Computational Optimization and Applications
https://doi.org/10.1007/s10589-023-00500-4

n

Check for
updates

A branch-and-prune algorithm for discrete Nash
equilibrium problems

Stefan Schwarze' - Oliver Stein’

Received: 22 March 2022 / Accepted: 5 June 2023
© The Author(s) 2023

Abstract

We present a branch-and-prune procedure for discrete Nash equilibrium problems
with a convex description of each player’s strategy set. The derived pruning criterion
does not require player convexity, but only strict convexity of some player’s objective
function in a single variable. If satisfied, it prunes choices for this variable by stating
activity of certain constraints. This results in a synchronous branching and pruning
method. An algorithmic implementation and numerical tests are presented for ran-
domly generated instances with convex polyhedral strategy sets and convex quadratic
as well as non-convex quadratic objective functions.

Keywords Nash equilibrium problem - Discrete game - Branch and bound - Branch
and prune

1 Introduction

The formulation of the Nash equilibrium for an n-person game by Nash in 1950 and
1951 was a landmark in the economic sciences and is still a key model in game
theory [11, 12]. In the setting of this game, finitely many players can choose their
individual strategies independently, but their payoffs depend on the strategies of all
players. In the absence of coalitions, each player aims to maximize her payoff given
the other players’ strategies. A situation in the game where no player has an incentive
to unilaterally deviate from her strategy defines the famous Nash equilibrium, and
finding such a situation is the so-called Nash equilibrium problem (NEP).

B Oliver Stein
stein@kit.edu

Stefan Schwarze
stefan.schwarze @kit.edu

L' Institute for Operations Research (IOR), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

Published online: 07 July 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-023-00500-4&domain=pdf
http://orcid.org/0000-0001-9514-6317

S. Schwarze, O. Stein

Over the last years, research gained interest in the numerical solution of NEPs,
and there are a couple of algorithms tackling this issue. However, although integer
optimization is applied in many fields and intensely studied, there are only few attempts
to solve Nash equilibrium problems with integer variables. Sagratella’s publication
[14] identifies this as an "important gap in literature". The latter paper proposes a
branch-and-prune method to compute all solutions of NEPs with box-constrained
discrete strategy sets. Subsequently, the theory was extended to generalized NEPs with
linear coupling constraints and mixed-integer variables [15]. More recently, there were
several publications on computing Nash equilibria for a special class of mixed-integer
NEDPs, the so-called integer programming games (IPG), which were first introduced
in [9]. In IPGs, the feasible set of each player consists of linear constraints in her
private variables, which are partially integrality constrained, and the payoff functions
are only required to be continuous. For these general IPGs, [3] presents an algorithm
for the computation of Nash equilibria based on algorithms for strategic games in
normal-form. Furthermore, [2] introduced another subclass of mixed-integer NEPs,
namely reciprocally-bilinear games (RBG), where the closure of the convex hull of
each player’s feasible set is required to be a polyhedron and the payoff function is
bilinear in her own and the rivals’ strategies. However, we will extend Sagratella’s
framework beyond the box-constrained case and propose a novel branch-and-prune
approach for discrete NEPs which takes convexity of the strategy sets explicitly into
account.

We introduce the problem and describe preliminary results in Sect.2. In Sect. 3,
we deliver a pruning criterion for NEPs with convex strategy sets. Section4 provides
an algorithmic application of the criterion for convex polyhedral strategy sets with
finite upper and lower bounds on each variable. In Sect.5 we apply these findings
numerically to discrete Nash equilibrium problems with convex polyhedral strategy
sets and convex quadratic as well as non-convex quadratic objective functions. To
the best of our knowledge, this is the first implemented and tested branch-and-prune
procedure for this problem class. Finally, we wrap up our insights in Sect. 6.

2 Problem description and preliminary results

We study discrete Nash games with N players. In this setting, each playerv = 1, ..., N
aims to solve the optimization problem

QV(x7") :min 6, (x", x7") s.t. x¥ € X,.
XV

The vector x¥ lies in R" and represents all variables which are controlled by the
v-th player. The vector of all decision variables x = (xl, o xN) € R” then is of
dimension n = Z]u\;l ny, and the vector x 7 = (x!, ... xV7L v L xN) €
R"™™ contains all decision variables except player v’s. The notation x = (x”, x"’)
emphasizes those variables, but does not reorder the entries of x. The objective function

@ Springer

A branch-and-prune algorithm...

6, : Q — R has the domain
Q=X x...x Xy,

hence the player’s objective function value depends on her own strategy as well as on
the other players’ strategies. The discrete feasible set

X, ={x"ezZ" | g"'(x") <0}

is called the v-th player’s strategy set. It is defined by the function g" : R™» — R™v.
In this context, the Nash equilibrium is the most important and commonly used

solution concept. A vector x* is called Nash equilibrium of this game, if for each

v=1,..., N, the vector x*” is an optimal point of Q" (x*~"), i.e., x* € Q and

Op(x*) =0, (x™", x*7") < 6,(x", x*7") ¥x" e X,
hold. The resulting Nash equilibrium problem may hence be formulated as
NEP : Find x* such that x*" is an optimal point of Q" (x*~") forallv =1,..., N.

Our suggestion of a branch-and-prune approach for solving NEP will use its
continuous relaxation NEP. There each player v solves the continuous problem

é"(x_”) :min 0, (x", x7Y) s.t. x¥ € X,
xl}
where the integrality condition is dropped in the strategy set
X, :={x"eR"™ | g"(x") <0}

The domain Q := X 1X...X X ~ of the objective functions is defined analogously, and
avector x* is a Nash equilibrium of NEP if x*¥ solves Q" (x* ") forallv =1, ..., N.
From now on, we use the following assumption.

Assumption 2.1 All entries of the function g" are convex for each player v =
1,...,N.

Note that we will state a stronger assumption on the strategy sets for the algorithmic
implementation in Sect. 4. Clearly, under Assumption 2.1, each player’s relaxed strat-
egy set X, is convex. If additionally each player’s objective function 6, is convex with
respectto x", @ is called player convex, which is a standard assumption for continu-
ous NEPs. There are several possibilities to characterize and compute solutions of NEP
under player convexity. For example, if < satisfies the Slater condition, a vector X* is
a Nash equilibrium of NEP if and only if x*V is a Karush-Kuhn-Tucker (KKT) point
of @ Y (x* ") for each player (see [5, Prop. 1]). Other prominent solution techniques
for NEP are the variational inequality (VI) and the Nikaido-Isoda (NI) approaches
[6]. Unfortunately, none of these approaches carry over to the discrete problem NEP.

@ Springer

S. Schwarze, O. Stein

For the KKT and VI approaches this is due to the missing convexity of the discrete
strategy sets X,,. The NI-function, on the other hand, may be defined for NEP, but it
turns out to be structurally nonsmooth, nonconvex and discontinuous, and thus hard to
treat algorithmically [15]. We mention that the minimization of the NI-function of the
NEP’s "convexified instance", as introduced in [8], is in some cases algorithmically
tractable. However, we will not follow this approach, because we try to impose mild
assumptions on the objective functions, which makes the required computation of their
convex envelope rather impractical.

Instead, we will formulate an approach motivated by integer optimization tech-
niques, where branch-and-bound algorithms are commonly used. Let us briefly recap
the three key aspects of branch-and-bound for integer optimization, namely relaxation,
branching and bounding. Firstly, branch-and-bound exploits that it is easier to com-
pute an optimal point of the continuous relaxation and that, if this point is integer, it
also solves the integer optimization problem over this set. Secondly, if the obtained
solution is not integer, it is removed by branching the feasible set. Thirdly, it is essen-
tial that the minimal value over some subset of the continuously relaxed feasible set
serves as a lower bound for objective values of the integer feasible points in this subset.
Thus one can discard subsets if the minimal value over their relaxation is larger than
the objective value of the best known integer solution in the whole feasible set. This
feature is called bounding.

The following example will help to illustrate how, if at all, relaxation, branching
and bounding carry over to the discrete problem NEP.

Example 2.2 For two players, each one controlling a scalar variable, let us consider
the NEP with objective functions

Gl(xl,xz) = %()cl)2 —8x! 4+ 4x'x2,
O (x', x?) = %(xz)2 — 6x% 4+ 4x'x?
and strategy sets
X1={xleZ|O§x1§3},
X2={x262|05x2§2}
as well as their continuous relaxations

flz{xleRmfxlfS},

)?zz{xzeR|05x252}.

Since for any fixed x~", the loss function of each player v is convex quadratic, the
relaxed problem NEP is player convex.

@ Springer

A branch-and-prune algorithm...

A
(0,—6) J15,2) ,(6,10) ,(13.5,18)

L(1.5,7.5)

Il

>
>

.0

(0,0) (—6.5,0) (~10,0) (—10.

[

Fig. 1 Feasible set of Example 2.2. Values (6] (x), 62 (x)) are listed at each grid point

For any x? € X, the unconstrained minimal point of (-, x%) is given by

AL (xl, xz) = 0, lies in 3(\1 and is, thus, the best response of player 1 to x2. On
the other hand, only for x! e [0, 3/2] the unconstrained minimal point of 6, (xl,),
characterized by V26> (x!, x?) =0, liesin 5(\2, but for any x! € [3/2, 3] the boundary
point x> = 0 is the best response to x'. Figure lillustrates that, thus, exactly the two
points (0, 2) and (8/3, 0) solve NEP.

In contrast, the discrete problem NEP possesses exactly the three solutions (0, 2),
(1, 1) and (3, 0). In particular, although the point (1, 1) lies close to the solution (0, 2)
of NEP as well as of ﬁE\P, it is an equilibrium. Moreover, as opposed to the point
(3, 0), it may not be obtained by rounding the entries of any of the solutions of NEP.

Regarding relaxation, in Example 2.2 the continuously relaxed problem NEP is
easy to solve, and the single discrete solution of NEP also solves NEP. Also in gen-
eral, the KKT, VI or NI methods can be employed to solve a player convex problem
NEP with differentiable defining functions, and the following result from [14, Prop.
2.1] guarantees that discrete solutions of the continuously relaxed problem solve the
original discrete problem.

Proposition 2.3 Any solution x* € Z" of NEP also solves NEP.

Note that this result also holds without player convexity, but that in this case NEP
may not be easy to solve, even under Assumption 2.1. In Sect.4 we will explain how
we deal with non-convex objective functions. This means that with regard to relaxation
we are in an analogous situation as in integer optimization. Concerning the branching
step, we can also branch the strategy sets if the obtained solution is not integer, so that
this situation is analogous as well.

In contrast, the bounding step poses some difficulties. Firstly and most obviously,
there are multiple objective functions. Equilibrium points are required to be minimal
for each player’s objective function with respect to the other players’ decisions. How-
ever, we are interested in a single criterion telling us whether there may exist Nash

@ Springer

S. Schwarze, O. Stein

equilibria on a given subset of the strategy space. More specifically, the bounding idea
relies on some function p on the joint strategy set €2 whose minimal points coincide
with the solutions of NEP. For the continuous problem NEP such functions can be
obtained by the VI and NI approaches [4, 13] but, as mentioned above, the latter are
impossible or hard to apply in the discrete framework.

Under the additional assumption of NEP being a potential game [10] there exists a
potential function p : R* — R with

O, (x", x7") = 0,(y", x7 ") = p(x", x7") = p(y", x7") Vx",y' eX,

forallv=1,..., N andall x™” € X_,. It is straightforward to show that then any
optimal point of the integer program

P : min p(x) s.t. x € Q
X

solves NEP. However, in general not all solutions of NEP are optimal for P, as required
for a bounding procedure relying on p. In fact, Example 2.2 provides a potential game
with potential function

3 3
p(xl, xz) = E(XI)Z —8xl+ z()cz)2 —6x2 + 4x'x?,
but the potential values

p((0,2)) = -6, p((1, 1)) = =7, p((3,0)) = —10.5

of the three solutions of NEP are not identical. In any case, potential games form only
a small subclass of NEPs, and their restrictive assumptions cover, e.g., cases where all
players unconsciously minimize the same objective function. We, on the other hand,
aim to handle non-potential games.

Since, if the solution of NEP does not happen to be integer, we do not seem to be
able to draw any conclusions for discarding subsets of Q2 by a bounding procedure,
we will instead follow the branch-and-prune approach from [14, 15]. There, relations
between equilibria of NEP and NEP are exploited algorithmically. Regarding such
relations, Example 2.2 illustrates that NEP may possess more solutions than NEP and
that not every solution of NEP may be obtained by rounding the fractional components
of a solution of NEP. There are also examples where NEP possesses less solutions
than NEP. In particular, the solvability of NEP does not entail the solvability of NEP
(see [14, Ex. 2]). Additional requirements for the latter are given in [14, Cor. 4.4].

3 Theoretical foundation
The purpose of this section is to define a pruning criterion for discrete NEPs under

Assumption 2.1. Moreover, for each playerv =1, ..., N we assume g" to be contin-
uously differentiable and 6,, to be twice continuously differentiable. We use the term

@ Springer

A branch-and-prune algorithm...

pruning criterion to refer to criteria under which we can exclude parts of a player’s
strategy set because they are shown not to contain any Nash equilibrium. With effec-
tive pruning, we can substantially reduce the search region in order to compute Nash
equilibria more efficiently.

The theorem we present in this section generalizes Proposition 3.1 from [14] (see
“Appendix A”). Instead of boxes as in [14], it treats arbitrary convexly described
strategy sets. It provides a set of verifiable conditions under which we are able to
prune choices for values of single variables from some player’s strategy set. We shall
also motivate the underlying geometrical concept.

Our approach uses local approximations of the continuously relaxed problem NEP
to infer properties of the discrete problem NEP. As opposed to [14, 15] we use arbitrary
continuous strategies, rather than only solutions of ﬁE\P, to obtain these approxima-
tions. This enables us to deal with non-convexities in the objective functions. For the
approximations we employ the concept of the (outer) linearization cone

Lo, X)) :={d e R™ | (Vg ("), d) <0, i € Ip(", X))}

of player v’s continuously relaxed strategy set X, = {x" e R™ | g'(xV) < 0} at the
strategy x¥ € X,,, where

IhE, X)) ={ie{l,....,my} | g/ ") =0}

denotes the active index set. Under the convexity property of the strategy constraints
from Assumption 2.1 it is straightforward to prove that any linearization cone for
player v provides an outer approximation of her relaxed strategy set in the following
sense.

Lemma 3.1 Let gl.U be convex fori = 1,...,m, and let x" € 5(\,,. Then we have
X, x4+ Lo(x", X))

Theorem 3.2 Let Assumption 2.1 hold, let x € Q and, for an arbitrary player v,
let there exist an index i such that 6, is strictly convex with respect to x;. Then the
following two statements hold:

(i) Let F = A\ be convex, let FY (x) > 0 and for each player n =1, ..., N let
(Ve FY (%), d") = 0 Vd" € L-(z*, X,).)
Then any strategy X € 2 for which X, defined by
fj‘ = ?c'ﬁ‘for all (w, j) # (v, 1), and X} = %7 — 1,

is also feasible cannot be a solution of NEP.

@ Springer

S. Schwarze, O. Stein

(ii) Let F = Vb be concave, let F (x) < 0 and for each player p =1, ..., N let
(—Vw FY'(X),d") >0 Vd"* € L<(Z", X,,).)
Then any strategy X € 2 for which x, defined by
55;.‘ = Y?forall (w, j) # (, i), andx; =%} + 1,

is also feasible cannot be a solution of NEP.

Proof 1In order to show that X is not a Nash equilibrium, we will show that player v
can choose a strictly better strategy.
On the one hand, if (i) holds and if we can show

0u(X) = 0,(X",X7") < 6, (", X ") = 0,(X) 3)
the assertion follows by the feasibility of X for the discrete NEP. The strict inequality
6y (X) + (Var 6y (X), X} — X) < 0,(X) 4)

holds because of the strict convexity of 6, in the component x;’, being the only value
in which X and X differ. Hence, (3) follows, when

(Virby (%), %] = X/) = F'(¥) = F/'(X) + (Vo F'(X), X —x) = 0

holds. Firstly, the equation comes from the defined notation and ¥} = X} — 1. Secondly,
the left inequality follows from convexity of F;”. Thirdly, the non-negativity comes
from

e FY(x) = 0 by precondition,

o (ViF'(),¥—%) =Y N_(
follows X* — x* € L<(x", X,,) so that every summand is non-negative by (1).

On the other hand, if (ii) holds, the Egs. (3) and (4) can be stated for x instead of X
as well with all requirements fulfilled. It remains to show that the chain of inequalities

Vin Fl." (x), Xx* —x*) > 0, because from Lemma 3.1

(Varth (), 5] —=X/) = —F/(X) = (=Vi F' (%), X — %) — F/(X) = 0

also holds. Firstly, the equation comes again from notation and x}’ = x4 1. Secondly,
the left inequality is valid due to the concavity of F}”, and the non-negativity comes
from
e —FY(x) > 0 by precondition,
o (=ViF'(X),x —x) = 22/:1 (—Vx;:\ﬂ"(i), x* — x*) > 0, because from
Lemma 3.1 follows x* —x#* € L(x*, X,,) so that every summand is non-negative
by (2).

O

@ Springer

A branch-and-prune algorithm...

v
A L2

%

Ty

Fig.2 Pruning of X, when Theorem 3.2.(i) is fulfilled for i = 2. In particular Vv sz (x) needs to lie in the
dual cone C of L< (X", 5(\1,)

To verbalize the statement of Theorem 3.2, we use the point X to construct outer
approximations of all players’ complete strategy sets. This actually results in the outer
approximation

N
Q=[[X c[[E +L<G". X)) =5+ L<(x. Q)

v=1 v=1

of Q. If, on this whole set x + L<(x, ﬁ), some player’s variable xl?’ has a favorable
impact on the objective function 6, when it is increased or decreased without the new
point becoming infeasible, then this player can deviate and realize this positive impact,
which is impossible in a Nash equilibrium. In other words, under the given assumptions
in a Nash equilibrium X the constructed deviation must result in an infeasible point.
Figure2 shows the two dimensional strategy set X, of a discrete N player game.
Assume that for x and i = 2 all requirements of Theorem 3.2.(i) hold. Then there
is always a positive impact in the v-th player’s objective function, when she sets x,
to a lower value. As a result, e.g. X cannot be a Nash equilibrium, because XV is
feasible and a better answer for player v. In X, the set of possible best answers and
thus the candidates for solutions of NEP shrinks to the pairs of "minimum feasible"
x5 -values for any given x; . Roughly speaking, only integer points for which at least
one constraint is "active” in the sense that x; cannot be set to a lower value without
changing other components of x¥ can be Nash equilibria. This criterion will enable us
to reduce the search space significantly in Sects.4 and 5.

For the algorithmic exploitation of Theorem 3.2 we define linear optimization prob-
lems to check if (1) and (2) are satisfied. The statement (1) is clearly valid if and only

@ Springer

S. Schwarze, O. Stein

if the optimization problem
Fay + min (Veu B (%), d) 5.1, d"* € L<(Z", X,,)
has a non-negative optimal value vf,, > 0. In the same way, (2) holds if and only if
Fe) : min (~Ven FP (%), d*) s.t. d* € L<(Z", X,,)

has a non-negative optimal value vf, > 0. By definition of the linearization cone,
d" = Ois always feasible for F(1) and F(), so that the above optimal values are actually
zero. If, on the other hand, there exists any direction d* with a negative objective value,
the problems are unbounded, because the feasible set is a cone. Therefore, we only
have to check if these linear optimization problems are bounded in order to verify
the statements. We remark that (1) and (2) require that the vectors Vy« F(X) and
—V,n FY (%), respectively, lie in the dual cone of L (x*, X w)- In view of possibly
non-unique cone coefficients in the absence of an appropriate constraint qualification
it may, however, be algorithmically challenging to determine these cone coefficients
explicitly, so that we rather work with the above optimization formulation.

We emphasize that we need the strict convexity of the objective function 6, in
the component (v, i) in order to apply Theorem 3.2. The (strict) convexity in single
variables does not require convexity in all of player v’s variables x", as defined in
player convexity. However, the additional assumption might be helpful in the sense
that it increases the likelihood of finding (v, i)-components in which 6, is strictly
convex.

4 Algorithmic application

In this section, we define a branch-and-prune procedure for discrete NEPs by employ-
ing the pruning criterion from the previous section. The branching method is a
generalization of [14, Alg. 1]. It is defined in Sect.4.1 and calls a pruning procedure,
which we define in Sect. 4.2.

4.1 Branching method

Algorithm 1 shows the high-level approach for discrete NEPs with convexly con-
strained, bounded strategy sets. In most aspects, it coincides with [14, Alg. 1]. For
better readability, we repeat each step of the method. In particular, we describe the
adjustments that were necessary to integrate the novel pruning procedure. This proce-
dure computes all equilibria of an instance N E P. Within the procedure, we maintain
two lists. In one list, we save all equilibria which were already detected (E). The
other list £ contains all strategy subsets which may contain additional equilibria. It is
initialized with the whole joint strategy set €2.

In each iteration of the while-loop a joint strategy set Y C € is taken from the list
L£.1f the continuous relaxation Y is empty, there are clearly no equilibria in this set and

@ Springer

A branch-and-prune algorithm...

we are done. Otherwise, a point X € Yis computed. Here, the feasibility of x for Yis
a minimum requirement but, given the target of finding solutions of NEP as quickly as
possible, in view of Proposition 2.3 computing a solution x of the continuously relaxed
problem NEP may be advantageous, depending on the effort for such a computation.

Afterwards, the first pruning and simultaneous branching can be started in line 7. In
this step, Algorithm 1 differs from [14, Alg. 1], in which the pruning procedure only
returns one set. Here, the pruning procedure returns a list of sets B = {By, ..., Bx}.
This disjunctive structure arises from the additional treatment of other constraints than
bounds. We briefly name the assumptions for such a procedure.

Assumption 4.1 The output of a pruning procedure, called with Y € Q and x € Y, is
alist B ={By, ..., Br} with the following properties:

k
(P1) The set Y \ {|J B;} does not contain any Nash equilibrium

i=1
P2) B CYforalli=1,...,k
(P3) the sets in B are pairwise disjoint, i.e. B; N B; =@ fori, j € {1,...,k},i #

— ko
(P4) wehavex € Byifx € | B;

i=1

Firstly, property (P1) ensures that we are not pruning any Nash equilibrium. Secondly,
property (P2) and (P3) are crucial in branching techniques to not allow additional
points and avoid that a point needs to be processed multiple times. Lastly, property
(P4) is more technical. On the one hand, a pruning procedure could exclude x. On
the other hand we further process the point, so we need to know which of the subsets
contains it. Algorithm 2 in the next subsection presents a procedure which satisfies
(P1)-(P4) and is able to handle convex polyhedral strategy sets.

Starting in line 9, the second branching process depends on whether x € Z" or not.
If so, the vector is potentially an equilibrium of the discrete problem NEP and can, after
verification, be appended to E, the list of all Nash equilibria. The equilibrium property
can be verified by checking if X" is a solution of Q¥ (x™") forallv =1, ..., N. More
specifically, we need to solve these N integer (non-)convex programs and check, if their
respective optimal values are attained at the given points x¥ (line 10). The appearing
integer (non-)convex problems can be solved with techniques from mixed-integer
(non-)convex optimization (see e.g. [1]). The efficient implementation of this step of
course depends on the state-of-the-art of available solvers. After knowing whether
X is a solution, we can release it and search in the remaining feasible set for Nash
equilibrium points. By Algorithm 3 ([14] and “Appendix B”), we obtain a partition of
sets Bt which cover all other possible equilibria. Any integer point X € B other than
X is in one of the sets from B*. Additionally, these sets are pairwise disjoint subsets
of Bj.

If otherwise x ¢ Z", the branching step resembles the one common in integer
optimization. One fractional component in X is selected and two sets are added to the
list L. In the first one, the value of this component is bounded to be greater or equal the
nearest larger integer. In the second one, it is bounded to be less or equal the nearest
smaller integer.

@ Springer

S. Schwarze, O. Stein

When the strategy sets X1, ..., Xy are bounded, the termination of Algorithm 1
is ensured because there are finitely many integer strategies. This property can be
established by setting finite upper and lower bounds for each variable. Note that
the efficiency of Algorithm 1 mainly depends on the effectiveness of the pruning
procedure. All points which are not pruned will be enumerated and checked in line 10.

Algorithm 1: Branching Method

Input: Discrete Nash equilibrium problem NEP with bounded strategy sets defined by convex
functions
Output: Solution set E of NEP
1 Initialize list of strategy subsets £ := {Q}
2 initialize list of equilibria £ := {}
3 while £ # {} do

4 take a strategy set ¥ from £

s | if Y 3 ¢ then

6 compute a feasible strategy x € Y

7 call a pruning procedure, satisfying Assumption 4.1, with ¥ and x as input and obtain the list
B={By,..., B}

8 append {Bj, ..., By} to L

9 if x € Z" then

10 if X is a solution of NEP then put X in E

11 call Algorithm 3, with B} and x as input, and obtain the list Bt

12 | append BttoL

13 else

14 selectanindex i € {1, ...,n} withx; ¢ Z

15 put the set By N {x eR" | x; > D'c,-'\} in £, if non-empty

16 | puttheset By N {x eR" | x; < _)'c,-j} in £, if non-empty

4.2 Pruning procedure for convex polyhedral strategy sets

We now define a pruning procedure for discrete Nash games, where every player’s
strategy set X, can be characterized by linear inequalities, which is a special case of
Assumption 2.1:

X, ={x"eZ"™ | B"x" <b", 1" <x" <u"}. 5)

With each player having m,, inequality constraints, B" is an integer valued (m, X n,)-
matrix and b” € Z™ a vector. We will refer to the k-th row of B” as By,. The
player’s decision vector xV has explicitly defined lower and upper bounds [V € Z"
and u” € Z"v, respectively. We call a discrete strategy set X, convex polyhedral, if
the continuous relaxation of this strategy set X, is convex and polyhedral.
Previously, we determined conditions under which in an equilibrium of NEP it is
not possible to increase or decrease the value of a variable to the next integer and
remain feasible. Accordingly, at least one inequality (or the box restriction) must be

@ Springer

A branch-and-prune algorithm...

active in a way that the next integer value in one direction is not feasible anymore. We
formalize this kind of activity for a linear constraint.

Definition 4.2 For a feasible point X € 2 the inequality & is called

e (v,i) -active if for X, defined as JY;L = f;‘ for (u, j) # (v,i) and X! =% — 1,
we have B! X" > by,
e (v, i)t-active if for X, defined as f;‘ =)77 for (i, j) # (v,i) and X} =X} + 1,
we have B} X" > b).
We now investigate under which conditions inequality k is (v, i) ~- or (v, i) T-active
for a feasible point xX. With these conditions we will be able to perform pruning steps.
Firstly, by Definition 4.2 an inequality & is (v, i) ~-active for X if

v VvV XV __ v >V Vv YV >~V
by < B X" = B, X" + B (X; — ;)
———

=1
holds. Because of the integrality assumptions for B* and b, this is exactly true, when
By x" = by + By + 1 (6)

holds. Due to feasibility of X, this condition can only be satisfied if B,fl. < 0 holds.
Similarly, an inequality k is (v, i) *-active for X if
by < B,x" = B X" + By (%] — X})
——
=1

and thus
B X" >b, — B}, +1 @)

holds. This argumentation results in Corollary 4.3.

Corollary 4.3 Let X be a solution of a problem NEP with strategy sets as defined in
(5). Then the following two statements hold:

(1) Suppose all requirements of Theorem 3.2.(i) hold for some x € Q and an index
pair (v,i). Then)7;’ = llV holds or there exists at least one inequality k with (6)
and B}; < 0. R

(ii) Suppose all requirements of Theorem 3.2.(ii) hold for some x € Q2 and an index
pair (v, i). Then X! = u! holds or there exists at least one inequality k with (7)
and By, > 0.

Now we can state Algorithm 2. This procedure can be applied in an arbitrary point
% € Q in order to reduce the search space. Two outer for-loops, starting in line 2 and
3, iterate through all variables of the game. For each variable, the requirements of
Theorem 3.2 are checked. If case (i) or (ii) is applicable, we perform a partition of the
set according to Corollary 4.3.

@ Springer

S. Schwarze, O. Stein

Ty

Fig.3 Pruning in a polyhedral strategy set

Suppose that for (v, i) the if-statement in line 4 is true. Then the first statement
of Corollary 4.3 holds. Consequently in any Nash equilibrium x, x; is at its lower
bound /; or at least one inequality from the index set J Vi must be (v, i) -active.
Integer points for which none of this holds are pruned in lines 5-12 by introducing
new inequalities and splitting the set(s) up. In line 6, there is an inner for-loop which
ensures that the subdivision is done for every set in the list B. At first, 5 only contains
Y, but as soon as the if-statements hold true for more than one index pair, this step
is performed for all sets from the previous subdivisions. Thus for every set from the
current list B the partition is added to a new list C, which replaces B afterwards. We
will now describe in detail how lines 7-11 yield a pairwise disjoint subdivision. In
line 7, all points for which xl.“ is at its lower bound are added to C and line 8 ensures
that the next sets are disjoint. Then in lines 9-11, for all inequalities with B}, < O the
points for which firstly (6) holds and secondly are not contained in previous sets are
added to C. The latter is done in every iteration by stating the negation of (6) for all
sets which will be added to C successively in this for-loop. We can state the negation
of inequality (6) as

B, X" < by + By (—6)

Note that (6) and (—6) form a split disjunction.

Inlines 13-21 the analogous approach is implemented for the case when the require-
ments of Theorem 3.2.(ii) hold and Corollary 4.3.(ii) can be applied. We illustrate in
Example 4.4 how the procedure works in detail.

Example 4.4 Figure 3 depicts how the two inner for-loops in Algorithm 2 partition
one player’s strategy set into three sets C1, C2 and C3. The illustration shows the first

@ Springer

A branch-and-prune algorithm...

Algorithm 2: Pruning procedure for convex polyhedral NEP

Input: Joint strategy set Y € Q of NEP, strategy x € Y= ?] X ... X ?N
Output: Pruned list of joint strategy sets 13, which meets Assumption 4.1
1 Initialize B := {Y}
2 forv=1to N do
fori = 1ton, do
if 67 is strictly convex in x}, F} is convex, F} (x) > 0 and (1) holds for each player then
initialize C := {}
for B € B do
put the set BN {x € R" | x < 1!’} in C, if non-empty
B« BNn{xeR" \x;’zli"+l}
for j € JVi = {j € N|Bj; <0}do
10 put the set B N {x € R" | B;*x” > b‘]’. + B;i + 1} in C, if non-empty
B < BN{x eR" IB;*x” §b;+B}’i}

® N m AW

°

11

12 | B<C

13 if 0 is strictly convex in x}, F! is concave, F} (X) < 0 and (2) holds for each player then
14 initialize C := {}

15 for B € B do

16 put the set BN {x € R" | x} > u}} in C, if non-empty

17 B« BN{xeR"|x} <ul -1}

18 fork € KV := {k e N | B}, > 0} do

19 L putthe set BN {x € R" | BY, x” > b — By; + 1} in C, if non-empty

20 B < BN{xeR"| B x" <b - By}

21 B<«C

player’s strategy (sub-)set for an arbitrary game with two variables. The gray area is
the continuously relaxed strategy set Y. In this situation, Algorithm 2 was executed
with ¥ and some ¥ € Y, which we do not have to name explicitly. We just suppose
that the if-statement in line 4 holds true for le and B = {Y} still holds. Thus there is
only one iteration of the for-loop starting in line 6 which we consecutively describe.

At first, in line 7 the algorithm puts the set C; x ?2 into C. It contains all possible
strategies with active lower bound xé = lé. This happens by posing the inequality
labeled by "1" in Fig. 3 for this set. For all future sets of this iteration, inequality —1,
with le > lé + 1, is stated in line 8 without excluding any feasible points.

At this point, the innermost for-loop starts in line 9. The index set J'-? contains
only two elements as there are only two linear constraints with le'z < 0 which can be

(1,2)" -active. We can identify them because they are avoiding that x% is decreased at
some point in Y. Thus there are two iterations of this loop. The first one is performed
with the left inequality. In line 10, we put C» x Y into C, where inequality 2 coming
from (6) holds. Afterwards, we state inequality —2 to prevent an overlap to all incoming
sets. The second iteration is done with the right inequality. For this restriction, in
addition to the inequalities —1 and —2, 3 must hold in C3 x Y> which is put into C in
line 10. In line 11, the inequality —3 is stated for future sets which is not necessary
anymore, as we exit the two for-loops and replace B with the three sets in C.

@ Springer

S. Schwarze, O. Stein

As aresult, we have 3 strategy subsets and for player one there are overall 7 integer
points remaining, which could be choices in a Nash equilibrium.

In Sect.5 we will see that Example 4.4 is not an isolated case, but that often a
considerable part of the feasible set can be pruned by Algorithm 2.

5 Numerical results

In this section, we will solve discrete Nash equilibrium problems with the branch-
and-prune procedure presented in Sect.4. Our aims are, firstly, to demonstrate the
effectiveness of our method with initial experiments. In particular, we would like to
show in random instances to what extent the pruning criterion facilitates the search
for equilibria by shrinking the search area. Secondly, we want to give an impression
of the limitations of this approach and which parts of the algorithm are the most
challenging and computationally intensive, thus providing starting points for further
improvements.

In the following experiments, all players’ feasible sets are polyhedral, as defined
in (5). The objective functions are defined as

1
Gv(x) = E(XU)TQVXV + (Cl)x—\) +dU)TxV’

with a symmetric, but not necessarily positive semidefinite (r,, X n,)-matrix Q", an
(ny, x (n — n,))-matrix C" and a vector d* € R"™ for each playerv =1,..., N. We
will consider player convex games as well as games which satisfy Assumption 2.1, but
in which the objective functions are only required to be strictly convex with respect
to individual variables x} fori =1, ..., n,.

In the following, we firstly give details on the concrete implementation of the algo-
rithms. Secondly, we describe how test instances were generated. Lastly, we evaluate
and discuss the results.

5.1 Implementation

All algorithms are implemented in Matlab R2020a. We solve all occurring optimization
problems via the Matlab interface of Gurobi 9.5.0 which enables us to solve non-convex
quadratic optimization problems. The script for the numerical test is executed on an
Intel Core 17-9700K CPU @ 3.60GHz with Linux Mint 20 and 32 GB RAM.

Some details of the algorithms from Sect.4 can be implemented in various ways
and are specified below. The complete code is available in a Git repository.!
Algorithm 1 At first, the feasible strategy in line 4 is computed with a Gauss-Seidel
best response scheme (see [7, Algorithm 1]), because we favor x to be already a con-
tinuous Nash equilibrium. Within this Gauss-Seidel procedure, we avoid exhaustive
calculations if there is only slow or no convergence by executing the while-loop at
most 10 times. Note that in this case our approach works as well, as it does not rely

1 https://github.com/schwarze-st/nep_pruning

@ Springer

https://github.com/schwarze-st/nep_pruning

A branch-and-prune algorithm...

on X being a continuous Nash equilibrium, but only a feasible point. Secondly, the
if-statement in line 7 is verified by solving the optimization problem QV(x~") and
compare its optimal value to 6,,(x) for each player. Thirdly, for the considered games,
we can use Algorithm 2 as pruning procedure in line 5.

Algorithm 2 The description in Sect.4.2 is tailored for convex polyhedral strategy
sets. Consecutively, we explain how the if-statements are checked. For each vari-
able, the strict convexity of 6 in x; is fulfilled when Q}; > 0. Further, F is a
linear function and therefore both, convex and concave. Naturally, we can calculate
FY'(x) = Q/,x" + C; X" +d;. Equations (1) and (2) are validated by checking the
boundedness of F(jy and F(y). Lastly, in line 7-11 and 16-20, we ensure that X is
always in the first entry of B (if it is not pruned) by some additional logical queries.

5.2 Generation of test instances

We randomly generate instances of Nash games and name them C/N*XxY;. The
first letter is C, if the instance is player convex and N, if not. The second and third
signs denote the number of players X and the number of variables Y which each
player controls, and k is an index to distinguish instances with similar attributes. For
example, the instance C32; consists of three players with two-dimensional strategy
sets and player convexity holds. Table 1lists all instances and their properties. In the
next two paragraphs, we explain these properties and sketch how the instances were
generated. For further details we refer to our implementation.

Strategy sets The aim is to generate an arbitrary convex polytope as strategy set for
each player. Our approach is to start with a box which has equal side lengths and its
center in the origin. We initiate X, from (5) with [} = =5, u; =5,i =1,...,n,.
Afterwards we sequentially add m linear inequalities. We perform the following steps
to add a constraint By, x" < b:

1. To determine the number of nonzero values in B}, we draw a number from a
uniform discrete distribution between two and the number of variables. The indices
are selected as a random permutation.

2. We set each nonzero value in B,‘(’* as follows. We draw a number from N (5, 1.5),
round it and switch the sign with 0.5 probability.

3. The choice of b, € Z is based on geometric considerations. To avoid redundancy,
we can set it so that the distance of the new inequality from the origin is less than
half the initial box diameter. By setting it on a positive value we ensure consistency.

The mean density of all matrices BY of each instance is listed in Table 1. Note that
the complexity of Algorithm 2 significantly increases with the number of inequalities.
For the purpose of later comparisons, we also compute the cardinality of €2 which is
simply the number of integer points in the common feasible set.
Objective functions For each instance, we compute C”, d" and Q" filled with random
values from the interval (—1, 1) for each player. Each entry in CV and d" is set to zero
with a probability of 0.5 in order to reduce density.

For generating a test bed of player convex problems, we update Q¥ = (QV)TQ".
For those instances, we list the minimum eigenvalue A, of all QV in Table 1.

@ Springer

S. Schwarze, O. Stein

TI1°901°92S 81 69°0 01 4 TN ObSLSO°LTL LT 790 01 01000 [d5de)
YE6PP9°6TL 81 790 o1 T IgZN ¥T0TIL'6SE 61 SLO o1 L8000 Iszo
SYITLELLI ¥8°0 3 4 YYTN 986°0V6°TL1 180 3 LLOO0O [740)
881°0L9°0ST 0L°0 3 4 TN 0L¥"085°S91 8L°0 3 €820°0 1374749
SLY'EPPTLI 98°0 3 4 TN 9€L91LTIT SLO 3 1S00°0 [L7de)
889°T1€°C91 8L°0 3 4 lyeN P8Y9EF 091 LLO 8 YTr00 [449)
TS6°TIT'T 001 ¥ T YTeN 80S°8LI'I 001 ¥ 9¢11°0 vzed
00+°201°1 001 ¥ T ETEN $09°6ST°1 00'1 ¥ 80200 X4%)
0£6°T8T°1 00'T ¥ 4 CTEN 08T°061°T 00T ¥ ¥€10°0 e
090°9€T°1 00’1 ¥ I lzen 0v9°TITT 00T ¥ 65000 Ized
89€°68T1 060 3 T 8¢TN €19°8¢€°1 €80 8 6L20°0 8¢TD
010°8S¢°T ¥6°0 3 4 LN 0ST€ST'T 88°0 3 01200 Lezd
806°98T1 88°0 3 I 9¢TN 09" L9T°T SLO 3 LEYO0 9¢2D
860°6CC'1 $8°0 3 4 SETN LIESLTT 88°0 3 6£00°0 %49)
095°99¢°T L0 14 I YETN LI6 THP'T €8°0 14 SSIT0 veTo
ST6°S8Y'1 €8°0 ¥ I ECTN 9EH 1811 88°0 ¥ L0000 2%d0)
88T ILY'T 88°0 ¥ I CETN 87T SSET 6L°0 ¥ #€00°0 (254}
0980Tt 1 6L°0 ¥ I letn 0t8°69C°1 1L°0 ¥ 01000 lezo
0€E°T1 00’1 ¥ I YN STl 001 ¥ 6861°0 vzeo
60011 001 ¥ I €N STO°TI 001 14 1920°0 X449
120°11 001 12 I TN LTTTT 001 14 LTITO [dede)
08L°01 001 14 I IZeN P61 01 001 14 £760°0 Izeo
Kyisuop w ONN QureN | Aysuog w uty QuIeN

(ONN) (X 1Im XoAuod-uou ‘g yiim s1akerd jo soquinu pue ‘(|z5]) 19 S[qISLI) UOWIWOD JO AJ[BUIPIRD ‘SIOLIBW
Jurensuod jo Azisuap ueaw ‘(w) 1okerd 1od pappe sonienbaur jo requinu ‘(Wy) owres oy ur @ [[B JO N[BAUSSIO WNWIUIJA :SIOULISUI PAjeIauas Jo santadold | djqel

pringer

as

A branch-and-prune algorithm...

910%86° 1TH' 180 9 T YEEN STTTO6°LES'T 80 9 70000 veed
069°€P8 6HE'T 080 9 4 EEEN TI6LLTTLY'T €8°0 9 1921°0 235
960 %8€615°T €8°0 9 € CEEN 0TESILTES'T $8°0 9 89€1°0 [£%%)
€TESSTTLY'T 9L°0 9 4 leen LES €65 VT T $8°0 9 LLOOO leeo
688°698°100°81 650 01 T YSTN 00LT09°62€°61 Lo 01 £600°0 [{Yde)
Y6 LTS CTH TT 9L°0 o1 T ECTN 00L' VLT TTIF 61 99°0 o1 91000 3940)
sl Kyisuap w IONN QuieN 1251 Aynsuag w Uy QuieN

panunuod | 3jqe]

pringer

As

S. Schwarze, O. Stein

In the non-convex test bed, we set Q¥ := 0.5 - (Q")" + 0.5 - Q" and replace the
diagonal entries by their absolute values. By this, we have a symmetric matrix and 6,
is convex in single variables xi” ,i =1,...,n,. In this procedure, the matrices often
turn out to be, by chance, positive definite. We discard instances where this happens
for all players. In Table 1 we can see in the column Nyc, how many players have
non-positive-semidefinite matrices Q¥ and have thus a non-convex objective function.
Test bed Besides convexity, we subdivide the instances according to their sizes. The
small test bed are all instances of type x22,. The maximum number of integer points is
bounded below 12,000. The medium test bed consists of all 23, and x32, instances.
In x235_g, the complexity is increased by adding twice as many constraints. Finally
the large test bed are all x24,, 33, and %25, problems. The number of integer points
drastically increases due to exponential growth of the strategy sets in the number of
variables. Here, we can only expect convergence in a reasonable time if the pruning
procedure eliminates an enormous part of the feasible sets.

5.3 Evaluation

Subsequently, we investigate if Algorithm 1 is able to compute some or even all
equilibria of the test instances. Additionally, we examine how much of the feasible set
can be pruned by Algorithm 2 and compare the performance on convex and non-convex
instances.

In Table 2 we can see the statistics of the solving process for all player convex
instances. We can see in column | E|, how many solutions of the NEP are found within
the time limit of #,,,, = 3600 seconds. The column #; marks the run time in seconds,
when the first equilibrium was found, #, when the /ast equilibrium was found and #3
when the solving process ended. If, 13 = fnax, the process did not finish and there
is no guarantee that all solutions were found. The statistic O(#) displays how often
the if-statement in line 6 of Algorithm 1 held true, hence how many integer points
were processed at these timestamps. Note that, if the algorithm finished, O(#3)/|<2|
tells us the share of integer points that needed to be processed, the rest was pruned by
Algorithm 2.

In the small test bed we report that the algorithm completed and all equilibria were
found. The properties of the instances are quite different: While C22; and C223 have
two solutions, C224 has none. In the medium test bed we report that for 11 of 12
instances we were able to find provably all solutions within one hour, C323 being an
exception. For this instance, we found three equilibria but did not finish. Notably, there
are five instances certified to have no equilibria. Lastly, in the large test bed there was
no instance for which the procedure finished within an hour. Nevertheless, we found
a solution for two instances.

If we were able to compute equilibria, the first one was mostly found in the first ten
seconds of the run time. We now analyse the 15 instances for which #3 < i« holds.
In four cases less than 5% of the integer points in 2 were processed, in seven others
this share is under 8%. We note that often a large proportion of feasible points could
be pruned, the arithmetic mean is 92.5% and the standard deviation 3.6%. We point

@ Springer

A branch-and-prune algorithm...

Table 2 Results on convex test bed: Number of computed equilibria (| E|), timestamps when the first (1)
and the last (#) equilibrium was found, timestamp at the end of computation (¢3), and number of processed
integer points at timestamp #; (O (t;))

|E| 1 173 13 Oo(ty) 0(tp) 0(t3) o112
C224 2 0.17 18.47 19.51 1 1149 1225 0.11673
Cc22, 1 0.05 0.05 7.96 1 1 542 0.04828
C223 2 0.10 0.29 8.11 5 18 700 0.06349
C224 0 - - 38.71 - - 640 0.05544
C23; 1 9.74 9.74 880.48 498 498 60,209 0.04741
C23, 0 - - 332236 - - 228,111 0.16832
€233 2 0.91 568.33 1287.24 39 42,349 96,333 0.06490
C234 0 - - 2407.23 - - 171,893 0.11921
C235 0 - - 1779.11 - - 98,935 0.07758
C23 1 172.12 172.12 1121.39 10,871 10,871 72,942 0.06248
C23, 1 1.92 1.92 1532.28 95 95 85,381 0.06813
C23g 2 0.61 4.01 1988.98 18 157 135,933 0.10155
Cc32; 2 2.28 76.13 842.39 16 2760 42,558 0.03510
C32, 1 0.07 0.07 1498.27 1 1 74,208 0.06234
C323 3 0.02 28.44 fmax 1 1034 158,421 0.12577
C324 0 - - 712.85 - - 33,571 0.02849
C24, 1 20.54 - fmax 970 - 196,073 0.00122
C24, 0 - - fmax - - 182,675 0.00112
C243 0 - - Tmax - - 149,011 0.00090
C244 0 - - fmax - - 161,427 0.00094
€25, 0 - - fmax - - 125,505 0.00001
€25, 0 - - fmax - - 119,623 0.00001
C253 0 - - fmax - - 171,091 0.00001
C25,4 0 - - fmax - - 140,287 0.00001
33 1 2.75 - fmax 32 - 142,282 0.00009
C33, 0 - - fmax - - 138,500 0.00009
C333 0 - - fmax - - 124,661 0.00008
C334 0 - - fmax - - 128,103 0.00008

out that, if #3 = #n,x, the column O (¢3)/|€2| has no similar interpretation. It only says
how many integer points were processed in the given time.

For the non-convex test bed, displayed in Table 3, we see similar results. We report
that all small and 10 of 12 medium instances were solved completely. We have six
provably inconsistent instances. Again, there was no large instance solved completely
in the time limit, but we found a solution for three instances. For the instances with
13 < tmax, the mean share of pruned points is 92.7% with a standard deviation of
3.4%. Hence, in our randomly generated test bed the convexity in individual variables
is sufficient to be able to prune a large proportion of feasible points.

@ Springer

S. Schwarze, O. Stein

Table 3 Results on non-convex test bed: Number of computed equilibria (| E|), timestamps when the first
(t1) and the last (#) equilibrium was found, timestamp at the end of computation (#3), and number of
processed integer points at timestamp #; (O (t;))

|E| 1 5) 13 o) 0(n) 0(13) 0(13)/1
N224 2 0.28 5.53 9.20 5 305 554 0.05139
N22p 1 1.65 1.65 26.29 24 24 1056 0.09582
N223 0 - - 7.93 - - 439 0.03988
N224 0 - - 56.83 - - 1739 0.15349
N23; 0 - - 1533.48 - - 110,597 0.07784
N23; 1 1.01 1.01 1777.72 34 34 100,212 0.06811
N233 0 - - max - - 212,421 0.14296
N23y4 1 0.39 0.39 652.06 7 7 48,499 0.03549
N235 2 0.06 119.50 1421.55 1 5561 72,716 0.05916
N23g 0 - - max - - 139,227 0.10819
N235 0 - - 1389.65 - - 60,331 0.04443
N23g 0 - - 2414.34 - - 118,580 0.09225
N32; 0 - - 3083.25 - - 134,829 0.10908
N32, 2 3.58 44.35 1816.45 80 1668 77,448 0.06037
N323 1 0.93 0.93 250.07 8 8 9808 0.00890
N324 4 791 380.19 1678.99 259 16,154 71,333 0.05881
N244 1 2.50 - max 11 - 137,587 0.00085
N24, 0 - - max - - 159,930 0.00093
N243 0 - - fmax - - 142,295 0.00094
N24y 0 - - tmax - - 128,710 0.00072
N25¢ 0 - - tmax - - 84,396 0.00000
N25; 1 0.35 - fmax 1 - 103,018 0.00001
N253 0 - - tmax - - 119,264 0.00001
N254 0 - - max - - 124,808 0.00001
N33 0 - - max - - 107,729 0.00007
N33y 1 643.02 - max 17,560 - 88,540 0.00006
N333 0 - - max - - 89,817 0.00007
N334 0 - - max - - 119,694 0.00008

In contrast, we detect differences in the run time between the convex and the non-
convex case. Table 4 reports how much of the total run time is caused by solving
optimization problems and checking consistency with Gurobi (GT;,,). Of this time,
we see on the left the fractions caused by different tasks. In the non-convex test bed,
aiming to solve the continuously relaxed problems with the Gauss-Seidel method and
checking whether x solves the NEP takes on average a larger proportion of GT;, (47%
and 16% instead of 41% and 11%). For these two tasks, non-convex optimization
problems need to be solved. The other two columns only report the time fractions
needed for consistency checks. Overall, one can also see in the tables which parts
of the algorithms require the most run time, to assess where improvements are most

@ Springer

A branch-and-prune algorithm...

LE€9TE 60°0 920 €0 170 TN T1°966C 110 o zro SE0 [d54e)
0F'80t€ Tro 91°0 70 1$°0 TeZN 8€€E0E 91°0 01’0 zro €0 Iszo
62°T0vE Y10 020 870 8¢°0 YyTN LT€8TE 120 620 1o 6£°0 [740)
17'8C€€ LTO ST0 81°0 01’0 TN £€°0TEE 120 LT0 01°0 wo 1374749
PE10EE LTO 920 S1°0 0 TN LTTITE 61°0 €0 €10 LEO [£7de)
€I E0rE S1°0 0T0 1€°0 €0 IyeN 88°€8CE 70 LTO 81°0 €0 449)
¥9°7291 120 LTO 80°0 0 YZEN 99'689 S1°0 LTO 110 L¥0 [£4%)
0S'T¥C €10 €20 110 50 ETEN T6'EhPE 91°0 0€°0 80°0 S 4] X4%)
€0°9SLT 120 ST0 110 0 CTEN X324l 81°0 €0 60°0 140 [44%)
1+°L96C 91°0 LT0 Tro 9%°0 TZeN Y6118 91°0 620 01°0 0 Tzed
68'81€C 81°0 020 020 €0 8¢TN L8881 €0 920 €10 LEO 8¢
1THhel LTO 81°0 91°0 870 LeggN YT LY €€°0 ST0 1o €0 Lgzd
7' TShe LTO 81°0 020 SY0 9¢TN TTLLOT 920 LT0 Tro €0 9¢TD
1S°L9€1 70 0T0 91°0 o SETN LL'80LT LTO ST0 110 9¢°0 %49)
17129 LO0 €0 S1°0 970 YeTN 0T'T8TT $1°0 620 S1°0 wo veTo
(41333 80°0 LTO Tro €50 EETN 18°CTCl 110 €€°0 ¥1°0 0 2%79)
TEVILT Tro LT0 110 050 TN P8ETTE €r0 0€°0 ¥1°0 5 40] [dde)
S8TSHI L0 LTO Y10 o TeTN 0L°0v8 €10 €0 SI°0 0t'0 Tezo
0£°$S 800 Tro 800 L0 YZeN Y9'LE 90°0 LOO €00 ¥8°0 [(#40)
89°L Y10 €00 01°0 750 €N 08'L ¥1°0 620 SI°0 wo X449)
LS'ST 60°0 91°0 1o ¥9°0 TN 89°L 61°0 0€°0 Tro 6£°0 [ede)
06'8 LTO ST0 120 8¢°0 IZeN vL'81 61°0 0€°0 01°0 0 Izeo
oD R £9) Piro ANSIID $91o sureN oD UoI LD Paro ANSI[o 910 sureN

(4091) Kouaysisuod urpdayd pue (P4H) (@, pue (D jo ssaupapunoq Suryoayd
(NS 5) wnuqimbs ue st x 1 Surppayd ‘(SO L5H) “S[e [9pIeS-Ssnen 9y} 10§ AW UNI JO SATRYS PUE (/977 1) 1qoIND) JO AW} UNI [EIOL, :SPaq IS} UO S[IBI0p oW uny ¢ 3|qe)

pringer

as

S. Schwarze, O. Stein

YT eeee Y170 620 7o S40) YeeN LLS8TE ¥1°0 €0 80°0 70 veeo
9%°69¢¢€ LO°0 vT0 60°0 09°0 ECEN T196T¢ 120 €0 LO0 6£°0 %)
68°LE€EE €10 ST0 600 €50 eEN 80°9LTE 91°0 LEO 600 8€°0 [£3%)
8T'19¢¢ 7o 970 [1K0) 150 leeN ¥T90€€ 120 €€°0 80°0 8€°0 leeo
L865TE 600 ST0 ST0 170 YCTN 16°0€1¢ 81°0 LEO Tro €€°0 [{540)
969T¢ 01°0 ¥2T0 Y0 o EGTN orelIe €10 9¢°0 Y10 LEO 3949)

oipn R £9) Piro AN o $91o sureN oirn U0y n P4o AN 919 sureN

panunuod {9|qel

pringer

as

A branch-and-prune algorithm...

beneficial. For example, one could try to determine x with a faster inexact procedure.
Furthermore, one may use additional simple logical queries to discard empty sets more
efficiently.

All in all, we can say that in the considered low dimensional test instances the
presented algorithm is able to prune a considerable share of feasible points. However,
because of an exponential growth in the cardinality of the joint feasible set in the
number of variables, a computation of all equilibria seems to be prohibitive for higher
dimensions.

6 Conclusion

This paper presents novel theoretical results on pruning for discrete Nash equilibrium
problems. The required activity of particular constraints leads to synchronous branch-
ing and pruning of the strategy sets. Furthermore, we showed in a numerical study
that a noteworthy part of the joint feasible set can be pruned by following this ratio-
nale. This was demonstrated for polyhedral strategy sets and (not necessarily convex)
quadratic objective functions. It remains to be investigated if these results can also be
applied to broader problem classes like, for example, generalized Nash equilibrium
problems.

Acknowledgements The authors are grateful to two anonymous reviewers and the associate editor for their
precise and constructive remarks which helped to significantly improve this paper.

Data availibility The data sets generated and analyzed during the current study are available in the GitHub
repository, https://github.com/schwarze-st/nep_pruning.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the contents of
this article.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Theorem 3.2 generalizes [14, Prop. 3.1]

Subsequently, it will be shown that Theorem 3.2 is a generalization of Proposition 3.1
from [14]. This article considers box-constrained strategy sets X, with

v v

g’ (x") = ()l“ :;‘) <0, " u’ ez ®)

@ Springer

https://github.com/schwarze-st/nep_pruning
http://creativecommons.org/licenses/by/4.0/

S. Schwarze, O. Stein

Obviously, the gradient Vv g}f (x") of the constraint j equals the unit vector e; for
je{l,...,ny}and —ej for j € {n, +1,...,2n,}, respectively.

Proposition A.1 [14, Proposition 3.1] Suppose that Q2 is defined by box constraints.
Let x € Q be an integer solution of the continuously relaxed problem NEP. Let us
consider a generic player v. Suppose that an index i € {1, ..., n,} exists, such that
0y is strictly convex with respect to x} and that one of the two possibilities holds:

(i) Given that x! =17, F;” is convex and for each player u € {1, ..., N} and each
index j € {1,...,n,}, suchthat (1, j) # (v, i), itholds;zj.‘ = l.’; ifvx_/; F'(x) >0
and ;zj.‘ = u/; ifo}L FY(%) < 0.

(i) Given that X} = uj, F} is concave and for each player i € {1, ..., N} and each
index j € {1,...,n,}, suchthat (i, j) # (v, i), itholdsi;f = u’; lfojp_cFl.”(JE) >
0 and 3 =1} if Vo FY () < 0.

Then any point X € Q such that X} # x! cannot be a solution of NEP.

More specifically, it will now be proven that, if all prerequisites of Proposition A.1
are fulfilled, Theorem 3.2 is applicable and yields the same result. Lemma A.2 shows
that the requirements on F;”(x) in Theorem 3.2.(i)/(ii) follow from the assumptions in
Proposition A.1.(1)/(ii). Given that, Corollary A.3 proves that (1) and (2) also follow
for the respective cases and that Theorem 3.2 yields the same result.

Lemma A.2 Suppose that 2 is defined by box constraints and that 6, is strictly convex
with respect to x}, as stated in Proposition A.1. From X being a solution of NEP and
I} # u! follow the two statements:

() Ifx} =17, then F’(x) > 0 must hold.

(i) Ifx} = uj, then F(x) < 0 must hold.

Proof Since x is a solution of ﬁE\P, for each v the point x” is a minimal point
of the problem Q"(x™"). Since the gradients of active box restrictions are linearly
independent, x" is a KKT point of Q" (x™") and

F'(%) + Z hj Vgl (#) =0
jeh @, Xy)

holds with A ; € R>q forall j € Ip(x", X v). For the i-th row of this equation, solely
the gradients of the i-th variable’s upper and lower bound constraints are non-zero,
vag;’ = ¢; and vag,‘l’UH = —e;. By llV * u;’ only one of them can be in the active
index set.

e If X} =17, the constraint g,‘:v 4; 1s active and statement (i) follows from F;"(x) +
hngsi - (=1) = 0.

e If X} = u}, the constraint g} is active and statement (ii) follows from F;”(X) +A; -
1=0.

@ Springer

A branch-and-prune algorithm...

Corollary A.3 Theorem 3.2 is a generalization of Proposition A.1.

Proof Since, as stated in Proposition A.1, the set €2 is defined by box constraints, the
strategy sets are defined by convex (linear) functions. Given Lemma A.2, it remains
to show that (1) and (2) follow in the two particular cases and that the consequential
statements are equivalent.

Firstly, we start with Proposition A.1.(i). For an arbitrary player u we have:

o Let J, C {1, nﬂ} be the set of all indices j such that (i, j) # (v,i) and
Vi F’(x) < 0. Thus,)Ef = u’; forall j € J, and the box constraint g;‘(x“) =
J

x;.‘ — ‘; is active (j € Io(x*,)?H)). From qug;‘(x“) = ¢, follows

d <0foralld" e L<(%*, X,.).

o Let K, C {1, e, nﬂ} be the set of all indices k such that (u, k) # (v,i) and
Ve F'(¥) > 0. Thus, x;' = I}/ forallk € K, and the box constraint g,’f#+k(x“) =

l,’: — x,’: is active (n,, + k € Ip(x*, S(\H)). From Vxng,’flﬁk(x“) = —e; follows

d' > 0foralld" € L-(F*, X,,).

If u© = v, this also applies to the index i:

- Vi FY(x) > 0 due to strict convexity of 6, in this component,
- &, 4 (x") is also active and Vyvg) . (x#) = —e;.

Together, for every player u € {1, ..., N} the scalar product

I‘lu
(Vau F(5),d") =)V F(%) - d
p=1

is non-negative for all d* € L<(x*, X) and therefore (1) is fulfilled. This is easy to
verify with help of the statements above. For each index p € { 1,...,n u} one of these
three possibilities holds:

o p€Ju: Vo F'(¥) < Oand dy <0.
e peK,: ngFi"()E) > 0 and dﬁf > 0.
[] ngFlv()z) = O

For any pointX € Q with X} # &} it follows that X} > X/ +1 = [41 and directly the
feasibility of X, which is constructed like in Theorem 3.2. Therefore, the conclusion
of both rationales is equivalent.

Secondly, in the case of Proposition A.1.(ii) we obtain that (2) holds with similar
argumentation and yields the same conclusion, we present it for the sake of complete-
ness. With the sets J,, and K, defined as above, for an arbitrary player u and index p
one of these three possibilities holds:

@ Springer

S. Schwarze, O. Stein

e p € Ju: Thus ¥, = [}, and the box restriction gﬁf#er(x“) = I}, — x}, is active.

From qugffw_p (x#) = —e, follows
d¥ >0 foralld" € L.(¥", X,).

e p € K,: Thus)Eg = u; and the box restriction gﬁ @y = xf,f — u; is active. From
Vengh (x) = e, follows

d¥ <0foralld" € Lo(¥", X,).

If (u, p) = (v, i), this also applies:
- Vy FY(x) > 0 due to strict convexity of 6, in this component,
— g/ (x")is also active and Vv g}’ (x*) = e;.
° ngFiv()f) =0.
Together, for every player the scalar product

ny
(=VauF}'(8),d") =)" =V (D)
p=1

is non-negative for all d* € L<(x*, X) and therefore (2) is fulfilled.
For any point X € Q with X} # X} it follows that X < X/ —1 = u] — 1 and
directly the feasibility of x. Again, the conclusion of both rationales is equivalent. O

Remark A.4 The assumption in Proposition A.1 that X is an integer solution of NEPis
not necessary to obtain the statement, but it is sufficient to require that X is any solution
of NEP. Nevertheless, this does not restrict the applicability of Proposition A.1 very
much, because for all variables x;.L with Vx; FY(x) # 0 itis required that their value

coincides with one of the integer valued bounds anyway.

B Algorithm 3: Remove strategy from search space

Algorithm 3 is employed after x is processed by Algorithm 1. As we have x € By,
this set is divided into at most 2 - n sets, excluding x and preserving all other integer
points from By, i.e.

U BY =8B\ {5}

BteBt

Note that at least one component of a point x in any new subset of B} must be different
from X in order to achieve the exclusion. Moreover, in lines 8-9, Algorithm 3 ensures
that all sets from B are pairwise disjoint.

@ Springer

A branch-and-prune algorithm...

Algorithm 3: [14, Procedure C] Branching out a single point from the strategy
set

1
2
3

Input: Strategy subset B| € 2 of a NEP; feasible strategy x € B
Output: List of sets BT such that ¥ is not contained

Initialize list BT := {}

initialize sets B;r = By foralli € {1,...,2n}

for j = 1tondo

4 B;j_leB;j_lﬂ{xeR”:xjgij—l}
5 B;jengﬂ{xeR":ijij-i-l}
6 | putthe set B;j—l in BT, if non-empty
7 put the set B;j in BT, if non-empty
8 fort =25+ 1t02ndo
9 LBferﬂ{xeR":xj:ij}
References

1. Belotti, Pietro, Kirches, Christian, Leyffer, Sven, Linderoth, Jeff, Luedtke, James, Mahajan, Ashutosh:

11.

12.
13.

15.

Mixed-integer nonlinear optimization. Acta Numerica 22, 1-131 (2013)

. Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, and Sriram Sankaranarayanan: The cut and play

algorithm: Computing nash equilibria via outer approximations. Preprint 2111.05726v2, arXiv, 2022

. Carvalho, Margarida, Lodi, Andrea, Pedroso, Jodo. P.: Computing equilibria for integer programming

games. European Journal of Operational Research 303(3), 1057-1070 (2022)

. Dreves, Axel, Kanzow, Christian, Stein, Oliver: Nonsmooth optimization reformulations of player

convex generalized Nash equilibrium problems. Journal of Global Optimization 53(4), 587-614 (2012)

. Facchinei, Francisco, Fischer, Andreas, Piccialli, Veronica: Generalized Nash equilibrium problems

and Newton methods. Mathematical Programming 117(1-2), 163—-194 (2009)

. Francisco Facchinei and Christian Kanzow: Generalized Nash equilibrium problems. 4or, 5(3):173—

210, 2007

. Facchinei, Francisco, Piccialli, Veronica, Sciandrone, Marco: Decomposition algorithms for general-

ized potential games. Computational Optimization and Applications 50(2), 237-262 (2011)

. Tobias Harks and Julian Schwarz: Generalized Nash Equilibrium Problems with Mixed-Integer

Variables. Preprint 2107.13298v2, arXiv, 2022

. Matthias Koppe, Christopher Thomas Ryan, and Maurice Queyranne: Rational generating functions

and integer programming games. Operations Research, 59(6):1445-1460, 2011

. Monderer, Dov, Shapley, Lloyd S.: Potential Games. Games and Economic Behavior 14(1), 124-143

(1996)

Nash, John F.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences
36(1), 48-49 (1950)

Nash, John F.: Non-Cooperative Games. The Annals of Mathematics 54(2), 286-295 (1951)
Massimo Pappalardo, Giandomenico Mastroeni, and Mauro Passacantando: Merit functions: A bridge
between optimization and equilibria. 4or, 12(1):1-33, 2014

. Sagratella, Simone: Computing all solutions of Nash equilibrium problems with discrete strategy sets.

SIAM Journal on Optimization 26(4), 2190-2218 (2016)
Sagratella, Simone: On generalized Nash equilibrium problems with linear coupling constraints and
mixed-integer variables. Optimization 68(1), 197-226 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	A branch-and-prune algorithm for discrete Nash equilibrium problems
	Abstract
	1 Introduction
	2 Problem description and preliminary results
	3 Theoretical foundation
	4 Algorithmic application
	4.1 Branching method
	4.2 Pruning procedure for convex polyhedral strategy sets

	5 Numerical results
	5.1 Implementation
	5.2 Generation of test instances
	5.3 Evaluation

	6 Conclusion
	Acknowledgements
	A Theorem 3.2 generalizes [Prop. 3.1]sagratellaspscomputingsps2016
	B Algorithm 3: Remove strategy from search space
	References

