KIT | KIT-Bibliothek | Impressum | Datenschutz

Brain Tumor Classification Using Hybrid Single Image Super-Resolution Technique with ResNext101_32x8d and VGG19 Pre-Trained Models

Mohsen, Saeed; Ali, Anas M.; El-Rabaie, El-Sayed M.; ElKaseer, Ahmed 1; Scholz, Steffen G. ORCID iD icon 1; Hassan, Ashraf Mohamed Ali
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

High-quality images acquired from medical devices can be utilized to aid diagnosis and detection of various diseases. However, such images can be very expensive to acquire and difficult to store, and the process of diagnosis can consume significant time. Automatic diagnosis based on artificial intelligence (AI) techniques can contribute significantly to overcoming the cost and time issues. Pre-trained deep learning models can present an effective solution to medical image classification. In this paper, we propose two such models, ResNext101_ 32×8d and VGG19 to classify two types of brain tumor: pituitary and glioma The proposed models are applied to a dataset consisting of 1,800 MRI images comprising in two classes of diagnoses; glioma tumor and pituitary tumor. A single-image super-resolution (SISR) technique is applied to the MRI images to classify and enhance their basic features, enabling the proposed models to enhance particular aspects of the MRI images and assist the training process of the models. These models are implemented using PyTorch and TensorFlow frameworks with hyper-parameter tuning, and data augmentation. Experimentally, receiver operating characteristic curve (ROCC), the error matrix, Precision, and Recall are used to analyze the performance of the proposed model. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160656
Veröffentlicht am 11.08.2023
Originalveröffentlichung
DOI: 10.1109/ACCESS.2023.3281529
Scopus
Zitationen: 26
Web of Science
Zitationen: 7
Dimensions
Zitationen: 25
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000160656
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 11
Seiten 55582–55595
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page