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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.11588/data/D Automatic damage assessment by analysing UAV-derived 3D point clouds provides fast information on the
3WZID/ damage situation after an earthquake. However, the assessment of different damage grades is challenging
Keywords: given the variety in damage characteristics and limited transferability of methods to other geographic regions
Change detection or data sources. We present a novel change-based approach to automatically assess multi-class building damage
UAV from real-world point clouds using a machine learning model trained on virtual laser scanning (VLS) data.
3D Therein, we (1) identify object-specific point cloud-based change features, (2) extract changed building parts
Damage classification using k-means clustering, (3) train a random forest machine learning model with VLS data based on object-
Earthquake specific change features, and (4) use the classifier to assess building damage in real-world photogrammetric
Natural hazards point clouds. We evaluate the classifier with respect to its capacity to classify three damage grades (heavy,

extreme, destruction) in pre-event and post-event point clouds of an earthquake in L’Aquila (Italy). Using
object-specific change features derived from bi-temporal point clouds, our approach is transferable with respect
to multi-source input point clouds used for model training (VLS) and application (real-world photogrammetry).
We further achieve geographic transferability by using simulated training data which characterises damage
grades across different geographic regions. The model yields high multi-target classification accuracies (overall
accuracy: 92.0%-95.1%). Classification performance improves only slightly when using real-world region-
specific training data (< 3% higher overall accuracies). We consider our approach especially relevant for
applications where timely information on the damage situation is required and sufficient real-world training
data is not available.

1. Introduction study site to other geographic regions is limited, as is the transferability

to other data sources, especially for machine learning classifiers (Kerle

The timely assessment of building damage after an earthquake is of et al., 2020). An approach for classification of building damage grades

utmost importance for the effective planning of rescue and remediation that is transferable both geographically and with respect to the source

actions. Automatic damage assessment based on the analysis of 3D and characteristics of point clouds used for training and evaluation
point clouds can provide fast and objective information on the damage would strongly support damage assessment for earthquake response.

situation within few hours (Vetrivel et al., 2018). As building damage
can be of different type and degree, a detailed assessment of multiple
damage grades enables efficient use and distribution of resources, and
supports the evaluation of structural stability of buildings and repair
measures.

The assessment of different damage grades, beyond binary damage
detection, is a challenging task. There is large variety in possible dam-
age characteristics and the transferability of methods developed for a save valuable time as pre-trained classifiers can directly be applied

We therefore present a method for classifying damage grades with
supervised machine learning using a random forest (RF) classifier
which is trained on simulated point clouds. We assess how the use
of generic simulated training data, instead of region-specific building
and damage structures, influences the accuracy of identifying damage
grades. In case of an earthquake event, training on simulated data can
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to assess damage in event-specific real-world datasets without time-
consuming manual labelling and further training using event-specific
data. The presented method, thus, contributes to a timely assessment
of multi-class structural building damage in disaster response.

1.1. UAV-based point clouds for damage assessment

New possibilities for structural building damage assessment have
emerged in recent years with the increasing availability of UAV-borne
remote sensing strategies. UAV-borne acquisition strategies allow a
dense 3D representation of the scene with point spacings down to
a few centimetres. Derived UAV-borne laser scanning (ULS) or pho-
togrammetric point clouds provide 3D data of urban quarters and entire
cities within reasonable time frames (few hours). This allows change
detection on the scale of individual building parts. Those are important
for identifying damage patterns that are typical for higher damage
grades (heavy damage, extreme damage, destruction), which are target
classes of our method (cf. Section 3).

1.2. Approaches for multi-class damage classification in 3D point clouds

Structural building damage assessment so far has mainly been
performed using point clouds acquired after an earthquake event,
i.e., using mono-temporal approaches (Vetrivel et al., 2018; Khoshel-
ham et al., 2013). These approaches lack pre-event information on the
building structure. This can be compensated with assumptions on the
pre-event building shape, for example, to detect missing elements in
the post-event point cloud. However, it leads to misclassification where
these assumptions do not hold true, and thereby limits the applicability
and usability of mono-temporal approaches (Vetrivel et al., 2015).

With the increasing availability of 3D city models and country-wide
point cloud acquisitions (e.g., through airborne laser scanning), the
development of 3D methods for damage assessment through change
detection has increased (de Gélis et al., 2021; Xu et al., 2021). Current
multi-temporal approaches directly compare a pre-event dataset and
a post-event dataset and thereby extract different types of change
features, e.g., change in geometric and radiometric properties (Tran
et al., 2018; Awrangjeb et al., 2015). Change can also be classified,
e.g., based on a set of geometric or histogram-based features (Roynard
et al., 2016).

For binary classification, deep learning approaches today represent
the state-of-the-art (de Gélis et al., 2023; Xiu et al., 2023; Qing et al.,
2022). They distinguish between damaged and non-damaged buildings,
or between two damage grades with very different damage charac-
teristics. All classification approaches are still challenged, though, by
the variety of damage characteristics (millimetre width of cracks and
spalling up to partial failure modes and complete collapse) and by the
transfer of trained algorithms to unseen data and other geographic re-
gions with different building and hence damage characteristics (Huang
et al., 2019; Vetrivel et al., 2018).

1.3. Training data generation with virtual laser scanning (VLS)

A prerequisite for machine learning-based damage classification is
the availability of sufficient amounts of labelled training data cover-
ing the full range of expected damage. Lack of it can lead to poor
classification performances when transferred to an unseen dataset or
a different geographic region (Munawar et al., 2021; Vetrivel et al.,
2018). Training data demands of state-of-the-art machine learning
approaches are difficult to meet when multiple damage grades shall
be classified (Alzubaidi et al., 2021). Resulting inter-class confusion
might lead to missing damaged buildings (i.e., classifying damaged
buildings as undamaged). Moreover, economic constraints still limit
the availability of real-world region-specific training data prior to the
earthquake. Time-consuming manual labelling of point clouds acquired
of the affected area and training of the model would then have to be
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performed after the event. If no or insufficient labelled real-world data
is available, training and evaluation of machine learning classifiers can
benefit from simulated data (de Gélis et al., 2021).

Virtual laser scanning (VLS) provides simulated point clouds with
known properties from labelled 3D input scenes (Hildebrand et al.,
2022). Even if yielding lower classification accuracies, training purely
on simulated training data might provide adequate performance in
time-sensitive situations, such as an earthquake event. Pre-trained clas-
sifiers can then be directly applied to assess damage in event-specific
real-world datasets without further training. Adequate modelling of
damage patterns in the input scenes is thereby crucial for the accurate
representation of damage in the simulated point clouds. This mod-
elling process can, for example, be supported by domain-knowledge
in earthquake engineering. One big advantage of our approach is that
multiple operational tools for the simulation of laser scanning point
clouds exist (Winiwarter et al., 2022; Gastellu-Etchegorry et al., 2016;
North et al., 2010). Methods for damage assessment using simulated
laser scanning point clouds as training data therefore have to deal
with different point cloud sources being used for model training and
application, as point clouds of an earthquake-affected area are more
commonly derived from photogrammetric surveys, due to lower costs
and wider availability of the instruments.

1.4. Objective

In this research, we automatically classify multi-class building dam-
age from multi-temporal real-world photogrammetric point clouds us-
ing a RF model trained on VLS data (Fig. 1). We develop our method
considering the following aspects:

1. Damages are assessed per building by deriving change of geo-
metric features between pre-event and post-event point clouds.
We are thereby independent from modelling of pre-event build-
ing shapes, but can derive change through the comparison of
multi-temporal point clouds.

2. Domain knowledge from earthquake engineering is integrated in
the process of training data generation from virtual scenes. We
thereby ensure that our training data covers the full spectrum of
damage patterns expected in the real-world dataset.

3. By using VLS for the generation of simulated point clouds,
labelled building-specific training data with realistic point cloud
characteristics is automatically obtained.

4. Through the use of object-specific change features, our machine
learning model is trained on VLS point clouds to classify damage
in real-world photogrammetric point clouds. We thereby aim to
achieve transferability with respect to the source of input point
clouds used for model training and application.

Our method contributes to multi-class structural building damage
assessment especially for applications where timely damage informa-
tion is required, and sufficient pre- and post-event real-world training
data is not available. To further increase timeliness of response, we
investigate how the use of non-region-specific training data influences
the classification accuracy, thereby assessing transferability between
geographic regions.

2. Study site and data

In this paper, we use UAV-borne photogrammetric point clouds
of the city of L’Aquila (Italy) to classify earthquake-induced build-
ing damage. L’Aquila was hit by an earthquake on Monday, 6 April
2009, with a moment magnitude Mw = 6.3 (Geo-Engineering Extreme
Events Reconnaissance, 2009). Up to 15,000 buildings were damaged,
and more than 24,000 people were left homeless (Earthquake Engi-
neering Research Institute, 2009). Collapsed and damaged structures
in L’Aquila included both masonry buildings and reinforced concrete
structures. Damage generally involved minor cracking to relatively
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Fig. 1. Overview of the approach to classify building damage in photogrammetric point clouds using a machine learning model trained on simulated laser scanning point clouds.

severe cracking or collapse of the masonry infill walls. Old unreinforced
masonry buildings made of mortar and multi-wythe rubble-stone or
clay bricks were significantly damaged, ranging from wall cracking to
extreme damage and collapse.

Photogrammetric point clouds of L’Aquila (Fig. 2) were generated
based on nadir RGB images captured before (2008-08-30) and af-
ter (2009-04-29) the earthquake. Reconstructed point clouds contain
around 75 million points with an average point spacing of 0.1 m.
Resulting from the nadir perspective of the images, horizontal building
elements (roofs) were sampled with a higher density (point spacing:
0.09 m; standard deviation SD: 0.03 m) compared to vertical elements
(point spacing: 0.12 m; SD: 0.04 m). We improved the alignment of
the entire pre- and post-event point clouds using an iterative closest
point algorithm (Besl and McKay, 1992) applied to stable areas (streets
and unchanged walls) and achieved a final registration error of 7.4 cm
(derived as the SD of local point cloud distances in stable areas).

3. Methods

We develop a method to classify multiple grades of structural build-
ing damage in UAV-borne photogrammetric point clouds using a ma-
chine learning model trained on VLS point clouds (Fig. 3). Following
domain knowledge in earthquake engineering, we consider four dam-
age grades in our approach (Fig. 4): (1) No damage, (2) heavy damage,
(3) extreme damage, (4) destruction. Classes of slight and moderate
damage are not considered, as the geometric representation of their
typical damage patterns (e.g., crack widths of few millimetres) in the
point clouds requires a higher spatial data resolution than typically
available by UAV acquisitions. Our approach consists of five main steps:

1. Simulation of pre- and post-event point clouds through UAV-

borne laser scanning of virtual scenes

. Coarse identification of changed and unchanged building points
using k-means clustering

. Extraction of robust object-specific change features

. Training of an RF machine learning model with simulated point
clouds and object-specific change features

. RF classification of multi-class building damage in real-world
pre- and post-event photogrammetric point clouds

We evaluate the performance of classifiers trained on (1) generic
VLS point clouds, (2) region-specific VLS point clouds, (3) generic

VLS point clouds and real-world region-specific photogrammetric point
clouds, and (4) real-world region-specific photogrammetric point
clouds regarding their accuracy of building damage classification in
the real-world photogrammetric dataset. Evaluation is based on a
reference dataset derived from the photogrammetric point clouds of
the L’Aquila earthquake (cf. Section 2). A set of evaluation metrics
(cf. Section 3.5) is used to assess the performance for each target
damage grade separately and the overall capacity of the classifiers to
separate buildings of any damage grade from undamaged buildings.

3.1. Generation of real-world training and evaluation data

The photogrammetric dataset of L’Aquila is used to generate real-
world training data and to evaluate the performance of all classifiers.
We introduce an 80:20 random split of the dataset into training and
test data. Areas of individual buildings in the dataset are manually
segmented and labelled by an expert in earthquake engineering, and
by using the damage catalogue developed in Kohns et al. (2022) to
identify typical damage patterns for the target classes. The training
dataset consists of 112 labelled building models per damage class. The
evaluation dataset consists of 125 labelled buildings (35 no damage,
19 heavy damage, 32 extreme damage, 35 destruction). The uneven
distribution of damage grades in the evaluation dataset results from
the uneven number of buildings per damage grade that could be
confidently assessed in the expert-based labelling.

3.2. Generation of simulated training data

The generation of simulated training data consists of (1) the prepa-
ration of virtual scenes of 3D building models with various damage
patterns labelled with the damage grade, and (2) the simulation of point
clouds through VLS of these scenes.

3.2.1. Preparation of virtual scenes
To investigate the importance of region-specific training data, two
types of virtual scenes in pre-event and post-event state are generated:

1. Region-specific scene: This scene mimics the characteristics of
the real-world scene of this study (L’Aquila) with respect to
building types and construction materials typical for this region
(cf. Section 2). It also exhibits main characteristics of the urban
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(b) heavy damage

Fig. 2. (a)-(d): Pre-event (2008-08-30) and post-event (2009-04-29) 3D building point clouds (upper rows) and corresponding RGB images (lower rows) obtained by UAV-borne
acquisitions of L’Aquila (cf. Section 2). Images and point clouds represent the four target classes (a) no damage, (b) heavy damage, (c) extreme damage, and (d) destruction.

structure when assembling the individual 3D building models in
the scene. Damage patterns implemented in the post-event point
cloud are typical damage patterns for this geographic location.

2. Generic scene: This scene contains a broader range of build-
ing types (single family houses up to large apartment build-
ings), construction material (masonry and reinforced concrete),
and built structure (both loose and narrow development), all
of which typically occur in small to medium-sized European
cities. Consequently, the post-event state of this scene contains
a greater variety of damage patterns.

Both types of scenes consist of 112 undamaged individual buildings,
respectively. The post-event scenes with 112 buildings for each damage
grade are generated based on their corresponding pre-event scenes.
Therein, we introduce damage representative of the respective damage
grade to each building in duplicates of each pre-event scene. This
provides the data basis for a direct comparison of pre-event and post-
event scenes to extract change features and classify building damage in
a later step. 3D building models used to assemble the virtual scenes are
taken from open source online repositories (TurboSquid, Inc., 2023).
Further buildings are generated manually in the open source 3D cre-
ation suite software Blender (Blender Online Community, 2018, version
2.93.0). The number of the originally 28 different building models is

augmented by applying modifications to building size or parts of the
buildings. This results in a total number of 448 buildings composed
of 112 buildings per damage grade. Damage is modelled into the
buildings based on the damage catalogue presented in Kohns et al.
(2022) and Kohns and Stempniewski (2021). The damage catalogue is
a descriptive framework for the classification of five damage grades,
following the European Macroseismic Scale (EMS-98): Slight, moderate,
heavy, extreme, and destruction. It defines distinct geometric properties
typical for our target damage grades, which are: Separation of horizon-
tal structural components, local spallings, partial collapse of structural
and non-structural components, pressure failure in corner areas, up
to 15 mm crack widths (heavy damage), collapse or misalignment of
one or more stories, pancake collapse of single stories, tilt or tip over
of the building (extreme damage), and collapse of whole building,
pancake collapse of all stories, debris pile, tip over of whole building
(destruction).

The damage catalogue has been specifically designed for UAV-based
damage assessment and therefore focuses on damage patterns that are
recognisable from the outside. For each target damage grade, we man-
ually introduce the typical damage patterns into 3D building models of
the virtual post-event scenes. Following the damage catalogue, we focus
on the two predominant construction materials in Europe, i.e., masonry
and reinforced concrete.
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Fig. 3. Full workflow of the developed approach to classify building damage in pre- and post-event photogrammetric point clouds using point cloud-based change features and a
random forest classifier trained on simulated point clouds from virtual laser scanning.
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(b) Heavy damage

Fig. 4. Example 3D building models representing the four target damage grades (a) no damage, (b) heavy damage, (c) extreme damage, and (d) destruction considered in our

classification.

Table 1

Acquisition parameters used for the laser scanning simulation in HELIOS++ using a RIEGL VUX-1UAV scanner model.

Scan rate [lines/s] Pulse repetition Strip overlap

rate [kHz] [%]

Field of view Flight altitude Flight speed
[deg.] [m AGL] [m/s]

89 300 60

120 100 8

3.2.2. Simulated point cloud generation using virtual laser scanning (VLS)

We perform VLS of the generated scenes using the open source
software HELIOS++ (Winiwarter et al., 2022). HELIOS++ is a general-
purpose ray tracing-based simulation framework with support for mul-
tiple platforms, sensors, and scene types that can be flexibly combined
in a modular manner.

Acquisition parameters (Table 1) using a RIEGL VUX-1UAV scanner
model for our simulations are selected to achieve similar horizontal
point densities as the real-world dataset (cf. Section 3.1) in all sim-
ulated point clouds. The influence of different acquisition parameters
between pre- and post-event acquisitions on the geometric representa-
tion of a building is not in the focus of our study but, for example,
assessed by de Gélis et al. (2021).

As input for each simulation, we specify one virtual scene. The
damage label and unique ID annotated to each building are stored with
the output VLS point cloud. As output of the simulation, we obtain pre-
and post-event ULS point clouds with per-building damage grade as
class label in the post-event point clouds.

3.3. Object-specific change feature selection

We assess structural building damage through change analysis of ge-
ometric point cloud features between pre- and post-event point clouds.
For this, we derive change features, which we define as the change of
a feature between two epochs (i.e., points in time). A change feature
is obtained by computing the difference between the feature value of
a point in the pre-event epoch to the feature value of its nearest point
in the post-event epoch. We investigate the change of the following
hand-crafted features which are commonly used in classical machine
learning approaches of building damage assessment (de Gélis et al.,
2021; Tran et al., 2018): Anisotropy, curvature, eigenentropy, eigenval-
ues, linearity, omnivariance, planarity, point density, sphericity, sum
of eigenvalues, surface density, surface variation, verticality, volume

density (Weinmann et al., 2015), normal vector, roughness (Dorninger
and Nothegger, 2007), echo ratio (Hofle et al., 2009), no. neighbours,
z range (highest minus lowest z value), and z rank (relative vertical
position of the feature point within its neighbourhood) (Otepka et al.,
2013).

To evaluate the use of different input point cloud sources for train-
ing (VLS) and classification (photogrammetric), we investigate this
transfer of change features in an experimental study of real-world
ULS and photogrammetric point clouds. These datasets were acquired
from a damaged building at three epochs during a demolition process
(Fig. 5). Using these point clouds, we identify object-specific change
features that are robust to variable properties of different point cloud
sources. For this, geometric point cloud features are computed per point
within local neighbourhood radii ranging from 1.0 m to 4.0 m with a
step size of 0.5 m, according to the point density of the dataset. Based
on this, we select one neighbourhood radius for the computation of
each feature where the mean value of the derived change feature is
most similar between point cloud sources. Finally, we consider a change
feature to be robust if its relative difference between the values of ULS
and photogrammetric point clouds is low.

Before the classification of damage grades, we coarsely filter out
non-damaged building points using a k-means clustering on each build-
ing point cloud. This is done because even for heavy or extreme
damage, larger parts of the building point cloud can still be unchanged.
Hence, geometric change following typical damage patterns occurs only
in local parts of a building. Descriptive statistical values per building
are then not suitable to represent the actual degree of damage (Fig. 6).
Changed and unchanged building points are separated in feature space
using the two pointwise features change in curvature (to identify holes
and large cracks) and change in height (to identify collapsed roofs and
stories), separating the building point cloud into two clusters, i.e. one
for unchanged and one for changed points of a building. To reflect
the share of damaged area of a building after filtering, we include the
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UAV-borne laser scanning point clouds

(d) pre-event

(f) post-event 2

Fig. 5. (a)-(c) Real-world UAV-borne photogrammetric point clouds and (d)-(f) real-world UAV-borne laser scanning point clouds acquired of a building before demolition (a, d)

and at two different demolition stages (b, c, e, f).

percentage of clustered changed points to all points of a building as
additional feature in the classification.

3.4. Classification of building damage grades

To classify structural building damage, we perform supervised clas-
sification using the object-specific geometric change features for the
changed points per building. As our method targets damage classi-
fication on building level, change features are computed based on
all changed building points, although they might represent different
locations of damage (cf. Fig. 6). We use RF decision trees for clas-
sification, which are mostly uncorrelated due to high variations of
the trees. Moreover, as no automatic workflows exist for modelling of
the relevant damage patterns into 3D building models, our approach
benefits from the low demand of training data by RF models (Breiman,
2001).

To investigate the influence of using region-specific and real-world
training data for damage classification, we train multiple RF classi-
fiers with different input training data: (1) Simulated generic data
(VLS generic), (2) simulated region-specific data (VLS region specific),
(3) simulated generic data and real-world region-specific photogram-
metric data (VLS generic + real-world photogrammetric), and (4) real-
world region-specific photogrammetric data (real-world photogram-
metric).

Each classifier is trained and tested using the 448 labelled damaged
and undamaged buildings of the respective dataset with an equal num-
ber of 112 buildings per damage grade. In the selection of the buildings
used for training, we ensure that the full range of damage patterns is
included in the training dataset. For each classifier, building objects of
the entire training dataset are randomly split into 70% training data
and 30% testing data to evaluate the accuracy of the trained classifier.
The RF classifier is trained with a set of 100 trees and a maximum
depth of 5. All four classifiers are finally applied to the real-world
photogrammetric dataset.

3.5. Evaluation of classifier performances

The performance of the classifiers with respect to their accuracy of
classifying structural building damage in a real-world photogrammetric
point cloud is assessed using the labelled evaluation dataset. We evalu-
ate the performance for each target damage grade separately as a binary
case, as the correct discrimination of multiple damage grades is of great
relevance to our study. Further, we evaluate the overall capacity of the
classifiers to correctly separate buildings of any degree of damage from
undamaged buildings. We use overall accuracy, precision, recall, and
F1 score as classification metrics.
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(a) 3D building model in pre-event and post-
event state

pre-event

post-event

(b) 3D point cloud of building model in pre-event and
post-event state
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Fig. 6. (a)-(b) 3D building model and derived point cloud of a building in a pre-event and post-event state. (c)—(d) Histogram of change in roughness and curvature between
pre-event and post-event state. Small building parts exhibiting change (1 and 2) result in a multi-modal distribution of change values, which cannot be adequately described by

descriptive statistical values derived for the whole building.
4. Results
4.1. Generation of simulated training data

The two types of virtual scenes (generic and region-specific) are
shown in Fig. 7 in pre-event and post-event states along with exemplary
damage patterns of various 3D building models with different damage
grades. Corresponding point clouds are shown in Fig. 8. The figure
also compares real-world and simulated point clouds of buildings with
similar damage patterns to compare their geometric representation of
change. It is clearly visible that the spatial sampling of the buildings
differs due to the different acquisition strategies. The geometric repre-
sentation of damage patterns is, however, not considerably affected by
these differences. For higher damage grades, the change in geometry
occurs on a larger spatial scale than the differences in sampling due
to the overall dense sampling of a building. We can therefore expect
that geometric change between two epochs is in the same order of
magnitude in VLS and photogrammetric point clouds.

4.2. Object-specific change feature selection

Change features with low difference between real-world ULS and
photogrammetric point clouds are shown in Fig. 10. These features are
considered to be robust object-specific features that are suitable for
building damage classification both in ULS and photogrammetric point
clouds. We consider only those geometric features as input for damage
classification where the difference of the feature between ULS and
photogrammetric point clouds is maximum 10%, as this yields a good
compromise between the similarity of geometric change between ULS

and photogrammetric point clouds and the number of change features
available for damage assessment (Fig. 9). Accordingly, the final selected
change features used for building damage classification are: Change
in planarity, surface variation, point density, number of neighbours,
surface density, volume density, roughness, z rank, z range, and in
normal vector.

We can easily separate changed and unchanged building points in
feature space using the two pointwise features (1) change in curvature
(to identify holes and large cracks) and (2) change in height (to identify
collapsed roofs and stories) to separate the building point cloud into
two clusters (changed/unchanged). We only use points of the changed
cluster for the classification of damage grades (Fig. 11).

4.3. Evaluation of classifier performances

The results of all metrics used to quantitatively evaluate the trained
models are given in Table 2 and Fig. 12. When applied to the real-world
evaluation dataset, all classifiers yield high classification accuracies for
the target damage grades (overall accuracies: 92.0%-96.8%, F1 scores:
73.2%-94.6%).

Inter-class confusions for all classifiers mainly occur between neigh-
bouring damage grades. Only few buildings with no damage are mis-
classified as heavy damage or vice versa by all classifiers, which are
significantly different degrees of damage. We hence assume this relates
to the damage catalogue being a suitable descriptive framework for
the generation of realistic training data but not exclusively relating to
geometric change in the point cloud. Consequently, the model might
learn certain geometric representations of damage grades differently
from how expert analysts would categorise them. For one of these



V. Zahs et al.

(c) Extreme damage
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(b) Heavy damage

Fig. 7. Examples of 3D building models in (a) pre-event state and (b)—(d) post-event states of the target damage grades (a) no damage, (b) heavy damage, (c) extreme damage,

and (d) destruction.

misclassified buildings, a visual inspection of the point clouds re-
veals occlusion effects in the area of damage, which results from the
narrower built structure in the region-specific simulated scene. For
the other buildings, close inspection does not show occlusion effects.
However, the class probabilities of no damage and heavy damage in
these cases are similarly high, which suggests that damage patterns of
these building objects are not significantly different from no damage.
Using generic simulated training data yields good classification re-
sults for all target classes with overall classification accuracies between
92.0% and 95.1%. Using region-specific simulated training data instead
of generic simulated training data does not strongly reduce inter-class
confusion or increase the completeness of detected damaged buildings
(+3%), neither does the use of real-world region-specific training data
(+6% higher completeness of damaged buildings). This indicates that
our model trained purely on generic simulated data has a high trans-
ferability to unseen regions and that the benefit of adding site-specific
real-world training data is low for the classification task at hand. We
attribute this to the fact that for the damage grades considered in our
study, damage patterns do not vary considerably for different building
types and built structure. Change features learned from the generic
simulated training dataset hence generalise appropriately to be used
for damage assessment in datasets with different site characteristics.

For binary classification of damaged and undamaged buildings, the
VLS classifier achieves an accuracy of 84.6%. Using real-world region-
specific training data yields only slightly higher accuracies (89.7%).
This is an important result, as applications can rely to identify damaged
buildings with high completeness.

These results support our hypothesis that the transfer of a supervised
machine learning model trained purely on simulated training data to
an unseen real-world dataset with specific site characteristics is a valid
approach for timely damage assessment in earthquake response.

5. Discussion

5.1. Transferability of the method with respect to the source of input point
clouds

Our approach achieves transferability of input point clouds from
different sources for training and application of the RF classifier. We
are able to transfer the classifier trained on simulated ULS point clouds
to classify damage in real-world photogrammetric point clouds. We
achieve this through the identification of object-specific geometric
change features, which show to be representative for the investigated
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(a) no damage

simulated virtual laser scanning
point clouds

real-world photogrammetric point
cloud
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(b) heavy damage

(c) extreme damage

(d) destruction

Fig. 8. Real-world photogrammetric and simulated virtual laser scanning point clouds for the target damage grades (a) no damage, (b) heavy damage, (c) extreme damage, and

(d) destruction.

damage grades. Handling multi-source point clouds is especially rel-
evant when training models with simulated data, due to the lack
of available tools to simulate photogrammetric point clouds. In our
study, we identify object-specific change features that are robust to
variable properties of input point clouds from different sources (UAV-
borne laser scanning and photogrammetry) and hence different point
cloud characteristics used for training and application of the model.
For other real-world data properties, the VLS framework used in our
approach allows simulating pre-event and post-event point clouds with
different acquisition parameters and measurement noise. By this, the
model could be trained to deal with different representations of damage
between input point clouds and even between the two epochs.

5.2. Transferability of the method to different site characteristics

An important strength of our approach is the transferability of a
trained classifier to data from an unseen region. We find that the RF
classifier trained on generic simulated building point clouds achieves
high classification accuracies in the real-world dataset, which are com-
parable to those achieved in studies training on region-specific in-
puts (e.g., de Gélis et al., 2021). Using region-specific simulated build-
ing point clouds does not strongly improve the classification results in
our study (increase of overall accuracy < 2%), neither does training
purely based on real-world region-specific data (increase of overall
accuracy < 2%). Although we did not see a notable improvement in
classification accuracy when using real-world region-specific training
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data, in some cases this might be beneficial to add. For individual
buildings with very site-specific damage patterns, the model trained on
generic simulated training data might fail to assign the correct damage
grade. Re-training the model with additional region-specific real-world
training data can then improve the classification accuracy without big
efforts.

Model transferability is still a major challenge for the assessment of
binary or multi-class building damage. For example, the transferability
of a CNN model using 3D point cloud features is limited already when
scene characteristics vary slightly (Vetrivel et al.,, 2018). We achieve
model transferability through the integration of domain knowledge
in the process of simulated training data generation. Using the con-
cept of a damage catalogue, we are able to model damage patterns
which are characteristic across different geographic regions into the
3D building models. Therefore, our classifier is trained on geometric
change features which generalise adequately to discriminate target
damage grades in point clouds of other geographic regions. Comparable
classification accuracies and generalisation properties were reported
by de Gélis et al. (2021) for deep neural networks for building change
detection on a 2D patch level using simulated airborne laser scan-
ning training data. Moreover, they find these approaches to be less
sensitive to measurement noise compared to RF approaches working
directly in the point clouds. These results motivate future studies to
investigate the performance of deep learning architectures in full 3D
and for multi-class classification tasks, especially if the availability of
training data increases. The application of our approach is currently
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Table 2
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Accuracy measures for the trained random forest classifiers (VLS generic, VLS region-specific, VLS generic + real-world photogrammetric, and
real-world photogrammetric) for multi-class damage classification of 125 buildings in the real-world photogrammetric dataset of L’Aquila, Italy.
The performance is evaluated for each damage grade separately and for all damage grades as a binary case of change detection. Therein, overall
accuracies are calculated as the share of correctly classified buildings of the respective damage grade, and for all damage grades to separate

damaged from undamaged buildings.

All damage grades No damage Heavy damage Extreme damage Destruction

VLS generic
Overall accuracy 95.12 95.12 92.80 92.00 93.60
Precision 1.0 84.62 72.73 78.13 91.43
Recall 84.62 1.0 84.21 89.29 86.49
F1 score 91.67 91.67 78.05 83.33 88.89
VLS
region-specific
Overall accuracy 94.40 92.00 92.00 92.00 92.00
Precision 82.05 84.21 69.57 78.13 82.05
Recall 1.0 69.57 84.21 89.29 91.43
F1 score 90.14 76.19 76.91 83.33 86.49
VLS generic +
real-world pho-
togrammetric
Overall accuracy 94.40 94.40 91.20 92.00 92.00
Precision 82.05 1.0 68.18 81.25 83.78
Recall 1.0 82.05 78.95 86.67 88.57
F1 score 90.14 90.14 73.17 83.87 86.11
Real-world pho-
togrammetric
Overall accuracy 96.80 96.80 93.60 92.00 93.60
Precision 1.0 89.74 78.95 81.25 84.62
Recall 89.74 1.0 78.95 86.67 94.29
F1 score 94.59 94.59 78.95 83.87 89.19

20 post-event 3D point clouds to be available of the affected area to
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Fig. 9. Relation between the threshold on maximum allowed difference of change
features between ULS and photogrammetric point clouds and the resulting number of
geometric change features. The relative difference (in %) is derived between the mean
values of a per-point change feature. Lower thresholds consequently lead to a smaller
number of features identified as robust. Here, we select a threshold of maximum 10%
difference to obtain robust change features as input for the random forest classification.

targeted to European countries because the damage patterns included
in the damage catalogue have been developed for built structures and
building materials typical of European countries. In the future, the
damage catalogue can be extended to cover damage patterns for areas
outside Europe, which then allows to apply the method also to these
areas. Moreover, as for all change-based approaches (e.g., de Gélis
et al.,, 2021; Xu et al.,, 2021), our approach requires pre-event and
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classify building damage. The increasing availability of pre-event point
clouds, due to decreasing costs of UAV-borne point cloud acquisitions,
however, provides great potential for the application of the approach.

Generally, our approach could be modified to be applicable to other
natural disasters. As characteristic damage patterns are different for
other disaster types, this transfer requires domain knowledge and an
adaption of damage patterns that are typical for the respective disaster
type. Similar to our use case of earthquakes, the damage patterns
have to generalise adequately to discriminate target damage grades in
point clouds. Subsequently, damage patterns can be modelled into 3D
building models for training in the same way to classify damage also
for other natural disasters.

5.3. Automatic generation of large 3D training datasets

Simulated training data in this study comprises the manual mod-
elling of damage patterns into 3D building models, and the annotation
of buildings with damage labels. As such training data can be gener-
ated to train machine learning models before an earthquake occurs,
we consider the time effort for manual modelling in our approach
acceptable. The trained models can then be directly applied to classify
damage in real-world datasets acquired after an earthquake occurs,
which saves valuable time for rescue and remediation actions (Kohns
et al., 2022). Future approaches of UAV damage assessment in earth-
quake response might integrate databases of existing damaged and
undamaged 3D building models. Such databases could integrate both
building models generated from real-world city models (e.g., Uggla
et al., 2023; Zihang et al., 2018) and synthetically generated building
models from other sources, including VLS as in our study. The database
could be connected with automatic damage modelling procedures,
which might be developed in the future, and with the VLS module to
assemble a multitude of different scenes where building objects can be
flexibly interchanged. Such an approach could be especially valuable
for classification methods with high demands for training data, such
as deep learning (de Gélis et al., 2023). While we classify damage on



V. Zahs et al. International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103406

lanarit: surface variation oint densit) number of neighbours
S=_ 60 penery 60 60 P Y 60 g
g'gi mean
£08 401 40 404 40
E2®
gco 30+ 30 304 304
gﬂé 20 20 20 20
£5%
858 10 10 10 10
5¢2
33° T T T T T T T T T T T T
§° 01 025 05 20 40 01 025 05 10 40 01 025 05 10 40 01 025 05 20 40
search radius [m] search radius [m] search radius [m] search radius [m]
o surface density volume densit; roughnes zrank
2260 60 d 60 g 60
£ Qr—
322 50 504 50 50
358 40+ 40 40 404
EEC
&S 30 30 30 304
i
=20 20+ 20 20 20
[o¥ =47
20T
5231 -\x,% 10 10 10__\__—
5%3
E-ﬂ T T T T T T T T T T T T
01 025 05 20 40 01 025 05 1.0 40 01 025 05 20 40 01 025 05 1.0 4.0
search radius [m] search radius [m] search radius [m] search radius [m]
N zrange normal vector
22 60 9 60
558
Ss 2 50 50
=08 40 _
gg 8 40 40
352 304 304
Bs
£2'G 20 20+
852
503 10+ 10
5%5 -\
£ T T T T T T
a 01 025 05 1.0 40 01 025 05 20 4.0

search radius [m] search radius [m]

Fig. 10. Robust object-specific change features which show less than 10% difference between ULS and photogrammetric point clouds of two epochs in our experimental investigation.
Red boxes indicate the local neighbourhood size for which differences are lowest. These features yield a good compromise between the similarity of change features between both
sources of input point clouds and the number of features available for damage assessment.

(a) experimental pre-event ULS point cloud

(c) classified point cloud using k-means clustering based
on change in height and curvature between pre-event and
post-event point cloud

. changed

unchanged
building points .

building points

Fig. 11. (a) Pre-event and (b) post-event UAV-borne laser scanning (ULS) point clouds of the experimental building and (c) classified changed (red) and unchanged (blue) building
points by k-means clustering. Changed building points are input for the extraction of change features as input for the random forest classification. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Confusion matrices for the trained random forest classifiers (a) VLS generic, (b) VLS region-specific, (¢c) VLS generic + real-world photogrammetric, and (d) real-world
photogrammetric for multi-class damage classification of 125 buildings in the real-world photogrammetric dataset of L’Aquila, Italy.

w
a

building level in our approach, it generally offers flexibility with respect 6. Conclusion
to the spatial unit of extracting changed building parts and subsequent

damage classification. Instead of entire building objects, the approach We present a novel approach to automatically classify multi-class
might be tested to assess damage only for coherent units representing structural building damage using pre- and post-event point clouds of an
partial buildings of, for example, large building complexes. earthquake event. We evaluate a supervised machine learning model
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trained on simulated point clouds from virtual laser scanning (VLS)
with respect to its capacity to classify damage grades no damage,
heavy damage, extreme damage, and destruction in a real-world pho-
togrammetric dataset. Damage is thereby assessed through change of
geometric point cloud features between multi-temporal point clouds.

Our results reveal transferability with respect to multi-source point
clouds used for training and application of the model. This is possible
using a set of robust object-specific change features. Consequently, VLS
provides a valuable source of training data for the classification task at
hand.

We further achieve transferability of the model between region-
specific site characteristics by integrating domain knowledge from
earthquake engineering in the generation of realistic simulated train-
ing data. This allows training the model on geometric change which
characterises the target damage grades across different geographic
regions. The classification of multiple damage grades in the real-world
dataset yields high accuracies (overall accuracy: 92%-95%). Accuracies
only slightly improve when using real-world region-specific training
data (+ 2%). The same applies for the binary case of detecting dam-
aged buildings for which the classifier trained on generic simulated
training data detects 85% of damaged buildings. Using real-world
region-specific training data increases the detection rate by +3.1%.

Therefore, our developed approach provides a powerful assessment
of multi-class structural building damage. We consider it especially
relevant for applications where timely information on the damage situ-
ation is required, often linked to the situation that sufficient real-world
training data is not available.
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