KIT | KIT-Bibliothek | Impressum | Datenschutz

An all-in-one nanoprinting approach for the synthesis of a nanofilm library for unclonable anti-counterfeiting applications

Zhang, Junfang; Liu, Yuxin; Njel, Christian 1,2; Ronneberger, Sebastian; Tarakina, Nadezda V. V.; Loeffler, Felix F. F.
1 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)

Abstract:

In addition to causing trillion-dollar economic losses every year, counterfeiting threatens human health, social equity and national security. Current materials for anti-counterfeiting labelling typically contain toxic inorganic quantum dots and the techniques to produce unclonable patterns require tedious fabrication or complex readout methods. Here we present a nanoprinting-assisted flash synthesis approach that generates fluorescent nanofilms with physical unclonable function micropatterns in milliseconds. This all-in-one approach yields quenching-resistant carbon dots in solid films, directly from simple monosaccharides. Moreover, we establish a nanofilm library comprising 1,920 experiments, offering conditions for various optical properties and microstructures. We produce 100 individual physical unclonable function patterns exhibiting near-ideal bit uniformity (0.492 ± 0.018), high uniqueness (0.498 ± 0.021) and excellent reliability (>93%). These unclonable patterns can be quickly and independently read out by fluorescence and topography scanning, greatly improving their security. An open-source deep-learning model guarantees precise authentication, even if patterns are challenged with different resolutions or devices.


Verlagsausgabe §
DOI: 10.5445/IR/1000160596
Veröffentlicht am 14.07.2023
Originalveröffentlichung
DOI: 10.1038/s41565-023-01405-3
Scopus
Zitationen: 15
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1748-3387, 1748-3395
KITopen-ID: 1000160596
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Erschienen in Nature Nanotechnology
Verlag Nature Research
Band 18
Seiten 1027–1035
Vorab online veröffentlicht am 05.06.2023
Schlagwörter 2021-027-031168 XPS
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page