, 8}, respec-
tively. We see that the larger n0 is, the smoother the output becomes, while the points
of discontinuity are more sharply located for smaller n0. Hence, for the reconstruction
of jump discontinuities, n0 shall be chosen large enough to locate discontinuity points
sufficiently precise while at the same time it should not be too large to prevent over-
smoothing. Figure2 shows a more detailed convergence history in the case n0 = 2
and confirms that the majority of Newton steps is indeed undertaken with nm ≤ 4.

Next, we study the case of noisy data. For this purpose we generate noise vectors
ζ as random samples from a centered Gaussian distribution and scale it such that
‖ζ‖ = δ‖(p, v)‖. Since δ is a relative perturbation here, the discrepancy principle
must be adjusted accordingly. As before, we employ Algorithm 1 with μ0 = 0.7,
γ = 0.8, C∞ = 1.1, τ = 1.1. Using the insights from our exact data case we set
n0 = 5 as initial value to balance the aforementioned effects of globally smooth
and locally oscillating reconstructions. The corresponding results for ρM and νM are
shown in Fig. 3 for δ = 5%, δ = 2%, and 1%.We see that the reconstructions’ profiles
approach the correct jump height of the exact solution as δ becomes smaller. In all
three cases, termination occurs by reaching the discretization limit, however, each
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Fig. 3 Regularized solutions ρM (blue, left column) and ρM (blue, right column) byAlgorithm 1 for relative
noise levels of 5%, 2% and 1% (top to bottom) (color figure online)

last update fulfills the discrepancy principle afterwards. Altogether, the plots are in
agreement with the weak-� regularization property of REGINN∞ (Theorem 2.3).

5 Conclusion

We have investigated a novel iterative regularization algorithm tailored for non-linear
illposed problems between L∞(D)� and a normed space Y . The main focus was
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on generating uniformly bounded iterates relying on a Tikhonov-like regularization
term. Due to the non-smooth structure of L∞(D)�, a straightforward implementation
would require non-smooth or box-constrained calculus which we could circumvent
by using discretization in combination with equivalent L p(D)�-norms for p < ∞.
Under reasonable assumptions on the input parameters, our algorithm REGINN∞
terminates after finitely many steps. Further, it fulfills the regularization property in
the weak-� topology as the noise level of the Y -data tends to zero. Depending on the
non-linearity, this convergence can be reformulated as convergence with respect to a
norm. Numerical experiments with a model problem illustrate the theoretical findings.

Future research may include a convergence rate analysis under higher regular-
ity assumptions as in (19) or under more general variational source conditions with
respect to a Bregman distance [13]. We could even incorporate a metric to overcome
that L∞(D)� is non-separable; an approach proposed in [7]. Concerning the data
space, especially the task of finding proper measures for the misfit in seismograms,
the Kantorovich-Rubinstein (KR) norm has recently proven advantageous in explo-
ration geophysics, see, e.g., [34, 35]. This fact suggests an implementation of our
method under the KR-norm on Y . In fact, our theory also allows more general dis-
tance functions on Y . For instance, any distance concept is admissible which is convex
in one of its two arguments (e.g. Bregman distances). Such a concept can in particular
be learned within a predefined set of admissible distance functions in practice and is
subject of ongoing research, see [36].
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Appendix A A family of admissible subspaces

In this appendix we give a concrete construction for a family {Xn}n∈N of subspaces
of L∞(D)� which satisfies our assumptions (S1)–(S3) of Sect. 2 for D an open and
bounded subset of Rd . Using Cartesian products in case of � > 1, cf. (30), we restrict
our attention to � = 1 here.
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A.1 The discrete subspaces used in this work

Wewill rely on the cardinal B-spline ϕN : R → R of order N ∈ Nwhich is recursively
defined by

ϕN (t) := ϕN−1�ϕ1(t) =
∫ 1

0
ϕN−1(t − s) ds, ϕ1 = 1[0,1].

It obeys the scaling relation

ϕN (t) = 21−N
N
∑

k=0

(

N

k

)

ϕN (2t − k). (A1)

Further properties are

• suppϕN = [0, N ], ϕN |]0,N [ > 0, ϕN ∈ CN−2,
• for each k ∈ Z, ϕN |[k,k+1] is a polynomial of degree N − 1,
• for all t ∈ R,

1 =
∑

m∈Z
ϕN (t − m), (A2)

see, e.g., [37].
Using the tensor product B-Spline �(x) := ∏d

i=1 ϕN (xi ), x = (x1, . . . , xd)� ∈
R
d , and the notation �n,k(x) = 2nd/2 �(2nx − k), n ∈ N, k ∈ Z

d , we define

Xn = Xn
N (D) := span

{

�n,k |D : k ∈ In(D)
}

(A3)

with

In = In(D) := {k ∈ Z
d : supp�n,k ⊂ D

}

. (A4)

These spaces are nested due to (A1), so that (S1) holds. Note that∪k∈In supp�n,k ⊂ D
which is a proper inclusion in general.

Next we demonstrate (S2). To this end we set

Pnu = Pn
Nu :=

∑

k∈In
〈u,˜�n,k〉L2(D)�n,k for u ∈ L∞(D) (A5)

where ˜� is a compactly supported dual function to � satisfying the biorthogonality

〈˜�(·),�(· − k)〉L2(Rd ) = δ0,k .

The existence of such functions has been shown in [38]. The biorthogonality yields
Pn
N�n,k = �n,k , for all k ∈ In . Hence, the required projection property holds:
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Pn
Nu = u for all u ∈ Xn

N (D). We proceed with

‖Pn
Nu‖L∞(D) = sup

x∈D

∣

∣

∣

∑

k∈In
〈u,˜�n,k〉L2(D)�n,k(x)

∣

∣

∣

=
∣

∣

∣

∑

k∈In
〈u,˜�n,k〉L2(D)�n,k(x

∗)
∣

∣

∣

≤
∑

k∈In
|〈u,˜�n,k〉L2(D)| �n,k(x

∗)

≤ ‖u‖L∞(D)

∑

k∈In
‖˜�n,k‖L1(D) �n,k(x

∗).

Since

‖˜�n,k‖L1(D) ≤ 2−nd/2
∫

Rd
|˜�(x)| dx

and
∑

k∈In
�n,k(x

∗) ≤
∑

k∈Zd

�n,k(x
∗) (A2)= 2nd/2

we have established (S2) with CP ≤ ‖˜�‖L1(Rd ). Observe that ‖˜�‖L1(Rd ) ≥ 1 as ˜�
has mean value 1 just as �.

It remains to validate (S3). Let u ∈ Xn
N (D) with ‖u‖L∞(D) = 1. Then,

‖u‖Lq (D) ≥ δq > 0

for

δq = min
u∈M ‖u‖Lq (D) where M = {u ∈ Xn

N (D) : ‖u‖L∞(D) = 1
}

.

This minimum is non-zero and exists as M is compact in the finite dimensional space
Xn
N (D). Since δq = ‖uq‖Lq (D) for one uq ∈ M and as δq → 1 for q → ∞ (see

below), we find a q with δq ≥ 1/C∞ for any fixed C∞ > 1. Hence, 1 ≤ C∞ ‖u‖Lq (D)

for all u ∈ M and (S3) follows by the homogeneity of norms.
We finish with proving limq→∞ δq = 1. Obviously, δq = ‖uq‖Lq (D) ≤

vold(D)1/q → 1 as q → ∞. Therefore {δq} is bounded and admits a convergent
subsequence, say, limi→∞ δqi = δ∗ ≤ 1. For each q let x∗

q ∈ D with |uq(x∗
q )| = 1.

If N = 1, uq must be equal to unity in a whole cube of length 2−n as a subset of D
containing x∗

q . So we can estimate

‖uq‖Lq (D) ≥ (2−nd)1/q → 1 (A6)

as q → ∞ which proves the assertion in this case. If N > 1, we can still find for any
ε > 0 sufficiently small a δ > 0 such that |uq |Bδ(x∗

q )∩D| ≥ 1−ε for all q. This follows
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by uniform equicontinuity ensured by the Arzelà-Ascoli theorem since M is compact
in C(D) as a bounded, closed, and finite dimensional set. Further, we have that

vold(Bδ(x
∗
q ) ∩ D) > c > 0

for all q. This follows by the more general observation that the union over m ∈ N of

Vm :=
{

x ∈ R
d : vold(Bδ(x) ∩ D) >

1

m

}

is an open cover for D, so we can find a minimalm such that D ⊂ Vm by compactness
of D. Altogether, we can again deduce a lower bound of the form

‖uq‖Lq (D) ≥ (1 − ε)vold(Bδ(x
∗
q ) ∩ D)1/q ≥ (1 − ε)c1/q → 1 − ε

as q → ∞. We conclude δ∗ = 1 since ε > 0 can be chosen as small as we wish.
Finally, any subsequence of {δq} contains a subsequence which converges to 1. So,
the whole sequence must converge to 1, see, e.g., [20, Prop. 10.13(2)].

A.2 A different approach

The functions of Xn
N (D) from the above construction vanish on the set� = D\∪k∈In

supp�n,k which is non-empty in general. Thus,Pn
Nu is a poor approximation of u near

to the boundary of D in general: Pn
Nu|� = 0. Here we sketch an alternative approach

to overcome this drawback. We emphasize that this approach has not been relied on
in the previous sections as it requires the verification of an additional assumption on
F ′, see text below following (A7).

Basically, we extend the preimage-space of the map F of Sect. 2 while keeping all
its necessary properties to carry over Theorems 2.1 and 2.3 to the extension. Let ˜D be
an open superset of D: D ⊂ ˜D. We will need two operators: the extension operator
E : L∞(D) → L∞(˜D), which extends a function by zero, and the restriction operator
R : L∞(˜D) → L∞(D), which multiplies a function by the indicator 1D .

We define ˜F : D(˜F) ⊂ L∞(˜D) → Y by D(˜F) = ED(F) and ˜F (̃u) = F(Rũ).
This ˜F is Fréchet-differentiable just like F . Moreover, the TCC holds in Br (Eu+) ⊂
D(˜F). Indeed, let ũ ∈ Br (Eu+) then ‖Rũ − u+‖L∞(D) = ‖Rũ − REu+‖L∞(D) ≤
‖ũ − Eu+‖L∞(˜D) ≤ r , that is, Rũ ∈ Br (u+) ⊂ D(F). Thus, for u, ũ ∈ Br (Eu+), we
get

‖˜F(u) − ˜F (̃u) − ˜F ′(̃u)(u − ũ)‖Y = ‖F(Ru) − F(Rũ) − F ′(Rũ)(Ru − Rũ)‖Y
≤ ω ‖F(Ru) − F(Rũ)‖Y = ω ‖˜F(u) − ˜F (̃u)‖Y .

Further, (6) is also satisfied by ˜F as R∗ = E .
For this ˜F we can define spaces Xn = Xn

N (˜D) as in Appendix A.1 but with respect
to ˜D rather than D. Now, the union of the supports of �n,k , for k ∈ In(˜D) covers D
when n is large enough. Unfortunately, condition (5) does not transfer immediately to
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the new construction. One must prove it for the concrete case, for example, as follows:
for ũ ∈ D(˜F) and û ∈ L∞(˜D) we have that

‖˜F ′(̃u)
(

û − ˜Pn
N û)‖Y ≤ ‖F ′(Rũ)(Rû − Pn

N Rû)‖Y
+‖F ′(Rũ)(Pn

N Rû − R˜Pn
N û)‖Y (A7)

where Pn
N : L∞(D) → Xn

N (D) and ˜Pn
N : L∞(˜D) → Xn

N (˜D) are the corresponding
projection operators in accordance with (S2). The left norm on the right hand side
of (A7) tends to 0 for n → ∞ by (5). The right norm converges to 0, for instance,
if F ′(u) : L∞(D) → Y is weak-� continuous for all u ∈ D(F): both sequences
{Pn

N Rû}n and {R˜Pn
N û}n converge to Rû pointwise a.e. This convergence can be veri-

fied by standard arguments, see e.g., [37, Chap. 12.3] and [39, Chap. 2]. Further, both
sequences are uniformly bounded due to (S2). Hence,Pn

N Rû− R˜Pn
N û → 0weakly-�.

Appendix B An approximation result

Proposition B.1 For u ∈ L∞(D) and {Pn}n as in (A5) we have that Pnu → u in
Lq(D) for all q < ∞.

Proof Let � be a rectangular superset of D and ˜� a superset of �. Further, extend
u by zero outside of D. The convergence results of Section 12.3 from [37] yield that
˜Pnu → u in Lq(�) for any q < ∞ where ˜Pn is defined as in (A5), however, with
respect to In(˜�) and Xn(˜�). Hence, for any x ∈ D we have that ˜Pnu(x) = Pnu(x)
for n large enough such that x ∈ Dn , where we set

Dn :=
{

x ∈ D :
∑

k∈In
�n,k(x) = 1

}

in particular vold (D\Dn) → 0. Because of ‖Pnu‖L∞(D) ≤ CP‖u‖L∞(D) by (S2),
we can estimate

‖u − Pnu‖Lq (D) = ‖u − Pnu‖Lq (D\Dn) + ‖u − Pnu‖Lq (Dn)

≤ vold (D\Dn)
1/q (CP + 1)‖u‖L∞(D) + ‖u − ˜Pnu‖Lq (Dn)

≤ vold (D\Dn)
1/q (CP + 1)‖u‖L∞(D) + ‖u − ˜Pnu‖Lq (�)

and the assertion follows. ��

Appendix C On the tangential cone condition for the operator in (46)

Here we argue that the semi-discrete non-linear operator Fnmax defined in (46) satisfies
the TCC (3).

The underlying abstract system is (25) with the concrete settings (32), u0 = 0,
and (33) where D = (0, 1), T = 1, that is, d = 1 and u = (p, v) ∈ L2([0, 1], H),
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H = L2(0, 1)2. Thus, we obtain the acoustic system (42) which has a unique classical
solution under (ρ, ν) ∈ D(Fnmax) and for the sources (43). In view of Lemma 3.5,
Fnmax is Fréchet-differentiable and we have F ′

nmax
(ρ, ν)(ρ̂, ν̂) = (p, v) where (p, v)

weakly solves

1

ρν2
∂t p − ∂xv = −ρ̂∂t p in (0, 1) × (0, 1),

ρ ∂tv − ∂x p = −ν̂∂tv in (0, 1) × (0, 1),

v(0, ·) = p(0, ·) = 0 on (0, 1)

v(·, 0) = p(·, 1) = 0 on (0, 1).

(C8)

In a first step we validate injectivity of F ′
nmax

(ρ, ν) for any (ρ, ν) ∈ D(Fnmax). To this
end, assume F ′

nmax
(ρ, ν)(ρ̂, ν̂) = (0, 0). From (C8) we get

0 = ρ̂ ∂t p and 0 = ν̂ ∂tv in (0, 1) × (0, 1).

Assume 0 �= ρ̂ ∈ Xnmax . Then, there is a non-empty interval [a, b], a = 2−nmaxk,
b = 2−nmax(k+1), k ∈ N0, where ρ̂ does not vanish. Hence, ∂t p = 0 in [0, 1]×[a, b].
By the first equation in (42), −∂xv = f1 in [0, 1] × [a, b], that is,

v(t, x) = v(t, a) −
∫ x

a
f1(t, y)dy, (t, x) ∈ (0, 1) × [a, b].

Recalling the zero initial value v(0, ·) = 0 we get the contradiction 0 =
∫ x
a f1(0, y)dy < 0 for x ∈ [a, b] according to (43). So, ρ̂ = 0 in (0, 1). One argues
analogously to validate ν̂ = 0 in (0, 1). Hence, F ′

nmax
(ρ, ν) is one-to-onewhich implies

the TCC at any interior point of D(Fnmax) due to Lemma C.1 of [6].
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