
Computational Optimization and Applications
https://doi.org/10.1007/s10589-023-00500-4

A branch-and-prune algorithm for discrete Nash
equilibrium problems

Stefan Schwarze1 ·Oliver Stein1

Received: 22 March 2022 / Accepted: 5 June 2023
© The Author(s) 2023

Abstract
We present a branch-and-prune procedure for discrete Nash equilibrium problems
with a convex description of each player’s strategy set. The derived pruning criterion
does not require player convexity, but only strict convexity of some player’s objective
function in a single variable. If satisfied, it prunes choices for this variable by stating
activity of certain constraints. This results in a synchronous branching and pruning
method. An algorithmic implementation and numerical tests are presented for ran-
domly generated instances with convex polyhedral strategy sets and convex quadratic
as well as non-convex quadratic objective functions.

Keywords Nash equilibrium problem · Discrete game · Branch and bound · Branch
and prune

1 Introduction

The formulation of the Nash equilibrium for an n-person game by Nash in 1950 and
1951 was a landmark in the economic sciences and is still a key model in game
theory [11, 12]. In the setting of this game, finitely many players can choose their
individual strategies independently, but their payoffs depend on the strategies of all
players. In the absence of coalitions, each player aims to maximize her payoff given
the other players’ strategies. A situation in the game where no player has an incentive
to unilaterally deviate from her strategy defines the famous Nash equilibrium, and
finding such a situation is the so-called Nash equilibrium problem (NEP).

B Oliver Stein
stein@kit.edu

Stefan Schwarze
stefan.schwarze@kit.edu

1 Institute for Operations Research (IOR), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-023-00500-4&domain=pdf
http://orcid.org/0000-0001-9514-6317

S. Schwarze, O. Stein

Over the last years, research gained interest in the numerical solution of NEPs,
and there are a couple of algorithms tackling this issue. However, although integer
optimization is applied inmanyfields and intensely studied, there are only few attempts
to solve Nash equilibrium problems with integer variables. Sagratella’s publication
[14] identifies this as an "important gap in literature". The latter paper proposes a
branch-and-prune method to compute all solutions of NEPs with box-constrained
discrete strategy sets. Subsequently, the theorywas extended to generalizedNEPswith
linear coupling constraints andmixed-integer variables [15].More recently, there were
several publications on computing Nash equilibria for a special class of mixed-integer
NEPs, the so-called integer programming games (IPG), which were first introduced
in [9]. In IPGs, the feasible set of each player consists of linear constraints in her
private variables, which are partially integrality constrained, and the payoff functions
are only required to be continuous. For these general IPGs, [3] presents an algorithm
for the computation of Nash equilibria based on algorithms for strategic games in
normal-form. Furthermore, [2] introduced another subclass of mixed-integer NEPs,
namely reciprocally-bilinear games (RBG), where the closure of the convex hull of
each player’s feasible set is required to be a polyhedron and the payoff function is
bilinear in her own and the rivals’ strategies. However, we will extend Sagratella’s
framework beyond the box-constrained case and propose a novel branch-and-prune
approach for discrete NEPs which takes convexity of the strategy sets explicitly into
account.

We introduce the problem and describe preliminary results in Sect. 2. In Sect. 3,
we deliver a pruning criterion for NEPs with convex strategy sets. Section4 provides
an algorithmic application of the criterion for convex polyhedral strategy sets with
finite upper and lower bounds on each variable. In Sect. 5 we apply these findings
numerically to discrete Nash equilibrium problems with convex polyhedral strategy
sets and convex quadratic as well as non-convex quadratic objective functions. To
the best of our knowledge, this is the first implemented and tested branch-and-prune
procedure for this problem class. Finally, we wrap up our insights in Sect. 6.

2 Problem description and preliminary results

WestudydiscreteNashgameswith N players. In this setting, eachplayerν = 1, . . . , N
aims to solve the optimization problem

Qν(x−ν) : min
xν

θν(xν, x−ν) s.t. xν ∈ Xν .

The vector xν lies in R
nν and represents all variables which are controlled by the

ν-th player. The vector of all decision variables x = (
x1, . . . , xN

) ∈ R
n then is of

dimension n = ∑N
ν=1 nν , and the vector x−ν = (

x1, . . . , xν−1, xν+1, . . . , xN
) ∈

R
n−nν contains all decision variables except player ν’s. The notation x = (

xν, x−ν
)

emphasizes those variables, but does not reorder the entries of x . The objective function

123

A branch-and-prune algorithm...

θν : � → R has the domain

� := X1 × . . . × XN ,

hence the player’s objective function value depends on her own strategy as well as on
the other players’ strategies. The discrete feasible set

Xν := {xν ∈ Z
nν | gν(xν) ≤ 0}

is called the ν-th player’s strategy set. It is defined by the function gν : R
nν → R

mν .
In this context, the Nash equilibrium is the most important and commonly used

solution concept. A vector x� is called Nash equilibrium of this game, if for each
ν = 1, . . . , N , the vector x�,ν is an optimal point of Qν(x�,−ν), i.e., x� ∈ � and

θν(x
�) = θν(x

�,ν, x�,−ν) ≤ θν(x
ν, x�,−ν) ∀xν ∈ Xν

hold. The resulting Nash equilibrium problem may hence be formulated as

NEP : Find x� such that x�,ν is an optimal point of Qν(x�,−ν) for all ν = 1, . . . , N .

Our suggestion of a branch-and-prune approach for solving NEP will use its
continuous relaxation N̂EP. There each player ν solves the continuous problem

Q̂ν(x−ν) : min
xν

θν(xν, x−ν) s.t. xν ∈ X̂ν

where the integrality condition is dropped in the strategy set

X̂ν := {xν ∈ R
nν | gν(xν) ≤ 0}.

The domain �̂ := X̂1×. . .× X̂ N of the objective functions is defined analogously, and
a vector x̂� is aNash equilibriumof N̂EP if x̂�,ν solves Q̂ν (̂x�,−ν) for all ν = 1, . . . , N .

From now on, we use the following assumption.

Assumption 2.1 All entries of the function gν are convex for each player ν =
1, . . . , N .

Note that we will state a stronger assumption on the strategy sets for the algorithmic
implementation in Sect. 4. Clearly, under Assumption 2.1, each player’s relaxed strat-
egy set X̂ν is convex. If additionally each player’s objective function θν is convex with
respect to xν , N̂EP is called player convex, which is a standard assumption for continu-
ousNEPs. There are several possibilities to characterize and compute solutions of N̂EP
under player convexity. For example, if �̂ satisfies the Slater condition, a vector x̂� is
a Nash equilibrium of N̂EP if and only if x̂�,ν is a Karush-Kuhn-Tucker (KKT) point
of Q̂ν (̂x�,−ν) for each player (see [5, Prop. 1]). Other prominent solution techniques
for N̂EP are the variational inequality (VI) and the Nikaido-Isoda (NI) approaches
[6]. Unfortunately, none of these approaches carry over to the discrete problem NEP.

123

S. Schwarze, O. Stein

For the KKT and VI approaches this is due to the missing convexity of the discrete
strategy sets Xν . The NI-function, on the other hand, may be defined for NEP, but it
turns out to be structurally nonsmooth, nonconvex and discontinuous, and thus hard to
treat algorithmically [15]. We mention that the minimization of the NI-function of the
NEP’s "convexified instance", as introduced in [8], is in some cases algorithmically
tractable. However, we will not follow this approach, because we try to impose mild
assumptions on the objective functions, whichmakes the required computation of their
convex envelope rather impractical.

Instead, we will formulate an approach motivated by integer optimization tech-
niques, where branch-and-bound algorithms are commonly used. Let us briefly recap
the three key aspects of branch-and-bound for integer optimization, namely relaxation,
branching and bounding. Firstly, branch-and-bound exploits that it is easier to com-
pute an optimal point of the continuous relaxation and that, if this point is integer, it
also solves the integer optimization problem over this set. Secondly, if the obtained
solution is not integer, it is removed by branching the feasible set. Thirdly, it is essen-
tial that the minimal value over some subset of the continuously relaxed feasible set
serves as a lower bound for objective values of the integer feasible points in this subset.
Thus one can discard subsets if the minimal value over their relaxation is larger than
the objective value of the best known integer solution in the whole feasible set. This
feature is called bounding.

The following example will help to illustrate how, if at all, relaxation, branching
and bounding carry over to the discrete problem NEP.

Example 2.2 For two players, each one controlling a scalar variable, let us consider
the NEP with objective functions

θ1(x
1, x2) = 3

2
(x1)2 − 8x1 + 4x1x2,

θ2(x
1, x2) = 3

2
(x2)2 − 6x2 + 4x1x2

and strategy sets

X1 =
{
x1 ∈ Z | 0 ≤ x1 ≤ 3

}
,

X2 =
{
x2 ∈ Z | 0 ≤ x2 ≤ 2

}

as well as their continuous relaxations

X̂1 =
{
x1 ∈ R | 0 ≤ x1 ≤ 3

}
,

X̂2 =
{
x2 ∈ R | 0 ≤ x2 ≤ 2

}
.

Since for any fixed x−ν , the loss function of each player ν is convex quadratic, the
relaxed problem N̂EP is player convex.

123

A branch-and-prune algorithm...

Fig. 1 Feasible set of Example 2.2. Values (θ1(x), θ2(x)) are listed at each grid point

For any x2 ∈ X̂2 the unconstrained minimal point of θ1(·, x2) is given by
∇x1θ1(x

1, x2) = 0, lies in X̂1 and is, thus, the best response of player 1 to x2. On
the other hand, only for x1 ∈ [0, 3/2] the unconstrained minimal point of θ2(x1, ·),
characterized by∇x2θ2(x

1, x2) = 0, lies in X̂2, but for any x1 ∈ [3/2, 3] the boundary
point x2 = 0 is the best response to x1. Figure1illustrates that, thus, exactly the two
points (0, 2) and (8/3, 0) solve N̂EP.

In contrast, the discrete problem NEP possesses exactly the three solutions (0, 2),
(1, 1) and (3, 0). In particular, although the point (1, 1) lies close to the solution (0, 2)
of NEP as well as of N̂EP, it is an equilibrium. Moreover, as opposed to the point
(3, 0), it may not be obtained by rounding the entries of any of the solutions of N̂EP.

Regarding relaxation, in Example 2.2 the continuously relaxed problem N̂EP is
easy to solve, and the single discrete solution of N̂EP also solves NEP. Also in gen-
eral, the KKT, VI or NI methods can be employed to solve a player convex problem
N̂EP with differentiable defining functions, and the following result from [14, Prop.
2.1] guarantees that discrete solutions of the continuously relaxed problem solve the
original discrete problem.

Proposition 2.3 Any solution x� ∈ Z
n of N̂EP also solves NEP.

Note that this result also holds without player convexity, but that in this case N̂ E P
may not be easy to solve, even under Assumption 2.1. In Sect. 4 we will explain how
we deal with non-convex objective functions. Thismeans that with regard to relaxation
we are in an analogous situation as in integer optimization. Concerning the branching
step, we can also branch the strategy sets if the obtained solution is not integer, so that
this situation is analogous as well.

In contrast, the bounding step poses some difficulties. Firstly and most obviously,
there are multiple objective functions. Equilibrium points are required to be minimal
for each player’s objective function with respect to the other players’ decisions. How-
ever, we are interested in a single criterion telling us whether there may exist Nash

123

S. Schwarze, O. Stein

equilibria on a given subset of the strategy space. More specifically, the bounding idea
relies on some function p on the joint strategy set � whose minimal points coincide
with the solutions of NEP. For the continuous problem N̂EP such functions can be
obtained by the VI and NI approaches [4, 13] but, as mentioned above, the latter are
impossible or hard to apply in the discrete framework.

Under the additional assumption of NEP being a potential game [10] there exists a
potential function p : R

n → R with

θν(x
ν, x−ν) − θν(y

ν, x−ν) = p(xν, x−ν) − p(yν, x−ν) ∀ xν, yν ∈ Xν

for all ν = 1, . . . , N and all x−ν ∈ X−ν . It is straightforward to show that then any
optimal point of the integer program

P : min
x

p(x) s.t. x ∈ �

solvesNEP. However, in general not all solutions ofNEP are optimal forP , as required
for a bounding procedure relying on p. In fact, Example 2.2 provides a potential game
with potential function

p(x1, x2) = 3

2
(x1)2 − 8x1 + 3

2
(x2)2 − 6x2 + 4x1x2,

but the potential values

p((0, 2)) = −6, p((1, 1)) = −7, p((3, 0)) = −10.5

of the three solutions of NEP are not identical. In any case, potential games form only
a small subclass of NEPs, and their restrictive assumptions cover, e.g., cases where all
players unconsciously minimize the same objective function. We, on the other hand,
aim to handle non-potential games.

Since, if the solution of N̂EP does not happen to be integer, we do not seem to be
able to draw any conclusions for discarding subsets of � by a bounding procedure,
we will instead follow the branch-and-prune approach from [14, 15]. There, relations
between equilibria of NEP and N̂EP are exploited algorithmically. Regarding such
relations, Example 2.2 illustrates that NEP may possess more solutions than N̂EP and
that not every solution ofNEPmay be obtained by rounding the fractional components
of a solution of N̂EP. There are also examples where NEP possesses less solutions
than N̂EP. In particular, the solvability of N̂EP does not entail the solvability of NEP
(see [14, Ex. 2]). Additional requirements for the latter are given in [14, Cor. 4.4].

3 Theoretical foundation

The purpose of this section is to define a pruning criterion for discrete NEPs under
Assumption 2.1. Moreover, for each player ν = 1, . . . , N we assume gν to be contin-
uously differentiable and θν to be twice continuously differentiable. We use the term

123

A branch-and-prune algorithm...

pruning criterion to refer to criteria under which we can exclude parts of a player’s
strategy set because they are shown not to contain any Nash equilibrium. With effec-
tive pruning, we can substantially reduce the search region in order to compute Nash
equilibria more efficiently.

The theorem we present in this section generalizes Proposition 3.1 from [14] (see
“Appendix A”). Instead of boxes as in [14], it treats arbitrary convexly described
strategy sets. It provides a set of verifiable conditions under which we are able to
prune choices for values of single variables from some player’s strategy set. We shall
also motivate the underlying geometrical concept.

Our approach uses local approximations of the continuously relaxed problem N̂EP
to infer properties of the discrete problemNEP. As opposed to [14, 15]we use arbitrary
continuous strategies, rather than only solutions of N̂EP, to obtain these approxima-
tions. This enables us to deal with non-convexities in the objective functions. For the
approximations we employ the concept of the (outer) linearization cone

L≤(x̄ν, X̂ν) := {
d ∈ R

nν | 〈∇gν
i (x̄

ν), d〉 ≤ 0, i ∈ I0(x̄
ν, X̂ν)

}

of player ν’s continuously relaxed strategy set X̂ν = {xν ∈ R
nν | gν(xν) ≤ 0} at the

strategy x̄ν ∈ X̂ν , where

I0(x̄
ν, X̂ν) := {

i ∈ {1, . . . ,mν} | gν
i (x̄

ν) = 0
}

denotes the active index set. Under the convexity property of the strategy constraints
from Assumption 2.1 it is straightforward to prove that any linearization cone for
player ν provides an outer approximation of her relaxed strategy set in the following
sense.

Lemma 3.1 Let gν
i be convex for i = 1, . . . ,mν and let x̄ν ∈ X̂ν . Then we have

X̂ν ⊆ x̄ν + L≤(x̄ν, X̂ν).

Theorem 3.2 Let Assumption 2.1 hold, let x̄ ∈ �̂ and, for an arbitrary player ν,
let there exist an index i such that θν is strictly convex with respect to xν

i . Then the
following two statements hold:

(i) Let Fν
i = ∇xν

i
θν be convex, let Fν

i (x̄) ≥ 0 and for each player μ = 1, . . . , N let

〈∇xμFν
i (x̄), dμ〉 ≥ 0 ∀dμ ∈ L≤(x̄μ, X̂μ). (1)

Then any strategy x̃ ∈ � for which qx, defined by

qxμ
j = x̃μ

j for all (μ, j) �= (ν, i), and qxν
i = x̃ν

i − 1,

is also feasible cannot be a solution of NEP.

123

S. Schwarze, O. Stein

(ii) Let Fν
i = ∇xν

i
θν be concave, let Fν

i (x̄) ≤ 0 and for each player μ = 1, . . . , N let

〈−∇xμFν
i (x̄), dμ〉 ≥ 0 ∀dμ ∈ L≤(x̄μ, X̂μ). (2)

Then any strategy x̃ ∈ � for which x̂ , defined by

x̂μ
j = x̃μ

j for all (μ, j) �= (ν, i), and x̂ν
i = x̃ν

i + 1,

is also feasible cannot be a solution of NEP.

Proof In order to show that x̃ is not a Nash equilibrium, we will show that player ν

can choose a strictly better strategy.
On the one hand, if (i) holds and if we can show

θν(qx) = θν(qx
ν, x̃−ν) < θν (̃x

ν, x̃−ν) = θν (̃x) (3)

the assertion follows by the feasibility of qx for the discrete NEP. The strict inequality

θν(qx) + 〈∇xν
i
θν(qx), x̃

ν
i − qxν

i 〉 < θν(̃x) (4)

holds because of the strict convexity of θν in the component xν
i , being the only value

in which qx and x̃ differ. Hence, (3) follows, when

〈∇xν
i
θν(qx), x̃

ν
i − qxν

i 〉 = Fν
i (qx) ≥ Fν

i (x̄) + 〈∇x F
ν
i (x̄), qx − x̄〉 ≥ 0

holds. Firstly, the equation comes from the defined notation and qxν
i = x̃ν

i −1. Secondly,
the left inequality follows from convexity of Fν

i . Thirdly, the non-negativity comes
from

• Fν
i (x̄) ≥ 0 by precondition,

• 〈∇x Fν
i (x̄), qx − x̄〉 = ∑N

μ=1〈∇xμFν
i (x̄), qxμ − x̄μ〉 ≥ 0, because from Lemma 3.1

follows qxμ − x̄μ ∈ L≤(x̄μ, X̂μ) so that every summand is non-negative by (1).

On the other hand, if (ii) holds, the Eqs. (3) and (4) can be stated for x̂ instead of qx
as well with all requirements fulfilled. It remains to show that the chain of inequalities

〈∇xν
i
θν (̂x), x̃

ν
i − x̂ν

i 〉 = −Fν
i (̂x) ≥ 〈−∇x F

ν
i (x̄), x̂ − x̄〉 − Fν

i (x̄) ≥ 0

also holds. Firstly, the equation comes again from notation and x̂ν
i = x̃ν

i +1. Secondly,
the left inequality is valid due to the concavity of Fν

i , and the non-negativity comes
from

• −Fν
i (x̄) ≥ 0 by precondition,

• 〈−∇x Fν
i (x̄), x̂ − x̄〉 = ∑N

μ=1〈−∇xμFν
i (x̄), x̂μ − x̄μ〉 ≥ 0, because from

Lemma3.1 follows x̂μ− x̄μ ∈ L≤(x̄μ, X̂μ) so that every summand is non-negative
by (2).

�

123

A branch-and-prune algorithm...

Fig. 2 Pruning of x̃ , when Theorem 3.2.(i) is fulfilled for i = 2. In particular ∇xν Fν
2 (x̄) needs to lie in the

dual cone C of L≤(x̄ν , X̂ν)

To verbalize the statement of Theorem 3.2, we use the point x̄ to construct outer
approximations of all players’ complete strategy sets. This actually results in the outer
approximation

�̂ =
N∏

ν=1

X̂ν ⊆
N∏

ν=1

(
x̄ν + L≤(x̄ν, X̂ν)

) = x̄ + L≤(x̄, �̂)

of �̂. If, on this whole set x̄ + L≤(x̄, �̂), some player’s variable xν
i has a favorable

impact on the objective function θν when it is increased or decreased without the new
point becoming infeasible, then this player can deviate and realize this positive impact,
which is impossible in aNash equilibrium. In otherwords, under the given assumptions
in a Nash equilibrium x̃ the constructed deviation must result in an infeasible point.
Figure2 shows the two dimensional strategy set Xν of a discrete N player game.
Assume that for x̄ and i = 2 all requirements of Theorem 3.2.(i) hold. Then there
is always a positive impact in the ν-th player’s objective function, when she sets xν

2
to a lower value. As a result, e.g. x̃ cannot be a Nash equilibrium, because qxν is
feasible and a better answer for player ν. In Xν , the set of possible best answers and
thus the candidates for solutions of NEP shrinks to the pairs of "minimum feasible"
xν
2 -values for any given xν

1 . Roughly speaking, only integer points for which at least
one constraint is "active" in the sense that xν

2 cannot be set to a lower value without
changing other components of xν can be Nash equilibria. This criterion will enable us
to reduce the search space significantly in Sects. 4 and 5.

For the algorithmic exploitation of Theorem 3.2 we define linear optimization prob-
lems to check if (1) and (2) are satisfied. The statement (1) is clearly valid if and only

123

S. Schwarze, O. Stein

if the optimization problem

F(1) : min
dμ

〈∇xμFν
i (x̄), dμ

〉
s.t . dμ ∈ L≤(x̄μ, X̂μ)

has a non-negative optimal value vF(1) ≥ 0. In the same way, (2) holds if and only if

F(2) : min
dμ

〈−∇xμFν
i (x̄), dμ

〉
s.t . dμ ∈ L≤(x̄μ, X̂μ)

has a non-negative optimal value vF(2) ≥ 0. By definition of the linearization cone,
dμ = 0 is always feasible for F(1) and F(2), so that the above optimal values are actually
zero. If, on the other hand, there exists any direction dμ with a negative objective value,
the problems are unbounded, because the feasible set is a cone. Therefore, we only
have to check if these linear optimization problems are bounded in order to verify
the statements. We remark that (1) and (2) require that the vectors ∇xμFν

i (x̄) and
−∇xμFν

i (x̄), respectively, lie in the dual cone of L≤(x̄μ, X̂μ). In view of possibly
non-unique cone coefficients in the absence of an appropriate constraint qualification
it may, however, be algorithmically challenging to determine these cone coefficients
explicitly, so that we rather work with the above optimization formulation.

We emphasize that we need the strict convexity of the objective function θν in
the component (ν, i) in order to apply Theorem 3.2. The (strict) convexity in single
variables does not require convexity in all of player ν’s variables xν , as defined in
player convexity. However, the additional assumption might be helpful in the sense
that it increases the likelihood of finding (ν, i)-components in which θν is strictly
convex.

4 Algorithmic application

In this section, we define a branch-and-prune procedure for discrete NEPs by employ-
ing the pruning criterion from the previous section. The branching method is a
generalization of [14, Alg. 1]. It is defined in Sect. 4.1 and calls a pruning procedure,
which we define in Sect. 4.2.

4.1 Branchingmethod

Algorithm 1 shows the high-level approach for discrete NEPs with convexly con-
strained, bounded strategy sets. In most aspects, it coincides with [14, Alg. 1]. For
better readability, we repeat each step of the method. In particular, we describe the
adjustments that were necessary to integrate the novel pruning procedure. This proce-
dure computes all equilibria of an instance NEP . Within the procedure, we maintain
two lists. In one list, we save all equilibria which were already detected (E). The
other list L contains all strategy subsets which may contain additional equilibria. It is
initialized with the whole joint strategy set �.

In each iteration of the while-loop a joint strategy set Y ⊆ � is taken from the list
L. If the continuous relaxation Ŷ is empty, there are clearly no equilibria in this set and

123

A branch-and-prune algorithm...

we are done. Otherwise, a point x̄ ∈ Ŷ is computed. Here, the feasibility of x̄ for Ŷ is
a minimum requirement but, given the target of finding solutions of NEP as quickly as
possible, in view of Proposition 2.3 computing a solution x̄ of the continuously relaxed
problem N̂EP may be advantageous, depending on the effort for such a computation.

Afterwards, the first pruning and simultaneous branching can be started in line 7. In
this step, Algorithm 1 differs from [14, Alg. 1], in which the pruning procedure only
returns one set. Here, the pruning procedure returns a list of sets B = {B1, . . . , Bk}.
This disjunctive structure arises from the additional treatment of other constraints than
bounds. We briefly name the assumptions for such a procedure.

Assumption 4.1 The output of a pruning procedure, called with Y ⊆ � and x̄ ∈ Ŷ , is
a list B = {B1, . . . , Bk} with the following properties:

(P1) The set Y \ {
k⋃

i=1
Bi } does not contain any Nash equilibrium

(P2) Bi ⊆ Y for all i = 1, . . . , k
(P3) the sets in B are pairwise disjoint, i.e. Bi ∩ Bj = ∅ for i, j ∈ {1, . . . , k}, i �= j

(P4) we have x̄ ∈ B̂1 if x̄ ∈
k⋃

i=1
B̂i

Firstly, property (P1) ensures that we are not pruning any Nash equilibrium. Secondly,
property (P2) and (P3) are crucial in branching techniques to not allow additional
points and avoid that a point needs to be processed multiple times. Lastly, property
(P4) is more technical. On the one hand, a pruning procedure could exclude x̄ . On
the other hand we further process the point, so we need to know which of the subsets
contains it. Algorithm 2 in the next subsection presents a procedure which satisfies
(P1)-(P4) and is able to handle convex polyhedral strategy sets.

Starting in line 9, the second branching process depends on whether x̄ ∈ Z
n or not.

If so, the vector is potentially an equilibrium of the discrete problemNEP and can, after
verification, be appended to E , the list of all Nash equilibria. The equilibrium property
can be verified by checking if x̄ν is a solution of Qν(x̄−ν) for all ν = 1, . . . , N . More
specifically,we need to solve these N integer (non-)convex programs and check, if their
respective optimal values are attained at the given points x̄ν (line 10). The appearing
integer (non-)convex problems can be solved with techniques from mixed-integer
(non-)convex optimization (see e.g. [1]). The efficient implementation of this step of
course depends on the state-of-the-art of available solvers. After knowing whether
x̄ is a solution, we can release it and search in the remaining feasible set for Nash
equilibrium points. By Algorithm 3 ([14] and “Appendix B”), we obtain a partition of
sets B+ which cover all other possible equilibria. Any integer point x̃ ∈ B1 other than
x̄ is in one of the sets from B+. Additionally, these sets are pairwise disjoint subsets
of B1.

If otherwise x̄ /∈ Z
n , the branching step resembles the one common in integer

optimization. One fractional component in x̄ is selected and two sets are added to the
listL. In the first one, the value of this component is bounded to be greater or equal the
nearest larger integer. In the second one, it is bounded to be less or equal the nearest
smaller integer.

123

S. Schwarze, O. Stein

When the strategy sets X1, . . . , XN are bounded, the termination of Algorithm 1
is ensured because there are finitely many integer strategies. This property can be
established by setting finite upper and lower bounds for each variable. Note that
the efficiency of Algorithm 1 mainly depends on the effectiveness of the pruning
procedure. All points which are not pruned will be enumerated and checked in line 10.

Algorithm 1: Branching Method
Input: Discrete Nash equilibrium problem NEP with bounded strategy sets defined by convex

functions
Output: Solution set E of NEP

1 Initialize list of strategy subsets L := {�}
2 initialize list of equilibria E := {}
3 while L �= {} do
4 take a strategy set Y from L
5 if Ŷ �= ∅ then
6 compute a feasible strategy x̄ ∈ Ŷ
7 call a pruning procedure, satisfying Assumption 4.1, with Y and x̄ as input and obtain the list

B = {B1, . . . , Bk }
8 append {B2, . . . , Bk } to L
9 if x̄ ∈ Z

n then
10 if x̄ is a solution of NEP then put x̄ in E
11 call Algorithm 3, with B1 and x̄ as input, and obtain the list B+
12 append B+ to L
13 else
14 select an index i ∈ {1, . . . , n} with x̄i /∈ Z

15 put the set B1 ∩ {
x ∈ R

n | xi ≥ �x̄i �
}
in L, if non-empty

16 put the set B1 ∩ {
x ∈ R

n | xi ≤ �x̄i �
}
in L, if non-empty

4.2 Pruning procedure for convex polyhedral strategy sets

We now define a pruning procedure for discrete Nash games, where every player’s
strategy set Xν can be characterized by linear inequalities, which is a special case of
Assumption 2.1:

Xν := {xν ∈ Z
nν | Bνxν ≤ bν, lν ≤ xν ≤ uν}. (5)

With each player havingmν inequality constraints, Bν is an integer valued (mν ×nν)-
matrix and bν ∈ Z

mν a vector. We will refer to the k-th row of Bν as Bν
k�. The

player’s decision vector xν has explicitly defined lower and upper bounds lν ∈ Z
nν

and uν ∈ Z
nν , respectively. We call a discrete strategy set Xν convex polyhedral, if

the continuous relaxation of this strategy set X̂ν is convex and polyhedral.
Previously, we determined conditions under which in an equilibrium of NEP it is

not possible to increase or decrease the value of a variable to the next integer and
remain feasible. Accordingly, at least one inequality (or the box restriction) must be

123

A branch-and-prune algorithm...

active in a way that the next integer value in one direction is not feasible anymore. We
formalize this kind of activity for a linear constraint.

Definition 4.2 For a feasible point x̃ ∈ � the inequality k is called

• (ν, i)−-active if for qx , defined as qxμ
j = x̃μ

j for (μ, j) �= (ν, i) and qxν
i = x̃ν

i − 1,
we have Bν

k�qx
ν > bν

k ,• (ν, i)+-active if for x̂ , defined as x̂μ
j = x̃μ

j for (μ, j) �= (ν, i) and x̂ν
i = x̃ν

i + 1,
we have Bν

k� x̂
ν > bν

k .

We now investigate under which conditions inequality k is (ν, i)−- or (ν, i)+-active
for a feasible point x̃ . With these conditions we will be able to perform pruning steps.
Firstly, by Definition 4.2 an inequality k is (ν, i)−-active for x̃ if

bν
k < Bν

k�qx
ν = Bν

k� x̃
ν + Bν

ki (qx
ν
i − x̃ν

i︸ ︷︷ ︸
=−1

)

holds. Because of the integrality assumptions for Bν and bν , this is exactly true, when

Bν
k� x̃

ν ≥ bν
k + Bν

ki + 1 (6)

holds. Due to feasibility of x̃ , this condition can only be satisfied if Bν
ki < 0 holds.

Similarly, an inequality k is (ν, i)+-active for x̃ if

bν
k < Bν

k� x̂
ν = Bν

k� x̃
ν + Bν

ki (̂x
ν
i − x̃ν

i︸ ︷︷ ︸
=1

)

and thus

Bν
k� x̃

ν ≥ bν
k − Bν

ki + 1 (7)

holds. This argumentation results in Corollary 4.3.

Corollary 4.3 Let x̃ be a solution of a problem NEP with strategy sets as defined in
(5). Then the following two statements hold:

(i) Suppose all requirements of Theorem 3.2.(i) hold for some x̄ ∈ �̂ and an index
pair (ν, i). Then x̃ν

i = lνi holds or there exists at least one inequality k with (6)
and Bν

ki < 0.
(ii) Suppose all requirements of Theorem 3.2.(ii) hold for some x̄ ∈ �̂ and an index

pair (ν, i). Then x̃ν
i = uν

i holds or there exists at least one inequality k with (7)
and Bν

ki > 0.

Now we can state Algorithm 2. This procedure can be applied in an arbitrary point
x̄ ∈ �̂ in order to reduce the search space. Two outer for-loops, starting in line 2 and
3, iterate through all variables of the game. For each variable, the requirements of
Theorem 3.2 are checked. If case (i) or (ii) is applicable, we perform a partition of the
set according to Corollary 4.3.

123

S. Schwarze, O. Stein

Fig. 3 Pruning in a polyhedral strategy set

Suppose that for (ν, i) the if-statement in line 4 is true. Then the first statement
of Corollary 4.3 holds. Consequently in any Nash equilibrium x , xν

i is at its lower
bound lνi or at least one inequality from the index set J ν,i must be (ν, i)−-active.
Integer points for which none of this holds are pruned in lines 5–12 by introducing
new inequalities and splitting the set(s) up. In line 6, there is an inner for-loop which
ensures that the subdivision is done for every set in the list B. At first, B only contains
Y , but as soon as the if-statements hold true for more than one index pair, this step
is performed for all sets from the previous subdivisions. Thus for every set from the
current list B the partition is added to a new list C, which replaces B afterwards. We
will now describe in detail how lines 7–11 yield a pairwise disjoint subdivision. In
line 7, all points for which xν

i is at its lower bound are added to C and line 8 ensures
that the next sets are disjoint. Then in lines 9–11, for all inequalities with Bν

ki < 0 the
points for which firstly (6) holds and secondly are not contained in previous sets are
added to C. The latter is done in every iteration by stating the negation of (6) for all
sets which will be added to C successively in this for-loop. We can state the negation
of inequality (6) as

Bν
k� x̃

ν ≤ bν
k + Bν

ki . (¬6)

Note that (6) and (¬6) form a split disjunction.
In lines 13–21 the analogous approach is implemented for the casewhen the require-

ments of Theorem 3.2.(ii) hold and Corollary 4.3.(ii) can be applied. We illustrate in
Example 4.4 how the procedure works in detail.

Example 4.4 Figure 3 depicts how the two inner for-loops in Algorithm 2 partition
one player’s strategy set into three sets C1,C2 and C3. The illustration shows the first

123

A branch-and-prune algorithm...

Algorithm 2: Pruning procedure for convex polyhedral NEP
Input: Joint strategy set Y ⊆ � of NEP, strategy x̄ ∈ Ŷ = Ŷ1 × . . . × ŶN
Output: Pruned list of joint strategy sets B, which meets Assumption 4.1

1 Initialize B := {Y }
2 for ν = 1 to N do
3 for i = 1 to nν do
4 if θν

i is strictly convex in xν
i , F

ν
i is convex, Fν

i (x̄) ≥ 0 and (1) holds for each player then
5 initialize C := {}
6 for B ∈ B do
7 put the set B ∩ {x ∈ R

n | xν
i ≤ lνi } in C, if non-empty

8 B ← B ∩ {x ∈ R
n | xν

i ≥ lνi + 1}
9 for j ∈ J ν,i := { j ∈ N | Bν

j i < 0} do
10 put the set B ∩ {x ∈ R

n | Bν
j�x

ν ≥ bν
j + Bν

j i + 1} in C, if non-empty

11 B ← B ∩ {x ∈ R
n | Bν

j�x
ν ≤ bν

j + Bν
j i }

12 B ← C
13 if θν

i is strictly convex in xν
i , F

ν
i is concave, Fν

i (x̄) ≤ 0 and (2) holds for each player then
14 initialize C := {}
15 for B ∈ B do
16 put the set B ∩ {x ∈ R

n | xν
i ≥ uν

i } in C, if non-empty
17 B ← B ∩ {x ∈ R

n | xν
i ≤ uν

i − 1}
18 for k ∈ K ν,i := {k ∈ N | Bν

ki > 0} do
19 put the set B ∩ {x ∈ R

n | Bν
k�x

ν ≥ bν
k − Bν

ki + 1} in C, if non-empty
20 B ← B ∩ {x ∈ R

n | Bν
k�x

ν ≤ bν
k − Bν

ki }
21 B ← C

player’s strategy (sub-)set for an arbitrary game with two variables. The gray area is
the continuously relaxed strategy set Ŷ1. In this situation, Algorithm 2 was executed
with Y and some x̄ ∈ Ŷ , which we do not have to name explicitly. We just suppose
that the if-statement in line 4 holds true for x12 and B = {Y } still holds. Thus there is
only one iteration of the for-loop starting in line 6 which we consecutively describe.

At first, in line 7 the algorithm puts the set C1 × Ŷ2 into C. It contains all possible
strategies with active lower bound x12 = l12 . This happens by posing the inequality
labeled by "1" in Fig. 3 for this set. For all future sets of this iteration, inequality ¬1,
with x12 ≥ l12 + 1, is stated in line 8 without excluding any feasible points.

At this point, the innermost for-loop starts in line 9. The index set J 1,2 contains
only two elements as there are only two linear constraints with B1

j2 < 0 which can be

(1, 2)−-active. We can identify them because they are avoiding that x12 is decreased at
some point in Ŷ1. Thus there are two iterations of this loop. The first one is performed
with the left inequality. In line 10, we put C2 × Ŷ2 into C, where inequality 2 coming
from (6) holds.Afterwards,we state inequality¬2 to prevent an overlap to all incoming
sets. The second iteration is done with the right inequality. For this restriction, in
addition to the inequalities ¬1 and ¬2, 3 must hold in C3 × Ŷ2 which is put into C in
line 10. In line 11, the inequality ¬3 is stated for future sets which is not necessary
anymore, as we exit the two for-loops and replace B with the three sets in C.

123

S. Schwarze, O. Stein

As a result, we have 3 strategy subsets and for player one there are overall 7 integer
points remaining, which could be choices in a Nash equilibrium.

In Sect. 5 we will see that Example 4.4 is not an isolated case, but that often a
considerable part of the feasible set can be pruned by Algorithm 2.

5 Numerical results

In this section, we will solve discrete Nash equilibrium problems with the branch-
and-prune procedure presented in Sect. 4. Our aims are, firstly, to demonstrate the
effectiveness of our method with initial experiments. In particular, we would like to
show in random instances to what extent the pruning criterion facilitates the search
for equilibria by shrinking the search area. Secondly, we want to give an impression
of the limitations of this approach and which parts of the algorithm are the most
challenging and computationally intensive, thus providing starting points for further
improvements.

In the following experiments, all players’ feasible sets are polyhedral, as defined
in (5). The objective functions are defined as

θν(x) := 1

2
(xν)�Qνxν + (Cνx−ν + dν)�xν,

with a symmetric, but not necessarily positive semidefinite (nν × nν)-matrix Qν , an
(nν × (n − nν))-matrix Cν and a vector dν ∈ R

nν for each player ν = 1, . . . , N . We
will consider player convex games as well as games which satisfy Assumption 2.1, but
in which the objective functions are only required to be strictly convex with respect
to individual variables xν

i for i = 1, . . . , nν .
In the following, we firstly give details on the concrete implementation of the algo-

rithms. Secondly, we describe how test instances were generated. Lastly, we evaluate
and discuss the results.

5.1 Implementation

All algorithms are implemented inMatlabR2020a.We solve all occurring optimization
problemsvia theMatlab interface ofGurobi 9.5.0which enables us to solve non-convex
quadratic optimization problems. The script for the numerical test is executed on an
Intel Core i7-9700K CPU @ 3.60GHz with Linux Mint 20 and 32 GB RAM.

Some details of the algorithms from Sect. 4 can be implemented in various ways
and are specified below. The complete code is available in a Git repository.1

Algorithm 1 At first, the feasible strategy in line 4 is computed with a Gauss-Seidel
best response scheme (see [7, Algorithm 1]), because we favor x̄ to be already a con-
tinuous Nash equilibrium. Within this Gauss-Seidel procedure, we avoid exhaustive
calculations if there is only slow or no convergence by executing the while-loop at
most 10 times. Note that in this case our approach works as well, as it does not rely

1 https://github.com/schwarze-st/nep_pruning

123

https://github.com/schwarze-st/nep_pruning

A branch-and-prune algorithm...

on x̄ being a continuous Nash equilibrium, but only a feasible point. Secondly, the
if-statement in line 7 is verified by solving the optimization problem Qν(x̄−ν) and
compare its optimal value to θν(x̄) for each player. Thirdly, for the considered games,
we can use Algorithm 2 as pruning procedure in line 5.

Algorithm 2 The description in Sect. 4.2 is tailored for convex polyhedral strategy
sets. Consecutively, we explain how the if-statements are checked. For each vari-
able, the strict convexity of θν

i in xν
i is fulfilled when Qν

i i > 0. Further, Fν
i is a

linear function and therefore both, convex and concave. Naturally, we can calculate
Fν
i (x̄) = Qν

i� x̄
ν + Cν

i� x̄
−ν + dν

i . Equations (1) and (2) are validated by checking the
boundedness of F(1) and F(2). Lastly, in line 7–11 and 16–20, we ensure that x̄ is
always in the first entry of B (if it is not pruned) by some additional logical queries.

5.2 Generation of test instances

We randomly generate instances of Nash games and name them C/N�X�Yk . The
first letter is C , if the instance is player convex and N , if not. The second and third
signs denote the number of players X and the number of variables Y which each
player controls, and k is an index to distinguish instances with similar attributes. For
example, the instance C32k consists of three players with two-dimensional strategy
sets and player convexity holds. Table 1lists all instances and their properties. In the
next two paragraphs, we explain these properties and sketch how the instances were
generated. For further details we refer to our implementation.
Strategy sets The aim is to generate an arbitrary convex polytope as strategy set for
each player. Our approach is to start with a box which has equal side lengths and its
center in the origin. We initiate Xν from (5) with lνi = −5, uν

i = 5, i = 1, . . . , nν .
Afterwards we sequentially add m linear inequalities. We perform the following steps
to add a constraint Bν

k�x
ν ≤ bν

k :

1. To determine the number of nonzero values in Bν
k� we draw a number from a

uniform discrete distribution between two and the number of variables. The indices
are selected as a random permutation.

2. We set each nonzero value in Bν
k�
as follows. We draw a number from N (5, 1.5),

round it and switch the sign with 0.5 probability.
3. The choice of bν

k ∈ Z is based on geometric considerations. To avoid redundancy,
we can set it so that the distance of the new inequality from the origin is less than
half the initial box diameter. By setting it on a positive valuewe ensure consistency.

The mean density of all matrices Bν of each instance is listed in Table 1. Note that
the complexity of Algorithm 2 significantly increases with the number of inequalities.
For the purpose of later comparisons, we also compute the cardinality of � which is
simply the number of integer points in the common feasible set.
Objective functions For each instance,we computeCν , dν and Qν filledwith random
values from the interval (−1, 1) for each player. Each entry in Cν and dν is set to zero
with a probability of 0.5 in order to reduce density.

For generating a test bed of player convex problems, we update Qν = (Qν)ᵀQν .
For those instances, we list the minimum eigenvalue λmin of all Qν in Table 1.

123

S. Schwarze, O. Stein

Ta
bl
e
1

Pr
op
er
tie
s
of

ge
ne
ra
te
d
in
st
an
ce
s:
M
in
im

um
ei
ge
nv
al
ue

of
al
l
Q

ν
in

th
e
ga
m
e

(λ
m
in

),
nu
m
be
r
of

in
eq
ua
lit
ie
s
ad
de
d
pe
r
pl
ay
er

(m
),
m
ea
n
de
ns
it
y
of

co
ns
tr
ai
nt

m
at
ri
ce
s,
ca
rd
in
al
ity

of
co
m
m
on

fe
as
ib
le
se
t(

|�
|),

an
d
nu

m
be
r
of

pl
ay
er
s
w
ith

θ ν
no

n-
co
nv
ex

w
.r.
t.
xν

(N
N
C

)

N
am

e
λ
m
in

m
D
en
si
ty

|�
|

N
am

e
N
N
C

m
de
ns
ity

|�
|

C
22

1
0.
09

43
4

1.
00

10
,4
94

N
22

1
1

4
1.
00

10
,7
80

C
22

2
0.
21

27
4

1.
00

11
,2
27

N
22

2
1

4
1.
00

11
,0
21

C
22

3
0.
02

61
4

1.
00

11
,0
25

N
22

3
1

4
1.
00

11
,0
09

C
22

4
0.
19

89
4

1.
00

11
,5
44

N
22

4
1

4
1.
00

11
,3
30

C
23

1
0.
00

10
4

0.
71

1,
26

9,
84

0
N
23

1
1

4
0.
79

1,
42

0,
86

0

C
23

2
0.
00

34
4

0.
79

1,
35

5,
24

8
N
23

2
1

4
0.
88

1,
47

1,
28

8

C
23

3
0.
00

07
4

0.
88

1,
48

4,
43

6
N
23

3
1

4
0.
83

1,
48

5,
92

5

C
23

4
0.
11

55
4

0.
83

1,
44

1,
91

7
N
23

4
1

4
0.
71

1,
36

6,
56

0

C
23

5
0.
00

39
8

0.
88

1,
27

5,
31

7
N
23

5
2

8
0.
85

1,
22

9,
09

8

C
23

6
0.
06

37
8

0.
75

1,
16

7,
46

0
N
23

6
1

8
0.
88

1,
28

6,
90

8

C
23

7
0.
02

10
8

0.
88

1,
25

3,
25

0
N
23

7
2

8
0.
94

1,
35

8,
01

0

C
23

8
0.
02

79
8

0.
83

1,
33

8,
61

3
N
23

8
2

8
0.
90

1,
28

5,
36

8

C
32

1
0.
00

59
4

1.
00

1,
21

2,
64

0
N
32

1
1

4
1.
00

1,
23

6,
06

0

C
32

2
0.
01

34
4

1.
00

1,
19

0,
28

0
N
32

2
2

4
1.
00

1,
28

2,
93

0

C
32

3
0.
02

08
4

1.
00

1,
25

9,
60

4
N
32

3
2

4
1.
00

1,
10

2,
40

0

C
32

4
0.
11

36
4

1.
00

1,
17

8,
50

8
N
32

4
2

4
1.
00

1,
21

2,
95

2

C
24

1
0.
04

24
8

0.
77

16
0,
43

6,
48

4
N
24

1
2

8
0.
78

16
2,
31

1,
68

8

C
24

2
0.
00

51
8

0.
75

16
2,
71

6,
73

6
N
24

2
2

8
0.
86

17
2,
44

3,
87

5

C
24

3
0.
02

83
8

0.
78

16
5,
58

0,
47

0
N
24

3
2

8
0.
70

15
0,
67

0,
48

8

C
24

4
0.
00

77
8

0.
81

17
1,
94

0,
98

6
N
24

4
2

8
0.
84

17
7,
97

2,
14

5

C
25

1
0.
00

87
10

0.
75

19
,3
59

,7
62

,0
24

N
25

1
2

10
0.
62

18
,7
29

,6
44

,9
34

C
25

2
0.
00

10
10

0.
62

17
,7
27

,6
57

,5
40

N
25

2
2

10
0.
69

18
,5
26

,1
06

,1
12

123

A branch-and-prune algorithm...

Ta
bl
e
1

co
nt
in
ue
d

N
am

e
λ
m
in

m
D
en
si
ty

|�
|

N
am

e
N
N
C

m
de
ns
ity

|�
|

C
25

3
0.
00

16
10

0.
66

19
,4
11

,2
74

,7
00

N
25

3
2

10
0.
76

21
,4
13

,8
27

,9
44

C
25

4
0.
00

93
10

0.
72

19
,3
29

,6
02

,7
00

N
25

4
2

10
0.
59

18
,0
01

,8
69

,8
85

C
33

1
0.
00

77
6

0.
85

1,
62

4,
59

3,
53

7
N
33

1
2

6
0.
76

1,
47

2,
25

5,
32

3

C
33

2
0.
13

68
6

0.
85

1,
53

2,
71

5,
32

0
N
33

2
3

6
0.
83

1,
51

9,
38

4,
09

6

C
33

3
0.
12

61
6

0.
83

1,
47

2,
17

7,
91

2
N
33

3
2

6
0.
80

1,
34

9,
84

3,
69

0

C
33

4
0.
00

02
6

0.
85

1,
53

7,
99

2,
22

5
N
33

4
2

6
0.
81

1,
42

1,
98

4,
01

6

123

S. Schwarze, O. Stein

In the non-convex test bed, we set Qν := 0.5 · (Qν)� + 0.5 · Qν and replace the
diagonal entries by their absolute values. By this, we have a symmetric matrix and θν

is convex in single variables xν
i , i = 1, . . . , nν . In this procedure, the matrices often

turn out to be, by chance, positive definite. We discard instances where this happens
for all players. In Table 1 we can see in the column NNC , how many players have
non-positive-semidefinite matrices Qν and have thus a non-convex objective function.
Test bed Besides convexity, we subdivide the instances according to their sizes. The
small test bed are all instances of type �22�. Themaximumnumber of integer points is
bounded below 12,000. Themedium test bed consists of all �23� and �32� instances.
In �235−8, the complexity is increased by adding twice as many constraints. Finally
the large test bed are all �24�, �33� and �25� problems. The number of integer points
drastically increases due to exponential growth of the strategy sets in the number of
variables. Here, we can only expect convergence in a reasonable time if the pruning
procedure eliminates an enormous part of the feasible sets.

5.3 Evaluation

Subsequently, we investigate if Algorithm 1 is able to compute some or even all
equilibria of the test instances. Additionally, we examine how much of the feasible set
can be pruned byAlgorithm2 and compare the performance on convex and non-convex
instances.

In Table 2we can see the statistics of the solving process for all player convex
instances. We can see in column |E |, howmany solutions of the NEP are found within
the time limit of tmax = 3600 seconds. The column t1 marks the run time in seconds,
when the first equilibrium was found, t2 when the last equilibrium was found and t3
when the solving process ended. If, t3 = tmax, the process did not finish and there
is no guarantee that all solutions were found. The statistic O(tk) displays how often
the if-statement in line 6 of Algorithm 1 held true, hence how many integer points
were processed at these timestamps. Note that, if the algorithm finished, O(t3)/|�|
tells us the share of integer points that needed to be processed, the rest was pruned by
Algorithm 2.

In the small test bedwe report that the algorithm completed and all equilibria were
found. The properties of the instances are quite different: While C221 and C223 have
two solutions, C224 has none. In the medium test bed we report that for 11 of 12
instances we were able to find provably all solutions within one hour, C323 being an
exception. For this instance, we found three equilibria but did not finish. Notably, there
are five instances certified to have no equilibria. Lastly, in the large test bed there was
no instance for which the procedure finished within an hour. Nevertheless, we found
a solution for two instances.

If we were able to compute equilibria, the first one was mostly found in the first ten
seconds of the run time. We now analyse the 15 instances for which t3 < tmax holds.
In four cases less than 5% of the integer points in � were processed, in seven others
this share is under 8%. We note that often a large proportion of feasible points could
be pruned, the arithmetic mean is 92.5% and the standard deviation 3.6%. We point

123

A branch-and-prune algorithm...

Table 2 Results on convex test bed: Number of computed equilibria (|E |), timestamps when the first (t1)
and the last (t2) equilibrium was found, timestamp at the end of computation (t3), and number of processed
integer points at timestamp ti (O(ti))

|E | t1 t2 t3 O(t1) O(t2) O(t3) O(t3)/|�|
C221 2 0.17 18.47 19.51 1 1149 1225 0.11673

C222 1 0.05 0.05 7.96 1 1 542 0.04828

C223 2 0.10 0.29 8.11 5 18 700 0.06349

C224 0 – – 38.71 – – 640 0.05544

C231 1 9.74 9.74 880.48 498 498 60,209 0.04741

C232 0 – – 3322.36 – – 228,111 0.16832

C233 2 0.91 568.33 1287.24 39 42,349 96,333 0.06490

C234 0 – – 2407.23 – – 171,893 0.11921

C235 0 – – 1779.11 – – 98,935 0.07758

C236 1 172.12 172.12 1121.39 10,871 10,871 72,942 0.06248

C237 1 1.92 1.92 1532.28 95 95 85,381 0.06813

C238 2 0.61 4.01 1988.98 18 157 135,933 0.10155

C321 2 2.28 76.13 842.39 16 2760 42,558 0.03510

C322 1 0.07 0.07 1498.27 1 1 74,208 0.06234

C323 3 0.02 28.44 tmax 1 1034 158,421 0.12577

C324 0 – – 712.85 – – 33,571 0.02849

C241 1 20.54 – tmax 970 – 196,073 0.00122

C242 0 – – tmax – – 182,675 0.00112

C243 0 – – tmax – – 149,011 0.00090

C244 0 – – tmax – – 161,427 0.00094

C251 0 – – tmax – – 125,505 0.00001

C252 0 – – tmax – – 119,623 0.00001

C253 0 – – tmax – – 171,091 0.00001

C254 0 – – tmax – – 140,287 0.00001

C331 1 2.75 – tmax 32 – 142,282 0.00009

C332 0 – – tmax – – 138,500 0.00009

C333 0 – – tmax – – 124,661 0.00008

C334 0 – – tmax – – 128,103 0.00008

out that, if t3 = tmax, the column O(t3)/|�| has no similar interpretation. It only says
how many integer points were processed in the given time.

For the non-convex test bed, displayed in Table 3, we see similar results. We report
that all small and 10 of 12 medium instances were solved completely. We have six
provably inconsistent instances. Again, there was no large instance solved completely
in the time limit, but we found a solution for three instances. For the instances with
t3 < tmax, the mean share of pruned points is 92.7% with a standard deviation of
3.4%. Hence, in our randomly generated test bed the convexity in individual variables
is sufficient to be able to prune a large proportion of feasible points.

123

S. Schwarze, O. Stein

Table 3 Results on non-convex test bed: Number of computed equilibria (|E |), timestamps when the first
(t1) and the last (t2) equilibrium was found, timestamp at the end of computation (t3), and number of
processed integer points at timestamp ti (O(ti))

|E | t1 t2 t3 O(t1) O(t2) O(t3) O(t3)/|�|
N221 2 0.28 5.53 9.20 5 305 554 0.05139

N222 1 1.65 1.65 26.29 24 24 1056 0.09582

N223 0 – – 7.93 – – 439 0.03988

N224 0 – – 56.83 – – 1739 0.15349

N231 0 – – 1533.48 – – 110,597 0.07784

N232 1 1.01 1.01 1777.72 34 34 100,212 0.06811

N233 0 – – tmax – – 212,421 0.14296

N234 1 0.39 0.39 652.06 7 7 48,499 0.03549

N235 2 0.06 119.50 1421.55 1 5561 72,716 0.05916

N236 0 – – tmax – – 139,227 0.10819

N237 0 – – 1389.65 – – 60,331 0.04443

N238 0 – – 2414.34 – – 118,580 0.09225

N321 0 – – 3083.25 – – 134,829 0.10908

N322 2 3.58 44.35 1816.45 80 1668 77,448 0.06037

N323 1 0.93 0.93 250.07 8 8 9808 0.00890

N324 4 7.91 380.19 1678.99 259 16,154 71,333 0.05881

N241 1 2.50 – tmax 11 – 137,587 0.00085

N242 0 – – tmax – – 159,930 0.00093

N243 0 – – tmax – – 142,295 0.00094

N244 0 – – tmax – – 128,710 0.00072

N251 0 – – tmax – – 84,396 0.00000

N252 1 0.35 – tmax 1 – 103,018 0.00001

N253 0 – – tmax – – 119,264 0.00001

N254 0 – – tmax – – 124,808 0.00001

N331 0 – – tmax – – 107,729 0.00007

N332 1 643.02 – tmax 17,560 – 88,540 0.00006

N333 0 – – tmax – – 89,817 0.00007

N334 0 – – tmax – – 119,694 0.00008

In contrast, we detect differences in the run time between the convex and the non-
convex case. Table 4 reports how much of the total run time is caused by solving
optimization problems and checking consistency with Gurobi (GTtot). Of this time,
we see on the left the fractions caused by different tasks. In the non-convex test bed,
aiming to solve the continuously relaxed problems with the Gauss-Seidel method and
checkingwhether x̄ solves the NEP takes on average a larger proportion ofGTtot (47%
and 16% instead of 41% and 11%). For these two tasks, non-convex optimization
problems need to be solved. The other two columns only report the time fractions
needed for consistency checks. Overall, one can also see in the tables which parts
of the algorithms require the most run time, to assess where improvements are most

123

A branch-and-prune algorithm...

Ta
bl
e
4

R
un

tim
e
de
ta
ils

on
te
st
be
ds
:T

ot
al
ru
n
tim

e
of

G
ur
ob
i(
G
T t
ot
)
an
d
sh
ar
es

of
ru
n
tim

e
fo
r
th
e
G
au
ss
-S
ei
de
la
lg
.(
G
T G

S
),
ch
ec
ki
ng

if
x̄
is
an

eq
ui
lib

ri
um

(G
T i
sN

E
),

ch
ec
ki
ng

bo
un

de
dn

es
s
of

F
(1

)
an
d
F
(2

)
(G

T b
d
)
an
d
ch
ec
ki
ng

co
ns
is
te
nc
y
(G

T c
on
)

N
am

e
G
T G

S
G
T i
sN

E
G
T b

d
G
T c

on
G
T t
ot

N
am

e
G
T G

S
G
T i
sN

E
G
T b

d
G
T c

on
G
T t
ot

C
22

1
0.
41

0.
10

0.
30

0.
19

18
.7
4

N
22

1
0.
38

0.
21

0.
25

0.
17

8.
90

C
22

2
0.
39

0.
12

0.
30

0.
19

7.
68

N
22

2
0.
64

0.
11

0.
16

0.
09

25
.5
7

C
22

3
0.
42

0.
15

0.
29

0.
14

7.
80

N
22

3
0.
52

0.
10

0.
23

0.
14

7.
68

C
22

4
0.
84

0.
03

0.
07

0.
06

37
.6
4

N
22

4
0.
72

0.
08

0.
12

0.
08

55
.3
0

C
23

1
0.
40

0.
15

0.
32

0.
13

84
0.
70

N
23

1
0.
42

0.
14

0.
27

0.
17

14
52

.8
5

C
23

2
0.
43

0.
14

0.
30

0.
13

31
13

.8
4

N
23

2
0.
50

0.
11

0.
27

0.
12

17
14

.3
1

C
23

3
0.
41

0.
14

0.
33

0.
11

12
22

.8
1

N
23

3
0.
53

0.
12

0.
27

0.
08

33
38

.2
2

C
23

4
0.
42

0.
15

0.
29

0.
14

22
82

.2
0

N
23

4
0.
46

0.
15

0.
32

0.
07

62
1.
21

C
23

5
0.
36

0.
11

0.
25

0.
27

17
08

.7
7

N
23

5
0.
42

0.
16

0.
20

0.
22

13
67

.5
1

C
23

6
0.
34

0.
12

0.
27

0.
26

10
77

.2
2

N
23

6
0.
45

0.
20

0.
18

0.
17

34
52

.4
1

C
23

7
0.
32

0.
11

0.
25

0.
33

14
76

.2
4

N
23

7
0.
48

0.
16

0.
18

0.
17

13
44

.2
1

C
23

8
0.
37

0.
13

0.
26

0.
23

18
82

.8
7

N
23

8
0.
43

0.
20

0.
20

0.
18

23
18

.8
9

C
32

1
0.
44

0.
10

0.
29

0.
16

81
1.
94

N
32

1
0.
46

0.
12

0.
27

0.
16

29
67

.4
1

C
32

2
0.
41

0.
09

0.
32

0.
18

14
43

.8
4

N
32

2
0.
44

0.
11

0.
25

0.
21

17
56

.0
3

C
32

3
0.
45

0.
08

0.
30

0.
16

34
43

.9
2

N
32

3
0.
52

0.
11

0.
23

0.
13

24
1.
50

C
32

4
0.
47

0.
11

0.
27

0.
15

68
5.
66

N
32

4
0.
44

0.
08

0.
27

0.
21

16
22

.6
4

C
24

1
0.
34

0.
18

0.
27

0.
22

32
83

.8
8

N
24

1
0.
34

0.
31

0.
20

0.
15

34
03

.1
3

C
24

2
0.
37

0.
13

0.
31

0.
19

32
12

.1
7

N
24

2
0.
41

0.
15

0.
26

0.
17

33
01

.3
4

C
24

3
0.
42

0.
10

0.
27

0.
21

33
20

.3
3

N
24

3
0.
40

0.
18

0.
25

0.
17

33
28

.2
1

C
24

4
0.
39

0.
11

0.
29

0.
21

32
83

.2
7

N
24

4
0.
38

0.
28

0.
20

0.
14

34
02

.2
9

C
25

1
0.
32

0.
12

0.
40

0.
16

30
33

.3
8

N
25

1
0.
51

0.
22

0.
16

0.
12

34
08

.4
0

C
25

2
0.
35

0.
12

0.
42

0.
11

29
96

.1
2

N
25

2
0.
41

0.
23

0.
26

0.
09

32
63

.3
7

123

S. Schwarze, O. Stein

Ta
bl
e
4

co
nt
in
ue
d

N
am

e
G
T G

S
G
T i
sN

E
G
T b

d
G
T c

on
G
T t
ot

N
am

e
G
T G

S
G
T i
sN

E
G
T b

d
G
T c

on
G
T t
ot

C
25

3
0.
37

0.
14

0.
36

0.
13

31
19

.4
0

N
25

3
0.
42

0.
24

0.
24

0.
10

32
64

.9
6

C
25

4
0.
33

0.
12

0.
37

0.
18

31
30

.9
1

N
25

4
0.
41

0.
25

0.
25

0.
09

32
59

.8
7

C
33

1
0.
38

0.
08

0.
33

0.
21

33
06

.2
4

N
33

1
0.
51

0.
11

0.
26

0.
12

33
61

.2
8

C
33

2
0.
38

0.
09

0.
37

0.
16

32
76

.0
8

N
33

2
0.
53

0.
09

0.
25

0.
13

33
37

.8
9

C
33

3
0.
39

0.
07

0.
32

0.
21

32
96

.1
2

N
33

3
0.
60

0.
09

0.
24

0.
07

33
69

.4
6

C
33

4
0.
44

0.
08

0.
34

0.
14

32
85

.7
7

N
33

4
0.
45

0.
12

0.
29

0.
14

33
33

.2
4

123

A branch-and-prune algorithm...

beneficial. For example, one could try to determine x̄ with a faster inexact procedure.
Furthermore, onemay use additional simple logical queries to discard empty sets more
efficiently.

All in all, we can say that in the considered low dimensional test instances the
presented algorithm is able to prune a considerable share of feasible points. However,
because of an exponential growth in the cardinality of the joint feasible set in the
number of variables, a computation of all equilibria seems to be prohibitive for higher
dimensions.

6 Conclusion

This paper presents novel theoretical results on pruning for discrete Nash equilibrium
problems. The required activity of particular constraints leads to synchronous branch-
ing and pruning of the strategy sets. Furthermore, we showed in a numerical study
that a noteworthy part of the joint feasible set can be pruned by following this ratio-
nale. This was demonstrated for polyhedral strategy sets and (not necessarily convex)
quadratic objective functions. It remains to be investigated if these results can also be
applied to broader problem classes like, for example, generalized Nash equilibrium
problems.

Acknowledgements The authors are grateful to two anonymous reviewers and the associate editor for their
precise and constructive remarks which helped to significantly improve this paper.

Data availibility The data sets generated and analyzed during the current study are available in the GitHub
repository, https://github.com/schwarze-st/nep_pruning.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the contents of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Theorem 3.2 generalizes [14, Prop. 3.1]

Subsequently, it will be shown that Theorem 3.2 is a generalization of Proposition 3.1
from [14]. This article considers box-constrained strategy sets Xν with

gν(xν) :=
(
xν − uν

lν − xν

)
≤ 0, lν, uν ∈ Z

nν . (8)

123

https://github.com/schwarze-st/nep_pruning
http://creativecommons.org/licenses/by/4.0/

S. Schwarze, O. Stein

Obviously, the gradient ∇xν gν
j (x

ν) of the constraint j equals the unit vector e j for
j ∈ {1, . . . , nν} and −e j for j ∈ {nν + 1, . . . , 2nν}, respectively.
Proposition A.1 [14, Proposition 3.1] Suppose that � is defined by box constraints.
Let x̄ ∈ � be an integer solution of the continuously relaxed problem N̂EP. Let us
consider a generic player ν. Suppose that an index i ∈ {1, . . . , nν} exists, such that
θν is strictly convex with respect to xν

i and that one of the two possibilities holds:

(i) Given that x̄ν
i = lνi , F

ν
i is convex and for each player μ ∈ {1, . . . , N } and each

index j ∈ {1, . . . , nμ}, such that (μ, j) �= (ν, i), it holds x̄μ
j = lμj if∇xμ

j
Fν
i (x̄) > 0

and x̄μ
j = uμ

j if ∇xμ
j
Fν
i (x̄) < 0.

(ii) Given that x̄ν
i = uν

i , F
ν
i is concave and for each player μ ∈ {1, . . . , N } and each

index j ∈ {1, . . . , nμ}, such that (μ, j) �= (ν, i), it holds x̄μ
j = uμ

j if∇xμ
j
Fν
i (x̄) >

0 and x̄μ
j = lμj if ∇xμ

j
Fν
i (x̄) < 0.

Then any point x̃ ∈ � such that x̃ν
i �= x̄ν

i cannot be a solution of NEP.

More specifically, it will now be proven that, if all prerequisites of Proposition A.1
are fulfilled, Theorem 3.2 is applicable and yields the same result. Lemma A.2 shows
that the requirements on Fν

i (x̄) in Theorem 3.2.(i)/(ii) follow from the assumptions in
Proposition A.1.(i)/(ii). Given that, Corollary A.3 proves that (1) and (2) also follow
for the respective cases and that Theorem 3.2 yields the same result.

Lemma A.2 Suppose that � is defined by box constraints and that θν is strictly convex
with respect to xν

i , as stated in Proposition A.1. From x̄ being a solution of N̂EP and
lνi �= uν

i follow the two statements:

(i) If x̄ν
i = lνi , then Fν

i (x̄) ≥ 0 must hold.
(ii) If x̄ν

i = uν
i , then Fν

i (x̄) ≤ 0 must hold.

Proof Since x̄ is a solution of N̂EP, for each ν the point x̄ν is a minimal point
of the problem Q̂ν(x̄−ν). Since the gradients of active box restrictions are linearly
independent, x̄ν is a KKT point of Q̂ν(x̄−ν) and

Fν(x̄) +
∑

j∈I0(x̄ν ,X̂ν)

λ j · ∇xν gν
j (x̄

ν) = 0

holds with λ j ∈ R≥0 for all j ∈ I0(x̄ν, X̂ν). For the i-th row of this equation, solely
the gradients of the i-th variable’s upper and lower bound constraints are non-zero,
∇xν gν

i = ei and ∇xν gν
nν+i = −ei . By lνi �= uν

i only one of them can be in the active
index set.

• If x̄ν
i = lνi , the constraint g

ν
nν+i is active and statement (i) follows from Fν

i (x̄) +
λnν+i · (−1) = 0.

• If x̄ν
i = uν

i , the constraint g
ν
i is active and statement (ii) follows from Fν

i (x̄)+λi ·
1 = 0.

�

123

A branch-and-prune algorithm...

Corollary A.3 Theorem 3.2 is a generalization of Proposition A.1.

Proof Since, as stated in Proposition A.1, the set � is defined by box constraints, the
strategy sets are defined by convex (linear) functions. Given Lemma A.2, it remains
to show that (1) and (2) follow in the two particular cases and that the consequential
statements are equivalent.

Firstly, we start with Proposition A.1.(i). For an arbitrary player μ we have:

• Let Jμ ⊆ {
1, . . . , nμ

}
be the set of all indices j such that (μ, j) �= (ν, i) and

∇xμ
j
Fν
i (x̄) < 0. Thus, x̄μ

j = uμ
j for all j ∈ Jμ and the box constraint gμ

j (x
μ) =

xμ
j − uμ

j is active (j ∈ I0(x̄μ, X̂μ)). From ∇xμgμ
j (x

μ) = e j follows

dμ
j ≤ 0 for all dμ ∈ L≤(x̄μ, X̂μ).

• Let Kμ ⊆ {
1, . . . , nμ

}
be the set of all indices k such that (μ, k) �= (ν, i) and

∇xμ
k
Fν
i (x̄) > 0. Thus, x̄μ

k = lμk for all k ∈ Kμ and the box constraint gμ
nμ+k(x

μ) =
lμk − xμ

k is active (nμ + k ∈ I0(x̄μ, X̂μ)). From ∇xμgμ
nμ+k(x

μ) = −ek follows

dμ
k ≥ 0 for all dμ ∈ L≤(x̄μ, X̂μ).

If μ = ν, this also applies to the index i :

– ∇xν
i
Fν
i (x̄) > 0 due to strict convexity of θν in this component,

– gν
nν+i (x

μ) is also active and ∇xν gν
nν+i (x

μ) = −ei .

Together, for every player μ ∈ {1, . . . , N } the scalar product

〈∇xμFν
i (x̄), dμ〉 =

nμ∑

p=1

∇xμ
p
Fν
i (x̄) · dμ

p

is non-negative for all dμ ∈ L≤(x̄μ, X̂μ) and therefore (1) is fulfilled. This is easy to
verify with help of the statements above. For each index p ∈ {

1, . . . , nμ

}
one of these

three possibilities holds:

• p ∈ Jμ: ∇xμ
p
Fν
i (x̄) < 0 and dμ

p ≤ 0.

• p ∈ Kμ: ∇xμ
p
Fν
i (x̄) > 0 and dμ

p ≥ 0.
• ∇xμ

p
Fν
i (x̄) = 0.

For any point x̃ ∈ �with x̃ν
i �= x̄ν

i it follows that x̃
ν
i ≥ x̄ν

i +1 = lνi +1 and directly the
feasibility of qx , which is constructed like in Theorem 3.2. Therefore, the conclusion
of both rationales is equivalent.

Secondly, in the case of Proposition A.1.(ii) we obtain that (2) holds with similar
argumentation and yields the same conclusion, we present it for the sake of complete-
ness. With the sets Jμ and Kμ defined as above, for an arbitrary player μ and index p
one of these three possibilities holds:

123

S. Schwarze, O. Stein

• p ∈ Jμ: Thus x̄
μ
p = lμp and the box restriction gμ

nμ+p(x
μ) = lμp − xμ

p is active.

From ∇xμgμ
nμ+p(x

μ) = −ep follows

dμ
p ≥ 0 for all dμ ∈ L≤(x̄μ, X̂μ).

• p ∈ Kμ: Thus x̄
μ
p = uμ

p and the box restriction g
μ
p (xμ) = xμ

p −uμ
p is active. From

∇xμgμ
p (xμ) = ep follows

dμ
p ≤ 0 for all dμ ∈ L≤(x̄μ, X̂μ).

If (μ, p) = (ν, i), this also applies:

– ∇xν
i
Fν
i (x̄) > 0 due to strict convexity of θν in this component,

– gν
i (x

μ) is also active and ∇xν gν
i (x

μ) = ei .

• ∇xμ
p
Fν
i (x̄) = 0.

Together, for every player the scalar product

〈−∇xμFν
i (x̄), dμ〉 =

nμ∑

p=1

−∇xμ
p
Fν
i (x̄)dμ

p

is non-negative for all dμ ∈ L≤(x̄μ, X̂μ) and therefore (2) is fulfilled.
For any point x̃ ∈ � with x̃ν

i �= x̄ν
i it follows that x̃ν

i ≤ x̄ν
i − 1 = uν

i − 1 and
directly the feasibility of x̂ . Again, the conclusion of both rationales is equivalent. �

Remark A.4 The assumption in Proposition A.1 that x̄ is an integer solution of N̂EP is
not necessary to obtain the statement, but it is sufficient to require that x̄ is any solution
of N̂EP. Nevertheless, this does not restrict the applicability of Proposition A.1 very
much, because for all variables xμ

j with ∇xμ
j
Fν
i (x̄) �= 0 it is required that their value

coincides with one of the integer valued bounds anyway.

B Algorithm 3: Remove strategy from search space

Algorithm 3 is employed after x̄ is processed by Algorithm 1. As we have x̄ ∈ B1,
this set is divided into at most 2 · n sets, excluding x̄ and preserving all other integer
points from B1, i.e.

⋃

B+∈B+
B+ = B1 \ {x̄}.

Note that at least one component of a point x in any new subset of B1 must be different
from x̄ in order to achieve the exclusion. Moreover, in lines 8–9, Algorithm 3 ensures
that all sets from B+ are pairwise disjoint.

123

A branch-and-prune algorithm...

Algorithm 3: [14, Procedure C] Branching out a single point from the strategy
set
Input: Strategy subset B1 ⊆ � of a NEP; feasible strategy x̄ ∈ B1
Output: List of sets B+ such that x̄ is not contained

1 Initialize list B+ := {}
2 initialize sets B+

i := B1 for all i ∈ {1, . . . , 2n}
3 for j = 1 to n do
4 B+

2 j−1 ← B+
2 j−1 ∩ {x ∈ R

n : x j ≤ x̄ j − 1}
5 B+

2 j ← B+
2 j ∩ {x ∈ R

n : x j ≥ x̄ j + 1}
6 put the set B+

2 j−1 in B+, if non-empty

7 put the set B+
2 j in B+, if non-empty

8 for t = 2 j + 1 to 2n do
9 B+

t ← B+
t ∩ {x ∈ R

n : x j = x̄ j }

References

1. Belotti, Pietro, Kirches, Christian, Leyffer, Sven, Linderoth, Jeff, Luedtke, James, Mahajan, Ashutosh:
Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

2. Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, and Sriram Sankaranarayanan: The cut and play
algorithm: Computing nash equilibria via outer approximations. Preprint 2111.05726v2, arXiv, 2022

3. Carvalho, Margarida, Lodi, Andrea, Pedroso, João. P.: Computing equilibria for integer programming
games. European Journal of Operational Research 303(3), 1057–1070 (2022)

4. Dreves, Axel, Kanzow, Christian, Stein, Oliver: Nonsmooth optimization reformulations of player
convex generalizedNash equilibrium problems. Journal of Global Optimization 53(4), 587–614 (2012)

5. Facchinei, Francisco, Fischer, Andreas, Piccialli, Veronica: Generalized Nash equilibrium problems
and Newton methods. Mathematical Programming 117(1–2), 163–194 (2009)

6. Francisco Facchinei and Christian Kanzow: Generalized Nash equilibrium problems. 4or, 5(3):173–
210, 2007

7. Facchinei, Francisco, Piccialli, Veronica, Sciandrone, Marco: Decomposition algorithms for general-
ized potential games. Computational Optimization and Applications 50(2), 237–262 (2011)

8. Tobias Harks and Julian Schwarz: Generalized Nash Equilibrium Problems with Mixed-Integer
Variables. Preprint 2107.13298v2, arXiv, 2022

9. Matthias Köppe, Christopher Thomas Ryan, and Maurice Queyranne: Rational generating functions
and integer programming games. Operations Research, 59(6):1445–1460, 2011

10. Monderer, Dov, Shapley, Lloyd S.: Potential Games. Games and Economic Behavior 14(1), 124–143
(1996)

11. Nash, John F.: Equilibriumpoints in n-person games. Proceedings of theNational Academy of Sciences
36(1), 48–49 (1950)

12. Nash, John F.: Non-Cooperative Games. The Annals of Mathematics 54(2), 286–295 (1951)
13. Massimo Pappalardo, Giandomenico Mastroeni, and Mauro Passacantando: Merit functions: A bridge

between optimization and equilibria. 4or, 12(1):1–33, 2014
14. Sagratella, Simone: Computing all solutions of Nash equilibrium problems with discrete strategy sets.

SIAM Journal on Optimization 26(4), 2190–2218 (2016)
15. Sagratella, Simone: On generalized Nash equilibrium problems with linear coupling constraints and

mixed-integer variables. Optimization 68(1), 197–226 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A branch-and-prune algorithm for discrete Nash equilibrium problems
	Abstract
	1 Introduction
	2 Problem description and preliminary results
	3 Theoretical foundation
	4 Algorithmic application
	4.1 Branching method
	4.2 Pruning procedure for convex polyhedral strategy sets

	5 Numerical results
	5.1 Implementation
	5.2 Generation of test instances
	5.3 Evaluation

	6 Conclusion
	Acknowledgements
	A Theorem 3.2 generalizes [Prop. 3.1]sagratellaspscomputingsps2016
	B Algorithm 3: Remove strategy from search space
	References

