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High-Purity Entanglement of Hot Propagating Modes Using Nonreciprocity
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Distributed quantum information processing and communication protocols demand the ability to gen-
erate entanglement among propagating modes. However, thermal fluctuations can severely limit the
fidelity and purity of propagating entangled states, especially for low-frequency modes relevant for
radio-frequency (rf) signals. Here, we propose nonreciprocity as a resource to render continuous-variable
entanglement of propagating modes robust against thermal fluctuations. By utilizing a cold-engineered
reservoir, we break the symmetry of reciprocity in a standard two-mode squeezing interaction between a
low- and a high-frequency mode and show that the rerouting of thermal fluctuations allows the generation
of flying entangled states with high purity. Our approach requires only pairwise Gaussian interactions and
is thus ideal for parametric circuit-QED implementations.

DOI: 10.1103/PRXQuantum.4.020344

I. INTRODUCTION

Entanglement of propagating photons [1] is a crucial
resource for quantum information processing and com-
munication protocols [2] and is useful for distributing
entanglement amongst components of a quantum network
[3,4]. However, as with other coherent quantum effects,
it is remarkably sensitive to decoherence channels, such
as thermal fluctuations. Operating at cryogenic temper-
atures allows for the effects of thermal fluctuations to
be overcome by ensuring that kbT � �ω, which is pos-
sible for mode frequencies ω as low as the microwave
domain [5]. For even lower frequency bands, such as the
radio-frequency (rf) domain that is ubiquitous in modern
communication, thermal fluctuations remain appreciable
even at the lowest operating temperatures [6–8], present-
ing challenges for rf quantum communication and sensing.
With these cryogenic temperature limitations, alternative
approaches to generate entanglement in systems of hot
modes must be considered.
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In this paper, we present an approach utilizing engi-
neered nonreciprocity to generate steady-state entangled
output fields from a system of interacting hot modes cou-
pled to a single cold mode. While several proposals and
recent experiments consider the entanglement of the out-
put fields of cold modes coupled via an intermediate hot
(e.g., mechanical) mode [9–15], we consider situations
where the fields to be entangled themselves are effectively
coupled to high-temperature baths. Continuous ambient
thermal excitations can severely limit the entanglement
fidelity of steady-state emission from such “hot” modes at
a given pump power. Furthermore, these excitations limit
the purity of the generated flying states, demanding the
use of complex state-purification protocols [16–18]. We
show that nonreciprocity provides a crucial ingredient to
alleviate these effects: the ability to continuously reroute
thermal excitations toward a cold output. This enables
the entanglement of propagating photons with increased
robustness to thermal excitations and with much higher
purity than is possible using a completely reciprocal two-
mode entangling interaction between the hot modes of
interest.

The importance of nonreciprocity has already been
firmly established in quantum information processing,
enabling the routing of signals in a quantum network by
realizing asymmetric scattering matrices, across diverse
architectures from superconducting circuits [19–27] to
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optomechanics [28–32] and beyond [33,34]. Our work
analyzes an aspect of nonreciprocal interactions which is
much less explored: the role of nonreciprocity in manip-
ulating fluctuations in a quantum system, to route ther-
mal noise while generating entanglement of the scattered
fields. Building on recent progress in the theory of engi-
neered nonreciprocity [19,35–37], we consider a system of
three dissipative quantum modes undergoing configurable
coherent interactions and identify the conditions required
for nonreciprocal scattering and directional transmission.
Interestingly, by analyzing the complete output state, we
find that entanglement can be enhanced at points of “per-
fect nonreciprocity,” where scattering in one direction is
forbidden. Perhaps equally as importantly, it is also pos-
sible to engineer nonreciprocal scattering between a pair
of modes without entangling their outputs, highlighting
the need for a deeper understanding of the connections
between nonreciprocity and entanglement. To this end, we
develop a heuristic picture drawing connections between
steady-state entanglement in nonreciprocal systems and
sequential Gaussian circuit operations, as well as dissi-
pative entanglement schemes [12,38] and ideal two-mode
squeezing.

With these foundations, our work finally addresses the
impact of nonreciprocity on entanglement in quantum sys-
tems experiencing thermal noise. The control of thermal
noise flow [39] has recently garnered renewed interest even
in classical devices, due to its importance in energy har-
vesting, heat management, and information transfer using
thermal currents [40,41]. For quantum systems, which
are our specific focus, the control of thermal noise flow
becomes particularly important [42–44] in order to pro-
tect fragile quantum properties from thermal decoherence.
To this end, we show how nonreciprocal scattering can be
engineered to continuously reroute incident thermal exci-
tations away from hot modes, toward the output of the
cold auxiliary mode introduced to break reciprocity. We
then show that nonreciprocity can increase the entangle-
ment fidelity and state purity of output fields scattered off
the hot modes, above values that are possible using a recip-
rocal two-mode squeezing interaction at the same strength.
Our heuristic picture shows that this increased robustness
is due to a controlled swap of the input noise incident on
the quantum modes at different temperatures.

The proposed three-mode system can be efficiently
realized in parametric circuit QED (cQED), where time-
dependent pump fields enable tunable interactions to break
reciprocity [45]. Furthermore, we demand only pairwise
squeezing and beam-splitter interactions, capabilities for
which have been suitably demonstrated in recent cQED
experiments [20,22] and which can be achieved using even
a single nonlinear element based on a Josephson junction.
Our model can therefore serve as a practical platform for
the detailed study of quantum entanglement in the presence
of nonreciprocal interactions and thermal noise.

The rest of this paper is organized as follows. In Sec. II,
starting with a two-mode squeezing interaction, we intro-
duce the minimal three-mode system required to render
this interaction nonreciprocal, within the context of stan-
dard approaches to nonreciprocity. In Secs. III and IV, we
proceed to analyze the scattering and entangling properties
of the three-mode system, finding conditions for nonre-
ciprocal scattering and clarifying the connection between
nonreciprocity and entanglement generation. We find that
at the specific points of “perfect nonreciprocity,” the scat-
tering and entangling properties of the system can be
very efficiently explained as a sequence of simple pair-
wise linear operations. Finally, in Sec. V, we combine this
understanding to explore the impact of thermal fluctuations
on entanglement in nonreciprocal systems, demonstrating
how thermal inputs to a hot mode can be efficiently routed
via nonreciprocity to protect the entanglement of scattered
output fields.

II. SETUP

We begin with the standard description of a nondegen-
erate two-mode squeezing (TMS) interaction between two
harmonic modes (setting � = 1),

ĤTMS = g12

(
â†

1â†
2 + â1â2

)
, (1)

where âj is the bosonic annihilation operator for mode j ,
satisfying the standard commutation relations [âj , â†

k] =
δjk. In the cQED architecture, such an interaction is
typically realized by appropriately pumping nonlinear
Josephson-junction-based superconducting elements [46,
47]. Additionally, this interaction can be used to gen-
erate entangled photon pairs [48] and hence two-mode
squeezed light for quantum information processing appli-
cations [49,50]. Nevertheless, the interaction defined by
Eq. (1) is reciprocal.

The conditions required to render interactions of the
form of Eq. (1) nonreciprocal have been clarified in
recent years [36,37]. An arbitrary bidirectional interac-
tion between two systems, Ĥint ∝ (ÂB̂+ h.c.), governed
by operators Â and B̂, must be balanced with a correspond-
ing nonlocal dissipative interaction �D[ẑ] as depicted in
Fig. 1, where D[ẑ]ρ̂ = ẑρ̂ ẑ† − 1

2 {ẑ†ẑ, ρ̂} is the standard
dissipative superoperator, with collapse operator ẑ = Â+
ηeiφB̂. An appropriately chosen interaction strength �,
asymmetry η, and, most crucially, phase φ [37] can then
be used to render the desired interaction nonreciprocal.

Applying this approach to the interaction defined by
Eq. (1), it is clear that dissipators with either the collapse
operator ẑ = â1 + ηeiφ â†

2 or ẑ = â†
1 + ηe−iφ â2 both satisfy

the aforementioned form and thus can be employed to
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(a) (b)

FIG. 1. (a) A diagram of an open two-mode squeezer where
both modes are coupled to the common nonlocal dissipator
�D[ẑ]. (b) A diagram of a minimal loop system consisting of
three open modes. Modes a1 and a2 are coupled via a two-mode
squeezing interaction, as are modes a2 and a3. Modes a1 and
a3 are coupled via a beam-splitter interaction. The tunable loop
phase is placed on the interaction between modes a2 and a3.
If mode a3 is adiabatically eliminated, this loop is equivalent
to the system depicted in (a), with the jump operator given by
ẑ = â1 + ηeiφ â†

2.

attain the desired nonreciprocal scattering matrix. Impor-
tantly, it has been shown that either dissipative interac-
tion alone can generate steady-state entanglement [12,38].
Hence, by combining either dissipator with the coher-
ent two-mode squeezing interaction in Eq. (1), one can
also take the point of view that we are analyzing the
effects of introducing nonreciprocity in such dissipative
entanglement schemes.

A hint as to what may be expected can be found in
the fact that the required operators ẑ are non-Hermitian
nonlocal collapse operators. Nonreciprocal interactions
mediated by dissipators with Hermitian collapse operators
have been shown to be equivalent to measurement-based
feedforward schemes [37]: a classical observer makes a
measurement on system A and uses the result to evolve
system B, breaking the reciprocity of interaction between
the systems. As such, this evolution is equivalent to per-
forming local operations and classical communication and
hence cannot generate any entanglement between the two
quantum systems. In contrast, the non-Hermitian collapse
operators required here have no such mapping and can in
principle generate entanglement.

To realize either nonlocal dissipator and hence render
the TMS interaction nonreciprocal, we must introduce an
auxiliary mode a3, as depicted in Fig. 1(b). The open quan-
tum system comprising this loop and the environment with
which it interacts are described by the quantum optical
master equation,

˙̂ρ = Lρ̂ = −i[ĤNRL, ρ̂]+
∑

j=1,2,3

κjD[âj ]ρ̂, (2)

and its dynamics are governed by the Hamiltonian

ĤNRL =
(

g12â†
1â†

2 + g13â†
3

[
â1 + ηeiφ â†

2

])
+ h.c., (3)

where η = g23/g13 accounts for an asymmetric coupling
to the auxiliary mode, written in the interaction frame
with respect to the three modes. Equation (3) simply
describes the original two-mode squeezing interaction
between modes a1 and a2, but now with an auxiliary third
mode that couples to mode a1 via a beam-splitter interac-
tion and to mode a2 via a two-mode squeezing interaction.
When the auxiliary mode a3 can be adiabatically elim-
inated (namely, when its damping rate κ3 is the largest
system parameter), this configuration realizes the nonlocal
dissipator ẑ = â1 + ηeiφ â†

2. Engineering of the alternative
nonlocal dissipator introduced earlier leads to equivalent
results. The resulting three-mode system can thus render
the interaction of Eq. (1) unidirectional and can real-
ize a nonreciprocal loop (NRL) via the general scheme
described above. By explicitly including the dynamics of
the auxiliary mode, we are able to explore the routing of
both scattered fields and—importantly—their correlations
around the loop.

We now take a moment to discuss quantum optics
platforms that can be used to realize our proposed sys-
tem and its practical implications. Equation (3) requires
only two-mode squeezing and beam-splitter interactions
between pairs of modes; systems where such interactions
can be controllably realized in a three-mode configura-
tion to enable nonreciprocity have already been demon-
strated in parametric cQED [20,22]. For concreteness, in
Appendix A, we detail how a simple three-mode circuit
with a single nonlinear mixing element can realize the
NRL. The required pairwise interactions have also been
realized across other platforms, such as optomechanical
circuits [51–53]. Importantly, the three modes constitut-
ing the NRL can have widely distinct frequencies and
thus experience thermal effects to varying degrees (see
Appendix A). The coupling of modes with such disparate
frequencies has been realized in very recent experiments
[54,55] and is highly relevant to rf-domain quantum optics.
In precisely these cases, the NRL provides a way of
enhancing the entanglement and purity of hot propagating
modes using auxiliary cold modes, which is a key result of
our work.

III. SCATTERING PROPERTIES AND
NONRECIPROCITY

When analyzing the three-mode loop, we restrict the
initial state ρ̂in of the system to Gaussian states. Each
mode is equipped with a pair of quadrature operators,
X̂j = (â†

j + âj )/
√

2 and P̂j = i(â†
j − âj )/

√
2, where j ∈

{1, 2, 3}. We can also define quadrature modes for the input
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or output states by replacing j with (j , {in, out}), respec-
tively. By declaring the initial state ρ̂in to be Gaussian,
we mean that it is completely characterized by the first
and second moments of these quadrature operators. Since
the dynamics induced by the Hamiltonian in Eq. (3) are
entirely linear, the state of the system any time will remain
Gaussian, including the output state ρ̂out [56].

Our approach to analyzing the steady-state scattering
properties of the system is standard: we solve the linear
Heisenberg-Langevin equations in frequency space and
use quantum input-output theory [57] (see Appendix B).
From this, we obtain the scattering matrix S[ω] relating
the output-field operators to the input fields,

�Rout[ω] = S[ω] �Rin[ω], (4)

where �R{in,out}[ω] is a vector of quadrature operators for the
input and output modes, respectively.

We are interested in the scattering behavior on reso-
nance, that is, when ω = 0 in this frame, which describes
the response of fields resonant with the individual modes
comprising the system. The scattering matrix in this sim-
pler case, S[0] ≡ S, can be expressed purely in terms of the
cooperativities Cjk = 4g2

jk/κj κk parametrizing interactions
between modes aj and ak in relation to their individual
decay rates. By balancing the cooperativities and adjust-
ing the loop phase φ, scattering between any pair of modes
in the system can be rendered nonreciprocal. The full form
of the scattering matrix is still unwieldy (see Appendix C).
We therefore introduce measures that allow us to quantify
the scattering properties of the system more compactly.

For nonreciprocal systems, we are primarily interested
in the asymmetry of scattering between modes j and k. To
more precisely quantify this asymmetry, we introduce the
normalized degree of nonreciprocity N (j ,k) as

N (j ,k) = ||abs Sjk − abs Skj ||
||Sjk|| + ||Skj || , (5)

where Sjk is the two-mode block of the scattering matrix
corresponding to modes j and k, abs O is an element-wise
absolute-value operation, and || · || is the Frobenius norm.
N (j ,k) is a quantity that remains bounded within [0, 1] and
measures the difference in amplitude (and not phase) of
scattering between a pair of modes. As a result, it van-
ishes for scattering that is reciprocal in amplitude but that
may differ in phase. As discussed in Appendix C, it can be
shown that N (j ,k) = 0 ∀ j 	= k only when φ = 0.

For all other values of φ, the three-mode system exhibits
nonreciprocal scattering properties to varying degrees. To
understand how this nonreciprocity influences the quan-
tum properties of scattered input fields, we can analyze
the covariance matrix of the output fields. However, before
analyzing the general case, we find that several key ideas
can be understood via a simple heuristic picture that is

(a)

(b)

FIG. 2. (a) The scattering properties of the nonreciprocal loop
as a function of the loop phase φ. N (1,2) is plotted in blue
for the impedance-matched case only; the general case is qual-
itatively similar and is omitted for clarity. ||S11|| is plotted in
orange for the impedance-matched (solid) and general (dashed)
cases. (b) Circuit descriptions of the nonreciprocal system at
points of perfect nonreciprocal scattering, where N (1,2) = 1. The
form of these circuits holds regardless of the value of ||S11||.
The left diagram corresponds to φ = −π/2, which yields per-
fect nonreciprocal scattering in the a1 → a2 direction, while
the right diagram corresponds to φ = π/2, where scattering is
only allowed in the a1 ← a2 direction. The input is initially
uncorrelated and moves from bottom to top.

valid when N (j ,k) = 1. From Eq. (5), this corresponds
to perfectly asymmetric scattering, where either ||Sjk|| or
||Skj || vanishes. We refer to these as points of perfect non-
reciprocity and the required conditions are summarized
below. The arrows denote the direction in which signal
transmission is allowed; scattering-matrix elements in the
reverse direction vanish exactly:

φ = −π/2 φ = +π/2
C12 = C13C23 a1 → a2 a1 ← a2
C23 = C12C13 a2 → a3 a2 ← a3
C13 = C12C23 a1 → a3 a1 ← a3

. (6)

In this work, we pay particular attention to scattering
between modes a1 and a2 and hence set C12 = C13C23. Plot-
ting N (1,2) in Fig. 2(a), we see that scattering between
modes a1 and a2 can be rendered perfectly nonreciprocal,
N (1,2) = 1, when φ = ±π/2.
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A. Circuit decomposition at points of perfect
nonreciprocal scattering

The scattering matrix describes a potentially compli-
cated set of linear operations on Gaussian states. In order
to more easily understand the scattering behavior of the
system, a variety of decomposition schemes can be used to
represent this set of operations more efficiently. One such
prominent example is the Bloch-Messiah decomposition
[58], a special case of the singular-value decomposition for
the group of real symplectic matrices, of which the steady-
state scattering matrix S is an element, S ∈ Sp(2n, R).

We find that for the perfectly nonreciprocal system
under consideration, the less commonly used polar decom-
position [59] proves to be simpler. This decomposition
allows us to write a symplectic matrix in the form
RU, referred to as its left-polar decomposition, where
U ∈ Sp(2n, R) ∩ O(2n, R) is a real symplectic orthog-
onal matrix and R ∈ Sp(2n, R) ∩ Sym+(2n) is a real
symplectic symmetric positive-definite matrix. Physically,
the matrix U represents passive optical transformations,
namely, beam splitters and phase shifters. The matrix R
then includes any single- and two-mode squeezing inter-
actions. An equivalent form UR of the scattering matrix is
provided by the right-polar decomposition, where R and U
are in general distinct from the left-polar decomposition.

Typically, the polar decomposition leads to dense and
complicated matrices R and U. Remarkably, we find that
the scattering matrix describing our three-mode system
has extremely simple forms for the left- and/or right-polar
decomposition at points of perfect nonreciprocal scatter-
ing, N (1,2) = 1, up to a global change in phase on the scat-
tering matrix, −S. Due to the structure of the covariance
matrix [see Eq. (10)], this change of phase will not affect
the resulting covariances. In these simple cases, the R and
U matrices involve only a single interaction between one
pair of modes. The polar decomposition when N (1,2) = 1
is then comprised of symplectic matrices corresponding to
the following two unitary operations:

U(1,3) ↔ exp
[
2i arctan

(√
C13

) (
â†

1â3 + â1â†
3

)]
,

R(2,3) ↔ exp
[
−2 artanh

(√
C23

) (
â†

2â†
3 − â2â3

)]
. (7)

Crucially, we find that both left- and right-polar decom-
positions can provide useful complementary insights into
the action of the three-mode system at points of perfect
nonreciprocal scattering.

For the loop phase φ = −π/2, it is the left-polar decom-
position that takes on a simple form:

−S = R(2,3) U(1,3) when φ = −π

2
. (8)

As illustrated in Fig. 2, modes a1 and a3 interact first via a
beam splitter U(1,3), which acts to exchange input from a1

to a3 and vice versa. This operation is followed by a two-
mode squeezer R(2,3) between modes a2 and a3, where the
output of mode a2 then becomes dependent on the input
of mode a1, thus realizing directional transmission from
a1 → a2. The output of mode a1 cannot have any depen-
dence on the input of a2 because it can only arrive at the
output of mode a3 via the same two-mode squeezer.

For the opposite sign of the loop phase, φ = +π/2, the
right-polar decomposition yields

−S = U(1,3) R(2,3) when φ = π

2
, (9)

which describes the same component operations as Eq. (8)
but applied in reverse order. As a result, the scatter-
ing behavior is reversed and still nonreciprocal, allowing
transmission from a1 ← a2.

The relatively simple form of these circuits provides a
heuristic picture of nonreciprocal scattering in this system,
where changing the direction of the nonreciprocal scatter-
ing is equivalent to changing the order of operations in the
circuit. However, note that the nonreciprocal behavior is
not explained just by the sequential beam splitters but also
involves two-mode squeezing interactions. This already
hints at the possibility of generating nontrivial quantum
correlations in scattered output fields and thus connects to
entangling properties of the three-mode system, as we will
see in Sec. IV.

IV. OUTPUT ENTANGLEMENT AND PURITY

The output state of the three-mode system, and all of its
entangling capabilities, is completely characterized by the
generally frequency-dependent covariance matrix of the
output-field quadrature operators, V[ω], which can be cal-
culated using Eq. (4), and the known correlation relations
of the input-field operators. The output covariance matrix
can then be written in terms of the scattering matrix

V[ω] = 1
2

(
S[ω]VinST[−ω]+ S[−ω]VinST[ω]

)
, (10)

where Vin is the matrix of correlations of the input fields.
Assuming that the input noise for different modes is uncor-
related, Vin contains variances determined by the ther-
mal occupation number nth

j and vacuum fluctuations (see
Appendix B),

Vin =
n⊕

j=1

(
nth

j +
1
2

)
I, (11)

where n = 3 is the number of modes and I is the 2× 2
identity matrix. Once again considering the response on
resonance, we set ω = 0 in Eq. (10) so that the covariance
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matrix of interest, V[0] ≡ V, takes the simple form

V = SVinST. (12)

From this covariance matrix, we aim to calculate use-
ful entanglement metrics for different bipartitions of the
output fields in order to investigate the effects of nonrecip-
rocal scattering. These include the Simon-Peres-Horodecki
criterion for the separability of Gaussian states [60] as
well as the logarithmic negativity E(j ,k)

N , an entanglement
monotone for the shared output state of modes aj and ak
[56,61,62]. The latter may be calculated from the mini-
mum symplectic eigenvalue ν

(j ,k)
− of the partial transpose

of the corresponding two-mode block V(j ,k) from the total
covariance matrix V via

E(j ,k)
N =

{
0, for 2ν

(j ,k)
− ≥ 1,

− log
(

2ν
(j ,k)
−

)
, for 2ν

(j ,k)
− < 1.

(13)

Similarly, we can define the marginal purity μ(j ,k) of a
given bipartition of the output field of modes using

μ(j ,k) = 1

4
√

det V(j ,k)
. (14)

This measure has a maximum value of μ(j ,k) = 1 only for
pure states; for mixed states, the purity will be μ(j ,k) < 1.

A. Entanglement and purity in a nonreciprocal system

We begin by examining the entanglement properties and
purity of output fields under vacuum input, nth

j = 0, for all
modes. In this instance, the initial matrix of correlations
is comprised of vacuum noise and is therefore the iden-
tity matrix, Vin = I6/2, so the output covariance matrix
is V = 1

2 SST. Balancing the cooperativities C12 = C13C23,
we plot the logarithmic negativity between the output of
modes a1 and a2, E(1,2)

N , as well as E(2,3)
N , in Fig. 3(a),

where we note the strong dependence on the value of the
loop phase. The simple form for the circuit decomposition
means that the behavior of the entanglement at the points
of perfect nonreciprocal scattering between modes a1 and
a2, corresponding to the points where φ = ±π/2 in Fig. 3,
can be explained simply as follows.

The covariance matrix for the a1 → a2 direction of
perfect nonreciprocal scattering (where φ = −π/2) may
be written using the form of the scattering matrix from
Eq. (8):

V = 1
2

R(2,3)
(
R(2,3)

)T, (15)

where the beam-splitter component does not appear
because it is an orthogonal transformation. The entangling
behavior for this direction of the nonreciprocal scattering

(a)

(b)

FIG. 3. (a) The logarithmic negativity E(j ,k)
N and (b) the purity

μ(j ,k) of the stationary output states when C12 = C13C23 as a func-
tion of the loop phase. The results for the joint states of the out-
puts of modes a1 and a2 (blue) and a2 and a3 (orange) are shown
for two parameter choices—“symmetric,” C23 = C12, C13 = 1
(solid) and “asymmetric,” C23 = C12/2, C13 = 2 (dashed)—with
C12 = 0.5 in both cases. All baths are in the vacuum state. The
dashed black lines at the top of each plot give results for the out-
put state of a reciprocal two-mode squeezed system with vacuum
input (TMSV), C13 = C23 = 0.

is therefore equivalent to a two-mode squeezer between
modes a2 and a3; hence we must have E(2,3)

N > 0. Since
modes a1 and a2 do not share any squeezing in this repre-
sentation, there will be no entanglement generated between
these two modes, which is evident in Fig. 3.

We can then ask whether there are other operating points
where the entanglement between the output of modes a1
and a2 vanishes. It is possible to determine this for all
system parameters, and not just at the points of perfect
nonreciprocity, by examining the Simon-Peres-Horodecki
criterion for the output of modes a1 and a2:

√
C12

C13C23
+

√
C13C23

C12
≤ −2 sin φ. (16)

The output fields of modes a1 and a2 are separable so long
as the above inequality is satisfied, which only occurs for
one set of parameters: C12 = C13C23 and φ = −π/2, which
is the point of perfect nonreciprocal scattering, where
a1 → a2. This is, then, the only point of operation where
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the entanglement of the output of modes a1 and a2 van-
ishes: E(1,2)

N = 0. Away from this point, the output for these
two modes will always be entangled.

For the reverse direction, a1 ← a2(where φ = +π/2),
we can use Eq. (9) to write the covariance matrix as

V = 1
2

U(1,3)R(2,3)
(
R(2,3)

)T(U(1,3)
)T. (17)

Importantly, the beam splitter between modes a1 and a3
appears and therefore plays an important role in the entan-
glement generation here. The two-mode squeezer acts first
to entangle modes a2 and a3, while the later action of the
beam splitter swaps some of these squeezed correlations
from mode a3 to a1, generating entanglement between the
output of modes a1 and a2. This resembles the dissipative
entanglement protocol [12,38], where the entanglement of
two modes is mediated by a strongly damped auxiliary
mode.

Moreover, at φ = π/2, there exists only one specific
mode of operation where the additional entanglement
between mode a2 and a3 vanishes: when C13 = 1, the beam
splitter in Eq. (7) acts to perfectly swap all squeezing from
mode a3 to a1 and swap all the uncorrelated vacuum noise
from mode a1 to a3. The result of this perfect swap is that
a1 and a2 now form a two-mode squeezed vacuum state, so
the value of E(1,2)

N will be equivalent to the value achieved
by a TMS, as seen in Fig. 3. Since modes a2 and a3 no
longer share any squeezed correlations, their measure of
entanglement must vanish: E(2,3)

N = 0.
In order to discuss the behavior of E(2,3)

N in more detail,
we again use the Simon-Peres-Horodecki criterion; the
output of a2 and a3 will be separable so long as the
following inequality is satisfied:

√
C23

C12C13
+

√
C12C13

C23
≤ 2 sin φ. (18)

Referring to Eq. (6), it is evident that this is only satis-
fied when there is nonreciprocal scattering with direction
a2 ← a3. The required phase here is φ = +π/2, which is
the opposite phase requirement from Eq. (16).

It is evident that the degree and direction of nonrecipro-
cal scattering, and therefore the value of the phase φ, plays
a crucial role in the behavior of the output-field entangle-
ment, as depicted in Fig. 3. In particular, when C12 = C23
and C13 = 1, N (1,2) = 1 and N (2,3) = 1, so the scattering
processes for both pairs of modes are perfectly nonre-
ciprocal. E(1,2)

N and E(2,3)
N reach maximum values for this

parameter regime, where they can both realize the same
entangling power of a reciprocal two-mode squeezer; how-
ever, the maxima are achieved at different values of the
phase. In addition, this is also the only operating regime
where both E(1,2)

N and E(2,3)
N reach the absolute minimum

value of 0.

Furthermore, in this parameter regime where perfect
swapping is also observed, the scattering of modes a1 and
a3 is impedance matched in both cases (see Appendix C),
so the input noise is not reflected in the output fields. For
later convenience, we refer to the regime where C13 = 1
as the “symmetric” case, since C12 = C23. We therefore
label the regime where C13 	= 1 the “asymmetric” case. The
degree of impedance on mode a1 is presented in Fig. 2(a),
where we see that the reflection of mode a1 vanishes, i.e.,
||S11|| = 0, only in the symmetric case.

The circuit decomposition also allows for a heuristic
explanation of the behavior of the marginal purities, seen
in Fig. 3(b). Since the initial covariance matrix is Vin =
I6/2 for vacuum inputs, the marginal purities for the input
states will be μ(1,2) = 1 and μ(2,3) = 1. These purities will
remain unchanged in the output state provided that the
corresponding two-mode block of the output covariance
matrix can be reached by a symplectic transformation. This
follows since the determinant of a symplectic transforma-
tion is det(S) = 1 and therefore det(SOST) = det(O) for
any matrix O.

Since the covariance matrix for φ = −π/2 [see
Eq. (15)] simply describes a two-mode squeezing interac-
tion between modes a2 and a3, the marginal purity for their
outputs will always remain the same, μ(2,3) = 1. On the
other hand, the marginal purity of the output state between
modes a1 and a2 is below one, μ(1,2) < 1, in this case, as
the two-mode block V(1,2) cannot be reached by any com-
bination of symplectic transformations. For the opposite
phase φ = +π/2, this same reasoning applies to the two-
mode block V(2,3), so that now μ(2,3) < 1. However, μ(1,2)

is still generally less than one, with a notable exception:
the symmetric case, where V(1,2) becomes equivalent to the
covariance matrix for a two-mode squeezed vacuum state.
In fact, the condition that saturates the marginal purity
μ(1,2) = 1 is the same condition for which E(2,3)

N = 0 [see
Eq. (18)], meaning only the output of modes a1 and a2 are
entangled.

We have therefore observed and explained how entan-
glement arises in a nonreciprocal system. Crucially, we
find that the points of perfect nonreciprocity play a special
role in maximizing the achievable output entanglement.
We also note how the special symmetric case allows for
the purity of the output states to be maximized. We are
now in a position to analyze the role of nonreciprocity
in entanglement generation in the presence of thermal
fluctuations.

V. OUTPUT ENTANGLEMENT IN THE PRESENCE
OF THERMAL NOISE

Thermal noise is an unwanted feature when attempt-
ing to generate entanglement. In the case of a reciprocal
two-mode squeezer, thermal noise incident on one or both
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modes will only serve to degrade the logarithmic negativ-
ity. While this can be overcome by increasing the strength
of the two-mode squeezing interaction (e.g., in parametric
cQED, using stronger pump strengths), the same is not true
for the purity of the generated output state. More precisely,
the purity for a two-mode squeezed system where the ther-
mal noise at the inputs for both modes is nth

1 and nth
2 is given

by μ(1,2) = 1/(2nth
1 + 1)(2nth

2 + 1), which is independent
of the degree of squeezing.

One might expect that reciprocally coupling an auxil-
iary cold mode to the hot modes of interest would help
in mitigating this impact. However, while such a coupling
can reduce the internal occupation of the hot modes, it
is unable to continuously route thermal inputs in a spec-
ified direction: away from the propagating output fields.
Combining this cold auxiliary mode with nonreciprocity
enables unidirectional scattering of coherent input signals,
which extends to the routing of thermal fluctuations, while
also allowing for the output of the target modes to be entan-
gled. While it is also possible for a three-mode reciprocal
system to route thermal fluctuations in a similar manner,
no entanglement can be generated between the outputs of
the target modes (see Appendix F).

A. Rerouting thermal fluctuations using
nonreciprocity

The nonreciprocal loop provides a way for us to avoid
these effects on the state shared between the output of
modes a1 and a2 by setting the parameters to the symmet-
ric case, where the scattering of modes a1 and a3 are both
impedance matched. Provided that the input of mode a3 is
vacuum noise, if we set φ = +π/2, thermal noise in the
input of mode a1 can be rerouted to the output of mode a3.
Due to the presence of thermal noise, the initial covariance
matrix is no longer proportional to the identity matrix and
so the output covariance matrix has the following form:

V = U(1,3)
swapR(2,3)Vin

(
R(2,3)

)T(U(1,3)
swap

)T, (19)

where U(1,3)
swap is the beam-splitter operation from Eq. (7)

when C13 = 1, which describes a perfect swap. However,
the circuit description shown in Fig. 2 still holds: modes
a2 and a3 are entangled and the subsequent beam splitter
acts as a perfect swap between modes a1 and a3. Since
nth

1 	= 0, the output of mode a3 will receive the unwanted
thermal noise while the output of mode a1 forms a two-
mode squeezed state with mode a2. Provided that the input
for mode a2 is also vacuum noise, then the shared state
for the output of modes a1 and a2 will be a two-mode
squeezed vacuum state with maximum purity and entan-
glement, unaffected by the value of nth

1 , as seen in Fig. 4
(for details of the scattering behavior, see Appendix D).

At this point of operation, a complementary circuit
description can be obtained using the right polar decom-
position of the scattering matrix instead, which also takes

FIG. 4. The logarithmic negativity (solid) and purity (dashed)
of NRL output states as a function of the loop phase in the pres-
ence of thermal noise. Here, nth

1 = 10 and nth
2 = nth

3 = 0. The
results shown are for the symmetric case where C12 = C23 = 0.5
and C13 = 1, describing the joint output states of modes a1 and
a2 (blue), and modes a2 and a3 (orange). We also show the
results for a two-mode squeezed state where nth

1 = 10 and nth
2 = 0

(green). The dashed black line indicates both the logarithmic
negativity and the purity for a two-mode squeezed vacuum state
(TMSV).

on a simple form,

−S = R(1,2) U(1,3)
swap when φ = +π

2
, (20)

R(1,2) is a two-mode squeezing operation between modes
a1 and a2:

R(1,2) ↔ exp
[
2i artanh

(√
C23

) (
â†

1â†
2 + â1â2

)]
. (21)

Then, we can write the covariance matrix described by
Eq. (19) in an equivalent form:

V = R(1,2)U(1,3)
swapVin

(
U(1,3)

swap

)T(R(1,2)
)T. (22)

Here, the action of the beam splitter on Vin can be seen
explicitly: it swaps the thermal noise from mode a1 with
the input from mode a3, which is vacuum noise. This is
followed by a two-mode squeezer acting directly to entan-
gle modes a1 and a2, creating a state with maximum purity
and entanglement. It is important to note that mode a1 is
not cooled using this scheme and that the nonreciprocal
loop only allows for the thermal noise to be rerouted so as
to not appear in the output field.

If we tune φ away from operating points of perfect
nonreciprocity and impedance matching, the entanglement
and purity of modes a1 and a2 degrade as before. How-
ever, comparing Fig. 4 and the previous results when only
considering vacuum inputs (see Fig. 3), we note that the
degradation is more pronounced when the input to mode a1
is thermal. This observation further highlights the impor-
tance of nonreciprocity in implementing perfect swaps of
thermal inputs.
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FIG. 5. The entanglement between the stationary output of the
modes a1 and a2 as measured by the logarithmic negativity, as a
function of the strength of thermal noise input n̄th

1 on mode a1.
We compare the results from an open two-mode squeezed sys-
tem (TMS, gray) with our nonreciprocal three-mode loop (NRL,
blue). In both cases, the squeezing interaction between modes
a1 and a2 has cooperativity C12 = 0.5. The symmetric case is
shown for the nonreciprocal loop, so C23 = 0.5, C13 = 1, and
φ = +π/2. The thermal occupation of mode a2 is taken to be
nth

2 = 0 (solid) and nth
2 = 1 (dashed). Mode a3 is always taken

to have vacuum input. The dashed black lines correspond to the
logarithmic negativity for a TMS where nth

1 →∞, nth
2 = 0 and

nth
1 →∞, nth

2 = 1.

Finally, while thermal noise in one mode is detrimental
to both entanglement and purity, the effects are com-
pounded when both modes contain some thermal noise
input. Figure 5 demonstrates the effects of incident thermal
noise on both modes of an entangled pair. The nonrecip-
rocal loop has the benefit that regardless of the amount
of thermal noise incident on mode a2, the thermal noise
incident on mode a1 is always swapped away in the out-
put. The usual two-mode squeezed state, on the other hand,
will experience extra degradation of the entanglement and
purity as nth

1 increases for even relatively small values of
nth

2 . In addition, provided that the noise incident on mode
a1 is at a higher temperature than the noise incident on
mode a3, nth

1 > nth
3 , then the NRL will always improve

the fidelity of the entangled output state for modes a1
and a2 when compared to the usual TMS at the same
interaction strength. This is true even when other internal
(unmonitored) loss channels are present (see Appendix G).

B. Entangling the output fields of two hot modes

The nonreciprocal loop allows for the output fields of
one hot mode and one cold mode to be entangled with max-
imum purity. As seen in Fig. 5, when using this system to
realize such an entangled state between the output fields of
two hot modes, the logarithmic negativity is reduced, since
it is only possible to reroute the thermal noise from one of
the input modes.

FIG. 6. The schematic for a potential entanglement-swapping
scheme to entangle the output fields of two hot modes. The
scheme begins with two nonreciprocal loops, each comprising a
hot primary mode (red), a secondary mode (green) that we wish
to optimally entangle with the hot mode, and a cold auxiliary
mode (blue). As with the setup covered in this paper, the hot
and cold auxiliary modes are coupled via a beam-splitter interac-
tion. The other interactions must then be two-mode squeezers. To
entangle the output of both hot modes, the output state of the sec-
ondary modes is passed through a 50:50 beam splitter and then
measured. The displacement of the output for the hot modes is
then conditioned on the measurements; their outputs will then be
entangled.

However, it is possible to entangle the outputs of two hot
modes if we use two nonreciprocal loops and employ the
entanglement-swapping protocol [63,64]. A possible setup
is shown in Fig. 6, with two realizations of the NRL (A
and B, respectively). Two hot modes, a1 and b1, are cou-
pled to cold auxiliary modes a3 and b3, respectively, with
secondary modes a2 and b2 completing the corresponding
loops. Both loops are operated under symmetric configu-
rations and are thus parametrized by a single two-mode
squeezing cooperativity each (CA and CB, respectively). In
light of our previous results, we also operate at points of
perfect nonreciprocal scattering and impedance matching.
The loop phase is assumed to be tuned such that the ther-
mal noise incident on the hot mode is routed to the output
of the cold auxiliary mode. Provided that the input for each
secondary mode is also in the vacuum state, the output
for the hot and secondary modes from each loop will be
optimally entangled as a two-mode squeezed vacuum state
with maximum purity.

In the swapping protocol, the outputs from the sec-
ondary modes are mixed via a beam splitter and then
measured. The outputs for the hot modes are then dis-
placed, conditioned on the result of these measurements.
Perfect application of this entanglement-swapping proto-
col would allow for the output fields of the two hot modes
to be combined to produce another two-mode squeezed
vacuum state with purity μ = 1. The entanglement for the
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resulting state is then [64]

EN = 2r where tanh(r) = 4
√CACB

(1+ CA)(1+ CB)
, (23)

which is independent of the thermal noise incident on
both hot modes. We therefore see that the entanglement
of the propagating fields from hot modes a1 and b1, and
the purity of the generated flying states, can be rendered
robust against their thermal inputs using nonreciprocity.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we analyze how engineered nonreciproc-
ity in quantum systems influences their ability to entangle
propagating fields incident on their constituent quantum
modes. This requires analyzing the role of nonreciprocity
beyond asymmetric scattering for signal routing—a notion
that can be defined completely classically—and, in partic-
ular, exploring its influence on quantum correlations and
steady-state entanglement of fields. Using a minimal sys-
tem consisting of a two-mode squeezer where each mode
is coupled to a third auxiliary mode in a closed-loop con-
figuration, we show that the generated entanglement of
output fields depends strongly on the direction of nonre-
ciprocal scattering. It is not a priori obvious that it should
be possible to entangle outputs from two modes for which
signal flow is only unidirectional. However, we show that
this is indeed possible, given the right configuration of the
system.

To explain this somewhat surprising entanglement
behavior, we develop a heuristic picture that is based on a
polar decomposition of the scattering matrix. This descrip-
tion maps nonreciprocal scattering to sequential Gaussian
circuit operations, including pairwise beam splitters and,
more importantly, two-mode squeezers, which are neces-
sary for generating entanglement. This picture helps us to
explain a second key result: that engineered nonreciprocity
can be used to reroute thermal fluctuations from a hot prop-
agating mode toward the output of the cold auxiliary mode
(via the beam-splitter component), while simultaneously
allowing the entanglement of propagating output fields (via
the two-mode squeezer component). This renders output-
field entanglement much more robust to thermal fluctua-
tions when compared to a reciprocal two-mode squeezing
interaction.

Our work is relevant to the generation of stationary
entanglement of itinerant low-frequency modes, where
thermal occupations can be appreciable even at cryogenic
temperatures. Our analysis also brings to light the pos-
sible uses of nonreciprocity in entanglement generation.
With recent interest in multipartite entanglement in quan-
tum systems of increasing scale, our work invites the
exploration of whether engineered nonreciprocity can be
a useful resource in improving robustness of multipartite
entanglement in low-frequency modes.
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APPENDIX A: EXPERIMENTAL
IMPLEMENTATION IN PARAMETRIC cQED

In this appendix, we detail how the model that we con-
sider in this work [see Eq. (3)] can be realized using
standard techniques in parametric cQED.

1. Circuit Lagrangian

The minimal system that we require consists of three
modes coupled via a single nonlinear mixing element. The
circuit Lagrangian for such a system is given by

L =
∑

m=1,2,3

(
1
2

Cm
˙̃
�2

m −
�̃2

m

2Lm

)
− UJ ({�̃m}), (A1)

where UJ ({�̃m}) describes the energy due to the induc-
tance of superconducting circuit elements incorporating
Josephson junctions. Expressing UJ ({�̃m}) using a Taylor
expansion around an equilibrium point, {�̃m} = 0, gives
the following form:

UJ =
∑
mn

c̃(2)
mn�̃m�̃n +

∑
mnr

c̃(3)
mnr�̃m�̃n�̃r + . . . , (A2)

where

c̃(2)
mn =

1
2!

∂2UNL

∂�̃m∂�̃n

∣∣∣∣
{�̃m}→0

, (A3a)

c̃(3)
mnr =

1
3!

∂3UNL

∂�̃m∂�̃n∂�̃r

∣∣∣∣
{�̃m}→0

. (A3b)

The Josephson term provides quadratic contributions
that serve to renormalize the bare linear modes, as we
soon show. Earlier work [22] has considered the time-
modulation of these quadratic terms as a means of gen-
erating tunable Gaussian interactions.

While this is a viable approach, in this appendix we
instead explore means of realizing the NRL by coher-
ent pumping of nonlinear mixing terms, demonstrated in
several recent works [65,66]. The lowest-order nonlinear
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contribution is defined as

UNL =
∑
mnr

c̃(3)
mnr�̃m�̃n�̃r. (A4)

Note that higher-order nonlinear contributions cannot
always be neglected, as they can contribute nonrotating
terms, such as Kerr terms. However, recent work [46,47]
has shown methods to engineer Kerr-free nonlinear poten-
tials that can substantially suppress such contributions.

Now, by introducing the vector of mode fluxes �̃ =
(�̃1, �̃2, �̃3), the circuit Lagrangian of Eq. (A1) can be
written in the compact matrix form

L = 1
2
˙̃
�TC ˙̃�− 1

2
�̃

T
L−1�̃− UNL({�̃m}), (A5)

where we introduce the capacitance matrix C and induc-
tance matrix L, the matrix elements of which are defined as

Cnm = Cnδnm, L−1
nm = L−1

n δnm + c̃(2)
nm, (A6)

where δnm is the Kronecker δ function. It now proves useful
to diagonalize the quadratic part of the circuit Lagrangian.
To do this, we first write the Euler-Lagrange equations for
the quadratic part of the Lagrangian:

C ¨̃� = −L−1�̃. (A7)

The Euler-Lagrange equations allow us to introduce
dimensionless circuit eigenmodes {ϕ(j )} with eigenfre-
quencies {ωj }, which satisfy the generalized eigenproblem

ω2
j Cϕ(j ) = L−1ϕ(j ) (A8)

and obey the orthogonality relations

ϕ(j )TCϕ(k) = CS δjk, ϕ(j )TL−1ϕ(k) = CS ω2
kδjk, (A9)

where CS is a scaling capacitance introduced to ensure that
the circuit eigenmodes are dimensionless. Note that CS ω2

j
has units of inverse inductance, as required by the above
expression.

The eigenmodes form a complete basis, which allows
us to expand the circuit flux variables in terms of flux
variables corresponding to the eigenmodes:

�̃ =
∑

j

�j ϕ
(j ), ˙̃� =

∑
j

�̇j ϕ
(j ). (A10)

Substituting the above into Eq. (A5) and making use of the
orthogonality of the circuit eigenmodes, we immediately

arrive at the Lagrangian,

L = 1
2

∑
j

CS�̇
2
j −

1
2

∑
j

CSω
2
j �

2
j − UNL({�j }), (A11)

where, using Eq. (A4), the nonlinear contribution in terms
of eigenmode fluxes takes the form

UNL({�j }) =
∑
mnr

c̃(3)
mnr

∑
jkl

ϕ(j )
m ϕ(k)

n ϕ(l)
r �j �k�l

=
∑

jkl

[∑
mnr

c̃(3)
mnrϕ

(j )
m ϕ(k)

n ϕ(l)
r

]
�j �k�l

≡
∑

jkl

c′jkl�j �k�l. (A12)

In this diagonalized form, the conjugate momenta are
simply given by ∂L/∂�̇j = Qj = CS�̇j , so that the
Legendre transformation defining the Hamiltonian, H =∑

j Qj �̇j − L, may be carried out straightforwardly. We
finally obtain the circuit Hamiltonian:

H = 1
2

∑
j

Q2
j

CS
+ 1

2

∑
j

CSω
2
j �

2
j + UNL({�j }). (A13)

We can now obtain the quantum Hamiltonian by pro-
moting the canonical position and momenta �j , Qj to
operators and then writing them in the basis of creation and
annihilation operators satisfying the usual commutation
relations [d̂j , d̂†

k] = δjk:

�̂j =
√

1
2CSωj

(
d̂j + d̂†

j

)
≡

√
�Zj

2

(
d̂j + d̂†

j

)
, (A14a)

Q̂j = −i

√
CSωj

2

(
d̂j − d̂†

j

)
≡ −i

√
�

2Zj

(
d̂j − d̂†

j

)
,

(A14b)

where Zj defines the effective impedance of the j th circuit
eigenmode.

In terms of mode creation-and-annihilation operators,
the system Hamiltonian then takes the form

Ĥ/� =
∑

j

ωj d̂†
j d̂j +

∑
jkl

cjkl(d̂j + d̂†
j )(d̂k + d̂†

k)(d̂l + d̂†
l ),

(A15)

where cjkl =
√

�Zj ZkZl/8 c′jkl.
Note that throughout this derivation, we make no

assumptions regarding the frequencies {ωj } of the modes.
In particular, Eq. (A15) can describe a system with a sin-
gle “hot” low-frequency (rf) mode coupled to two cooler
higher-frequency (microwave) modes, as analyzed in the
main text for the rerouting of thermal fluctuations.
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2. NRL Hamiltonian using parametric drives

We now introduce parametric drives to Eq. (A15) that
allow us to realize the NRL proposed in the main text.
In what follows, we set � = 1 and consider three coher-
ent pump tones at frequencies {νj } with generally complex
pump amplitudes, |αj |e−iφpj , applied to the j th mode. In
the steady state, the pump tones lead to a coherent dis-
placement of the system modes, which can be accounted
for via a standard (and exact) displacement transformation

d̂j = |αj |e−iφpj e−iνj t + âj e−iφj , (A16)

where φj defines an arbitrary phase for the j th mode
operator that leaves commutation relations unchanged.
We simultaneously move to an interaction picture via the
unitary transformation

Û =
∏

j

exp
[
−iωj â†

j âj t
]

, (A17)

to remove trivial evolution due to the bare-mode Hamilto-
nians. The transformed Hamiltonian is then given by

ĤNRL = ÛĤ Û† − i ˙̂U Û†. (A18)

We are interested in the quadratic terms in the trans-
formed Hamiltonian (linear terms only lead to displace-
ments, while higher-order nonlinear terms are suppressed
for strong enough pump amplitudes). These take the form

ĤNRL =
∑

jkl

3cjkl(|αj |e−iφpj e−iνj t + h.c.)

× (âke−iφk e−iωkt + â†
keiφk eiωkt)

× (âle−iφl e−iωlt + â†
l eiφl eiωlt). (A19)

Through an appropriate choices of pump frequencies, we
can now make specific interactions in Eq. (A19) resonant
in the interaction picture. To realize the NRL, we choose
the following pump frequencies:

ν1 = ω2 + ω3, ν2 = ω3 − ω1, ν3 = ω1 + ω2. (A20)

It is straightforward to see from Eq. (A19) that ν1 now res-
onantly pumps a two-mode squeezing interaction between
modes a2 and a3, while ν3 pumps a two-mode squeez-
ing interaction between modes a2 and a3. In contrast, ν2
pumps a beam-splitter interaction between modes a1 and
a3. All other interaction terms will be rapidly oscillating
in this frame and can be neglected within the rotating-
wave approximation (RWA), which is discussed later in
this section.

Under this choice of pump frequencies, the system
Hamiltonian takes the form

ĤNRL = 3c123

(
|α3|e−i(φp3−φ1−φ2)â†

1â†
2

+ |α2|e−i(φp2−φ3+φ1)â†
3â1

+ |α1|e−i(φp1−φ2−φ3)â†
2â†

3 + h.c.,
)

(A21)

where we retain only the resonant terms.
We can finally address the question of the phases. The

gauge phases {φj } can be freely chosen to absorb depen-
dencies on pump phases. In particular, requiring φp3 =
φ1 + φ2, φp2 = φ3 − φ1 removes the phase dependence
of the first two terms above, and yields the final system
Hamiltonian

ĤNRL =
(

g12â†
1â†

2 + g13â†
3â1 + g23eiφ â†

2â†
3

)
+ h.c.,

(A22)

where

g12 = 3c123|α3|, g13 = 3c123|α2|, g23 = 3c123|α1| (A23)

and the remaining loop phase is given by φ = φp3 + φp2 −
φp1. In particular, the loop phase is independent of {φj }
and hence cannot be “gauged away.” Furthermore, φ can
be tuned by rotating the phase of any of the incident pump
fields. We thus obtain Eq. (3), with interaction strengths
tunable via pump amplitudes, having started from a very
general but minimal three-mode circuit Lagrangian with a
single three-wave nonlinear mixing element.

From the above derivation, it is clear that the valid-
ity of Eq. (3) hinges on the RWA. To verify that the
RWA is valid, we consider a concrete three-mode system
with frequencies ωj /(2π) ∈ {0.5, 7.5, 10.5} GHz; these
are representative of modes realized in very recent rf
quantum optics experiments, such as Ref. [54]. Then,
the desired pump frequencies are given by νj /(2π) ∈
{18, 10, 8} GHz. The terms that we drop in arriv-
ing at Eq. (3) include undesired beam-splitter interac-
tions pumped by difference frequencies f−/(2π) ∈ {ω2 −
ω1, ω3 − ω2}/(2π) = {7, 3} GHz and undesired amplify-
ing interactions pumped by sum frequencies f+/(2π) ∈
{ω1 + ω3, 2ω1, 2ω2, 2ω3}/(2π) = {11, 1, 15, 21} GHz. For
this particular choice of {ωj }, the desired pump frequencies
are hence at least 500 MHz (and typically further) away
from all undesired pumping frequencies and individual
mode frequencies. As a result, all nonresonant interac-
tion terms will be oscillating with a frequency of at least
500 MHz. The RWA is valid provided that this oscillation
frequency is much larger than the interaction strengths gjk.
The cooperativities Cjk ∼ O(1) considered in the main text
imply gjk � κj , κk, where κj is the j th-mode decay rate. For
typical decay rates κj ∼ O(1) MHz in cQED, this means
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that the fast rotating frequency is at least O(100) times
larger than the required interaction strengths. Hence the
RWA can be expected to hold.

APPENDIX B: HEISENBERG-LANGEVIN
EQUATIONS OF MOTION

We work in the quadrature basis, which consists of
the position and momentum quadrature operators, X̂j =
(â†

j + âj )/
√

2 and P̂j = i(â†
j − âj )/

√
2, respectively. The

canonical commutation relations have the usual form
[X̂j , P̂k] = iδjk. Defining the vector of quadrature operators
for the three-mode system �R = (X̂1, P̂1, X̂2, P̂2, X̂3, P̂3), we
can write the Heisenberg-Langevin equations as follows:

d
dt
�R(t) =M �R(t)−√κ �Rin(t), (B1)

where M is a time-independent dynamical matrix, κ =
diag(κ1, κ1, κ2, κ2, κ3, κ3) is a diagonal matrix of the mode
damping rates, and �Rin is the vector of input-noise opera-
tors in the quadrature basis. The correlators of the elements
of the matrix �Rin have the following form:

〈
X̂j ,in(t)X̂k,in(t′)

〉
= δjk

(
nth

j +
1
2

)
δ(t− t′),

〈
P̂j ,in(t)P̂k,in(t′)

〉
= δjk

(
nth

j +
1
2

)
δ(t− t′),

〈
X̂j ,in(t)P̂k,in(t′)

〉
= δjk

i
2
δ(t− t′). (B2)

These are Gaussian white-noise processes and so they have
a mean of zero. The dynamical matrix for the system can
be written as follows:

M =

⎛
⎜⎜⎜⎜⎝

−κ1

2
I −g12X g13J

−g12X −κ2

2
I g23(sin φZ

− cos φX)

g13J g23(sin φZ
− cos φX)

−κ3

2
I

⎞
⎟⎟⎟⎟⎠

, (B3)

where we write the matrix in block form using the follow-
ing 2× 2 matrices:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, J =

(
0 1
−1 0

)
,

(B4)

while I is the 2× 2 identity matrix and 0 is the 2× 2
zero matrix. The linear Heisenberg-Langevin equations of
motion, given in Eq. (B1), can be transformed to frequency
space and written in the compact form

−iω �R[ω] =M �R[ω]−√κ �Rin[ω]. (B5)

This linear algebraic system can be solved straightfor-
wardly:

�R[ω] = −(iω +M)−1√κ �Rin[ω]. (B6)

Quantum input-output theory [57] relates the output-field
quadratures to the input and system fields:

�Rout[ω] = �Rin[ω]+√κ �R[ω]. (B7)

Use of Eq. (B6) then allows us to express the output
fields entirely in terms of the input fields, which defines
the scattering matrix S[ω], as introduced in Eq. (4). The
covariance matrix for the output modes in frequency space
may be written as

V[ω] = 1
2

∫ ∞
∞

〈 �Rout[ω] �Rout[ω′]T + �Rout[ω′] �Rout[ω]T〉
dω′,

(B8)

where we take the outer product of the �Rout vectors. The
above can be rewritten in terms of the input fields and the
scattering matrix using Eq. (4) and the correlators of the
input fields may be calculated using the frequency-space
version of the correlators from Eq. (B2), where the Fourier
transform replaces δ(t− t′) with δ(ω + ω′). Evaluation of
the integral in Eq. (B8) then yields Eq. (10).

APPENDIX C: BLOCK FORM OF FULL
SCATTERING MATRIX

Use of Eq. (B6) in conjunction with Eq. (B7) allows us
to obtain the full frequency-dependent scattering matrix of
the three-mode system. However, as discussed in the main
text, we are typically interested in scattering properties
at ω = 0. Furthermore, we also discuss how the simplest
intuitive scattering behavior can be analyzed in the sym-
metric impedance-matched case defined by C12, C23 ≡ C
and C13 = 1. In this case, S[0] ≡ S is determined entirely
by C and the loop phase φ and takes the form

S =
⎛
⎝

S11 S12 S13
S21 S22 S23
S31 S32 S33

⎞
⎠ ≡ D(φ)

⎛
⎜⎝

F(φ) cos φ B(φ)(1+ sin φ) A(φ)

B(φ − π)(1− sin φ) −(1− C2)I+ F̄(φ) cos φ C(φ)

A(−φ) C̄(φ) F(φ) cos φ

⎞
⎟⎠ . (C1)
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Here, D(φ) = (1− C)2 + C2 cos2 φ is an overall multi-
plicative factor that does not influence the nonreciprocity
of scattering. The diagonal terms describing reflections
take the form

F(φ) = C2 cos(φ) I− (1− C)C J,

F̄(φ) = C2 cos(φ) I+ 2C J. (C2)

The off-diagonal terms that describe transmission between
modes a1 and a2 take the form

B(φ) =
√
C cos φ(1+ C sin φ)

1+ sin φ
Z

−
√
C(2C − C sin φ − 1) X. (C3)

The interaction between modes a1 and a3 is a beam splitter
and is compactly described by a single φ-dependent matrix
A(φ):

A(φ) = C2 cos φ(1+ sin φ)I

+ [−C2 cos2 φ − (1− C)(1+ C sin φ)
]

J. (C4)

Finally, the interaction between modes a2 and a3 is
described by

C(φ) = −
√
C(1+ sin φ)(1− C sin φ)Z

+
√
C cos φ(1− 2C − C sin φ)X,

C̄(φ) = +
√
C(1− sin φ)(1+ C sin φ)Z

+
√
C cos φ(1− 2C + C sin φ)X. (C5)

From Eq. (C1), it is now straightforward to read off condi-
tions for specific desired scattering properties. For exam-
ple, impedance matching of mode a1 demands ||S11|| =
0, which clearly requires that cos φ = 0, and hence φ =
±π/2. Similarly, perfect nonreciprocal scattering between
modes a1 and a2 as defined in Eq. (5), N (1,2) = 1, clearly
requires that (1± sin φ) = 0, which again implies that φ =
±π/2. These are the conditions shown in Fig. 2.

APPENDIX D: COMPARISON OF THE
SCATTERING PROPERTIES OF THE NRL AND

TMS

When the NRL is optimized to allow swapping of ther-
mal noise from mode a1 to mode a3, we use the impedance-
matched case from Appendix C, additionally setting the
phase to φ = π/2. In the quadrature basis, the steady-state

scattering matrix has the following form:

SNRL =

⎛
⎜⎜⎜⎜⎜⎝

0
2
√C

1− CX −1+ C
1− C J

0 −1+ C
1− C I − 2

√C
1− CZ

−J 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (D1)

Replacing the cooperativity with the squeezing parame-
ter r = artanh[2

√C/(1+ C)], we can rewrite the above
scattering matrix as follows:

SNRL ≡

⎛
⎜⎝

0 sinh(r)X − cosh(r)J
0 − cosh(r)I − sinh(r)Z
−J 0 0

⎞
⎟⎠ . (D2)

This makes clear the behavior of the system at this point
of nonreciprocity. Modes a1 and a2 are independent of
the input noise on mode a1, which only appears in mode
a3, showing how the noise is rerouted there. Meanwhile,
modes a2 and a3 share some squeezed correlations.

We can also calculate the steady-state scattering matrix
for an open system with a TMS Hamiltonian given by
ig(â†

1â†
2 − â1â2) (choosing the TMS phase to be zero as in

Eq. (1) is not appropriate here; this comes from the polar
decomposition):

STMS =

⎛
⎜⎜⎝
−1+ C

1− C I − 2
√C

1− CZ

− 2
√C

1− CZ −1+ C
1− C I

⎞
⎟⎟⎠ . (D3)

Defining the squeezing in the same way, we arrive at the
following scattering matrix:

STMS ≡
(− cosh(r)I − sinh(r)Z
− sinh(r)Z − cosh(r)I

)
. (D4)

While the covariance matrices of the TMS and modes a1
and a2 in the NRL are identical, the scattering behav-
ior is markedly different. This is expected given the cir-
cuit decomposition for the NRL; since the squeezing is
swapped from mode a3 to mode a1 by a beam splitter, the
quadratures are rotated during this swap in a manner that
cannot be replicated in a TMS alone.
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APPENDIX E: STABILITY CONDITIONS

We provide below the Routh-Hurwitz stability criterion
for the three-mode loop at the phases φ = ±π/2:

0 < κ1 + κ2 + κ3,

0 < 1− C12 + C13 − C23,

0 < 1− C12

(1+ κ3/κ1)(1+ κ3/κ2)

+ C13

(1+ κ2/κ1)(1+ κ2/κ3)

− C23

(1+ κ1/κ2)(1+ κ1/κ3)
. (E1)

Away from these phases there are more conditions that
must be met and in general the conditions take on a much
more complicated form. Provided that the cooperativities
and dissipation rates are chosen appropriately, the system
can be stable for all values of the loop phase.

In the event that we also apply the condition C12 =
C13C23 to make the system nonreciprocal, the second listed
condition takes on a much simpler form:

0 < (1− C23)(1+ C13). (E2)

The system is naturally stable for all choices of the
beam-splitter cooperativity and is therefore limited by the
free two-mode squeezing cooperativity C23 < 1, which is
identical to the stability criterion for an open two-mode
squeezer. The two-mode squeezing cooperativity fixed by
the nonreciprocity condition, C12, can therefore grow quite
large with the system remaining stable. Again, provided
that the dissipation rates are chosen correctly, the other
stability conditions can be satisfied as well.

APPENDIX F: THERMAL REROUTING
PREVENTS ENTANGLEMENT IN A

RECIPROCAL SYSTEM

In order to reroute thermal noise away from the output
of mode a1 in a three-mode system while still realizing
entanglement between the outputs of modes a1 and a2, it
is required that the scattering of mode a1 be impedance
matched and that the scattering between modes a1 and
a2 be nonreciprocal. It is simple to demonstrate that it
is not possible to do both in a three-mode system where
the scattering between modes a1 and a2 is reciprocal. We
begin with a scattering matrix that can reroute the thermal
excitations away from the output of mode a1:

S =
⎛
⎝

0 0 S13
0 S22 S23

S31 S32 S33

⎞
⎠ . (F1)

Writing the initial covariance matrix as Vin = diag(V1,in,
V2,in, V3,in), the covariance matrix for the output of modes

a1 and a2 is then

V(1,2) =
(

S13V3,inST
13 S13V3,inST

23

S23V3,inST
13 S22V2,inST

22 + S23V3,inST
23

)
,

(F2)

which is independent of V1,in, as desired. Assuming that
Eq. (F1) is a valid scattering matrix, it must be sym-
plectic and hence satisfy the condition S�ST = �, where
� = diag(J, J, J) is the symplectic form. Using this, it is
possible to come up with conditions for the block elements
of Eq. (F1).

First, it may be determined that S13JST
13 = J, which

indicates that S13 ∈ Sp(2, R). We also have to satisfy
S13JST

23 = 0; since S13J ∈ Sp(2, R) must be invertible, it
follows that ST

23 = (S13J)−10 and so S23 = 0. As a conse-
quence, the off-diagonal blocks in Eq. (F2) vanish, indicat-
ing that the outputs of modes a1 and a2 are never entan-
gled. It is therefore not possible to realize thermal noise
rerouting and entanglement in a reciprocal three-mode
loop.

APPENDIX G: INTERNAL LOSSES

In this appendix, we analyze the role of “internal” loss
channels that are not used to direct inputs to, or measure
outputs from, the NRL but still contribute added noise.
These channels can describe unmonitored ports of the sys-
tem (e.g., the undercoupled port of a two-sided cavity) as
well as material losses. To account for these effects, we
rewrite the total loss rates for the system modes as

κj = κe
j + κ int

j , (G1)

where κe
j defines the loss rate via the monitored or exter-

nal loss channel, while internal losses are described by
κ int

j . In this way, the total loss rates are the same as those
used in our analysis in the main text. Thus far, our analy-
sis has considered κ int

j = 0. Accounting for couplings to
additional loss channels in the case of nonzero κ int

j , the
Heisenberg-Langevin equations can be written as

d
dt
�R =M �R(t)−√κe �Rin(t)−

√
κ int �Rint(t), (G2)

where κe and κ int are matrices of external and internal
losses, respectively, analogous to κ introduced earlier.
The term �Rint(t) defines additional noise introduced due
to internal or generally unmonitored loss channels, which
we again take to be Gaussian white-noise processes with
temperature nth

j for mode aj .
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Transforming to frequency space as before and rearrang-
ing, we find

�R[ω] = (iω +M)−1
(√

κe �Rin[ω]+
√

κ int �Rint[ω]
)

. (G3)

Then, using the modified input-output relations for the
monitored modes,

�Rout[ω] = �Rin[ω]+√κe �R[ω], (G4)

we arrive at

�Rout[ω] =
[
I+√κe(iω +M)−1

√
κe

]
�Rin[ω]

+√κe(iω +M)−1
√

κ int �Rint[ω]

≡ Se[ω] �Rin[ω]+ Tint[ω] �Rint[ω]. (G5)

The scattering matrix for monitored channels Se[ω] is, in
general, distinct from S[ω] in Eq. (4) due to some signal
being lost to unmonitored channels. Furthermore, addi-
tional noise contributions appear at monitored output ports
via Tint due to noise incident from these unmonitored chan-
nels. The output covariance matrix can then be calculated
(once again on resonance) using Eq. (B8),

V = SeVinST
e + TintVinTT

int, (G6)

which follows since �Rin(t) and �Rint(t) have no cross-
correlations.

The effect of internal losses is therefore encapsulated in
the structure of the matrix Tint. With all pairwise inter-
actions turned off, Cjk = 0 ∀ j , k, Tint is a block diagonal

matrix with T(j ,j )
int = −2

√
κ int

j κe
j /κ

2
j I, where I is the 2×

2 identity matrix. Once interactions between modes are
turned on to realize the NRL, the precise form of Tint may
be modified but these diagonal blocks will remain nonzero.
As a result, noise from unmonitored channels on mode aj
will appear at the monitored port of the same mode and can
therefore affect the quantum properties of the monitored
modes.

We now analyze the effect of internal losses on the
NRL numerically. We focus on modes a1 and a2 and
therefore operate at the point of perfect nonreciprocal scat-
tering (N (1,2) = 1) that maximizes entanglement of the
output fields of these modes, by choosing φ = +π/2. We
also consider the symmetric NRL configuration with C =
0.5. The resulting parameters are therefore the same as
analyzed in Fig. 5.

Figure 7 shows the output-field entanglement E(1,2)
N and

the purity μ(1,2) for modes a1 and a2 as a function of
the ratio of internal losses κ int

j /κj for each mode. Here,
nth

1 = 10, nth
2 = nth

3 = 0. Note that internal losses in modes

(a)

(b)

FIG. 7. (a) The entanglement between the stationary output of
modes a1 and a2 and (b) the purity of their joint quantum state
as a function of the ratio of the internal losses experienced by
each NRL mode. We consider the symmetric configuration, with
C = 0.5, and nth

1 = 10 and nth
2 = nth

3 = 0.

a1 and a2, the entanglement of which is being consid-
ered, have a detrimental impact on performance. This is
to be expected: noise incident on unmonitored channels for
modes a1 and a2 appears directly, and without any quantum
correlations, at the monitored ports via T(1,1)

int and T(2,2)

int ,
respectively, which are nonzero. This uncorrelated noise
reduces the fidelity and purity of the entangled state for the
output of modes a1 and a2. Also, noise incident at a higher
temperature (for the internal loss channel of mode a1) is
more detrimental.

However, we note that E(1,2)
N and μ(1,2) do not depend

on the internal losses of the auxiliary mode a3, introduced
in the NRL to enable nonreciprocal routing. There are two
reasons for this effect. First, any noise from the internal
loss channels of mode a3 appears uncorrelated only at the
monitored port of a3 via T(3,3)

int ; this does not influence the
output of modes a1 and a2. Therefore, for this noise to
appear at the output of modes a1 and a2, it must undergo
the entangling and swapping interactions of the NRL. In
this process, this noise in fact seeds output-field entangle-
ment of modes a1 and a2 and is evidently not detrimental
to the performance of the NRL.

This observation has an important implication: since
only the internal losses of modes a1 and a2 are impor-
tant, the NRL can outperform a TMS given the same
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(a)

(b)

FIG. 8. (a) The entanglement between the stationary output of
modes a1 and a2 and (b) the purity of their joint quantum state
as a function of the thermal-input-noise strength on mode a1. We
compare outputs of the NRL to the TMS, both for the case of
no internal losses (κ int

j /κj = 0∀ j ), and for the case of a nonzero
fixed internal loss ratio (κ int

1 /κ1 = 10−2, κ int
2 /κ2 = 0). The value

of κ int
3 /κ3 does not influence performance.

internal losses and at the same interaction strength. To
demonstrate this, in Fig. 8 we plot E(1,2)

N and μ(1,2) for the
NRL and TMS when C = 0.5, as a function of the ther-
mal input noise nth

1 with nth
2 = 1, nth

3 = 0. For simplicity, we
choose only the dominant internal loss rate to be nonzero:
κ int

1 /κ1 = 0.01 and κ int
2 /κ2 = 0. The plotted curves have no

dependence on the value of κ int
3 /κ3. For completeness, we

also show the case of zero internal losses that is analyzed
in the main text. Clearly, while internal losses on the sys-
tem modes are always detrimental and have greater impact
at higher thermal noise inputs, the NRL always provides
higher entanglement fidelity and increased purity than the
TMS. The only constraint on the NRL, then, is one that
we have already identified as necessary in the main text:
the thermal-bath fluctuations of the auxiliary mode must
be cooler than those of the hot mode in the NRL: nth

3 < nth
1 .
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