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Abstract
During the planning stages of new factories for the Body-In-White assembly, the processes used per production system need
to be defined. Each production system uses a specific combination of processes, with each process belonging to a main process
group. The combination of the processes and groups is subject to restrictions. Since the amount of possible combinations
is too large to individually check for restrictions, we propose a Neural Network using an energy measurement derived from
Hopfield networks. The proposed network memorizes former correct combinations and provides a recommendation score
on how likely a new planned configuration is. Since processes can be paired with processes from their own group or with
themselves, the Neural Network is modified to allow loops for joining vertices with themselves. This modification is achieved
by adjusting the energy function of Hopfield networks to measure the activation of the combinations of clusters, meaning
the edges, and not the activation of vertices during the training phase. We implemented the network for the process planning
of factories of a leading European automotive manufacturer, and the results using correct, incorrect, and random process
combinations indicate a strong capability of detecting anomalous process combinations.

Keywords Anomaly detection · Process planning · Hopfield neural networks · Expert systems

Introduction

The automotive industry always had a focus on automation
and consequently became a leader in the field of automa-
tion, i.e., the automation of the assembly stages was driven
forward with high energy (Bauernhansl et al., 2014). In
detail, different levels of flexibility are necessary to cover the
wide range of assembly processes and hence these processes
have currently different automation levels. Most notably,
the Body-In-White assembly is nowadays considered fully
automated. Therefore, not only the automatization of the
production but also the automatization of the planning of
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the production becomes of interest in manufacturing and the
automotive industry in particular.

One field of research in this area which has not received
sufficient attention in the past from research and industry is
the computer-assisted assembly system configuration (Hage-
mann & Stark, 2018). In the last few years, increased efforts
have been made to tackle the automation or at least the
assistance of the early planning phases. This research paper
tackles the detection of faults in the early process planning
(PP) of production systems. If processes for a production
system configuration are planned, whether automated, semi-
automated, or manual, there is the need for a validation if
this process combination is a valid setup of the production
system (Schmidt et al., 2014). Currently, this is often a man-
ual approach, evaluated by domain experts. To speed up this
process and at least create a semi-automated solution for
the validation of process combinations, a recommendation
score of how likely it is that a newly planned configuration
should appear might improve the overall planning proce-
dure by highlighting the most suspicious cases and accepting
common process combinations. Hence, planning experts at a
leadingEuropean automotivemanufacturer initiated aproject
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to create a method to cross-check and validate process com-
binations of newly planned factories and production systems
for the Body-In-White assembly. The target is to create a
recommendation on the likelihood of a new process combi-
nation after the proposed combination has been entered and
to detect anomalous or novel combinations. This should then
improve the steering and validation of the PP.

This task is complicated by frequently occurring limita-
tions of production planning: wrong process combinations
are often disregarded early in the production planning pro-
cess and not documented or archived (Spoor et al., 2022).
Therefore, only correct process combinations are given. If
anomalous process combinations need to be detected, this
must be done exclusively based on data classified as normal.
Furthermore, the large variety of processes makes rule-based
approaches difficult, and the database of used process com-
binations is limited by the amount of production systems in
use. Linear or nonlinear programming using an optimization
function is not possible because: first, the set-up of an useful
optimization function is not feasible since besides costs and
cycle times also hard-to-quantify targets must be included
such as operability, safety, or processing quality; and second,
the modeling of the restrictions of the optimization function
would require an impracticable effort similar to rule-based
approaches. Hence, a Neural Network (NN) using an energy
measurement based on the Ising or Hopfield model is pro-
posed to memorize correct sets of combinations and evaluate
new combinations based on learned patterns.

First, the given use case and problem description are
further presented and the state-of-the-art approaches for
PP are described. Subsequently for the presented use case,
an approach for PP validation using a NN and an energy
measurement based on the Ising model is introduced and
mathematically formulated in the methodology section. In
the results section, the application of the proposed NN using
the training and testing data of validated former production
systems is presented. Subsequently, the resulting recom-
mendations for the validation of process combinations are
evaluated. The used methodology and results are further dis-
cussed, and afterwards an outlook on continuing research
topics is given.

Use case and problem description

The given process combinations are a data set of 8, 674 for-
merly used and (assumed to be) correct combinations. No
examples of false process combinations are given. There-
fore, the approach must leverage only true negative data and
be able to separate new process combinations that are not
compatible with the known validated process combinations.

The total given amount of individual processes within
the conducted analysis is 586. The analyzed processes are

grouped into 12 process clusters containing similar types of
tasks, applications, and overall uses. The clustering was con-
ducted by the domain experts. If new processes are added in
future planning phases, these would have to be assigned to
the existing clusters.

Not all processes might be combinable together within the
same production system, or they might need a specific addi-
tional process to allow this combination. Therefore, a set
of restrictions of process combinations per production sys-
tem applies. These restrictions also apply to combinations of
processes with themselves and within the same group. Since
processes and process groups can be combined with them-
selves but might also have restriction when combining them
with themselves, it is necessary to model these restrictions.

For the validity check, only the combinability of a pro-
cess or a process groupwith other processes, itself, or another
process group is relevant. It is trivial to see that with 586 indi-
vidual processes the spectrumof possible combinations is too
large for a rule-based or even manual approach. However,
even when using the 12 process clusters, the amount of com-
binations is too large for an individual or rule-based valida-
tion of each combination since there exists a total of 708, 576
possible process cluster combinations. This amount of com-
binations is corrected for impossible combinations, e.g., if
process cluster connection (A, B) and (B, C) is active, the
connection (A, C) must also apply, excluding some possible
set-ups. Due to computational limitations, in order to reduce
complexity in the solution, and since not all 586 processes
occur equally often in the data set, the analysiswas conducted
for the 12 process clusters. This means that the given process
combinations might result in duplicates after the processes
were mapped to each cluster if, e.g., different process com-
binations result in the same process cluster combination. To
illustrate the frequency of these combinations, the resulting
duplicates are not removed from the data set. This results in
a data set containing < 1.2% of possible combinations.

Using only the 12 process clusters, a combination can
be modeled using a network graph with V = 12 vertices
and up to Emax = 78 undirected edges, including loops
since process groups can be combined with themselves.
Most importantly, if two process groups in a process com-
bination are applied, the resulting graph must have an edge
between the two vertices representing the process groups and
if the same process group is applied twice, the graph must
have a loop in the corresponding vertex. Each data set can
therefore be represented as an undirected simple graph per-
mitting loops. If not only combinations but also sequences
are of importance, the network becomes a directed graph
with the edges indicating if the connected vertices precede
(or succeed) each other. Sadly, sequence information was not
sufficiently documented in the observed data set.

The overall goal is to assign a weight to each edge, result-
ing in a graph representing the likelihood of the process
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combination using all 12 vertices for the process groups and
all 78 edges representing the combinations. The full graph
is represented as an undirected multigraph with loops, often
called pseudograph. If theweights of the edges are neglected,
each possible process combination, i.e., a former process
combination in the given data set, is a subgraph of this over-
all described network. The graph structure does not change
if new processes are added. Only if a new process cluster is
set-up, the graph structure changes by adding another vertex
with the corresponding edges. Since the process clusters are
defined based on a higher abstraction level, it should be most
likely possible to assign all new processes to the existing
process clusters. Only in case of a distributive change of the
technologies used, a new process cluster might be necessary.
This is not a concern, since if this distributive technological
change occurs, previous knowledgewould not be usable any-
way and all planning models and methods would also have
to be renewed.

In conclusion, this problem description and use case can
be formulated as an anomaly detection of unusual, wrong,
and novel graph structures and networks using only a set of
true negative network structures for training purposes. The
recommendation on the likelihood of an observed combina-
tion can be evaluated using an anomaly score. A sketch of
the proposed methodology is given in Fig. 1.

In addition, the resulting combination scores, anomalies,
and recommendations must have a good interpretability for
an application in order to show the domain experts why and
how the specific results are applied. Only if the results of
the model are understandable for experts with mainly engi-
neering expertise, it can be safely applied. Within the PP
phase the domain experts need to understand the reasoning
to appropriately alter their PP and to understand the possible
mistakes within their planning approach.

State-of-the-art methods for automated
process planning in production systems

Within an overview of the whole research topic of PP,
Leo Kumar (2017) describes the development of expert sys-
tems (ES) for computer-aided process planning (CAPP) as an
important future research direction. ES are defined as com-
puter programs utilizing knowledge and deduction measures
to solve problems which otherwise would require human
expert interaction. Therefore, we can classify the introduced
problem as an area of application for ES in CAPP.

In the automated planning and validation of processes in
production systems, rule-based approaches are most com-
monly used, e.g., currently at the mentioned automotive
manufacturer. Alternatively, computational optimization and
search algorithms are often applied (Hagemann & Stark,
2018). Hagemann and Stark (2020) use a combinatorial

optimization algorithm to fully automated compute the best
configuration of a planned production systemminimizing the
investment costs. Other approaches to further automate the
early planning, design, and set-up of assembly lines are given
by Michalos et al. (2015) and Michels et al. (2018).

Principally in PP, it is proposed to use methods of data
mining for a knowledge discovery in former successful pro-
duction systems, but this approach is limited by the required
high standard for the used data models and an extensive
initial effort (Kretschmer et al., 2017). Faster methods can
be developed not by deterministically setting up rules but
rather by extracting rules for the CAPP from feedback data
of the production system using statistical methods of knowl-
edge discovery. This is useful because the development of
CAPP can be accelerated and created more dynamically by
statistically modeling the process interdependencies instead
of a fixed initial rule set (Schuh et al., 2017). Hence, our
proposed approach leverages this statistical modeling to cir-
cumvent a comprehensive assessment of rule sets to cover
all possible process combinations.More diverse research and
development is done in the field of PP for more component-
or product-centric than production system-centric applica-
tions. Methods for solving PP problems are in these cases
split into exact methods and approximate methods. Exact
methods use branch & bound methods and mathematical
programming but are limited by the NP-hard complexity of
the problems. Approximate methods include among others
genetic algorithms (Liu et al., 2021). Similar methods com-
pared to the NN proposed here in the area of CAPP are used
in the PP subfield of setup planning byMing andMak (2000)
utilizing Kohonen self-organizing neural networks to create
valid restrictions of features, approach directions, procedure
relationships, and tolerances. Hopfield networks are used
to evaluate the operation sequence problem and the setup
sequence problembymapping thembeforehand into the trav-
eling salesman problem.

Within the field of business process monitoring, which
tackles among others the prediction of running business
processes using historic process data, similar use cases are
researched. NN, i.e., Long Short-TermMemory (LSTM) are
applied to predict the next following process based on eval-
uated running processes. Successful methods using LSTM
are presented by Evermann et al. (2017) using embedded
wording and by Tax et al. (2017). Deep neural networks
considering in addition the interdependencies among the
sequential event data are applied by Mehdiyev et al. (2020).
Language-based models with an attention-based transformer
are also possible approaches for predicting process sequences
(Moon et al., 2021). The problem presented in this contribu-
tiondiffers in the sense that the interest is not on the prediction
but only on the validation of a given process combination and
on finding anomalous or novel set-ups during PP activities.
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Fig. 1 The proposed methodology follows four consecutive steps: 1. similar processes are grouped in clusters, 2. process planners design a valid
process combination, 3. the process combination is translated into a combination network, 4. the network’s edge weights representing the likelihood
of a process combination are trained

Furthermore, no sequential information is given in this par-
ticular data set but should in principle be applicable.

To the authors’ best knowledge, currently no approach
using NNs for PP validation exists. Also, an application of
an energy measure using the Ising model for process plan-
ning or monitoring is currently not researched. However,
a validation of process combinations using former applied
valid processes can be seen as a form of pattern recogni-
tion. Approaches based on memorized patterns using the
Ising model were successfully conducted. Nonetheless, they
were within a different domain and used set-ups of the NN
not considering loops (Stošić & Fittipaldi, 1997). Another
closely-related method to train a network using only cor-
rect data and memorizing patterns are Autoencoders, often
also calledAutoassociator networks (Larochelle et al., 2009).
Autoencoders proved themselves useful for anomaly detec-
tion, e.g., as applied by Chen et al. (2018) using only correct
instances for the training phase. In the following section, a
novel approach for this kind of anomalous pattern recog-
nition, exemplary with an application for PP validation, is
proposed. The proposed NN might also be useful in differ-
ent domains and for anomaly detection of graph structures
in general.

Methodology

Proposed neural network

Since only the combinations of the process clusters from an
amount of V different clusters are relevant and not whether a
process group itself is used, the graph representing a process
combination ismodeled using a symmetric V×V connection
matrix M . Each element mi j of the connection matrix can
indicate either an active connection or no active connection
between cluster i and cluster j .

mi j =
{+1, active edge

−1, inactive edge
(1)

Each given process combination of the data set is
expressed using a Boolean connection matrix M . An entry
mi j = −1 indicates no edge between vertex i and vertex j
of the graph. The set of active process clusters with the clus-
ters numbered from 1 to V is given as P . If two vertices i
and j are active, the edgemi j between these vertices must be
active, and if two processes of the same cluster i are in the set
of process cluster combinations P , a loop in edge mii must
be applied. Therefore, the set-up of the connection matrix
undergoes restrictions. For reference, the algorithm for the
set-up of a connection matrix is given in appendix A using
algorithm 4.

The relation between the process clusters representing the
combinability is expressed by an undirected multigraph with
loops where the vertices are the process clusters and the
weight of the edges represents the combinability between
cluster i and cluster j . Since each edge is always assigned a
weight, this graph has E = ∑V

k=1 k = V (V+1)
2 edges. The

graph is represented by a symmetric V ×V weight matrixW
using individual weightswi j for each combinability between
vertex i and vertex j . Since all vertices are connected among
each other, the proposed model design of the network is sim-
ilar to a Fully Recurrent Neural Network.

−1 < wi j < +1 ∀i, j (2)

If sequences are analyzed, the network can be adjusted to a
directed multigraph. In this case, the connection and weights
indicate if a process i is a successor (or predecessor) of the
process j . The matrices are then no longer symmetrical, but
additional evaluational power is added to the model. The
following overall model and procedure stays the same.
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A negative weight represents a negative correlation for
these vertices, i.e., these two process clusters are most likely
not combined together. A positive weight represents combi-
nations of vertices which are usually active together.

This network of weights is stimulated by an input of
the connection matrix, and the weights are then updated to
decrease its energy while stimulated. The energy of the stim-
ulated network is calculated using an adaptation from the
energy computation in Hopfield networks (Hopfield, 1984)
or resp. in the Ising model (Brush, 1967), applying the active
or inactive connection mi j instead of the individual active
or inactive vertices. This enables loops by circumventing the
restriction thatwi i = 0. The energy resulting from theweight
network when stimulated by a connection matrix using a cor-
rection value θ and theKronecker delta function δ[n] to count
the active vertices is given as follows:

H = −
V∑
i=0

V∑
j=i

wi jmi j − θ ∗ δ[mi j − 1] (3)

An equilibrium energy for the network without stimula-
tion by an connection matrix is defined as follows:

Heq = −
V∑
i=0

V∑
j=i

w2
i j (4)

This equilibrium is equivalent to the Ising model without
external forces applied. The weight wi j is hereby used as an
estimator of the mean probability if a connection is active
instead of a real applied connection mi j .

The correction value is the average effect on the system
energy if any combination is active. A negative correction
value indicates that only a limited amount of combinations
are active at the same time, while a positive correction value
indicates that combinations are more likely to be active than
inactive.

θ = 2

V (V + 1)

V∑
i=0

V∑
j=i

wi j (5)

For each element of the training set, the network will be
stimulated and is then optimized to reduce the energy of the
simulated state in the direction of the equilibrium energy
(minus the correction value). The energy difference between

the equilibrium and the stimulated state is given as follows:

G = H − Heq

= −
V∑
i=0

V∑
j=i

wi jmi j − w2
i j − θ ∗ δ[mi j − 1]

= −
V∑
i=0

V∑
j=i

wi j (mi j − wi j ) − θ ∗ δ[mi j − 1]

(6)

To optimize the difference in energy between the two
states by updating the weight, a simple gradient can be set
up to update each weight individually using a training rate
α ∈ (0, 1) as step sizes of adaption per iteration t :

wt
i j = wt−1

i j + α
(
mi j − wt−1

i j

)
(7)

This weight adjustment is similar to the weight adjust-
ment rules for learning in Autoassociator networks using the
Widrow-Hoff rule (Abdi et al., 1996). The first novelty of
this approach is the adjustment of the computation of the
energy function ofHopfield networks in equation (3) to allow
loops by updatingweights based on the edges, not vertices, as
described in equation (7). This allows process combinations
with itself.

The vertices are not activated one after another if the
weights of the predecessor vertices exceed the activation
threshold. Instead, the edges of each applied training data
graph are imprinted in the weights of the whole network.
This distances the model from the conventional working of
neurons but nonetheless proves its usefulness in the applica-
tion presented in the results section. In order to not penalize
inactive combinations, only weights of i and j with active
process clusters are updated fulfilling the condition for clus-
ter i of

∑V
j=0 mi j > −V and analogous for cluster j .

Two adjustments can be made to refine the training phase
and add commonly applied regularization techniques:

1. An overall decay d ∈ [0, 1) of the weights towards zero
if only limited training data is given for the connection.

2. A reduced training rate r ∈ [0, 1] after each iteration of a
training data amount T so that the changes of the weights
are limited in later iterations.

Decay is commonly used in the training of NNs to prevent
overfitting. A reduction of the training rate is often applied
to enable a high learning rate at the beginning of the training
phase to prevent the optimization being trapped in a local
optima and then reduce the learning rate later to stabilize the
solution around the found optimum. Thus, these concepts can
be also applied to the proposedNN.Using these adjustments,
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the change in weights per iteration step t is given as follows:

wt
i j = wt−1

i j + α

(
1 − r

t

T

) (
mi j − wt−1

i j

)
− d ∗ wt−1

i j (8)

In addition, a correction value using the average weights
does not consider the frequency of active and inactive com-
binations. To take infrequently active combinations into
account as well, a biased correction value is useful. If com-
binations of clusters with themselves are more common in
the data set, a simple but useful biased correction value is the
average weight of all entries of the connection matrix. This
approach weights combinations of different clusters twice.
This approach is useful, if the diagonal entries yield sig-
nificantly higher weight values than the other entries; thus,
falsely indicating that active connections are more likely.
Therefore, the biased correction value is smaller and penal-
izes a high amount of active combinations more.

θbiased = 1

V 2

V∑
i=0

V∑
j=0

wi j (9)

In general, a biased correction value can be constructed
using a weighted average of the connection matrix entries.
The weighted average should hereby compensate for an
imbalance of the training data.

The computational complexity of the proposed method is
O(T V 2) andhencemostly depends on the amount of selected
vertices representing the clusters to check for combinability.
Using this set-up and an initial weight matrix with wt=0

i j =
0 ∀i, j , a weight matrix is created which indicates, when
stimulated, if the given input is memorized or unknown.

Validation and recommendation procedure

As aheuristic to separate anomalous states fromcorrect states
and if a decay d = 0 is used, it is proposed to use the equi-
librium energy after the training as an initial test measure
which should classify most correct data as true negatives. An
unknown or anomalous input creates a stimulated state with
an energy higher than the equilibrium energy, while a mem-
orized common and most likely correct state will result in
energy values below the equilibrium energy. The energy acts
as a similarity measure between the unknown input and the
memorized inputs without the necessity to previously mem-
orize every possible pattern.

This is a second novelty of the proposed approach since
it enables a probabilistic memory of multiple former correct
process combinations by comparing the resulting energies,
instead of an iterative adjustment of the network towards a
single memorized state as commonly used in Hopfield net-
works. Therefore, no patterns are stored and recalled in the
NN, but a limited amount of patterns are imprinted during
the training phase, resulting in weighted edges of the trained
network representing the combinability. These trained pat-
tern then enable a similarity measure between the trained
and suggested inputs by comparing the energy measurement
using the trained NN. Thus, it is not necessary to train all
possible patterns beforehand, but rather to train the NN with
the known correct combinations and then evaluate the energy
as a similarity measure between the trained and tested inputs.

For anomaly detection, a commonly used approach is the
application of Autoencoders. One disadvantage of Autoen-
coders is the overall black-box characteristic of these types
of models, since it is not directly visible which adjustment is
necessary to create a data point which is a correct state, or,
vice versa, which factors influenced the model to classify a
data point as an outlier. In contrast, the proposed NN gives a
direct evaluation as to which combination of vertices influ-
enced its decision the most by evaluating the impact of the
stimulated energy by each active connection.

If a vertex i is currently within the given process combi-
nation set P , its overall impact Ii on the measurement of the
energy is given as follows:

Ii =
V∑
j=0

wi j +
⎛
⎝ V∑

j=0

wi jmi j − θ ∗ δ[mi j − 1]
⎞
⎠ (10)

The impact of only an active loop is as follows:

Ii = wi i + wi imii − θ ∗ δ[mii − 1] (11)

To reduce the stimulated energy and thus to create a
more similar process combination P compared to the mem-
orized process combinations, the vertex should be added or
removed,which creates the largest impact on the energy func-
tion. This is iteratively applied until the energy of the adjusted
combination decreases below a selected threshold. This pro-
cess is similar to the state changes of Hopfield networks.
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Algorithm 1 Training Phase
Input:

Data set X of size T × V × V
Parameter:

Training rate α

Decay d
Reduced training rate r

Output:
Trained weights matrix W of size V × V
Trained correction value θ

1: Set t = 1
2: for t ≤ T do
3: Set i = 1
4: for i ≤ V do
5: Set j = i
6: for j ≤ V do
7: if

∑V
j=0 mi j > −V or

∑V
i=0 mi j > −V then

8: Set wi j = wi j + α
(
1 − r t

T

) (
mi j − wi j

) − d ∗ wi j
9: Set w j i = wi j
10: end if
11: Set j = j + 1
12: end for
13: Set i = i + 1
14: end for
15: Set t = t + 1
16: end for
17: Set θ = 2

V (V+1)

∑V
i=0

∑V
j=i wi j

For the iterative removal of processes from the set of active
process combinations, the equations (10) and (11) apply to
select the processes with the highest impact for exclusion. In
case of loops, this is conducted by first excluding all but one
instance of the process from the list of processes. If adding a
process results in a loop, this is analogously computed using
equation (11). If new processes currently not within the set
of processes are added, the procedure becomes more com-
plicated since the connection matrix changes.

H(P) is defined as the resulting energy by process com-
bination P . If a process p is added, the resulting set becomes
P∗ = P + {p}. This new process combination results in a
new connection matrix M by applying algorithm 4, which
then enables an evaluation of the energy using equation (3).
The impact becomes as follows:

I ∗
i = H(P) − H(P∗) (12)

Overall, equation (12) is applied for all iterations during
a recommendation procedure as comparison. For each cur-
rently included vertex in the set P , the energy is computed if
it becomes deactivated. If a process is currently only once in
the set of processes, the impact needs to be evaluated for the
addition of a loop and for complete exclusion of the process
from set P . For each process p currently not in the set P , the
energy is computed if the process gets included.

If the vertex i with the highest I ∗
i is selected and a cor-

responding process added or removed from the combination
list, a new combination matrix M applies, and the energy

decreases. This adapts a given process combination iter-
atively by adding or removing processes towards a more
common and memorized combination.

Proposed implementation and algorithm

Within the application in PP, the overall procedure is sketched
in Fig. 2.

To train the NN model using equation (8), algorithm 1
is used, which is in Fig. 2 applied in step 1. To evaluate a
given process combination using the trained NN model and
the energy definition given in equation (3), algorithm 2 is
used, which is in Fig. 2 applied in step 2. To create a list of
recommendations using a given process combination using
the trained NN model and the energy difference definition
given in equation (12), algorithm 3 is used, which is in Fig. 2
applied in step 3.

In algorithm 3, three cases for each cluster per iteration
are evaluated. First, if a cluster is included twice in the com-
bination list and thus, a loop exist, the cluster is removed
once such that the loop is removed (line 10 to 12). Second,
if a cluster is included once, it is evaluated if removing the
cluster entirely from the combination list (line 13 to 16) or
adding it a second time and creating a loop decreases the
energy level more (line 16 to 21). Third, if the cluster is not
within the list of combinations, it is included once (line 22
to 24).

Algorithm 2 Testing Phase
Input:

Process connection matrix M of size V × V
Parameter:

Trained weights matrix W of size V × V
Trained correction value θ

Critical energy Hcrit
Output:

Measured energy H
Statement if process classifies as outlier

1: Set a = 0
2: Set i = 1
3: Set H = 0,
4: for i ≤ V do
5: Set j = i
6: for j ≤ V do
7: Set H = H − wi j ∗ mi j
8: if mi j = 1 then
9: Set a = a + 1
10: end if
11: Set j = j + 1
12: end for
13: Set i = i + 1
14: end for
15: Set H = H + a ∗ θ

16: if H > Hcrit then
17: Outlier = TRUE
18: end if
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Fig. 2 Sketch of the applied concept for usage and implementation in manufacturing of the proposed NN during PP by a planning expert

Results

Data sources and description

The used data set contains, as briefly described in the
problem statement, 8,674 process combinations currently
implemented and applied within the production systems
of two plants from different locations and both currently
running at a manufacturing site of a leading European auto-
motive manufacturer. These data include processes from all
stages of the shell construction of a premium car series in
the Body-In-White assembly, i.e., construction of the body
frame, including assembly of the front, substructure, and rear
carriage, the assembly of the side panels, and the assembly
of doors and hatches. Therefore, these data cover the whole
range of operations over multiple manufacturing lines using
real applied processes of the Body-In-White manufacturing.
Thus, the analysis is capable of representing and evaluat-

ing the performance of the proposed NN for a holistic and
real application in production systems of the Body-In-White
assembly as implemented today. All processes are trans-
formed into a connection matrix by algorithm 4 prior to the
analysis. An overview of the data is given in Table 1.

The applied process combinations run on a variety of
uniquemanufacturing cells, each using fromone up to twelve
robots as resources per cell and multiple additional auxiliary
resources, as such as, e.g., tanks and conveyor belts. For this
manuscript, the analysis focuses on the applied process com-
binations within the manufacturing system. The robot layout
as an additional restriction of a combination of processes and
resources is not evaluated but could easily be added in the
analysis by using vertices and edges representing resource
and process combinations. This project focuses on a pure
process planning use case with a known and implemented
set-up of resources.

123



Journal of Intelligent Manufacturing

Table 1 Description of the used
data set

Instance Amount Comment

Process combinations 8,674

Unique processes 586

Years 6 from 2017 to 2022

Plants 2 full Body-In-White assembly

Algorithm 3 Recommendation Phase
Input:

Process combination set P
Parameter:

Trained weights matrix W of size V × V
Trained correction value θ

Critical energy Hcrit
Output:

List of recommendations P∗ of size n + 1
List of energy improvements H∗ of size n + 1

1: Set n = 0, removed = FALSE
2: Compute M from set P using algorithm 4
3: Compute H from the connection matrix M using algorithm 2
4: Set P∗

0 = P
5: Set H∗

0 = H
6: while H∗

n > Hcrit do
7: Set Imax = 0
8: Set i = 1
9: for i ≤ V do
10: if ‖P∗

n ∩ {i}‖ > 1 then
11: Set P∗ = P∗

n − {i}
12: end if
13: if ‖P∗

n ∩ {i}‖ = 1 then
14: if removed = FALSE then
15: Set P∗ = P∗

n − {i}
16: Set i = i − 1, removed = TRUE
17: else
18: Set P∗ = P∗

n + {i}
19: Set removed = FALSE
20: end if
21: end if
22: if ‖P∗

n ∩ {i}‖ = 0 then
23: Set P∗ = P∗

n + {i}
24: end if
25: Compute M ′ from set P∗ using algorithm 4
26: Compute H ′ from the connection matrix M ′ using algorithm

2
27: Compute Ii = H − H ′
28: if Ii > Imax then
29: Set Imax = Ii
30: Set Popt = P∗
31: Set Hopt = H ′
32: end if
33: Set i = i + 1
34: end for
35: Set n = n + 1
36: Set P∗

n = Popt
37: Set H∗

n = Hopt
38: end while

As discussed previously, only combinations that are
assumed to be correct are available, which requires a train-
ing with only true negative network structures. Therefore, we

created 30 false process combinations supported by indus-
try experts and created a set of random combinations for a
validation of the anomaly detection in the testing phase.

Hyperparameter optimization

To find a useful parametrization, a hyperparameter optimiza-
tion of the training rate α, decay d, and reduced training rate
r is applied. For this purpose, a grid search is used. Each
set of parameters is evaluated with 30 Monte Carlo cross-
validations and a training set size of 90% is applied. The
NN is trained using algorithm 1. A more detailed discussion
and interpretation of the training procedure is given in the
following section.

For the testing of the NN, algorithm 2 is applied using the
biased correction value. The results of the testing phase are
evaluated by the rate of misestimating correct process com-
binations as false positives, using a given constant detection
rate of 90.0% of false process combinations as true positives
(TPR). The lower the false positive rate (FPR), the better
the parametrization. The results of the grid search are given
in Table 2. A detailed discussion and interpretation of the
training procedure is given in the following sections.

The grid search suggests that the NN is comparably sta-
ble regarding its parametrization. For small changes in the
parameters, no significant effect is measurable. Only in cases
of high values for training rate or decay, an effect is significant
and the variance depending on the training data increases.
The grid search has most likely not found the global minima,
but the possible improvement in the global optimum of the
FPR is assumed to be rather low in case of the given data set.
Thus, the parameters can be freely selected in the range of
0.01 ≤ α ≤ 0.1, 0 ≤ d ≤ 0.04, and 0 ≤ r ≤ 0.5. Changes
of the parameterization within this limits will change the
resulting equilibrium and stimulated energy levels but will
still enable a distinct threshold for the critical energy level to
separate correct and incorrect process combinations. Since
decay and reduced training rate do not have a significant
influence on the performance for training rates α ≤ 0.1, they
can be set to zero to reduce complexity of the proposed NN
and to apply equation (7) during the training phase. It should
be noted, that other data sets and use casesmight benefit from
these parameters.
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Table 2 Effect of
parametrization evaluated by the
FPR using a given 90.0% TPR

Training rate Decay Reduced training rate
r = 0 r = 0.1 r = 0.25 r = 0.5

α = 0.01 d = 0 (1.7 ± 0.4)% (1.6 ± 0.5)% (1.4 ± 0.4)% (1.5 ± 0.4)%

d = 0.02 (1.6 ± 0.5)% (1.5 ± 0.5)% (1.6 ± 0.4)% (1.4 ± 0.4)%

d = 0.04 (1.8 ± 0.6)% (1.6 ± 0.7)% (1.5 ± 0.5)% (1.3 ± 0.5)%

d = 0.1 (1.7 ± 0.6)% (1.6 ± 0.5)% (1.8 ± 0.8)% (1.7 ± 0.8)%

α = 0.05 d = 0 (1.3 ± 0.5)% (1.4 ± 0.5)% (1.5 ± 0.5)% (1.4 ± 0.4)%

d = 0.02 (1.5 ± 0.5)% (1.7 ± 0.6)% (1.8 ± 0.6)% (1.4 ± 0.5)%

d = 0.04 (1.6 ± 0.6)% (1.5 ± 0.5)% (1.4 ± 0.6)% (1.6 ± 0.6)%

d = 0.1 (1.9 ± 1.0)% (1.8 ± 1.1)% (1.8 ± 1.0)% (1.5 ± 0.7)%

α = 0.1 d = 0 (1.4 ± 0.5)% (1.5 ± 0.6)% (1.4 ± 0.5)% (1.5 ± 0.6)%

d = 0.02 (1.8 ± 0.8)% (1.7 ± 0.7)% (1.4 ± 0.6)% (1.6 ± 0.6)%

d = 0.04 (1.8 ± 0.7)% (1.6 ± 0.8)% (1.7 ± 0.8)% (1.4 ± 0.5)%

d = 0.1 (2.1 ± 1.1)% (2.0 ± 1.1)% (1.9 ± 1.1)% (1.6 ± 0.7)%

α = 0.25 d = 0 (2.7 ± 1.5)% (1.8 ± 1.3)% (1.9 ± 0.8)% (1.9 ± 1.0)%

d = 0.02 (2.0 ± 1.0)% (2.1 ± 1.2)% (2.1 ± 1.1)% (1.7 ± 0.9)%

d = 0.04 (2.4 ± 1.3)% (2.0 ± 1.0)% (1.9 ± 0.9)% (1.6 ± 0.7)%

d = 0.1 (2.9 ± 1.5)% (2.6 ± 1.7)% (2.6 ± 1.9)% (2.1 ± 0.9)%

Using as parameters values α = 0.05, d = 0, and r = 0.0,
the effect of the training size T is evaluated. TheNN is trained
and tested using different training and testing sizes and then
evaluated using as prior the FPR for a given 90.0% TPR. The
results are given in Table 3. The biased correction value is
applied and 30Monte Carlo cross-evaluations are conducted.

Even with around 5,000 training data, the networks per-
formance does not significantly change and the training is
stable. Thus, this amount of data is sufficient to conduct a
useful anomaly detection task and all tested training sizes
show comparable results. Overall, the performance of the
model for the given data set is independent of the selected
training size and thus, a training size of 90% can be used for
the applicationof themodel.Nonlinear relationships between
training size and parameters have not been evaluated sepa-
rately, but since the effects of parametrization on the FPR are
rather small, no significant effect is assumed.

The last parametrization is the selection of the biased or
regular correction value θ . In the given use case many loop
connections exit since process clusters are very often com-
bined with themselves; thus, the biased threshold is useful
in training and evaluation of the network. Using the found
parameters and a training size of 90%, theFPR is (1.9±0.6)%
for the regular correction value using a 90.0% TPR. If this
value is compared to the results in Table 3, it is concluded
that the biased threshold is useful in driving the performance
of the evaluation.

Overall, the parametrization is rather stable and enables
an efficient set-up of anomaly detection tasks without an
extensive hyperparameter optimization. In different use cases
and datasets, a hyperparameter optimization might be more

important.While the parametersmight be further optimizable
by a pattern search or similar methods, the results indicate a
high stability and the results are more driven by the training
data sets, since most false positive rates of the used parame-
ters are within one standard deviation.

Procedure of training phase

For the training phase the data set is shuffled and split into
90/10 training and testing data. Since the data set is shuffled,
the results vary slightly between each run, but in multiple
conducted tests using a Monte Carlo cross-validation the
overall results and performance of the used models stayed
relatively unchanged as demonstrated in the hyperparameter
optimization. The remaining T = 7, 807 process combina-
tions are then used to iteratively change the weights as per
equation (8). The initial weights are set as zero for all edges.
The parameters are selected based on the conducted hyperpa-
rameter optimization. Since decay and reduced learning rate
have no significant impact for values of 0.01 ≤ α ≤ 0.1, they
are set to zero such that the iterative weight change simplifies
to equation (7). The applied parameters for the training are
summarized in Table 4.

To visualize the training progress, the energy in the equi-
librium and the energy in the stimulated state per iteration t
are compared using equation (3) and (4) with the correction
value continuously updated after each iteration. The stim-
ulated state can be averaged over the last 100 iterations to
create a magnitude of the variance and mean values during
training. The visualization of the training phase is given in
Fig. 3.
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Table 3 Effect of different
training sizes evaluated by the
FPR using a given 90.0% TPR

Training size to data set size ratio
50 % 60 % 70 % 80 % 90 %

T 4,337 5,205 6,072 6,940 7,807

FPR (1.5 ± 0.5)% (1.6 ± 0.4)% (1.6 ± 0.5)% (1.5 ± 0.5)% (1.3 ± 0.5)%

Table 4 Applied parameters for the training phase

Parameter Symbol Value

Training size T 7,807

Training rate α 0.05

Decay d 0.0

Reduced training rate r 0.0

Fig. 3 Equilibrium and stimulated state’s energy during training phase.
The moving average of the stimulated states is calculated per 100 train-
ing data. The blue shaded region is the 3-σ region of themoving average

It is visible that after around 1, 000 processed training
data the energy stabilizes and does not change any longer in
a significant manner. Also, the moving average of the stimu-
lated states stabilizes and remains constant with a stable 3-σ
area. Therefore, using the applied parameters and despite the
limited amount of training data, it is possible to conduct a
learning phase which stabilizes. Also, the learning progress
is robust over changes in the parameters, indicating an overall
stablemodel. Smaller training sizes still enable a stabilization
of the energy, as shown in the hyperparameter optimization
for different training sizes. Therefore, other splits then 90/10
can be used but result in limited changes.

The upper end of the 3-σ area overlaps with the equi-
librium energy. If the suggested heuristic is applied using
the equilibrium energy as criterion for the detection of
anomalous process combinations, the area between the upper
3-σ interval and the equilibrium gives an indication of the
expected amount of false positives during the testing phase.
Some uncommon process combinations will be detected as

anomalous, but the main amount of data, containing most
likely common or typical combinations, will pass as true
negatives.

Results of testing phase

First, the biased correction value is computed as θbiased =
−0.79. The biased correction value is used since combina-
tions of clusters with themself are disproportionately present
in the data set. Also, the biased correction value increases
the predictive performance of the model compared to an
unbiased value. The negative value of the correction value
indicates that an active connection is overall unlikely and
most connections will be inactive. This results in a penal-
ization of process combinations between multiple different
process clusters which the biased correction value might not
correct circumferentially. This should not be interpreted as
an error but as part of the results since it only suggests that
production system set-ups with multiple different process
groups are unlikely.

For the testing phase, the 10%, in total 867, remaining cor-
rect process combinations are used as validated test data to
check the rate of false positives. In addition, an equal amount
of random process combinations is generated. A random
amount of 2 to 5 process clusters are activated. If a cluster is
activated twice, it counts as a connection to itself. Further-
more, 30 validated false process combinations are used to
test the model’s capabilities of detecting true negative com-
binations. For all testing data, the energy is calculated and
visualized in Fig. 4 using box plots with whiskers.

The proposed heuristic using the equilibrium energy
suggests a threshold of Hcrit = −55.5, classifying all com-
binations above as anomalous. As indicated in Fig. 3, the
amount of false positives in the tested correct process combi-
nations is very limited, with only 2.9% using the equilibrium
energy as threshold.Certain outliers existwhich are (assumed
to be) correct combinations but are classified as anomalous.
However, compared to the random and false process combi-
nations, the number is highly limited. Also, the mean energy
level of Htrue = −59.0 ± 1.9 is significantly lower than
the threshold. While the random process combinations are
often under the threshold, they are visibly above the correct
validated process combinations with a mean energy level of
Hrand = −53.6±3.0, indicating that they are onlywith a low
significance above the energy level of the correct processes.
This might result from generating random data, which might
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Fig. 4 Median energy levels per state of validated correct process com-
binations, random combinations, and validated incorrect combinations.
The boxes show the lower to upper quartile. Themedian ismarkedwith a
line. Thewhiskers indicate the 1.5 times interquartile range above/below
the quartile. Data outside of the whiskers are marked as dots

create simply correct or at least inconspicuous samples. Also,
the random process combinations benefit from the limitation
of a maximum of 5 active clusters. Hence, the effect of many
unlikely cluster combinations as suggested by the negative
correction value is circumvented.

In conclusion, by using the equilibrium energy as a
threshold, 96.7% of validated false processes are classi-
fied correctly as true positives. If more false positives are
accepted, since this ratio is quite low when using the equi-
librium energy, this ratio increases. Also, the energy level
between the false and correct combinations differs signifi-
cantly with an energy level of H f alse = −51.8 ± 2.8. The
combinations with a very high energy are process combina-
tions with many different active clusters. The lower whiskers
of the box plot barely reach the upper quartile of the correct
data. This indicates that the true positives and true negatives
can be separated quite efficiently.

Performance evaluation and benchmarking

The capabilities for outlier detection of the proposed NN
are further analyzed using a receiver operating characteristic
(ROC) curve in Fig. 5.

As shown, the correct and false data can be classified very
efficiently, and using a stricter measure then the equilibrium
energy can further drive the performance of the analysis. It
is possible to detect 90.0% of false process combinations
as true positives with only misestimating 1.3% of correct
process combinations as false positives using a threshold of
Hcrit = −54.7. Using this energy level, most of the random
data are also classified as anomalous which should be correct
due to their random nature. Therefore, it is concluded that the
suggestedmodel can be applied to the defined task and is able
to reliably detect false process combinations while passing
correct combinations.

Fig. 5 Receiver operating characteristic for the trained network using
verified false states. An Autoencoder, One-Class SVM, and Isolation
Forest are used for benchmarking

As the main competitor in these scenarios, an Autoen-
coder is selected for benchmarking. In addition, the data set
is benchmarked using a One-Class Support Vector Machine
(SVM) as proposed by Schölkopf et al. (2001) and an Isola-
tion Forest as proposed by Liu et al. (2008). The methods are
chosen as benchmarks since they are able to detect anomalies
in data sets without a prior training data set with labeled clas-
sifications. For this purpose, the connection matrix M must
be converted into a Boolean feature vector containing all 78
possible process combinations.

The applied methods were trained using the same train-
ing data set as the NN and then evaluated by their anomaly
score comparing the test data set and the validated false pro-
cess combinations. The Autoencoder was set up using the
implementation by Zhao et al. (2019). After testing different
parameters, a four layer network with 64/32/32/64 neurons
with an ReLU activation function for the hidden states, a
sigmoid activation function for the output layer, as used per
default by Zhao et al. (2019), and a contamination rate of 1%
is applied. The One-Class SVMwas specified to use an RBF
kernel with a γ = 1

78σ . The Isolation Forest was set up with a
contamination of zero and also a contamination calculated as
originally proposed. Since the calculated contamination sug-
gested a slightly better performance, it was used in the final
evaluation. This result might derive from considering that
within the training data set some uncommon (or even falsely
classified as correct) combinations might be still included.
Therefore, a calculation of the contamination is beneficial.
The One-Class SVM and Isolation Forest are applied using
the implementation by Pedregosa et al. (2011).

The results are given in Fig. 5. It is assumed that a One-
Class SVM performs well using only true negative exam-
ples during training but might in this case be limited by the
binary nature of the connection mi j . The performance of
the One-Class SVM is therefore worse for all possible false
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positive rates than our proposed model. The Isolation For-
est is also limited by the binary connection and performs
worse then the One-Class SVM and the resulting ROC is
also significantly exceeded by our proposed NN. However,
the Autoencoder is capable of a similarly good detection of
outliers, but overall the proposed NN results in a slightly
better ROC. The Autoencoder even performs on par with our
proposed method in areas of lower than 82% true positive
rates.Usingmore validated false process combinationsmight
improve the significance of the comparison and result in a
better recommendation, but these are limited by the nature
of the problem.

Nevertheless, the Autoencoder in addition lacks the eas-
ily interpretable weights of our proposed NN. Since the final
weights are defined in the range of −1 to 1, they can be
easily shown and discussed with domain experts and create
an explainability which the Autoencoder cannot provide. A
value close to 1 suggests a high combinability and combina-
tions which are present inmost process set-ups, while a value
close to −1 suggests combinations which are very unlikely
to occur. By looking up the values of the weight matrix,
it can easily be explained why a result received a certain
energy level. Using equation (10) and (11) for each currently
active process, its impact on the energy level and therefore
its impact on the classification procedure can be evaluated.
This easily interpretable model is further highlighted by the
recommendation process, which suggests unlikely processes
combinations or missing processes in the current process
combination.

In addition, the proposed NN yields a more beneficial
computational complexity than an Autoencoder. Therefore,
we assume that our proposed model is highly beneficial in
applications where results are aligned with experts outside
of computer science and reasoning must be applied on the
results, requiring less of a black-box approach. In conclusion,
the benchmarking shows that our proposed approach is very
beneficial for the presented use case which cannot be simul-
taneously well-evaluated and interpreted in an equivalent
manner using common state-of-the-art methods of anomaly
detection.

Applied recommendation phase

If the recommendation system is applied, processes get acti-
vated or deactivated iteratively to improve the energy rating.
Since in the use case presented here the correction value is
negative, the network will in most cases prefer less processes
and thereforemostly delete processes from the proposed pro-
cess combinations entered in the system. On the other hand,
since process combinations within the same cluster are very
common, processes of the same process cluster might be
added. The progress of recommendation is illustrated by the
energy change per iterative step in Fig. 6.

Fig. 6 Energy level after multiple iterations of recommendation with
single activations or deactivations of processes per iterative step

Table 5 Recommended process cluster adjustments per iterative step

Iteration Process Combinations

ID 1 ID 24 ID 27

0 6, 7, 10, 11, 12* 1, 3, 12* 6, 8, 10*

1 6, 10, 11, 12* 1, 3, 12, 12 8, 10

2 10, 11, 12* 1, 1, 3, 12, 12 10

3 10, 11, 12, 12 1, 1, 12, 12 1, 10

4 11, 12, 12 1, 1, 12, 12 1, 1, 10

5 12, 12 1, 1, 12, 12 1, 1, 10

... 12, 12 1, 1, 12, 12 1, 1, 10

*The energy of the combination is above the critical value

It is visible that after a few adjustments to the process
combination lists the values are below the threshold Hcrit =
−54.7 and would classify as correct process combinations.
The single recommendation steps are listed in Table 5.

For the presented examples, the recommended process
combinations iterate towards the most likely combinations,
which differ between cases. Depending on the configura-
tions or starting values, the recommendations iterate towards
different energy levels. The resulting recommendations are
therefore local minima, but are not necessarily global min-
ima. Also, the robustness of the recommendations is limited
since changes in the training data sometimes result in a
swapping of the best and second best proposed adjustment.
Nevertheless, the recommendations all result in more likely
combinations. Thus, in practice, the planning expert con-
ducting the recommendation phase should be shown a list of
all feasible recommended adjustments for manual selection.
In the analyzed use case, all false processes combinations
changed to assumed correct combinations after a maximum
of 3 steps. In larger networks these recommendation phases
can be more nuanced, longer, or complex.
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Evaluation of an exemplary process combination

For a better understanding of the methodology and the appli-
cation of the proposed NN, an exemplary process, which is
a real currently running process at said automotive manufac-
turer, is analyzed in this section.

As an exemplary application, a more unique process com-
bination is selected. This process combination runs on a
manufacturing line of a plant inGermany. The corresponding
manufacturing line of the plant analyzed here is located in the
assembly of the side panels and named FS71. The first man-
ufacturing cell of this line through which a car body passes
runs the selected exemplary process combination.

The manufacturing line FS71, which includes the ana-
lyzed cell, is of particular interest since it includes among
the most varied applications and special welding and gluing
processes, as well as multiple tool exchanges. Thus, the said
European automotive company uses this manufacturing line
as a benchmark for testing new ideas and concepts of the
internal digital factory research. The manufacturing cell’s
position in the factory layout is displayed by a red marking
in Fig. 7.

The manufacturing cell can be displayed in more detail
using the digital plant layout. This manufacturing cell
includes as resources four robots (named 020RB 100 up to
020RB 400) and also a conveyor belt (named Station 020).
The digital layout of the manufacturing cell is given in Fig. 8.

The process combination analyzed in this section starts
with the delivery of the car body via the conveyor belt
and then conducts a self-pierce riveting process including
a gluing application by all robots. During the ongoing riv-
eting process of the robots 020RB 100 and 020RB 200, the
other robots 020RB 300 and 020RB 400 finish their riveting
task earlier and come to a prior halt to start an exchange
of their tools in a special tool change process. This tool
change is marked by the planning experts as a complex and
non-standard change. This tool change is necessary for a
following process. After this tool change, 020RB 300 and
020RB 400 undergo a waiting time until 020RB 100 and
020RB 200 are also finished with the conducted self-pierce
riveting process.After anotherwaiting time, the process ends.
The process chart is given in Fig. 9.

This process combination includes the process codesM21,
R64, M77, and R23. The process code M21 is applied once,
which is the delivery of the car body by the conveyor belt.
The process code M21 is assigned to cluster 11. Cluster 11
includes all processwithout robotswhichhandle ramping and
clamping procedures. The process code R64 describes the
self-pierce riveting process and is included eight times. The
code R64 belongs to cluster 3 which includes all technical
robot main processes, mainly welding applications. The pro-
cess M77 is included six times and is a waiting time. This is
covered by cluster 8, including all preprocessing tasks which

do not include actions by robots or handling of the compo-
nents. In conclusion, the code R23 of the tool exchange is
included twice and belongs to cluster 2 which are processes
running on robots but without a processing of the component.

To analyze this process combination, first the symmetric
connection matrix must be set up as given by algorithm 4.
Also, this process can be visualized by a network graph. The
edges between cluster 2, 3, 8, and 11 are all applied; thus, the
entries (2, 3), (2, 8), (2, 11), (3, 8), (3, 11), and (8, 11) and their
symmetric counterparts of the connection matrix are given
as 1. Also, the loops of cluster 2, 3, and 8 are active since
these processes are applied more than once; thus, the second,
third, and eighth diagonal entries of the connection matrix
are 1. Only cluster 11 does not have a loop; therefore, the
connection matrix has the value -1 for the eleventh diagonal
entry. All other edges are inactive, and the connection matrix
has the value -1 in all other entries.

If this process combinationwould be applied for a training
phase, all weights where this connectionmatrix has entries of
1 would increase in this training step and all weights where
the connection matrix has values of -1 would decrease, as
defined by the learning rule in equation (8).

If this process is applied for an outlier test, the energy
is measured as defined by equation (3) using the trained
weight matrix and biased correction value. Since this pro-
cess, respectively the line FS71, is described by the planning
experts as a special case of particular interest due its high
complexity, it is expected that the resulting energy might be
higher then the average case of a process combination but
should still be classified as a correct combination.

In conclusion, if this process combination is applied on
the trained weight matrix from prior sections, the resulting
energy is given by Hexample = −58.0. This is indeed slightly
higher than the average energy of correct combinations given
in Fig. 4 by Htrue = −59.0 but still within the standard devi-
ation of the true process combinations. Also, it is lower than
the proposed Hcrit = −54.7by the analysis of theROCcurve
in the section “Performance evaluation and benchmarking”
and significantly lower than the energy levels of the random
and false process combinations as seen in Fig. 4. Thus, this
process would classify as a correct process, and its more
interesting aspects indeed result in a slightly higher energy
than the average correct process. Therefore, it can be con-
cluded that the proposed NN gives a good estimation of the
complexity of the applied process combinations and results
in a meaningful outlier score using the energy evaluation.

Discussion

An important assumption of the approach is that past config-
urations can be used to validate entirely new combinations.
Since we assume that this assumption holds in the presented
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Fig. 7 Plant layout of the assembly of the side panels of one location. All here visible working stations and cells are applied in the analysis. The
manufacturing line FS71 is located in the lower right of the map. The exemplary process combination is located at the manufacturing cell marked
in red

Fig. 8 Layout of the observed
manufacturing cell, which is the
first cell of the manufacturing
line FS71, running the
exemplary process. The
resources of the corresponding
manufacturing cell are marked
in green. The robots and the
conveyor belt are named with
arrows
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Fig. 9 Process chart of the analyzed exemplary process. 020RB 100 is marked in blue, 020RB 200 is marked in green, 020RB 300 is marked in
violett, and 020RB 400 is marked in orange

use case, this might not always be the case. In addition, a
valid combination which was simply never performed before
and also does not follow past patterns of combinations will
most likely be classified incorrectly, as seen in the test data
set as the false positive cases, since no domain knowledge
is applied to model the real restrictions. The model is also
limited by the availability of only process combinations and
no complete ontology or process sequences. Within manu-
facturing, the use of an ontology, i.e., the product, process,
and resource (PPR) model, can improve the planning and
simulation of production systems (Agyapong-Kodua et al.,
2014).Adding information concerning the process sequences
or the process combinations with resources and products will
most likely improve the significance of themodel. Sequences
can be modeled via directed edges between the processes,
and resource and product combinations can be added using
vertices. While the overall results indicate the usefulness of
the model, two additional aspects in the mathematical set-up
need to be discussed further.

First, the calculation of the correction value should in the-
ory balance the energy change by activating any edge and
create a comparability between combinations with different
amounts of edges. The analysis shows that the high energy
combinations are cases with many active edges. Therefore,
the model penalizes large amounts of active edges. This
is partly an intended phenomenon as combinations with a
large amount of different clusters are only rare or unrealistic
occurrences, thus these cases should be reasonably checked
twice. Otherwise, the correction value might not create a
real comparability between cases with different amounts of
active edges since the correction value compensates using
the mean of the weights, which does not comprise the full
spectrum of weights. The introduction of a biased correc-
tion value attempts to mitigate this problem. Nevertheless,
a direct comparison of process combinations with different
amounts of active clustersmight be limited, and only compar-
isons between process combinations using the same cluster
amount might create results that are easy to interpret. A fur-
ther analysis might be necessary to specify the best approach

to compensate an activation of different amounts of edges
when calculating the correction value.

Second, using the weights as the mean probability that a
cluster gets activated and then using this mean as an input
for an equilibrium energy state might simplify the analysis
too much. A more nuanced equilibrium energy state could
be based on the mean energy of the Ising model. This would
result in a more complex set-up of the energy function but
might further improve the results or enable a faster and even
more stable training process. On the other hand, the resulting
gradient using the difference between the activation and the
weight is easily interpretable: a high positive weight is most
beneficial if a positive value, an active edge, of the connection
matrix is given and decreases the energy the most, while
it penalizes a inactive edge the most. Despite being quite
simple, this logic directly optimizes the energy for the most
likely connection matrix, and based on the used training data
set, the more common a connection matrix is, the lower the
energy becomes.

Overall, the model is easily interpretable, does not require
an intensive set-up of parameters, and results in a high sensi-
tivitywithout an extensive amount of necessary training data.
In addition, the model does not require domain and expert
knowledge as input. Therefore, we conclude that the model
is a viable method for memorizing correct combinations and
giving estimations on how close new configurations, resp.
combinations, are to an already memorized training data set.
This also enables a useful method of anomaly detection for
graph structures.

To compare our proposed model with, e.g., human learn-
ing, it can be interpreted that a new task, image, etc. that is
similar to an already known task becomes less stressful. On
the other hand, completely new impressions result in more
stress in the form ofmore attention or tension required to pro-
cess the task. In addition, the applied learning rate with more
familiar combinations resulting in less adjustments of the net-
work is also comparable to the human learning experience,
as discussed within the context of Autoassociator networks
by Sirois (2004).
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Conclusions

The proposed NN is able to successfully validate process
combinations with a high sensitivity. The main novelty of
the proposed NN model is the usage of a connection matrix
instead of a consecutive activation of each vertex. Also, the
usage of the Isingmodel energy function is adjusted to satisfy
the loop requirement, and an adjusted equilibrium energy
function, which shows its usefulness in the evaluation, is
proposed. In future research, we plan a further optimization
of the model and applied parameters and a more in-depth
benchmarking formultiple different data sets to further prove
its effectiveness.

This automated evaluation of process combinations is a
novel approach in CAPP, as within this domain mostly rule-
based and model-based optimization approaches are used.
Therefore, this contribution tackles an under-researched
field, opens new possible applications of CAPP, and hence
can advance the overall field of automated planning in the
manufacturing industry, in particular the automotive indus-
try. Furthermore, the approach can potentially be extended to
validate not only combinations of processes but also process,
product, and resource combinations to add additional ontolo-
gies and cover the planning procedures along the entire PPR
model. Also, applications within business processes and in
other domains are possible, e.g., to detect anomalous pro-
cess transactions that violate policies and normal procedure.
In addition, the proposed model applied for anomaly detec-
tion comparing different graph structures or networks might
be applicable in a wide variety of domains outside the field of
PP. A generalized possible use case, which could potentially
utilize the model, is if a set of combinations is valid or con-
tains anomalous combinations. The authors are considering
applications in NLP, i.e., an automated validation of whether
descriptions and statements in written text contradict each
other.

The authors plan to implement the proposed NN model
into a CAPP software at said automotive manufacturer and
accompany and observe this implementation closely to gain

further insight on the performance and future applications.
Using the gained knowledge of this proposed model, we plan
to enhance CAPP in the future by developing NN models
capable not only of validation but also of proposing certain
processes and whole set-ups based on a given incomplete
set of processes. This might require the adjustment of the
network to a directed multigraph with loops since some pro-
cesses might be possible to combine after a certain process
is already applied but not the other way round. This should
then enable a semi-automated CAPP where certain core pro-
cesses are manually determined, and the NN proposes fitting
processes required to complete the full process combination
without the set-up of a comprehensive rule set.

Acknowledgements The research was prepared within the framework
of the doctoral program of the Institut für Informationsmanagement im
Ingenieurwesen at the Karlsruhe Institute of Technology. The authors
thank all colleagues and former colleagueswhoprovided data, concepts,
and development support of the research work within Mercedes-Benz
Group AG. The authors particularly thank Olaf Buckmann, Sascha
Frede, and Verena Fröhlich for supporting the data acquisition.

Funding Open Access funding enabled and organized by Projekt
DEAL. This research is funded by the Mercedes-Benz Group AG.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Intelligent Manufacturing

Appendix A: set-up of a connectionmatrix

The connection matrix using the applied restrictions, which
required edges between all active process groups and loops
if a process group is active twice, is computed by algorithm
4:

Algorithm 4 Create a connection matrix
Input:

Process combination set P
Output:

Connection matrix M of size V × V
1: Set i = 0, j = 0, a = 0, b = 0
2: for i ≤ V do
3: for j ≤ V do
4: Set mi j = −1
5: Set j = j + 1
6: end for
7: Set i = i + 1
8: end for
9: for a ≤ ‖P‖ do
10: Set i as the a-th element of P
11: Set b = a + 1
12: for b ≤ ‖P‖ do
13: Set j as the b-th element of P
14: Set mi j = 1
15: Set m ji = 1
16: Set b = b + 1
17: end for
18: Set a = a + 1
19: end for
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