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Abstract
Using an intrinsic approach, we study some properties of random fields which appear 
as tail fields of regularly varying stationary random fields. The index set is allowed 
to be a general locally compact Hausdorff Abelian group � . The values are taken 
in a measurable cone, equipped with a pseudo norm. We first discuss some Palm 
formulas for the exceedance random measure � associated with a stationary (meas-
urable) random field Y = (Y

s
)
s∈� . It is important to allow the underlying stationary 

measure to be �-finite. Then we proceed to a random field (defined on a probability 
space) which is spectrally decomposable, in a sense which is motivated by extreme 
value theory. We characterize mass-stationarity of the exceedance random measure 
in terms of a suitable version of the classical Mecke equation. We also show that 
the associated stationary measure is homogeneous, that is a tail measure. We then 
proceed with establishing and studying the spectral representation of stationary tail 
measures and with characterizing a moving shift representation. Finally we discuss 
anchoring maps and the candidate extremal index.

Keywords Tail process · Exceedances · Tail measure · Spectral representation · 
Random measure · Palm measure · Stationarity · Mass-stationarity · Locally 
compact Abelian group · Anchoring map · Candidate extremal index
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1 Introduction

The tail process of regularly varying time series was introduced in Basrak and Segers 
(2009). It is a useful tool for describing and handling the extreme value behavior of such 
time series; see e.g. Dombry et al. (2018); Kulik and Soulier (2020); Soulier (2022). The 
recent paper Planinić (2023) has made some interesting connections to Palm theory for 
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point processes on ℤd . In particular it has been observed there that the exceedance point 
process of the tail process is point-stationary in the sense of Thorisson (2007); see also 
Last and Thorisson (2009). One aim of the present paper is to extend Planinić (2023) to 
the case of a general locally compact Hausdorff Abelian group � , for instance 𝔾 = ℝ

d . 
Even in the case 𝔾 = ℤ

d our approach will provide further insight into the results from 
Planinić (2023). Another aim is to extend the concept of a tail measure (as defined in 
Dombry et al. (2018); Soulier (2022)) to spaces of functions on Abelian groups, to relate 
these measures to Palm calculus and to study their spectral representation.

Section 2 contains some basic definitions and facts from Palm theory. In Section 3 
we will first provide a modest but useful generalization of (Last 2010, Theorem 4.1) 
on allocations and Palm measures. Then we summarize some facts on point- and 
mass-stationarity. In Sect. 4 we consider a field Y = (Ys)s∈� indexed by the group. 
The field takes its values in a measurable cone ℍ equipped with a pseudo norm | ⋅ | . 
A key example is ℍ = ℝ

d with the Euclidean norm. We require Y to have natural 
measurability properties but do not impose continuity or separability assumptions. 
The exceedance random measure is defined by 𝜉 ∶= ∫ 1{s ∈ ⋅, |Ys| > 1}𝜆(ds) , 
where � is a Haar measure on � . We briefly discuss stationarity, mass-stationarity 
and the Palm measure of � . For our purposes it is important to allow the under-
lying stationary measure ℙ to be infinite (but �-finite). The Palm measure of � is 
simply the restriction of ℙ to the event {|Y0| > 1} . Starting with Sect.  5 we shall 
work on a suitable canonical function space (F,F) with the field Y given as the iden-
tity on F . At the cost of a more abstract setting, this could be generalized along the 
lines of Remark 5.10. In Sect. 5 we assume that Y is spectrally decomposable with 
index 𝛼 > 0 w.r.t. a probability measure ℚ on (F,F) . This assumption is strongly 
motivated by Basrak and Segers (2009) and means that |Y0| has a Pareto distribu-
tion (on (1,∞) ) with parameter � and is independent of W ∶= (|Y0|−1Ys)s∈� . Our 
Theorem 5.2 shows that the exceedance random measure � is mass-stationary in the 
sense of Last and Thorisson (2009) if and only if W satisfies the space shift formula 
(5.2), a version of the classical Mecke equation from Mecke (1967). This general-
izes the main result in Planinić (2023) from ℤd to general locally compact Hausdorff 
Abelian groups. In establishing this result, we will not refer to a regularly varying 
field in the background. Under the assumptions of Theorem 5.2, general Palm the-
ory essentially guarantees the existence of a stationary �-finite measure � such that 
ℚ is the Palm measure of � w.r.t. � , that is ℚ = 𝜈(⋅ ∩ {|Y0| > 1}) . In Sect. 6 we shall 
prove among other things that � is �-homogeneous, that is a tail measure. In Sect. 7 
we shall prove with Theorem 7.3 that any stationary tail measure � has a spectral 
representation. While the existence of such a representation can be derived from 
(Evans and Molchanov 2018, Proposition 2.8) (see Remark 7.4), our result provides 
an explicit construction of the spectral measure in terms of the Palm measure ℚ of � 
along with further properties. Theorem 7.3 extends the stationary case of (Dombry 
et  al. 2018, Theorem 2.4) (dealing with 𝔾 = ℤ ) and (Soulier 2022, Theorem 2.3) 
(dealing with the case 𝔾 = ℝ ) to general Abelian groups. We also characterize a 
moving shift representation. In the final Sect. 8 we study anchoring maps, as defined 
in Planinić (2023); Soulier (2022) for mass-stationary fields with the property 
ℚ(0 < 𝜉(𝔾) < ∞) = 1 . Proposition 8.1 extends (Planinić 2023, Proposition 3.2) to 
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general Abelian groups. In the remainder of the section we assume Y to be spectrally 
decomposable. Motivated by (Soulier 2022, Section 2.3) we provide some informa-
tion on the candidate extremal index.

In this paper we treat tail processes in an intrinsic way, namely as a spectrally 
decomposable random field Y = (Ys)s∈� such that � is mass-stationary. This is in line 
with the developments in Dombry et al. (2018); Kulik and Soulier (2020); Soulier 
(2022) and in the recent preprints Bladt et al. (2022); Hashorva (2021).

2  Some Palm calculus

Assume that � is a locally compact Hausdorff group with Borel �-field G and (non-
trivial) Haar measure � . Important special cases are 𝔾 = ℤ

d with � being the count-
ing measure and 𝔾 = ℝ

d with � being the Lebesgue measure. Let M denote the 
space of measures on � which are locally finite (that is, finite on compact sets) and 
let M be the smallest �-field on M making the mappings � ↦ �(B) measurable for 
all B ⊂ � . Let N be the measurable subset of M of those � ∈ M which are integer-
valued on relatively compact Borel sets. Let (Ω,A,ℙ) be a �-finite measure space. 
At the moment the reader might think of ℙ as of a probability measure. However, for 
our later purposes it is important to allow for ℙ(Ω) = ∞ . Still we shall use a proba-
bilistic language. A random measure (resp. point process) � on � is a measurable 
mapping � ∶ Ω → M (resp. � ∶ Ω → N ). We find it convenient to use this terminol-
ogy even without reference to a (probability) measure on (Ω,A) . We often use the 
kernel notation �(�,B) ∶= �(�)(B) , (�,B) ∈ Ω × G . A point process � is said to be 
simple, if �(�, {s}) ≤ 1 for all (�, s) ∈ Ω × �.

Next we give a short but self-contained introduction into Palm calculus, using the 
setting from Neveu (1977) and Last and Thorisson (2009). A more comprehensive 
summary can be found in Last (2010). Assume that � acts measurably on (Ω,A) . 
This means that there is a family of measurable mappings �s ∶ Ω → Ω , s ∈ � , such 
that (�, s) ↦ �s� is measurable, �0 is the identity on Ω and

where ◦ denotes composition. The family {�s ∶ s ∈ �} is said to be (measurable) 
flow on Ω . A random measure on � is said to be invariant (w.r.t. to the flow) or 
flow-adapted if

Let us illustrate these concepts with two examples.

Example 2.1 Assume that (Ω,F) = (M,M) and define �s� ∶= �(⋅ + s) , for � ∈ M 
and s ∈ � . Then {�s ∶ s ∈ �} is a flow and the identity on M is invariant.

Example 2.2 Let ℍ be a (non-empty) Polish space equipped with the Borel �-
field H and consider the space ℍ𝔾 of all functions � ∶ 𝔾 → ℍ . For each s ∈ � we 
define the shift-operator �s ∶ ℍ

𝔾
→ ℍ

𝔾 by �s� ∶= �(⋅ + s) . Assume now that F is 

(2.1)�s◦�t = �s+t, s, t ∈ �,

(2.2)�(�,B + s) = �(�s�,B), � ∈ Ω, s ∈ �,B ∈ G.
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shift-invariant subset of ℍ𝔾 equipped with a �-field F  such that (�, s) ↦ (�s�,�(0)) 
is measurable with respect to F⊗H . For instance we can take 𝔾 = ℝ

d , ℍ = ℝ , F 
as the Skorohod space of all càdlàg functions (see e.g. Janson (2021)) and F  as 
the smallest �-field rendering the mappings � ↦ �(t) , t ∈ � , measurable. Then even 
(�, t) ↦ �(t) is measurable and therefore also (�, s) ↦ �s� , as required. An example 
of an invariant random measure (defined on F ) is �(�) ∶= ∫ 1{t ∈ ⋅}f (�t�) �(dt) , 
where f ∶ F → [0,∞) is measurable and bounded.

In view of the preceding examples it is helpful to think of �s� as of � shifted by 
s. A measure ℙ on (Ω,A) is called stationary if it is invariant under the flow, i.e.

where �s is interpreted as a mapping from A to A in the usual way:

Throughout the paper ℙ will denote a �-finite stationary measure on (Ω,A).
Let B ∈ G be a set with positive and finite Haar measure �(B) and � be an invar-

iant random measure on � . The measure

is called the Palm measure of � (with respect to ℙ).
For discrete groups the previous definition becomes very simple:

Example 2.3 Assume that � is discrete. Then we can take B ∶= {0} and obtain that

The intensity of � is the number �� ∶= 𝔼[�(B)] = ℙ�(Ω) . If this intensity is pos-
itive and finite then the normalized Palm measure

is called Palm probability measure of � (w.r.t. ℙ ). Note that ℙ� and ℙ0
�
 are defined on 

the underlying space (Ω,A) . The Palm distribution of � is the distribution ℙ0
�
(� ∈ ⋅) 

of � under ℙ0
�
 . If � is a simple point process (that is �({s}) ≤ 1 for all s ∈ � ), the 

number ℙ0
�
(A) can be interpreted as the conditional probability of A ∈ A given that � 

has a point at 0 ∈ �.
In the general case the Palm measure ℙ� is �-finite. Moreover, if 𝛾𝜉 > 0 and A ∈ A 

is flow-invariant (that is �sA = A for each s ∈ � ), then ℙ(A) = 0 iff ℙ�(A) = 0 . Since 
the definition (2.3) does not depend on B, we have the refined Campbell theorem

ℙ◦�s = ℙ, s ∈ 𝔾,

�sA ∶= {�s� ∶ � ∈ A}, A ∈ A, s ∈ �.

(2.3)ℙ�(A) ∶= �(B)−1 ∬ 1A(�s�)1B(s) �(�, ds)ℙ(d�), A ∈ A,

ℙ�(A) = 𝔼1A�({0}).

ℙ
0
�
∶= �−1

�
ℙ�

(2.4)∬ f (�s�, s) �(�, ds)ℙ(d�) = ∬ f (�, s) �(ds)ℙ�(d�)
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for all measurable f ∶ Ω × � → [0,∞] . We write this as

where � and 𝔼
ℙ�

 denote integration with respect to ℙ and ℙ� , respectively. Note that

If � is a point process, then ℙ� is concentrated on the event {� ∈ Ω ∶ �(�, {0}) ≥ 1}.
Let � be an invariant random measure on � and let h̃ ∶ Ω × � → [0,∞] be a 

measurable function such ∫ h̃(𝜃0, s) 𝜉(ds) = 1{𝜉(�) > 0} ℙ-a.e. Then the refined 
Campbell theorem implies the inversion formula

for each measurable f ∶ Ω → [0,∞] ; see also Mecke (1967). This shows that the 
restriction of the measure ℙ to {𝜉(�) > 0} is uniquely determined by ℚ.

Let � and � be two invariant random measures on � and g ∶ Ω × � → [0,∞] be 
measurable. Neveu’s Neveu (1977) exchange formula says that

3  Allocations, point‑ and mass‑stationarity

As in Sect. 2 we consider a measurable space (Ω,A) equipped with a measurable 
flow {�s ∶ s ∈ �} and a stationary �-finite measure ℙ.

A measurable function � ∶ Ω × � → � ∪ {∞} (it is understood here that ∞ ∉ � ) 
is said to be an allocation, if it satisfies the covariance property

where ∞− t ∶= ∞ . Given such an allocation we define the (random) sets

where, as usual, �(t) ∶= �(⋅, t).
The following result generalizes (Last 2010, Theorem 4.1). The latter arises in the 

special case where 𝔾 = ℝ
d and � equals Lebesgue measure. We denote by supp� the 

support of a measure � on �.

Proposition 3.1 Suppose that � is an invariant random measure and that � is a sim-
ple invariant point process. Let � be an allocation satisfying

(2.5)𝔼

[

∫ f (�s, s) �(ds)

]
= 𝔼

ℙ�

[

∫ f (�0, s) �(ds)

]
,

(2.6)ℙ�(�(𝔾) = 0) = 0.

(2.7)𝔼1{𝜉(𝔾) > 0}f = 𝔼
ℙ𝜉 ∫ f (𝜃−s)h̃(𝜃−s, s) 𝜆(ds),

(2.8)𝔼
ℙ�

[

∫ g(�0, s) �(ds)

]
= 𝔼

ℙ�

[

∫ g(�s,−s) �(ds)

]
.

(3.1)�(�t�, s − t) = �(�, s) − t, s, t ∈ �, � ∈ Ω,

(3.2)C�(s) ∶= {t ∈ � ∶ �(t) = s}, s ∈ �,
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Let h ∶ Ω × Ω → [0,∞] be measurable. Then

Proof It follows from (2.2) and (3.1) that the event consisting of all � ∈ Ω satisfying

is shift-invariant. Therefore,

The proof proceeds now as the one of (Last 2010, Theorem 4.1), applying the 
exchange formula (2.8) instead of the refined Campbell theorem. We apply (2.8) 
with the function (�, s) ↦ h(�, �s�)1{�(�, 0) = s} . In view of (3.4), the left-hand 
coincides with the left-hand side of (3.3). The right-hand side equals

Since �(�s, 0) = �(�0, s) − s , this equals the right-hand side of (3.3).  ◻

Let � , � and � be as in Proposition 3.1 and assume moreover that ℙ-a.e. �(C�(s)) = 1 
for all s ∈ supp � . Then (3.3) implies the shift-coupling

The additional assumption on � is equivalent to the balancing property

Since the above balancing event is easily seen to be flow-invariant, equation (3.6) 
does also hold ℙ�-a.e. and ℙ�-a.e. Of particular interest is the case � = � . Then (3.6) 
implies ℙ-a.e. that �(s) ≠ ∞ for all s ∈ supp � and (3.6) means that �(�, ⋅) induces 
for ℙ-a.e. � a bijection between the points of supp � . We say that � is a bijective point 
map for � w.r.t. ℙ (see Thorisson (2007); Heveling and Last (2005)) and use this ter-
minology also for other measures ℙ.

Given an invariant simple point process � and a measure ℚ on Ω , we call � point-
stationary if ℚ(0 ∉ supp �) = 0 and ℚ(��(0) ∈ ⋅) = ℚ holds for each bijective point 
map � for � w.r.t. ℚ . It was proved in Heveling and Last (2005) that a �-finite measure 
ℚ on Ω is point-stationary iff it is the Palm measure of � with respect to some �-finite 
stationary measure on Ω . A key ingredient of the proof is the following intrinsic char-
acterization of general Palm measures; see (Mecke 1967, Satz 2.5). Mecke proved his 
fundamental result in a canonical setting. As discussed in Last and Thorisson (2009) 
his proof applies in our more general framework.

�(s) ∈ supp � ∪ {∞}, �-a.e. s ∈ 𝔾, ℙ-a.e.

(3.3)𝔼
ℙ�
1{�(0) ≠ ∞}h(�0, ��(0)) = 𝔼

ℙ� �C� (0)

h(�s, �0) �(ds).

�(�, {s ∈ � ∶ �(�, s) ∉ ( supp �(�) ∪ {∞}}) = 0

(3.4)ℙ�(�(0) ∉ ( supp � ∪ {∞})) = 0.

𝔼
ℙ� ∫ h(�s, �0)1{�(�s, 0) = −s} �(ds).

(3.5)𝔼
ℙ�
1{�(0) ≠ ∞}1{��(0) ∈ ⋅) = ℙ� .

(3.6)� 1{�(s) ≠ ∞, �(s) ∈ ⋅} �(ds) = �, ℙ-a.e.
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Theorem 3.2 (Mecke 1967) Let � be an invariant random measure on � and ℚ be a 
�-finite measure on (Ω,A) . Then ℚ is the Palm measure of � w.r.t. a �-finite station-
ary measure on Ω iff ℚ(�(𝔾) = 0) = 0 and

for all measurable g ∶ Ω × � → [0,∞] . Equation (3.7) determines the stationary 
measure on {𝜉(�) > 0}.

The final assertion of Theorem 3.2 follows from the inversion formula (2.7).
Point stationarity was extended in Last and Thorisson (2009) to mass-stationarity of 

an invariant random measure � w.r.t. a given �-finite measure ℚ on Ω . Roughly speak-
ing, mass-stationarity of � can be described as follows. Let C ∈ G be a relatively com-
pact set with positive Haar measure whose boundary is not charged by � . Let U be a 
random element of � , independent of � and with distribution �(C)−1�(C ∩ ⋅) . Given 
(�,U) pick a random point V according to the normalized restriction of � to C − U . If ℚ 
is the Palm measure of � w.r.t. some stationary measure, then

As shown by (Last and Thorisson 2009,  Theorem  6.3), a version of this property 
(assumed to be true for all C as above) is equivalent to (3.7) and hence provides another 
intrinsic chracterization of Palm measures. Justified by this result we call � mass-stationary 
(w.r.t. ℚ ) if (3.7) holds. In this paper ℚ will always denote a probability measure while, as a 
rule, ℙ is only �-finite.

4  Exceedance random measures

Let ℍ be a (non-empty) Polish space equipped with the Borel �-field H . Assume that 
| ⋅ | ∶ ℍ → [0,∞) is a measurable mapping. One might think of ℍ = ℝ

d equipped with 
the Euclidean norm.

In this and later sections we consider a measurable mapping Y ∶ Ω × 𝔾 → ℍ . For 
s ∈ � we write Ys for the random variable � ↦ Ys(�) . Then Y can be considered as a 
(measurable) random field (Ys)s∈� . We assume the shift-covariance

We call

the exceedance measure of Y. By (4.1) this is an invariant random measure. If � is 
discrete, � is a simple point process. The Palm measure of � takes a rather simple form:

Lemma 4.1 Let ℙ be a �-finite stationary measure on Ω . Then

(3.7)𝔼
ℚ ∫ g(�s,−s) �(ds) = 𝔼

ℚ ∫ g(�0, s) �(ds)

ℚ((�◦�V ,U + V) ∈ ⋅) = ℚ((�,U) ∈ ⋅).

(4.1)Ys(�t�) = Ys+t(�), (�, s, t) ∈ Ω × � × �.

(4.2)𝜉 ∶= ∫ 1{s ∈ ⋅, |Ys| > 1} 𝜆(ds)
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Proof Let B ∈ G satisfy �(B) = 1 . Then

where we have used stationarity of ℙ to get the final equation. This proves the assertion.  ◻

In this paper we will mostly be concerned with a probability measure ℚ on (Ω,A) 
such that � is mass-stationary w.r.t. ℚ . In this case Theorem 3.2 shows that there exists 
a unique �-finite stationary measure ℙ on Ω satisfying ℙ� = ℚ and ℙ(�(𝔾) = 0) = 0 . 
If ℚ(𝜉(𝔾) < ∞) = 1 then ℙ cannot be finite:

Remark 4.2 Let ℚ be as above and assume that ℚ(0 < 𝜉(𝔾) < ∞) = 1 . Define a 
measure ℙ on Ω by

Since �(�) is invariant under shifts, this measure is stationary. Let f ∶ M → [0,∞] 
be measurable and B ∈ G with �(B) = 1 . A simple calculation (using invariance of � 
and Fubini’s theorem) shows that

Since we have assumed � to be mass-stationary, we can use the Mecke equation 
(3.7) to find that the latter expression equals 𝔼

ℚ
f  . Hence ℚ is the Palm measure of � . 

Note that ℙ(Ω) = ∞ , unless 𝜆(�) < ∞.

5  Spectrally decomposable fields

In this and later sections we take (Ω,A) as the function space (F,F) satisfying the 
assumptions of Example 2.2. In addition we assume that ℍ is a measurable cone, 
that is, there exists a measurable mapping (u, x) ↦ u ⋅ x from (0,∞) × ℍ to ℍ such 
that 1 ⋅ x = x and u ⋅ (v ⋅ x) = (uv) ⋅ x for all x ∈ ℍ and u, v ∈ (0,∞) . We mostly 
write ux instead of u ⋅ x . The function | ⋅ | is assumed to be homogeneous, that 
is |ux| = u|x| for all u > 0 and x ∈ ℍ . If � ∈ ℍ

𝔾 and u ∈ (0,∞) , then, as usual, 
u ⋅ � ≡ u� is the function in ℍ𝔾 given by u�(s) ∶= u ⋅ �(s) , s ∈ � . We assume that 
F is closed under the action of (0,∞) . The �-field F  has been assumed to render 
the mapping (�, s) ↦ (�s�,�(0)) to be measurable and we assume now in addition 
that the mapping (�, u) ↦ u ⋅ � is measurable on F × (0,∞) . If � is discrete, then 

(4.3)ℙ𝜉 = ℙ(⋅ ∩ {|Y0| > 1}).

ℙ𝜉 = 𝔼
ℙ ∫ 1{𝜃s ∈ ⋅}1{s ∈ B} 𝜉(ds) = 𝔼

ℙ ∫ 1{𝜃s ∈ ⋅}1{s ∈ B, |Ys| > 1} 𝜆(ds)

= ∫B

𝔼
ℙ
[1{𝜃s ∈ ⋅, |Ys| > 1}] 𝜆(ds) = ∫B

𝔼
ℙ
[1{𝜃0 ∈ ⋅, |Y0| > 1}] 𝜆(ds),

(4.4)ℙ ∶= 𝔼
ℚ
�(𝔾)−1 ∫ 1{�s ∈ ⋅} �(ds).

𝔼
ℙ ∫ 1{s ∈ B}f◦�s �(ds) = 𝔼

ℚ
�(𝔾)−1 ∫ f◦�s �(ds).
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we take F = ℍ
𝔾 and equip it with the product �-algebra. We write Ys for the map-

ping � ↦ �(s) , s ∈ � , and note that (�, s) ↦ Ys(�) is measurable. We also write 
Y ∶= (Ys)s∈� , which is simply the identity on F . We define another random field 
W, by Ws ∶= |Y0|−1Ys if |Y0| > 0 and by Ws ∶= x0 otherwise, where x0 is some 
fixed element of ℍ with |x0| = 1 . Since we do not assume ℍ to contain a zero ele-
ment we make the general convention |y|−1x ∶= x0 whenever x, y ∈ ℍ and |y| = 0.

Remark 5.1 Assume that F′
⊂ ℍ

𝔾 is shift-invariant and closed under the action of 
(0,∞) . Assume that F′ is equipped with the Kolmogorov product �-field, that is, the 
smallest �-field making the mappings � ↦ �(s) (from F′ to ℍ ) measurable for each 
s ∈ � . Assume, moreover, that (�, s) ↦ �(s) is a (jointly) measurable mapping on 
F
�
× � . Then it is easy to see that (�, s, u) ↦ (�s�, u ⋅ �) is a measurable function 

on F�
× � × (0,∞) . This shows that for a proper choice of F , the product �-field is a 

natural candidate for F .

We often consider a probability measure ℚ on F with the following properties. 
The probability measure ℚ(|Y0| ∈ ⋅) is a Pareto distribution on (1,∞) with param-
eter 𝛼 > 0 and W is independent of |Y0| . To achieve this, we take a probability meas-
ure ℚ′ on F such that ℚ�(|Y0| = 1) = 1 and define

For the special groups 𝔾 = ℤ
d and 𝔾 = ℝ such processes occur in extreme 

value theory; see the seminal paper Basrak and Segers (2009) (treating 𝔾 = ℤ ) 
and Kulik and Soulier (2020); Dombry et al. (2018); Soulier (2022). Note that W 
is a measurable function of Y, that ℚ(W ∈ ⋅) = ℚ

� and that the pair (W, Y0) has the 
desired properties. We say that Y is spectrally decomposable with index � (w.r.t. 
ℚ ) or, synonomously, that ℚ is spectrally decomposable.

Define the exceedance random measure � by (4.2). If ℚ is given as in (5.1), 
it is natural to characterize mass-stationarity of � (w.r.t. ℚ ) in terms of suitable 
invariance properties of the field W. In the context of tail processes the follow-
ing property (5.2) was proved in Basrak and Segers (2009) in the case 𝔾 = ℤ (see 
also Dombry et al. (2018); Planinić and Soulier (2018)) and in the case 𝔾 = ℝ in 
Soulier (2022). The fact that (5.2) implies mass-stationarity in the case 𝔾 = ℤ

d 
was derived in Planinić (2023), exploiting the connection to regularly varying 
random fields. We use here an intrinsic non-asymptotic approach. It is worth 
noticing that Janßen (2019) identifies (5.2) (in the case 𝔾 = ℤ ) as being charac-
teristic for the tail processes introduced in Basrak and Segers (2009).

Theorem  5.2 Assume that Y is spectrally decomposable with index � . Then the 
exceedance random measure � is mass-stationary if and only if

(5.1)ℚ ∶= ∬ 1{u𝜔 ∈ ⋅, u > 1} 𝛼u−𝛼−1 ℚ�(d𝜔) du.

(5.2)𝔼
ℚ ∫ g(𝜃sW,−s)1{|Ws| > 0} 𝜆(ds) = 𝔼

ℚ ∫ g(|Ws|−1W, s)|Ws|𝛼 𝜆(ds),
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holds for all measurable g ∶ F × � → [0,∞].

Proof Let us first assume that � is mass-stationary. We generalize the arguments 
from the proof of Lemma 2.2 in Planinić and Soulier (2018). Let h ∶ F × � → [0,∞] 
be measurable and � ∈ (0, 1] . Then

where we have made the change of variables v ∶= u∕� to get the second identity. 
Since 1∕𝜀 > 1 we obtain that

Using now the assumption (3.7) together with Y0 = (Y◦�s)−s we arrive at

that is

We apply this with h(Y , s) ∶= g(|Ys|−1Y , s) for some measurable function g ∶ F × �

→ [0,∞] , noting that

Using monotone convergence this yields

We have that

I ∶= 𝔼
ℚ ∫ h(𝜃sY ,−s)1{|Ys| > 𝜀} 𝜆(ds)

= 𝔼
ℚ ∬ h(u𝜃sW,−s)1{u|Ws| > 𝜀}1{u > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝜀−𝛼 𝔼
ℚ ∬ h(𝜀v𝜃sW,−s)1{v|Ws| > 1}1{v > 1∕𝜀}𝛼v−𝛼−1 dv 𝜆(ds),

I = 𝜀−𝛼 𝔼
ℚ ∫ h(𝜀𝜃sY ,−s)1{|Ys| > 1}1{|Y0| > 1∕𝜀} 𝜆(ds)

= 𝜀−𝛼 𝔼
ℚ ∫ h(𝜀𝜃sY ,−s)1{|Y0| > 1∕𝜀} 𝜉(ds).

I = 𝜀−𝛼 𝔼
ℚ ∫ h(𝜀Y , s)1{|Ys| > 1∕𝜀} 𝜉(ds),

(5.3)

𝔼
ℚ ∫ h(𝜃sY ,−s)1{|Ys| > 𝜀} 𝜆(ds) = 𝜀−𝛼 𝔼

ℚ ∫ h(𝜀Y , s)1{|Ys| > 1∕𝜀} 𝜆(ds).

h(�sY ,−s) = g(|(�sY)−s|−1�sY ,−s) = g(|Y0|−1�sY ,−s) = g(�sW,−s).

𝔼
ℚ ∫ g(𝜃sW,−s)1{|Ws| > 0} 𝜆(ds)

= lim
𝜀→0

𝜀−𝛼 𝔼
ℚ ∫ g(|Ws|−1W, s)1{|Y0||Ws| > 1∕𝜀} 𝜆(ds).
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As � → 0 the latter term tends to 𝔼
ℚ
∫ g(|Ws|−1W, s)|Ws|� �(ds) , yielding (5.2).

To prove the converse implication we assume that (5.2) holds. We take a measur-
able g ∶ F × � → [0,∞] and aim at establishing (3.7). We have that

For each u > 1 we can apply (5.2) with the function h̃(𝜔, s) = g(u𝜔, s)1{u|𝜔(0)| > 1} . 
Then h̃(𝜃sW,−s) = g(u𝜃sW,−s)1{u|Ws| > 1} and

Therefore

In the above inner integral we can assume that |Ws| > 0 . After the change of vari-
ables v ∶= |Ws|−1u we obtain that

establishing (3.7).  ◻

Remark 5.3 The equations (5.2) are clearly equivalent to

for all measurable h ∶ F → [0,∞] . They are also equivalent to the equations

𝜀−𝛼 𝔼
ℚ ∫ g(|Ws|−1W, s)1{|Y0||Ws| > 1∕𝜀} 𝜆(ds)

= 𝜀−𝛼 𝔼
ℚ ∫ g(|Ws|−1W, s)1{u|Ws| > 1∕𝜀}1{u > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝜀−𝛼 𝔼
ℚ ∫ g(|Ws|−1W, s)min{|Ws|𝛼𝜀𝛼 , 1} 𝜆(ds)

= 𝔼
ℚ ∫ g(|Ws|−1W, s)min{|Ws|𝛼 , 𝜀−𝛼} 𝜆(ds).

I� ∶= 𝔼
ℚ ∫ g(𝜃sY ,−s) 𝜉(ds) = 𝔼

ℚ ∫ g(𝜃sY ,−s)1{|Ys| > 1} 𝜆(ds)

= ∫
[
𝔼
ℚ ∫ g(u𝜃sW,−s)1{u|Ws| > 1} 𝜆(ds)

]
1{u > 1}𝛼u−𝛼−1 du.

h̃(|Ws|−1W, s) = g(u|Ws|−1W, s)1{u|Ws|−1 > 1}

I� = 𝔼
ℚ ∬ g(u|Ws|−1W, s)|Ws|𝛼1{u|Ws|−1 > 1, u > 1} 𝛼u−𝛼−1 du 𝜆(ds).

I� = 𝔼
ℚ ∬ g(vW, s)1{v > 1, v|Ws| > 1} 𝛼v−𝛼−1 dv 𝜆(ds)

= 𝔼
ℚ ∬ g(Y , s)1{|Ys| > 1} 𝜆(ds),

(5.4)𝔼
ℚ
h(𝜃−sW)1{|W−s| > 0} = 𝔼

ℚ
h(|Ws|−1W)|Ws|𝛼 , 𝜆-a.e. s ∈ 𝔾,

(5.5)𝔼
ℚ ∫ g(W,−s)1{|Ws| > 0} 𝜆(ds) = 𝔼

ℚ ∫ g(|Ws|−1𝜃sW, s)|Ws|𝛼 𝜆(ds).
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as well as to the equations

To see the latter equivalence, we can use the function h̃ ∶ F × � → [0,∞) given 
by h̃(𝜔, s) ∶= |𝜔(−s)| . If |Ws| > 0 we have that h̃(|Ws|−1𝜃sW, s) = |Ws|−1 . Applying 
(5.5) with g ⋅ h̃𝛼 instead of g yields (5.6).

Remark 5.4 Assume that � is discrete and that Y is spectrally decomposable with 
index � . Then � is mass-stationary iff

holds for all measurable g ∶ F → [0,∞] and all s ∈ �.

In the case 𝔾 = ℤ equation (5.2) (see also equation (5.7)) was called time 
change formula. In our general setting (and in particular for 𝔾 = ℤ

d or 𝔾 = ℝ
d ) 

this terminology might be replaced by space shift formula. We can rewrite (5.2) as

where �′ is the invariant random measure defined by

This makes the intimate relationship between (3.7) and (5.2) even more transparent.

Remark 5.5 If ℙ(��(𝔾) = 0) = 1 then the equations (5.2) are empty. In the spectrally 
positive case it is, however, quite natural to assume that ℙ(��(𝔾) = 0) = 0 . Indeed, 
if � is discrete or if Y has suitable continuity properties. then this follows from 
ℙ(|Y0| > 0) = 0.

In the spectrally decomposable case the space-shift formula has the following 
equivalent version; see Planinić and Soulier (2018); Soulier (2022).

Lemma 5.6 Assume that Y is spectrally decomposable with index � . Then 
the equations (5.2) hold iff the following equations holds for all measurable 
g ∶ F × � → [0,∞]:

Proof Assume that the equations (5.10) hold. Clearly they are equivalent with (5.3). 
We have already seen in the proof of Theorem 5.2 that (5.3) implies (5.2).

(5.6)𝔼
ℚ ∫ g(W,−s)|Ws|𝛼 𝜆(ds) = 𝔼

ℚ ∫ g(|Ws|−1𝜃sW, s)1{|Ws| > 0} 𝜆(ds).

(5.7)𝔼
ℚ
g(𝜃−sW)1{|W−s| > 0} = 𝔼

ℚ
g(|Ws|−1W)|Ws|𝛼

(5.8)𝔼
ℚ ∫ g(�sW,−s) ��(ds) = 𝔼

ℚ ∫ g(|Ws|−1W, s)|Ws|� ��(ds),

(5.9)𝜉� ∶= ∫ 1{s ∈ ⋅, |Ws| > 0} 𝜆(ds).

(5.10)

𝔼
ℚ ∫ g(Y , s)1{|Ys| > u} 𝜆(ds) = u−𝛼 𝔼

ℚ ∫ g(u𝜃−sY , s)1{u|Y−s| > 1} 𝜆(ds), u > 0.
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Assume, conversely, that (5.2) holds. We can assume that ℙ(𝜉�(𝔾) > 0) > 0 . (Other-
wise there is nothing to prove.) Define ℚ̃ ∶= ℚ(⋅|𝜉�(𝔾) > 0) and ℚ�� ∶= ℚ

�(⋅|𝜉�(𝔾) > 0) . 
Then (5.1) holds with (ℚ,ℚ�) replaced by (ℚ̃,ℚ��) . Hence ℚ̃ is spectrally decomposable. 
The measure ℚ satisfies (5.10) (resp. (5.2)) iff this is the case for ℚ̃ . Hence it is no loss 
of generality to assume that ℚ(𝜉�(𝔾) > 0) = 1 . Corollary 6.12 will show that there is a �
-finite stationary measure � on F such that ℚ = �� . Equation (5.10) then follows easily from 
the homogeneity of � , to be discussed in the next section; see Remark 6.14.   ◻

Remark 5.7 Assume that � is discrete. Assume also that ℚ(|Y0| > 1) = 1 and that 
(5.10) holds. Then we can take a measurable h ∶ F → [0,∞) and apply (5.10) with 
g(Y , s) ∶= 1{s = 0}h

(
|Y0|−1Y

)
1{|Y0| > u} and u > 1 to see that Y is spectrally 

decomposable; see (Kulik and Soulier (2020), Section 5.4).

In the following we denote �-finite (stationary) measures on F with greek let-
ters. This is at odds with Sect.  2 (and parts of point process literature), but in 
accordance with extreme value theory.

Remark 5.8 Assume that Y is spectrally decomposable and that the exceedance ran-
dom measure � is mass-stationary and satisfies ℚ(�(𝔾) = 0) = 0 . By Theorem 3.2, 
there exists a unique �-finite stationary measure � such that �(�(�) = 0) = 0 and 
�� = ℚ . Let H ∶ F × � → [0,∞) be measurable such that

By the inversion formula (2.7) we have that

Inserting here the spectral decomposition (5.1), yields

Example 5.9 Consider the setting of Remark 5.8 and assume moreover that � is dis-
crete. Let � be an allocation such that

Then we can apply (5.12) with H(Y , s) ∶= 1{�(Y , 0) = s} . Since �(�−sY , 0) =
�(Y ,−s) + s we can change variables s ∶= −s to obtain that the measure (5.12) is 
given by

(5.11)∫ H(Y , s)1{|Ys| > 1} 𝜆(ds) = 1, 𝜈-a.e.

� = 𝔼
ℚ ∫ 1{�−sY ∈ ⋅}H(�−sY , s) �(ds).

(5.12)𝜈 = 𝔼
ℚ ∬ 1{u𝜃−sW ∈ ⋅}H(u𝜃−sW, s)1{u > 1} 𝛼u−𝛼−1 du 𝜆(ds).

(5.13)
∑

s∈�

1{𝜏(Y , 0) = s, |Ys| > 1} = 1, 𝜈-a.e.

(5.14)𝜈 = 𝔼
ℚ

∑

s∈𝔾
∫ 1{u𝜃sW ∈ ⋅, 𝜏(uW, s) = 0}1{u > 1} 𝛼u−𝛼−1 du.
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Remark 5.10 The preceding results can be generalized as follows. Let (Ω,A) be a 
measurable space and suppose that that there is measurable action (u,�) ↦ u� from 
(0,∞) × Ω to Ω . Let Y be a random element of F satisfying (4.1) and also

Let ℚ be a probability measure on Ω given by (5.1), where ℚ′ is a probability 
measure on Ω such that ℚ�(|Y0| = 1) = 1 . Then � is mass-stationary w.r.t. ℚ iff

for each measurable g ∶ F × � → [0,∞] , where �s� ∶= |Y0(�)|−1�s� , � ∈ Ω , 
whenever |Y0(𝜔)| > 0 . Such a generalization is certainly useful when considering 
more randomness. For instance we may consider a second Polish space ℍ′ and a suit-
able subset of (ℍ × ℍ

�)𝔾 . The shifts are defined as before, while multiplication acts 
only on the first component Y(�) of an element � ∈ (ℍ × ℍ

�)𝔾 . If ℚ(�(𝔾) = 0) = 0 , 
Palm theory would still guarantee the existence of stationary measure ℙ (uniquely 
determined on {𝜉(�) > 0} ) such that ℙ𝜉 = ℙ(⋅ ∩ {|Y0| > 1}) = ℚ.

6  Tail measures

In this section we let (F,F) be as in Sect. 5. Throughout we work with the exceed-
ance random measure � (defined by (4.2)) and the random measure �′ , defined by 
(5.9). We say that a measure � on F is a tail measure if

and if there exists an 𝛼 > 0 such that � is � -homogeneous, that is

In accordance with the literature we call � the index of �.
This definition extends the one in Dombry et  al. (2018). A rather general (but 

slightly different) definition of a tail measure has very recently been given in Bladt 
et al. (2022). In this paper we are mostly interested in stationary tail measures. In 
this case (6.2) implies that B ↦ ���(B) (the intensity measure of � ) is a finite multi-
ple of the Haar measure � . In accordance with the literature we shall always assume 
then, that this multiple equals 1, that is

(5.15)Ys(u�) = uYs(�), (�, s, u) ∈ Ω × � × (0,∞).

(5.16)𝔼
ℚ ∫ g(𝜗s,−s)1{|Ws| > 0} 𝜆(ds) = 𝔼

ℚ ∫ g(|Ws|−1𝜗0, s)|Ws|𝛼 𝜆(ds),

(6.1)∫ 1{|Ys| > 0} 𝜆(ds) > 0, 𝜈-a.e.,

(6.2)�𝜈𝜉(B) < ∞, B ∈ G compact,

(6.3)𝜈(uY ∈ ⋅) = u𝛼𝜈(Y ∈ ⋅), u > 0.

(6.4)�𝜈 ∫ 1{s ∈ B, |Ys| > 1} 𝜆(ds) = 𝜆(B), B ∈ G,
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or, equivalently,

Up to Remark 6.1 our definition of a stationary tail measure generalizes the one 
given Soulier (2022) in the case 𝔾 = ℝ.

If ℚ is a probability measure on F such that ℚ(�(𝔾) = 0) = 0 and � is mass-stationary  
w.r.t. ℚ , then Theorem  3.2 shows that there exists a stationary measure � on F 
(uniquely determined on {𝜉(�) > 0} ) such that ℚ = �� is the Palm measure of � w.r.t. 
� . The main purpose of this section is to show that, if ℚ is spectrally decomposable, 
then � is a tail measure.

Remark 6.1 Condition (6.1) means that �(��(�) = 0) = 0 and should be compared 
with the condition �(Y ≡ 0) = 0 , made in Soulier (2022). Our assumption is (slightly) 
stronger, also in the stationary case. Without any topological structure of F such a 
stronger assumption appears to be appropriate. (The set {Y ≡ 0} does not even need 
to be measurable.)

If � is a �-finite measure on F and � a random measure on � we define the Camp-
bell measure

which is a measure on F × � . It is well-known (and easy to prove) that C�,�′ deter-
mines ℙ on the event {𝜉�(�) > 0} . For tail measures this can be refined as follows.

Lemma 6.2 Let � be a tail measure on F . Then � is �-finite and uniquely determined 
by C�,�.

Proof It follows from (6.1) and (6.2) that

for each c > 0 and whenever B ⊂ � is compact. Take a sequence Bk , k ∈ ℕ , of com-
pact sets increasing towards � . Then � is finite on the sets

which increase towards 
{
𝜔 ∈ F ∶ ∫ 1{|𝜔(s)| > 0} 𝜆(ds) > 0

}
 . In view of (6.1) we 

obtain that � is �-finite.
By homogeneity the Campbell measure C�,� determines the Campbell measures

(6.5)𝜈(|Y0| > 1) = 1.

C�,� ∶= �� ∫ 1{(Y , s) ∈ ⋅} �(ds),

�𝜈 ∫ 1{s ∈ B, |Ys| > c} 𝜆(ds) < ∞

(6.6)Uk ∶=

{
� ∈ F ∶ � 1{s ∈ Bk, |�(s)| ≥ 1∕k} �(ds) ≥ 1∕k

}
, k ∈ ℕ,

�𝜈 ∫ 1{(Y , s) ∈ ⋅}1{|Ys| > c} 𝜆(ds)
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for each c > 0 and hence also C�,�′ . Take a measurable h̃ ∶ F × � → [0,∞) such that 
∫ h̃(𝜔, s)𝜉�(ds) = 1 , whenever 𝜉�(𝜔,�) > 0 ; see Remark 6.11. Then we obtain for 
each measurable g ∶ F → [0,∞] that

Since �(��(�) = 0) = 0 , this proves the second assertion.  ◻

Given a �-finite stationary measure � on F , we recall that 𝜈𝜉 = 𝜈(⋅ ∩ {|Y0| > 1}) 
is the Palm measure of � w.r.t. � . If �(��(�) = 0) = 0 (e.g. if � is a tail measure), 
then the definition (2.3) and the shift-invariance of the event {�� = 0} show that

Corollary 6.3 A stationary tail measure � is uniquely determined by ��.

Proof Let �′ be another stationary tail measure with �� = ��
�
 . By the refined Campbell 

theorem (2.4) we obtain that C�,� = C��,� . Lemma 6.2 shows that � = �� , as asserted.

Next we connect tail measures with spectrally decomposable fields. The first 
part of the following proposition is a classical result.

Proposition 6.4 Let � be a stationary tail measure with index 𝛼 > 0 . Then there 
exists a probability measure ℚ′ on F such that ℚ�(|Y0| = 1) = 1 and

Moreover, � is mass-stationary with respect to the probability measure

Further we have �� = ℚ.

Proof The first part follows by a classical argument; see also Evans and Molchanov 
(2018) for a general version. For the convenience of the reader we give the short 
proof. Define

By (6.5) (and stationarity), this is a probability measure and we have that 
ℚ

�(|Y0| = 1) = 1 by definition. Take u > 0 and A ∈ F  . By (6.3),

This implies (6.8).

�𝜈1{𝜉
�(�) > 0}g(Y) = �𝜈 ∫ g(Y)h̃(Y , s) 𝜉�(ds) = ∫ g(𝜔)h̃(𝜔, s)C𝜈,𝜉� (d(𝜔, s)).

(6.7)��(�
� = 0) = 0.

(6.8)𝜈(⋅ ∩ {|Y0| > 0}) = ∬ 1{u𝜔 ∈ ⋅}1{u > 0} 𝛼u−𝛼−1 ℚ�(d𝜔) du.

(6.9)ℚ ∶= ∬ 1{u𝜔 ∈ ⋅}1{u > 1} 𝛼u−𝛼−1 ℚ�(d𝜔) du.

ℚ
� ∶= 𝜈({𝜔 ∈ F ∶ |𝜔(0)| > 1, |𝜔(0)|−1𝜔 ∈ ⋅}).

𝜈({𝜔 ∈ F ∶ |𝜔(0)| > u, |𝜔(0)|−1𝜔 ∈ A} = u−𝛼 ℚ�(A).
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To prove the second assertion we proceed similarly as in the first part of the proof 
of Theorem 5.2. Let us first note, that

Let h ∶ F × � → [0,∞] be measurable and � ∈ (0, 1] . Then

By (6.8) and ℚ�(|W0| = 1) = 1,

where we have used stationarity, to obtain the second equality. From here we can 
proceed as in the proof of Theorem 5.2 to obtain (5.2).

The final assertion �� = ℚ follows from (6.10) and Lemma 4.1.  ◻

Remark 6.5 Let � be a tail measure. By Proposition 6.4, ��(W ∈ ⋅) ( = ℚ ) determines 
�� and hence, by Corollary 6.3 also �.

Generalizing (Dombry et al. 2018, Theorem 2.9) (treating 𝔾 = ℤ ) and (Soulier 
2022, Theorem 2.3) (treating 𝔾 = ℝ ) we next provide a construction of a stationary 
tail measure � , assuming the space shift formula (5.2) to hold for some given prob-
ability measure ℚ . This measure � satisfies �� = ℚ . A function h from F into some 
space is said to be 0-homogeneous if h(u�) = h(�) for each � ∈ F and each u > 0.

Theorem  6.6 Assume that ℚ is a spectrally decomposable probability measure 
on F such that the space shift formula (5.2) holds for some 𝛼 > 0 . Assume that 
H ∶ F × � → [0,∞] is a measurable function, 0-homogeneous in the first coordi-
nate and such that

Define a measure �H on F by

Then �H is a stationary tail measure satisfying (�H)� = ℚ.

(6.10)ℚ = 𝜈(⋅ ∩ {|Y0| > 1}).

I ∶= 𝔼
ℚ ∫ h(𝜃sY ,−s)1{|Ys| > 𝜀} 𝜆(ds)

= 𝔼
ℚ� ∬ h(u𝜃sW,−s)1{u|Ws| > 𝜀, u > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝜀−𝛼 𝔼
ℚ� ∬ h(𝜀v𝜃sW,−s)1{v|Ws| > 1, v > 𝜀−1}𝛼v−𝛼−1 dv 𝜆(ds).

I = 𝜀−𝛼 �𝜈 ∬ h(𝜀𝜃sY ,−s)1{|Ys| > 1, |Y0| > 𝜀−1}𝛼v−𝛼−1 dv 𝜆(ds)

= 𝜀−𝛼 �𝜈 ∬ h(𝜀Y ,−s)1{|Y0| > 1, |Y−s| > 𝜀−1}𝛼v−𝛼−1 dv 𝜆(ds),

(6.11)∫ H(𝜃tW, s − t)1{|Ws| > 0} 𝜆(ds) = 1, 𝜆-a.e. t, ℚ-a.s.

(6.12)𝜈H = 𝔼
ℚ ∬ 1{u𝜃−sW ∈ ⋅}H(𝜃−sW, s)1{u > 0}𝛼u−𝛼−1 du 𝜆(ds).
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Proof For the proof we generalize some of the arguments from Dombry et  al. 
(2018); Soulier (2022). The fact that �H is �-homogeneous is an immediate conse-
quence of the definition. Assumption (6.11) implies that ℚ(��(𝔾) = 0) = 0 . Since 
{��(�) = 0} is shift and scale invariant, we obtain again directly from the definition 
of �H that �H(��(�) = 0) = 0 , that is (6.1).

Let f ∶ F × � → [0,∞] be measurable and set 𝜌(du) ∶= 1{u > 0}𝛼u−𝛼−1du . 
Then

where we have used the homogeneity of H and a change of variables. By the invari-
ance properties of Haar measure (set r ∶= t − s in the inner integral),

Now we can use assumption (5.2) (and again the homogeneity of H) to obtain that

By assumption (6.11),

From (6.13) we conclude that (6.4) holds for � = �H . The right-hand side of 
(6.13) does not depend on the specific choice of H. Take r ∈ � and apply (6.13) with 
Hr instead of H, where Hr(�, s) ∶= H(�r�, s − r) . Lemma 6.2 yields that �H = �Hr . 
On the other hand we obtain for each measurable g ∶ F → [0,∞] that

which equals ��Hg(Y) . Hence �H is stationary and (6.13) shows that (�H)� = ℚ.  ◻

Next we discuss some special cases of Theorem 6.6. Given a measurable func-
tion G ∶ � → [0,∞] we define a measurable function JG ∶ F → [0,∞] by

and a measure ℚG on F by

I ∶= 𝔼𝜈H ∫ f (𝜃tY , t) 𝜉(dt) = 𝔼𝜈H ∫ f (𝜃tY , t)1{|Yt| > 1} 𝜆(dt)

= 𝔼
ℚ ∭ f (u𝜃t−sW, t)1{u|Wt−s| > 1,H(𝜃−sW, s) 𝜌(du) 𝜆(ds) 𝜆(dt)

= 𝔼
ℚ ∭ f (v|Wt−s|−1𝜃t−sW, t)|Wt−s|𝛼H(𝜃−sW, s)}1{v > 1} 𝜆(ds) 𝜆(dt) 𝜌(dv),

I = 𝔼
ℚ ∭ f (v|Wr|−1𝜃rW, t)|Wr|𝛼H(𝜃r−tW, t − r)}1{v > 1} 𝜆(dr) 𝜆(dt) 𝜌(dv).

I = 𝔼
ℚ ∭ f (vW, t)H(𝜃−tW, r + t)}1{|Wr| > 0}1{v > 1} 𝜆(dr) 𝜆(dt) 𝜌(dv).

(6.13)𝔼𝜈H ∫ f (𝜃tY , t) 𝜉(dt) = 𝔼
ℚ ∬ f (vW, t)1{v > 1} 𝜆(dt) 𝜌(dv).

𝔼𝜈H
r g(𝜃rY) = 𝔼

ℚ ∬ 1{u𝜃r−sW ∈ ⋅}H(𝜃r−sW, s − r)1{u > 0}𝛼u−𝛼−1 du 𝜆(ds),

(6.14)JG(�) ∶= ∫ |�(s)|�G(s) �(ds), � ∈ F.
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Corollary 6.7 Let ℚ satisfy the assumptions of Theorem 6.6. Let G ∶ F → [0,∞] be a 
measurable function satisfying

Then

is a stationary tail measure satisfying (�G)� = ℚ.

Proof We wish to apply Theorem 6.6 with the function

For each t ∈ � we have

By assumption (6.16) this equals 1 for �-a.e. t. Since |(�−sW)s| = |W0| = 1 we obtain 
that �H is given by

Changing variables u ∶= JG(�−sW)v yields the assertion.  ◻

Corollary 6.8 Let ℚ be a spectrally decomposable probability measure on F such 
that ℚ(��(𝔾) = 0) = 0 . Assume that the space shift formula (5.2) holds for some 
𝛼 > 0 . Let G ∶ F → (0,∞) be measurable with ∫ Gd� = 1 . Define a probability 
measure ℚG by (6.15). Then �G defined by (6.17) is a stationary tail measure satisfy-
ing (�G)� = ℚ.

Proof We wish to apply Corollary 6.7. The first inequality in (6.16) follows from our 
assumptions ℚ(𝜉�(𝔾) > 0) = 1 and G > 0 . Assumption (5.2) implies for each r ∈ � that

Hence the second inequality in (6.16) holds as well, proving the result.  ◻

(6.15)ℚ
G ∶= 𝔼

ℚ ∫ 1{JG(�−sW)−1∕��−sW ∈ ⋅}G(s) �(ds).

(6.16)0 < ∫ |Ws|𝛼G(s + r) 𝜆(ds) < ∞, 𝜆-a.e. r, ℚ-a.s.

(6.17)𝜈G ∶= 𝔼
ℚG ∫ 1{uY ∈ ⋅, u > 0}𝛼u−𝛼−1 du

H(�, t) ∶= JG(�)
−1|�(t)|�G(t).

∫ H(𝜃tW, s − t)1{|Ws| > 0} 𝜆(ds) = JG(𝜃tW)−1 ∫ |Ws|𝛼G(s − t) 𝜆(ds).

𝔼
ℚ ∬ 1{v𝜃−sW ∈ ⋅, v > 0}JG(𝜃−sW)−1G(s)𝛼v−𝛼−1 dv 𝜆(ds).

𝔼
ℚ � |Ws|�G(s + r) �(ds) ≤ � G(t + s) �(ds) ≤ 1.
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Remark 6.9 The assumption ℚ(𝜉�(𝔾) > 0) = 1 , made in Corollary 6.8, is a probabil-
istic counterpart of (6.1). This assumption is very natural (see Remark 5.5) and can-
not be avoided in our general setting.

Remark 6.10 Consider the assumptions of Theorem 6.6 and assume moreover that 
ℚ(|Ys| > 0) = 1 for �-a.e. s ∈ � . Then we can choose G = 1B for any B ∈ G with 
0 < 𝜆(B) < ∞ . If, for instance, ℚ is discrete, then we can take B = {0} to obtain that 
ℚ

G = ℚ ; see also (Dombry et al. 2018, Remark 2.10).

Remark 6.11 We can follow Mecke (1967) to construct a function H satisfying the 
assumptions of Theorem  6.6. Take a measurable partition {Bn ∶ n ∈ ℕ} of � into 
relatively compact Borel sets. Define H̃ ∶ F × � → (0,∞) by

Since ��(�) = ��(W(�)) we have that H̃(𝜔, s) = H̃(W(𝜔), s) . Define a random 
variable S by S(𝜔) ∶= ∫ H̃(𝜔, s) 𝜉�(𝜔, ds) , � ∈ Ω . Then S ≤ 1 and S > 0 , whenever 
𝜉�(�) > 0 . Define a function H by H(𝜔, s) ∶= S−1(𝜔)H̃(𝜔, s) . By definition of �′ , H̃ 
and hence also H is 0-homogeneous in the first argument. Furthermore we have for 
t ∈ � that

This is positive as soon as 𝜉�(𝜔,�) > 0 . Since

we obtain (6.11), provided that ℚ(𝜉�(𝔾) > 0) = 1.

Corollary 6.12 Suppose that ℚ is a spectrally decomposable probability measure on 
F such that ℚ(𝜉�(𝔾) > 0) = 1 . Assume that � is mass-stationary w.r.t. ℚ . Then there 
exists a unique stationary tail measure � such that �� = ℚ . This tail measure is given 
by (6.17) and (under the hypothesis (6.11)) also by (6.12)

Proof Theorem  5.2, assumption ℚ(𝜉�(𝔾) > 0) = 1 and Remark 6.11 allow us to 
apply Theorem  6.6. Combining this with Corollary 6.3 shows that (6.12) is the 
unique tail measure � with �� = ℚ . By Corollary 6.8, � is also given by (6.17).  ◻

By (2.6), Corollary 6.12 (or Corollary 6.8) has the following (quite natural) 
consequence.

H̃(𝜔, s) ∶=
∑

n

2−n(𝜉�(𝜔,Bn) + 1)−11{s ∈ Bn}.

∫ H̃(𝜃tW(𝜔), s − t)1{|Ws(𝜔)| > 0} 𝜆(ds) = ∫ H̃(𝜃tW(𝜔), s − t) 𝜉�(W(𝜔), ds)

=
∑

n

2−n(𝜉�(𝜃tW(𝜔),Bn) + 1)−11{s − t ∈ Bn} 𝜉
�(W(𝜔), ds)

=
∑

n

2−n(𝜉�(W(𝜔),Bn + t) + 1)−1𝜉�(W(𝜔),Bn + t).

S(𝜃tW(𝜔)) = ∫ H̃(𝜃tW(𝜔), s) 𝜉�(𝜃tW(𝜔), ds) = ∫ H̃(𝜃tW(𝜔), s − t) 𝜉�(W(𝜔), ds),
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Corollary 6.13 Assume that Y is spectrally decomposable and that � is mass-stationary 
w.r.t. ℚ . If ℚ(��(𝔾) = 0) = 0 , then ℚ(�(𝔾) = 0) = 0.

Remark 6.14 Suppose that � is a tail measure and write ℚ = �� . Let g ∶ F × � → [0,∞] 
be measurable and r > 0 . Then

By homogeneity and stationarity of � this equals

which yields (5.10). In view of Corollary 6.12 this completes the proof of Lemma 5.6.

Example 6.15 Assume that � is discrete, (5.7) holds and that T ∶ F → � ∪ {∞} is a 
measurable and 0-homogeneous mapping satisfying

Then we can apply Theorem  6.6 with H(W, s) = 1{T(W) = s} . The measure 
(6.12) takes the form

providing a modest generalization of (Dombry et al. 2018, Proposition 2.12). Using 
the arguments in (Dombry et al. 2018, Section 2.4) (and assuming ℚ(Y ≡ 0) = 0 ) it 
is possible to construct a mapping T with the preceding properties.

Remark 6.16 We can extend the mapping T from Example 6.15 to an allocation by 
setting �(�, s) ∶= T(�s�, 0) + s . Then the formulas (5.14) and (6.19) look very simi-
lar. The crucial difference is that the allocation in the first formula picks a point 
from � while the one from (6.19) picks a point from �′ . This explains the difference 
in the range of integration for the scaling variable u. A similar remark applies to 
Remark 5.8 and Theorem 6.6.

7  Spectral representation

Again we establish the canonical setting of Sect.  5. Let � be a measure on F . In 
accordance with the literature we say that � has a spectral representation, if there 
exists a probability measure ℚ∗ on F and an 𝛼 > 0 satisfying

𝔼
ℚ ∫ g(Y , s)1{|Ys| > r} 𝜆(ds) = 𝔼𝜈 ∫ g(Y , s)1{|Y0| > 1, |Ys| > r} 𝜆(ds).

r−𝛼�𝜈 ∫ g(rY , s)1{r|Y0| > 1, |Ys| > 1} 𝜆(ds)

= r−𝛼�𝜈 ∫ g(r𝜃−sY , s)1{r|Ys| > 1, |Y0| > 1} 𝜆(ds),

(6.18)
∑

s∈𝔾

1{T(𝜃tW) = s + t, |Ws+t| > 0} = 1, ℚ-a.s., t ∈ 𝔾,

(6.19)𝜈T ∶= 𝔼
ℚ

∑

s∈𝔾
∫ 1{u𝜃−sW ∈ ⋅, T(𝜃−sW) = s}1{u > 0}𝛼u−𝛼−1 du,
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In this case we refer to ℚ∗ as a spectral measure of � and to � as the index of � . 
Our previous results will show rather quickly that any stationary tail measure has a 
spectral representation. In a sense this section is dual to the previous one. We start 
with the non-probabilistic object � and derive the probabilistic representation (7.1).

First we will state a few basic properties of a spectral representation, to be found 
(in special cases) in Dombry et  al. (2018); Soulier (2022) and in the recent pre-
print Bladt et al. (2022) dealing with more general fields. Recall that a stationary tail 
measure is assumed to be normalized as in (6.4).

Proposition 7.1 Suppose that � admits a spectral representation with spectral meas-
ure ℚ∗ and index 𝛼 > 0 . Assume that ℚ∗(𝜉�(𝔾) > 0) = 1 . Then we have: 

 (i) � is a tail measure iff 

 (ii) Assume in addition that (7.2) holds. Then � is stationary iff 

 holds for all measurable g ∶ F × � → [0,∞] which are 0-homogeneous in the 
first argument. If these conditions hold, then � is a stationary tail measure iff 

Proof For the proof we generalize the arguments in Dombry et al. (2018) (given for 
𝔾 = ℤ ) in a straightforward manner. Clearly � is �-homogeneous. By ℚ∗(𝜉�(𝔾) > 0) = 1 
and (7.1), � satisfies property (6.1).

(i) Let B ∈ G . Then

Hence (6.4) and (7.2) are equivalent.
(ii) Assume that � is stationary and take a measurable g ∶ F × � → [0,∞] which 

is 0-homogeneous in the first argument. Then

(7.1)𝜈 = 𝔼
ℚ∗ ∫ 1{uY ∈ ⋅, u > 0}𝛼u−𝛼−1 du.

(7.2)𝔼
ℚ∗ ∫ 1{s ∈ B}|Ys|𝛼 𝜆(ds) < ∞, B ∈ G compact.

(7.3)𝔼
ℚ∗ ∫ g(Y , s)|Ys|� �(ds) = 𝔼

ℚ∗ ∫ g(�−sY , s)|Y0|� �(ds),

(7.4)𝔼
ℚ∗ |Ys|� = 1, �-a.e. s ∈ 𝔾.

(7.5)

𝔼𝜈 ∫ 1{s ∈ B, |Ys| > 1} 𝜆(ds) = 𝔼
ℚ∗ ∬ 1{s ∈ B, u|Ys| > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝔼
ℚ∗ ∫ 1{s ∈ B}|Ys|𝛼 𝜆(ds).
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By stationarity of � this equals

This equals the right-hand side of (7.3).
Assume now that (7.3) holds. Take a measurable f ∶ F × � → [0,∞] and t ∈ � . Then

By the homogeneity of |Ys|−1Y  and (7.3),

This shows that the Campbell measures C�◦�t ,�
′ do not depend on t ∈ � . But �◦�t 

does also satisfy (6.1) and (6.3) along with the assumption of (ii). Hence Lemma 6.2 
implies that � is stationary.

The final assertion follows from (7.5).

Let us mention the following fact; cf. (Soulier 2022, (2.8)).

Corollary 7.2 Suppose that � is a stationary tail measure with index 𝛼 > 0 . Let ℚ∗ be 
a spectral measure of � . Then

Proof In the proof of Proposition 7.1 we have seen that

𝔼
ℚ∗ ∫ g(Y , s)|Ys|𝛼 𝜆(ds) = 𝔼

ℚ∗ ∬ g(uY , s)1{u|Ys| > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝔼𝜈 ∫ g(Y , s)1{|Ys| > 1} 𝜆(ds).

𝔼𝜈 ∫ g(𝜃−sY , s)1{|Y0| > 1} 𝜆(ds) = 𝔼
ℚ∗ ∬ g(𝜃−sY , s)1{u|Y0| > 1}𝛼u−𝛼−1 du 𝜆(ds).

I ∶= 𝔼𝜈 ∫ f (𝜃tY , s)1{|Ys+t| > 1} 𝜆(ds)

= 𝔼
ℚ∗ ∬ f (u𝜃tY , s)1{u|Ys+t| > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝔼
ℚ∗ ∬ f (u𝜃tY , s − t)1{u|Ys| > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝔼
ℚ∗ ∬ f (|Ys|−1v𝜃tY , s − t)|Ys|𝛼1{v > 1}𝛼v−𝛼−1 dv 𝜆(ds).

I = 𝔼
ℚ∗ ∬ f (|Y0|−1v𝜃t−sY , s − t)|Y0|𝛼1{v > 1}𝛼v−𝛼−1 dv 𝜆(ds)

= 𝔼
ℚ∗ ∬ f (u𝜃t−sY , s − t)1{u|Y0| > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝔼
ℚ∗ ∬ f (u𝜃−sY , s)1{u|Y0| > 1}𝛼u−𝛼−1 du 𝜆(ds).

��(W ∈ ⋅) = 𝔼
ℚ∗1{|Ys|−1�sY ∈ ⋅}|Ys|� , �-a.e. s.
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holds, provided that g is 0-homogeneous in the first argument. The right-hand side 
equals ���

∫ g(�−sY , s)�(ds) . Equivalently,

Applying this with g(Y , s) ∶= h(|Y0|−1Y , s) for a measurable h ∶ F × � → [0,∞] 
yields the assertion.

The following result extends the stationary case of (Dombry et al. 2018, Theo-
rem  2.4) (covering the case 𝔾 = ℤ ) and (Soulier 2022,  Theorem  2.3) (dealing 
with the case 𝔾 = ℝ ). A general non-stationary (and therefore less specific) ver-
sion can be found as Lemma 3.10 in the recent preprint Bladt et al. (2022).

Theorem 7.3 Suppose that � is a stationary tail measure with index 𝛼 > 0 . Then � 
has a spectral representation with a spectral measure ℚ∗ satisfying (7.3) and (7.4).

Proof By Theorem 3.2 the measure ℚ ∶= �� is mass-stationary. By Proposition 6.4, 
Theorem 5.2 and (6.7), ℚ satisfies the assumptions of Theorem 6.6. By Corollary 
6.8 we can therefore define a tail measure �′ (with index � ) by (6.17) for some given 
function G with the required properties. Then �′ admits a spectral representation 
with spectral measure ℚ∗ ∶= ℚ

G . By Corollary 6.8 we also have ��
�
= ℚ , that is 

��
�
= �� . Corollary 6.3 shows that � = �� , proving the spectral representation (7.1). 

By Proposition 7.1, ℚ∗ satisfies (7.4) and (7.3).

Remark 7.4 The existence of a spectral representation of a tail measure � can also be 
derived from Proposition 2.8 in Evans and Molchanov (2018). Indeed, the sets Uk 
defined in (6.6) satisfy the assumptions of that proposition. However, Theorem 7.3 
and its proof provide more detailed information on the spectral measure ℚ∗ . In fact, 
ℚ

∗ is explicitly given in terms of the Palm measure �� of � w.r.t. �.

A spectral measure is not uniquely determined by the tail measure. Depend-
ing on the properties of �� , the proof of Theorem  7.3 provides several ways of 
constructing a spectral measure. The recent preprint Hashorva (2021) contains a 
systematic discussion of the relationships between random fields (on ℝd or ℤd ) 
satisfying (7.3) and stationary tail measures.

Remark 7.5 Let � be a stationary tail measure. Then �� is said to be the distribu-
tion of the tail process associated with � ; see Dombry et al. (2018); Soulier (2022). 
Under �� the process W is called a spectral (tail) process associated with � ; see again 
Dombry et  al. (2018); Soulier (2022). By Corollary 6.3, � is uniquely determined 
by ��(W ∈ ⋅) . But in general, ��(W ∈ ⋅) is not a spectral measure of � . This clash of 
terminology is a bit unfortunate.

𝔼
ℚ∗ ∫ g(Y , s)|Ys|𝛼 𝜆(ds) = 𝔼𝜈 ∫ g(𝜃−sY , s)1{|Y0| > 1} 𝜆(ds).

𝔼
ℚ∗ ∫ g(�sY , s)|Ys|� �(ds). = 𝔼�� ∫ g(Y , s) �(ds)
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A tail measure � is said to admit a moving shift representation if there exists a 
probability measure ℚ∗ on F such that

Theorem  7.6 Suppose that � is a stationary tail measure with index 𝛼 > 0 . Then 
there exists a probability measure ℚ∗ on F such that (7.6) holds iff

Proof Assume first, that (7.7) holds. As noticed in the proof of Theorem  7.3 the 
probability measure ℚ ∶= �� satisfies the assumptions of Theorem 6.6. Define the 
probability measure

where Z ∶= ∫ |Ws|��(ds) . Applying Corollary 6.7 with G ≡ 1 shows the right-hand 
side of (7.6) is a stationary tail measure �′ with ��

�
= ℚ . As in the proof of Theo-

rem 7.3 we obtain � = ��.
Assume, conversely, that (7.6) holds. Then

Hence ℚ∗(A) = 0 , where A ∶= {∫ |Ys|��(ds) = ∞} . Since A is invariant under 
translation and scaling, we obtain from (7.6) that �(A) = 0.  ◻

We refer the reader to Dombry et  al. (2018); Dombry and Kabluchko (2017); 
Soulier (2022) for a more detailed analysis of moving shift representations for spe-
cial groups � and under additional continuity assumptions on Y. Extending some of 
those results to general groups is an interesting task, beyond the scope of this paper.

8  Anchoring maps

In this section we let Y and � be as in Sect. 4 and suppose that ℚ is a probability 
measure on (Ω,A) such that � is mass-stationary w.r.t. ℚ.

Following Planinić (2023); Soulier (2022) we say that a measurable mapping 
T ∶ F → � is an anchoring map if

In stochastic geometry such functions are known as center functions; see e.g. 
(Last and Penrose (2017), Chapter 17).

In the following the number

(7.6)𝜈 = 𝔼
ℚ∗ ∬ 1{u𝜃sY ∈ ⋅, u > 0}𝛼u−𝛼−1 du 𝜆(ds).

(7.7)∫ |Ys|𝛼𝜆(ds) < ∞, 𝜈-a.e.

(7.8)ℚ
∗ ∶= ℚ(Z−1∕�W ∈ ⋅),

1 = 𝜈(|Y0| > 1) = 𝔼
ℚ∗ ∬ 1{u|Ys| > 1, u > 0}𝛼u−𝛼−1 du 𝜆(ds) = 𝔼

ℚ∗ ∫ |Ys|𝛼 𝜆(ds).

(8.1)T(𝜃s𝜔) = T(𝜔) − s, s ∈ �, if 0 < 𝜉(𝜔,�) < ∞.
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will play an important rule. If ℚ(𝜉(𝔾) < ∞) > 0 , then 𝜗 > 0.

Proposition 8.1 Assume that � is mass-stationary w.r.t. ℚ . Assume also that

and 𝜗 < ∞ . Let T be an anchoring map and define the probabiliy measure

Then we have for all measurable g ∶ Ω → [0,∞] that

Proof Let � be the �-finite stationary measure on Ω such that ℚ = �� and �(�(�) = 0) = 0 . 
Define an allocation � by �(�, s) ∶= T(�s�) + s . By assumption �(�, s) = T(�) for each 
s ∈ � , provided that 0 < 𝜉(𝜔,�) < ∞ . Moreover,

is an invariant simple point process. By Proposition 3.1 we have for each measurable 
h ∶ Ω × Ω → [0,∞] that

Since ��(�(�) ∈ {0,∞}) = 0 , this means

It follows straight from the definition (2.3) that ��(T ≠ 0) = 0 . Therefore

Applying this to the function (�,��) ↦ �(��,�)−1g(��) (for some measurable 
g ∶ Ω → [0,∞] ) yields

and therefore ℚT = �−1�� . Hence (8.5) follows from (8.6).  ◻

Example 8.2 Assume that � is discrete as in Example 2.3, so that � is a sim-
ple point process on � . Under assumption (8.3) we have � ≤ 1 with equality iff 
ℚ(�(𝔾) = 1) = 1 . From (8.5) we obtain for each measurable f ∶ F → [0,∞] that

(8.2)� ∶= 𝔼
ℚ
�(𝔾)−1.

(8.3)ℚ(0 < 𝜉(𝔾) < ∞) = 1

(8.4)ℚT ∶= �−1𝔼
ℚ
�(𝔾)−11{�T ∈ ⋅}

(8.5)𝔼
ℚ
g = �𝔼

ℚT ∫ g◦�s �(ds).

𝜂 ∶= 1{0 < 𝜉(𝜔,�) < ∞}1{T ∈ ⋅}

𝔼
ℚ
h(�0, ��(0)) = 𝔼�� ∫ 1{�(s) = 0}h(�s, �0) �(ds).

𝔼
ℚ
h(�0, �T ) = 𝔼�� ∫ 1{T = 0}h(�s, �0) �(ds).

(8.6)𝔼
ℚ
h(�0, �T ) = 𝔼�� ∫ h(�s, �0) �(ds).

𝔼
ℚ
�(𝔾)−1g(�T ) = 𝔼��

g
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where we have used that ℚT (T = 0) = 1 . As in Planinić (2023) it is natural to assume that

Then 𝔼
ℚ
f1{T = 0} = 𝔼

ℚT
f  . Hence � = ℚ(T = 0) and ℚT = ℚ(⋅|T = 0) . Therefore 

Proposition 8.1 extends (Planinić (2023), Proposition 3.2). Further formulas in the 
spectrally decomposable case can be found in Subsection 3.3 of Planinić (2023).

In the remainder of this section we establish the canonical setting of Sect. 5. 
We assume that ℚ is spectrally decomposable and satisfies ℚ(��(𝔾) = 0) = 0 . By 
Corollary 6.8 we can associate with ℚ a unique stationary tail measure � such that 
�� = ℚ . We assume moreover that

Note that

so that ℚ(0 < 𝜉(𝔾) < ∞) = 1 ; see also Corollary 6.13. Since (8.8) does also hold 
�-a.e., we can and will use the moving shift representation (7.6) with ℚ∗ given by 
(7.8).

For each � ∈ F the function v ↦ ∫ 1{|𝜔(s)| > v} 𝜆(ds) from (0,∞) to [0,∞] is 
increasing and left-continuous. Therefore we can define a random variable � by

where (as before) Z = ∫ |Ws|� �(ds) and

By ℚ(��(𝔾) = 0) = 0 and (8.8) we have ℚ(𝜅 > 0) = 1 . The following lemma 
gives an alternative expression for the number � defined by (8.2). In the case 
𝔾 = ℤ the result can be found e.g. in (Kulik and Soulier (2020), Corollary 5.6.2), 
while the case 𝔾 = ℝ is covered by (Soulier 2022, Corollary 2.10).

Lemma 8.3 Assume that ℚ is spectrally decomposable and satisfies ℚ(��(𝔾) = 0) = 0 . 
Assume moreover that � is mass-stationary w.r.t. ℚ and that (8.8) holds. Then � = 𝔼

ℚ
��.

𝔼
ℚ
f1{T = 0} = 𝜗𝔼

ℚT ∫ f◦𝜃s1{T◦𝜃s = 0} 𝜉(ds)

= 𝜗𝔼
ℚT ∫ f◦𝜃s1{T = s} 𝜉(ds) = 𝔼

ℚT
f1{|Y0| > 1},

(8.7)|YT | > 1.

(8.8)∫ |Ys|𝛼𝜆(ds) < ∞, ℚ-a.e.

𝜉(�) ≤ � 1{|Ys| > 1}|Ys|𝛼 𝜆(ds) ≤ � |Ys|𝛼 𝜆(ds),

(8.9)� ∶= Z−1∕� ess sup s∈�|Ws|,

(8.10)ess sup s∈�|Ws| ∶= sup{v > 0 ∶ 𝜆({s ∶ |Ws| > v}) > 0}.
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Proof We start with some preliminary comments. We have

Therefore,

Since ℚ(|Y0| > 0) = 1 we have ℚ-a.e. Z−1∕𝛼W = Z̃−1∕𝛼Y  , where

In particular,

By our assumptions, ℚ(0 < Z̃ < ∞) = 1 . Since for each v > 0

we obtain

Since ℚ is the Palm measure of � w.r.t. � we have 𝜗 = �𝜈1{|Y0| > 1}𝜉(�)−1 . 
Hence we obtain from (7.6) and (7.8) that

By Fubini’s theorem and (8.12),

By (8.11) this yields 𝜗 = 𝔼
ℚ
∫ 1{u > 𝜅−1}𝛼u−𝛼−1 du and hence the asserted 

formula.  ◻

Let � be an allocation such that

where �+ denotes Lebesgue measure on (0,∞) . In view of (8.12) we can inter-
pret �(0) as an almost every version of an anchoring map. Motivated by (Soulier 
(2022), Section 2.3) we collect some (preliminary) information on the distribution 
of (�(Y , 0), Y) . Though the principal calculations are similar, we cannot use the spe-
cific moving shift representation from (Soulier 2022, Theorem 2.9).

ess sup s∈�|Ws|) = sup{v−1 ∶ v > 0, 𝜆({s ∶ v|Ws| > 1}) > 0}

= (inf{u > 0 ∶ 𝜆({s ∶ u|Ws| > 1}) > 0})−1.

𝜅−1 = Z1∕𝛼 inf{u > 0 ∶ 𝜉(uW,�) > 0} = inf{u > 0 ∶ 𝜉(uZ−1∕𝛼W,�) > 0}.

Z̃ ∶= ∫ |Ys|𝛼 𝜆(ds).

(8.11)𝜅−1 = inf{u > 0 ∶ 𝜉(uZ̃−1∕𝛼Y ,𝔾) > 0}, ℚ-a.e.

� 1{v|Ys| > 1} 𝜆(ds) ≤ v𝛼 � |Ys|𝛼 𝜆(ds),

(8.12)𝜉(uZ̃−1∕𝛼Y ,𝔾) < ∞, u > 0, ℚ-a.e.

𝜗 = 𝔼
ℚ ∬ 1{uZ̃−1∕𝛼|Ys| > 1}𝜉(uZ̃−1∕𝛼Y ,𝔾)−1𝛼u−𝛼−1 du 𝜆(ds).

𝜗 = 𝔼
ℚ ∫ 1{𝜉(uZ̃−1∕𝛼Y ,𝔾) > 0}𝛼u−𝛼−1 du.

(8.13)𝜏(u𝜔, s) = 𝜏(u𝜔, 0) ∈ 𝔾, ℚ⊗ 𝜆⊗ 𝜆+-a.e. (𝜔, s, u),
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Lemma 8.4 Assume that the assumptions of Lemma 8.3 hold. Let � be an alloca-
tion satisfying (8.13) and suppose that g ∶ F × � → [0,∞] is measurable and shift-
invariant in the first coordinate. Then

In particular ℚ(�(0) ∈ ⋅) has the �-density

Proof We have

where we have used that �(u�sY , 0) = �(uY , s) − s = �(uY , 0) − s holds for 𝜆 ⊗ 𝜆+
-a.e. (s, u) and ℚ∗-a.e. Changing variables gives

If u < 𝜅−1 then (8.11) shows that ∫ 1{u|Ys+𝜏(uY ,0)| > 1} 𝜆(ds) = 0 . Therefore (8.14) 
follows. The second assertion is an immediate consequence.

In the remainder of the section we assume that � is an allocation satisfying 
(8.13). Suppose that h ∶ F → [0,∞) is measurable and shift invariant. Then we 
obtain from (8.14) that

holds for ℚ(�(0) ∈ ⋅)-a.e. s. To discuss this formula we make the ad hoc assumption

see (Soulier (2022), (2.25)) for a similar hypothesis in the case 𝔾 = ℝ . This can be 
seen as a continuous space version of (8.7) and might be achieved under appropriate 
continuity assumptions on Y. If, in addition, 𝜗 = �𝜅𝛼 < ∞ , then dominated conver-
gence yields the existence of the limit

(8.14)

𝔼
ℚ
g(Y , 𝜏(0)) = 𝔼

ℚ∗ ∬ 1{u𝜅 > 1}1{u|Ys+𝜏(uY ,0)| > 1}g(uY ,−s)𝛼u−𝛼−1 du 𝜆(ds).

(8.15)f𝜏(s) ∶= 𝔼
ℚ∗ ∫ 1{u𝜅 > 1, u|Y−s+𝜏(uY ,0)| > 1}𝛼u−𝛼−1 du, s ∈ 𝔾.

𝔼
ℚ
g(Y , 𝜏(0)) = 𝔼𝜈1{|Y0| > 1}g(Y , 𝜏(0))

= 𝔼
ℚ∗ ∬ 1{u|Ys| > 1}g(u𝜃sY , 𝜏(u𝜃sY , 0))𝛼u

−𝛼−1 du 𝜆(ds)

= 𝔼
ℚ∗ ∬ 1{u|Ys| > 1}g(uY , 𝜏(uY , 0) − s)𝛼u−𝛼−1 du 𝜆(ds),

𝔼
ℚ
g(Y , 𝜏(0)) = 𝔼

ℚ∗ ∬ 1{u|Ys+𝜏(uY ,0)| > 1}g(uY ,−s)𝛼u−𝛼−1 du 𝜆(ds).

(8.16)

𝔼
ℚ
[h(Y)|𝜏(0) = s] = f𝜏(s)

−1
𝔼
ℚ∗ ∫ 1{u𝜅 > 1}1{u|Ys+𝜏(uY ,0)| > 1}h(uY)𝛼u−𝛼−1 du

(8.17)lim
s→0

1{u|Ys+𝜏(uY ,0)| > 1} = 1, u > 𝜅−1, 𝜆+-a.e. u, ℚ-a.e.,

(8.18)lim
s→0

f�(s) = �.
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If

then dominated convergence yields the existence of the limit

In particular we may take h(Y) = �(�) . Indeed, we have that

Therefore,

see (Soulier (2022), (2.26)) for the case 𝔾 = ℝ . In view of the discussion in Kulik and 
Soulier (2020) and Soulier (2022) we might call � the candidate extremal index of Y.

The results of this section are certainly preliminary. But without continuity 
assumptions on the elements of F it seems difficult to make further progress. If 
𝔾 = ℝ

d and F is a Skorohod space (see Example 2.2), then it might be possible to 
establish an analog of (Soulier 2022, Theorem 2.9). In particular the assumptions 
of Lemma 8.3 should then imply 𝜗 < ∞.

9  Concluding remarks

The results from Sects. 5-7 generalize to the setting described in Remark 5.10. This 
would mean, for instance, that tail measures are then defined on a more general 
space Ω and not just on the function space F . To avoid an abstract (and potentially 
confusing) notation we have chosen to stick to the present more specific setting.

Given the results of this paper, one might define a tail process in an intrinsic 
way, namely as a spectrally decomposable random field Y = (Ys)s∈� such that the 
exceedance random measure is mass-stationary. It would be interesting to iden-
tify such processes as the tail processes of regularly varying stationary fields, 
beyond the known special cases. It would also be interesting to further study tail 
measures of such fields, as introduced in great generality in Samorodnitsky and 
Owada (2012). In particular it might be worthwhile exploring further relation-
ships between tail measures, tail processes and Palm calculus.
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𝔼
ℚ∗ ∫ 1{u > 𝜅−1}h(uY)𝛼u−𝛼−1 du < ∞

(8.19)lim
s→0

𝔼
ℚ
[h(Y)|𝜏(0) = s] = 𝜗−1𝔼

ℚ∗ ∫ 1{u𝜅 > 1}h(uY)𝛼u−𝛼−1 du.

𝔼
ℚ∗ ∫ 1{u𝜅 > 1}𝜉(uY ,𝔾)𝛼u−𝛼−1 du = 𝔼

ℚ∗ ∬ 1{u|Ys| > 1}𝛼u−𝛼−1 du 𝜆(ds)

= 𝔼
ℚ∗ ∫ |Ys|𝛼 𝜆(ds) = 𝔼

ℚ ∫ Z−1|Ws|𝛼 𝜆(ds) = 1.

(8.20)lim
s→0

𝔼
ℚ
[�(𝔾)|�(0) = s] = �−1;
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