KIT | KIT-Bibliothek | Impressum | Datenschutz

Application of machine learning and deep neural networks for spatial prediction of groundwater nitrate concentration to improve land use management practices

Karimanzira, Divas; Weis, Jonas 1; Wunsch, Andreas ORCID iD icon 1; Ritzau, Linda; Liesch, Tanja ORCID iD icon 1; Ohmer, Marc ORCID iD icon 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

The prediction of groundwater nitrate concentration's response to geo-environmental and human-influenced factors is essential to better restore groundwater quality and improve land use management practices. In this paper, we regionalize groundwater nitrate concentration using different machine learning methods (Random forest (RF), unimodal 2D and 3D convolutional neural networks (CNN), and multi-stream early and late fusion 2D-CNNs) so that the nitrate situation in unobserved areas can be predicted. CNNs take into account not only the nitrate values of the grid cells of the observation wells but also the values around them. This has the added benefit of allowing them to learn directly about the influence of the surroundings. The predictive performance of the models was tested on a dataset from a pilot region in Germany, and the results show that, in general, all the machine learning models, after a Bayesian optimization hyperparameter search and training, achieve good spatial predictive performance compared to previous studies based on Kriging and numerical models. Based on the mean absolute error (MAE), the random forest model and the 2DCNN late fusion model performed best with an MAE (STD) of 9.55 (0.367) mg/l, R2 = 0.43 and 10.32 (0.27) mg/l, R2 = 0.27, respectively. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160682
Veröffentlicht am 17.07.2023
Originalveröffentlichung
DOI: 10.3389/frwa.2023.1193142
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 14.07.2023
Sprache Englisch
Identifikator ISSN: 2624-9375
KITopen-ID: 1000160682
Erschienen in Frontiers in Water
Verlag Frontiers Media SA
Band 5
Vorab online veröffentlicht am 13.07.2023
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 6 – Sauberes Wasser und Sanitär-Einrichtungen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page