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Abstract
At the historical Eskeborner Berg underground workings at Tilkerode (Eastern Harz Mountains, Germany), Fe was 
mined from a carbonate–hematite vein system that was locally enriched in selenide minerals. Clausthalite [PbSe] was 
the most abundant selenide mineral in a carbonate matrix with laths of specular hematite. To date, the selenide-bearing 
carbonate–hematite vein system at Tilkerode has not been geochemically investigated. Here, we present the first whole-
rock chemical data for a wide suite of trace elements. The following metals are enriched relative to bulk continental crust 
(orders of magnitude in parentheses): Se (>105), Hg (>104), Ag and Pb (103), Au, Bi, Pt, Ge, Te, Pd and Cd (102). Samples 
from Tilkerode have up to 2640 ppm Ag, 338 ppm Ge, 1560 ppb Au, 970 ppb Pt and 365 ppb Pd, with Pt/Pd > 1, and a 
significant positive correlation of Ge vs. (Pd+Pt). The selenide mineralisation took place below 112 °C, the maximum 
temperature stability of umangite [Cu3Se2]. Our data indicate there is potential for prospecting Ge and precious metals 
in low-temperature vein systems.
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Introduction

Modern analytical techniques have allowed for accurate 
measurements for a variety of trace elements, some of 
which have been overlooked or underestimated in previous 
studies of mineral deposits. For example, the recent finding 
of Ge-rich chalcopyrite in sulfide–calcite veins suggests that 
the Kupferschiefer Cu–Ag deposits of southwest Poland 
have been underexplored for Ge resources (Foltyn et al. 
2022). Selenide analogues of such veins occur in the Harz 
Mountains of Germany. One carbonate–hematite–selenide 
vein system occurs at Tilkerode (Fig. 1). Although Tilkerode 
is the type locality of some Pd-selenide minerals (Stanley 
et al. 2002; Ma et al. 2020), quantitative whole-rock data 
for Pd and other precious metals are lacking. Here, we 
report the first whole-rock chemical analyses for a suite of 
trace elements, including the precious metals Ag, Au, Pd 
and Pt, in samples of carbonate–hematite–selenide vein 
material from Tilkerode. Our samples not only have high 
contents of precious metals, but also hitherto unknown Ge 
enrichments, a finding that prompts reevaluation of the Harz 
(carbonate–hematite–selenide) vein systems as potential 
resources of Ge and precious metals.
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Tilkerode and its geological setting

The historical Tilkerode mining area, comprising the 
underground workings known as ‘Hauptgrube’ and 
the ‘Eskeborner Berg’ in the Eastern Harz Mountains 
(Tischendorf 1959, and references therein), is a 
classical example of low-temperature hydrothermal, 
carbonate–hematite–selenide vein-type mineralisation 
(e.g., Simon et al. 1997). Tilkerode is the type locality of 
naumannite [Ag2Se], eskebornite [CuFeSe2], tischendorfite 

[Pd8Hg3Se9] and tilkerodeite [Pd2HgSe3] (Ramdohr 
1949; Tischendorf 1959; Stanley et al. 2002). In total, 18 
selenide minerals have been reported from the Tilkerode 
selenide shoots or ‘Selenid-Lager’ (Ma et al. 2020), the 
most abundant of which are clausthalite [PbSe], tiemannite 
[HgSe] and naumannite [Ag2Se] (Tischendorf 1959). Other 
low-temperature (‘telethermal’) hydrothermal occurrences 
of selenide minerals have also been documented in the Harz 
Mountains, for example from Bad Lauterberg, Clausthal, 
Lerbach, Sankt Andreasberg, Rieder (Gernrode), Sieber, 

Fig. 1   A Geological map of the 
area around Tilkerode (modi-
fied after Tischendorf 1959). 
B Vertical cross section of the 
Eskeborner Berg showing the 
largest selenide shoots (modi-
fied after Tischendorf 1959)
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Straßberg, Sülzhayn, Treseburg, Trogtal and Zorge 
(Tischendorf 1959; Keutsch et al. 2009; Cabral et al. 2012, 
2015, 2017, 2018; Heider and Siemroth 2012; Heider 2014; 
Koch and Heider 2018; Heider et al. 2019, 2020, 2022).

Despite its reputation for selenide minerals, Tilkerode 
was mined for Fe. Mining of Fe ore was spatially related to 
carbonate–hematite veins, and began in the vicinity of the 
town of Tilkerode prior to 1762 at two sites, ‘Einestollenrevier’ 
(also known as ‘Hauptgrube’) and ‘Eskeborner Berg’ (Fig. 1). 
The first findings of selenide minerals likely date back to 
mid-1780s at Einestollenrevier, but, the first documented 
occurrence of selenide minerals was at Eskeborner Berg in 
1825 (Tischendorf 1959). The discovery of minor native Au 
within shoots of selenide minerals, hereafter referred to as 
the shoots, led to an ephemeral flourish of mining activities. 
However, neither Fe nor Au was economic in the long 
term so that mining was suspended several times. The last 
exploration attempt was made in the 1950s, and only provided 
evidence for spatially restricted shoots of selenide minerals 
(Tischendorf 1959; Oelke 1973).

The shoots have on average 10 cm in width, with one 
shoot (‘Selenfirste’) of 35 m in vertical extension × 10 m in 
length. They are spatially related to a NNW–SSE-trending 
carbonate–hematite vein system of ~ 450  m in length, 
varying from ~ 0.05 to 8 m in width, with a vertical extension 
of > 63 m at the Einestollenrevier and of > 100 m at the 
Eskeborner Berg. These vertical extensions correspond to 
the deepest levels of underground workings (Tischendorf 
1959). The shoots occur along or within carbonate–hematite 
veins or in the hydrothermally altered host rocks, i.e., 
reddened and/or bleached graptolite schist and keratophyre 
over the full vertical extension of the underground workings 
(Tischendorf 1959, and references therein). Generally, 
tectonically displaced blocks of Silurian black graptolite 
shale and of Devonian keratophyre and diabase of the 
Eastern Harz Silurian anticline (‘Ostharzer Silursattel’) host 
the carbonate–hematite vein system.

At least four different mineral-forming stages can 
be distinguished on the bases of carbonate minerals at 
Tilkerode. ‘Carbonate I + II’, consisting mostly of calcite, and 
disseminated hematite flakes make up approximately 98% of 
the carbonate–hematite vein system. This calcite–hematite 
mineralisation with minor quartz is followed by a mineral 
assemblage of selenide minerals, ankerite (‘carbonate III’), 
subordinate quartz and clinochlore, with selenide minerals 
constituting at most 10% (in total ~ 120  kg of Se were 
historically mined; Tischendorf 1959). Most sulfide minerals 
and minor calcite (‘carbonate IV’) formed during late-stage 
overprinting on the selenide mineralisation.

The selenide mineralisation is restricted to pockets. 
Tischendorf (1959) interpreted this style of mineralisation 
to result from lateral leaching and mobilisation of metals 
and S from the host rock, a C-rich graptolite black shale, 

by neutral to weakly alkaline hydrothermal fluids with a 
high oxygen fugacity. Tischendorf’s interpretation is in 
agreement with thermodynamic calculations by Simon et al. 
(1997). Importantly, the presence of umangite [Cu3Se2] 
constrains the temperature of selenide-mineral formation 
to < 112 °C (Simon et al. 1997, and references therein). In 
contrast, the paragenesis of selenide minerals and their fluid 
and metal sources are less well constrained. For example, 
the selenide minerals of the Harz Mountains have been 
considered older than the main-stage vein mineralisation 
of base metals and silver, probably from Permo-Triassic 
times (e.g., Kuschka and Franzke 1974; Stanley et al. 1990; 
Cabral et al. 2012), but Pb isotopic data are suggestive of 
an even younger age, possibly Triassic-Jurassic, for the 
selenide-mineral occurrences (Bielicki and Tischendorf 
1991). A late-stage formation is compatible with new fluid-
inclusion data for the main-stage vein mineralisation of base 
metals (de Graaf et al. 2020).

Sampling and methods

Nine whole-rock samples of  selenide-bear ing 
carbonate–hematite vein were taken for reconnaissance 
geochemical analyses from Tischendorf’s vein-sample 
set, collected in the 1950s and currently stored at the 
‘Landesamt für Geologie und Bergwesen Sachsen-
Anhalt’. Exact sampling locations within the Eskeborner 
Berg underground workings are documented for samples 
TK1 (barite vein), TK3 (southern adit, mid-sole), TK4 
(southern winze) and TK7 (mid-sole to the south). Sample 
TK6 is from the ‘Goldschacht’ (gold shaft), and sample 
TK5 comes from a former selenide ore stockpile of the 
mine. The other samples cannot be assigned to specific 
sites of the Eskeborner Berg underground workings due 
to missing documentation. Half of the sample material 
was crushed and milled in the facilities of the Technische 
Universität Clausthal (TUC), and then sent to Activation 
Laboratories (Canada) for whole-rock geochemical analysis. 
Contamination during crushing and milling was strictly 
minimised by repeated, thorough cleaning of crusher and 
mill. The other half of the sample material was used for 
preparation of polished sections for ore microscopy. Major 
elements were determined by X-ray fluorescence after 
Li-borate fusion. Minor and trace elements were determined 
by inductively coupled plasma-mass spectrometry 
(ICP-MS), after 4-acid digestion (HF–HNO3–HClO4–HCl), 
instrumental neutron activation analysis and fire assay 
ICP–MS. Loss on ignition was obtained gravimetrically. 
Details for the bulk-rock analytical methods are provided 
in the electronic supplementary material (ESM). Reference 
materials and duplicates were also analysed for data 
quality and reproducibility. In addition, reconnaissance 
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microanalyses of chalcopyrite for some trace elements were 
obtained in situ by laser–ablation–sector field–ICP–MS at 
the Karlsruhe Institute of Technology; analytical details are 
provided in the ESM.

Results

All samples contain selenide-mineral spots which are 
dark in hand samples and vary in size up to approximately 
5 cm across. The selenide-mineral spots are surrounded by 
white and red carbonate gangue with fine-grained hematite 
(Fig. 2A). Clausthalite is the dominant selenide mineral in 
all samples. Massive clausthalite surrounds laths of specular 
hematite (Fig. 2B) of varied length (≤ 2 mm). Most hematite 

laths are arcuated, but show no preferential orientation. 
Clausthalite is intergrown with minor tiemannite (Fig. 2C) 
and encloses anhedral to euhedral quartz crystals, chlorite, 
rarely observed sphalerite, and minor anhedral chalcopyrite, 
which may contain anhedral to subhedral pyrite crystals of 
< 100 μm in length (Fig. 2D). Some chalcopyrite also occurs 
along clausthalite domains and in the carbonate mineral 
gangue. Locally, hematite is corroded and overgrown by late 
pyrite and marcasite (Fig. 2E). Clausthalite and hematite laths 
fill the interstices among carbonate-mineral rhombohedra 
(Fig. 2E), which are compositionally analogous to ankerite. 
The paragenesis of naumannite (Fig. 2B) and the Cu-selenide 
minerals berzelianite, eskebornite (Fig. 2F) and klockmannite 
are not clear. Native gold has not been identified by reflected-
light microscopy in our samples.

Fig. 2   A Photograph of a 
polished slab of sample TK-6, 
showing a grey to black pocket 
of selenide minerals and hema-
tite, within a vein of carbonate 
minerals (white). B-F Photomi-
crographs taken under reflected 
light in oil immersion. B Specu-
lar hematite laths (grey) of var-
ied size in massive clausthalite 
(white). Some hematite laths are 
arcuated. Naumannite occurs 
as tiny whitish inclusions in 
hematite (within red circles). 
C Clausthalite (white) inter-
grown with tiemannite (light 
grey, low relief), with hematite 
inclusions (dark grey, high 
relief). D Chalcopyrite (yellow) 
surrounding subhedral pyrite 
crystals (light yellow). E Pyrite 
and marcasite (light yellow; 
not distinguishable in photomi-
crograph) corroding a coarser 
lath of hematite (grey) within 
clausthalite (white). Carbon-
ate rhombohedra appear black. 
F Eskebornite (pink; red arrow) 
and chalcopyrite (yellow; blue 
arrows) within hematite (grey) 
in a groundmass of clausthal-
ite (white). Abbreviations: 
cb = carbonate minerals; cla – 
clausthalite; ccp = chalcopyrite; 
esk = eskebornite; hem = hema-
tite; marcasite = mrc; nau = nau-
mannite; py = pyrite; tie = tie-
mannite
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The results of whole-rock geochemical analysis are 
reported in ESM Table 1. The samples are characterised 
by high contents of CaO (15.7–47.5%; av. 25.5%) and 
total Fe expressed as Fe2O3 (5.1–18.3%; av. 12.35%), and 
comparatively minor MgO (1.9–8.9%; av. 6.4%). The LOI 
values of our samples, which are in the range of 26.8 to 
37.5%, are representative of carbonate-mineral contents. 
Most Se and Pb values are > 10,000 and > 5,000  ppm, 
respectively, which are the upper detection limits. 
Likewise, some Hg values are > 1,000  ppm. Silver 
(~ 1–2,640 ppm), Ge (~ 5–338 ppm), Cu (~ 7–264), and 
Zn (56–168 ppm) have average values of > 100 ppm. The 
precious metals Au (5–1,560 ppb), Pt (5–970 ppb), and Pd 
(2–365 ppb) show average values of 454, 282, and 138 ppb, 
respectively (Fig. 3A). There is no significant correlation 
of Pt and Pd, but there are relevant positive correlations 
of Pt and Au (R2 = 0.89), Pt and Ag (R2 = 0.82), Cu and 
Ge (R2 = 0.78), (Pt + Pd) and Cu (R2 = 0.70), (Pt + Pd) and 
Ge (R2 = 0.69), and Pt and Ge (R2 = 0.62), where R2 is the 

coefficient of determination (Fig. 4). Using a threshold 
of statistical significance of 0.05, the p-values are as 
follows: Pt and Au (p < 0.0001), Pt and Ag (p = 0.0003), 
Cu and Ge (p = 0.0007), (Pt + Pd) and Cu (p = 0.005), 
(Pt + Pd) and Ge (p = 0.006), and Pt and Ge (p = 0.007). 
Due to the correlation between Cu and Ge, we performed 
reconnaissance in  situ LA–SF–ICP–MS analyses of 
chalcopyrite. For all measurements (n = 10), Ge content 
is < 0.63 ppm (ESM Table 2).

Discussion

Samples from the selenide-mineral-bearing carbonate–hem-
atite vein of Tilkerode are enriched in Se (> 105), Hg (> 104), 
Ag and Pb (> 103), Au, Bi, Cd, Ge, Te, Pd and Pt (102), 
relative to the bulk continental crust (Fig. 3B; Rudnick and 
Gao 2003). The selenide minerals clausthalite, tiemannite, 
and naumannite primarily host Pb, Hg, and Ag, respectively 

Fig. 3   A Element contents of whole-rock chemical analyses. Major-
element contents are in wt.%, all other elements are in ppm. B Ele-
ment enrichments compared to bulk continental crust (data from 
Rudnick and Gao 2003). A, B  Values below the minimum limit of 

detection (MDL) are substituted with ½ MDL; values above the max-
imum limit of detection are doubled. Arrows reflect the total range of 
element contents in the samples. Diamonds represent average element 
contents
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(Fig. 2B–D). Previous studies reported the presence of 
gold (Tischendorf 1959; Oelke 1973), Pd-selenide miner-
als (Stanley et al. 2002; Ma et al. 2020), and a Pt-selenide 
mineral (Ma et al. 2020). Therefore, enrichments of Au, 
Pt and Pd in samples from Tilkerode could be explained 
mineralogically (e.g., Tischendorf 1959), although we have 
not identified any of those minerals (Fig. 2). The origin of 
Ge enrichments remains elusive, however, because no Ge-
selenide minerals have been discovered.

In nature, Ge enrichments are known in sulfide min-
erals, such as sphalerite and chalcopyrite, and in organic 
matter (e.g., Goldschmidt and Peters 1933; Ketris and 
Yudovich 2009; Melcher and Buchholz 2014). Germanium 
can be enriched in banded iron formations and in oxidised 
sulfide ore deposits with Ge contents of up to ≤ 7,000 ppm 
in hematite and ≤ 5310 ppm in goethite (Bernstein 1985; 
Höll et al. 2007), but most Ge is dispersed through silicate 
minerals due to Ge substitution for Si (Goldschmidt 1930; 

Fig. 4   A Variation plot of Pt 
and Pd. B Variation plot of Pt 
and Au. C Variation plot of Pt 
and Ag. D Variation plot of 
Cu and Ge. E Variation plot of 
(Pt + Pd) and Cu. F Variation 
plot of (Pt + Pd) and Ge
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Höll et al. 2007). Discrete Ge-sulfide minerals, such as argy-
rodite [Ag8GeS6], briartite [Cu2(Fe,Zn)GeS4], germanite 
[Cu13Fe2Ge2S16], and renierite [(Cu,Zn)11Fe4(Ge,As)2S16], 
are rare. They are only known from few deposits world-
wide, including the high-grade, polymetallic, epigenetic, 
carbonate-hosted (‘Kipushi-type’) ore deposits (Höll et al. 
2007). Average whole-rock Ge contents in low-temperature 
Kipushi-type ore deposits amount to several hundred ppm 
Ge (Höll et al. 2007), whereas average Ge contents in black 
shale and coal are in the range of < 1 to 3 ppm (Ketris and 
Yudovich 2009, Slack et al. 2004), but can locally attain 
values as high as 4,000–5,000 ppm (Goldschmidt 1930; 
Höll et al. 2007). Exceptionally, high Ge contents in Fe-poor 
sphalerite that formed in low-temperature epigenetic depos-
its can amount to 3,000 ppm (Bernstein 1985; Höll et al. 
2007; Liu et al. 2023), delineating Mississippi Valley-type 
deposits as one of the most important hosts of Ge (Frenzel 
et al. 2014).

Given the positive correlations of Cu and Ge (R2 = 0.78), 
(Pt + Pd) and Cu (R2 = 0.70), and (Pt + Pd) and Ge (R2 = 0.69; 
Fig. 2C), it is reasonable to assume that chalcopyrite is the 
primary host of Ge in our whole-rock samples. Nonetheless, 
our reconnaissance microanalytical study of chalcopyrite 
demonstrates that the Ge contents are low (< 1  ppm, 
ESM Table 2). As the total amount of Cu is relatively low 
(< 270 ppm) and the Ge contents are higher than Cu contents 
in 5 out of 9 samples, a coupled substitution into another 
mineral is possible, but remains speculative at present. In 
contrast, chalcopyrite from epigenetic sulfide–calcite veins 
in the Kupferschiefer deposits of SW Poland is exceptionally 
enriched in Ge, containing up to 4,800 ppm Ge (Foltyn et al. 
2022), whereas Fe-poor sphalerite, the common Ge host in 
low-temperature environments, has ≤ 6.5 ppm Ge. In general, 
Ge contents in the Kupferschiefer are not well documented. 
Few data indicate Ge in the range of ~ 1 to 15 ppm (Höll 
et al. 2007; Melcher and Buchholz 2014; Foltyn et al. 2022, 
and references therein). Sphalerite is an accessory mineral 
in our samples, which have similar contents of Zn and Ge 
(ESM Table 1; Fig. 3), making sphalerite unlikely as the host 
mineral of Ge at Tilkerode.

Although the Ge-bearing mineral has not yet been 
identified at Tilkerode, we note that its Ge enrichment and 
that in the Kupferschiefer deposits have two features in 
common: an epigenetic carbonate-mineral vein overprint 
and a black-shale host rock (rich in organic matter). The 
latter implies that migrating hydrothermal fluids interacted 
with organic matter and sourced Ge from it. In this regard, 
Ge-bearing sulfide deposits are frequently associated 
spatially with organic-bearing sedimentary host rocks 
(Bernstein 1985; Jones 2021). A magmatic or igneous origin 
for the Ge enrichment is deemed unrealistic. Instead, a more 
likely origin seems to be attributable to sulfate-bearing, 

oxidised brines that originated from the overlying Zechstein 
evaporitic sediments, as proposed by Cabral et al. (2018) for 
vein selenide minerals at Clausthal, in the Harz mountains. 
Given that carbonates and evaporites are generally depleted 
in Ge concentrations compared to the crustal Ge abundance 
(Höll et al. 2007), Ge would have been sourced from organic 
matter by Zechstein-derived brines. Future fluid-inclusion 
studies of vein minerals from Tilkerode should elucidate the 
fluid origin. Future work should also focus on the Silurian 
black graptolite shale, the Ge contents of which are not 
yet known. A potential link between organic matter and 
Ge enrichment in the Tilkerode vein system could also be 
sought by Ge isotopes, which are sensitive to complexing 
processes with organic matter and/or sulfide compounds 
(Rouxel and Luais 2017).

At Tilkerode, hydrothermal fluids of low temperature, 
constrained by the presence of umangite, were also 
capable of transporting Au, Pt and Pd. These metals 
are also locally enriched in the Kupferschiefer deposits 
(Kucha and Przylowicz 1999; Piestrzyński et al. 2002). 
There is a tendency of elevated Ge contents to occur 
with Ag-rich minerals in sulfide ore deposits (Höll 
et al. 2007). Tilkerode also has Ag-rich minerals, but 
as selenide minerals. Germanium enrichments in 
environments with predominance of Se over S has, to our 
knowledge, gone unrecognized. It seems that Tilkerode 
is a Se-rich part of the broader fluid system that led to 
the formation of the Kupferschiefer Cu–Ag deposits in 
central Europe.

Conclusion

This study reports the finding of high contents of Ge, Au, 
Pt and Pd, and other metals in whole-rock samples from a 
historical deposit where hematite was mined for Fe. Tilkerode 
is just one of numerous (carbonate–hematite–selenide) vein-
type deposits in the Harz Mountains, a former mining region of 
economical relevance, of which modern whole-rock chemical 
data for precious and critical metals are lacking. Our study 
provides evidence of a genetic link between Ge enrichment 
in a low-temperature hydrothermal carbonate–hematite vein 
system and a black-shale host rock (rich in organic matter). 
Tilkerode is likely a small-scale manifestation of a regional 
process involving fluid interaction with organic matter, from 
which Ge and other metals are likely sourced. This regional-
scale process is substantiated by the high Ge contents that 
have recently been reported from the Kupferschiefer Cu–Ag 
deposits in central Europe. Our finding suggests that the 
carbonate–hematite vein systems of the Harz Mountains have 
the potential to be prospected for Ge and precious metals.
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