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Tail processes and tail measures:

An approach via Palm calculus
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Abstract

Using an intrinsic approach, we study some properties of random fields which ap-
pear as tail fields of regularly varying stationary random fields. The index set is
allowed to be a general locally compact Hausdorff Abelian group G. The values are
taken in a measurable cone, equipped with a pseudo norm. We first discuss some
Palm formulas for the exceedance random measure ξ associated with a stationary
(measurable) random field Y = (Ys)s∈G. It is important to allow the underlying
stationary measure to be σ-finite. Then we proceed to a random field (defined on a
probability space) which is spectrally decomposable, in a sense which is motivated
by extreme value theory. We characterize mass-stationarity of the exceedance ran-
dom measure in terms of a suitable version of the classical Mecke equation. We also
show that the associated stationary measure is homogeneous, that is a tail mea-
sure. We then proceed with establishing and studying the spectral representation
of stationary tail measures and with characterizing a moving shift representation.
Finally we discuss anchoring maps and the candidate extremal index.

Keywords: tail process, exceedances, tail measure, spectral representation, random mea-
sure, Palm measure, stationarity, mass-stationarity, locally compact Abelian group, an-
choring map, candidate extremal index
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1 Introduction

The tail process of regularly varying time series was introduced in [1]. It is a useful tool for
describing and handling the extreme value behavior of such time series; see e.g. [3, 10, 20].
The recent paper [17] has made some interesting connections to Palm theory for point
processes on Zd. In particular it has been observed there that the exceedance point process
of the tail process is point-stationary in the sense of [21]; see also [14]. One aim of the
present paper is to extend [17] to the case of a general locally compact Hausdorff Abelian
group G, for instance G = Rd. Even in the case G = Zd our approach will provide further
insight into the results from [17]. Another aim is to extend the concept of a tail measure
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Germany.
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(as defined in [3, 20]) to spaces of functions on Abelian groups, to relate these measures
to Palm calculus and to study their spectral representation.

Section 2 contains some basic definitions and facts from Palm theory. In Section 3 we
will first provide a modest but useful generalization of [12, Theorem 4.1] on allocations
and Palm measures. Then we summarize some facts on point- and mass-stationarity. In
Section 4 we consider a field Y = (Ys)s∈G indexed by the group. The field takes its values
in a measurable cone H equipped with a pseudo norm | · |. A key example is H = Rd

with the Euclidean norm. We require Y to have natural measurability properties but do
not impose continuity or separability assumptions. The exceedance random measure is
defined by ξ :=

∫

1{s ∈ ·, |Ys| > 1}λ(ds), where λ is a Haar measure on G. We briefly
discuss stationarity, mass-stationarity and the Palm measure of ξ. For our purposes it is
important to allow the underlying stationary measure P to be infinite (but σ-finite). The
Palm measure of ξ is simply the restriction of P to the event {|Y0| > 1}. Starting with
Section 5 we shall work on a suitable canonical function space (F,F) with the field Y
given as the identity on F. At the cost of a more abstract setting, this could be generalized
along the lines of Remark 5.9. In Section 5 we assume that Y is spectrally decomposable
with index α > 0 w.r.t. a probability measure Q on (F,F). This assumption is strongly
motivated by [1] and means that |Y0| has a Pareto distribution (on (1,∞)) with parameter
α and is independent of W := (|Y0|

−1Ys)s∈G. Our Theorem 5.2 shows that the exceedance
random measure ξ is mass-stationary in the sense of [14] if and only ifW satisfies the space
shift formula (5.2), a version of the classical Mecke equation from [15]. This generalizes
the main result in [17] from Zd to general locally compact Hausdorff Abelian groups. In
establishing this result, we will not refer to a regularly varying field in the background.
Under the assumptions of Theorem 5.2, general Palm theory essentially guarantees the
existence of a stationary σ-finite measure ν such that Q is the Palm measure of ξ w.r.t.
ν, that is Q = ν(· ∩ {|Y0| > 1}). In Section 6 we shall prove among other things that ν
is α-homogeneous, that is a tail measure. In Section 7 we shall prove with Theorem 7.3
that any stationary tail measure ν has a spectral representation. While the existence of
such a representation can be derived from [5, Proposition 2.8] (see Remark 7.4), our result
provides an explicit construction of the spectral measure in terms of the Palm measure Q
of ξ along with further properties. Theorem 7.3 extends the stationary case of [3, Theorem
2.4] (dealing with G = Z) and [20, Theorem 2.3] (dealing with the case G = R) to general
Abelian groups. We also characterize a moving shift representation. In the final Section 8
we study anchoring maps, as defined in [17, 20] for mass-stationary fields with the property
Q(0 < ξ(G) < ∞) = 1. Proposition 8.1 extends [17, Proposition 3.2] to general Abelian
groups. In the remainder of the section we assume Y to be spectrally decomposable.
Motivated by [20, Section 2.3] we provide some information on the candidate extremal
index.

In this paper we treat tail processes in an intrinsic way, namely as a spectrally decom-
posable random field Y = (Ys)s∈G such that ξ is mass-stationary. This is in line with the
developments in [3, 10, 20] and in the recent preprints [2, 6].
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2 Some Palm calculus

Assume that G is a locally compact Hausdorff group with Borel σ-field G and (non-trivial)
Haar measure λ. Important special cases are G = Zd with λ being the counting measure
and G = Rd with λ being the Lebesgue measure. Let M denote the space of measures
on G which are locally finite (that is, finite on compact sets) and let M be the smallest
σ-field on M making the mappings µ 7→ µ(B) measurable for all B ⊂ G. Let N be the
measurable subset of M of those µ ∈ M which are integer-valued on relatively compact
Borel sets. Let (Ω,A,P) be a σ-finite measure space. At the moment the reader might
think of P as of a probability measure. However, for our later purposes it is important to
allow for P(Ω) = ∞. Still we shall use a probabilistic language. A random measure (resp.
point process) ξ on G is a measurable mapping ξ : Ω → M (resp. ξ : Ω → N). We find it
convenient to use this terminology even without reference to a (probability) measure on
(Ω,A). We often use the kernel notation ξ(ω,B) := ξ(ω)(B), (ω,B) ∈ Ω × G. A point
process ξ is said to be simple, if ξ(ω, {s}) ≤ 1 for all (ω, s) ∈ Ω×G.

Next we give a short but self-contained introduction into Palm calculus, using the
setting from [16] and [14]. A more comprehensive summary can be found in [12]. Assume
that G acts measurably on (Ω,A). This means that there is a family of measurable
mappings θs : Ω → Ω, s ∈ G, such that (ω, s) 7→ θsω is measurable, θ0 is the identity on
Ω and

θs ◦ θt = θs+t, s, t ∈ G, (2.1)

where ◦ denotes composition. The family {θs : s ∈ G} is said to be (measurable) flow on
Ω. A random measure on G is said to be invariant (w.r.t. to the flow) or flow-adapted if

ξ(ω,B + s) = ξ(θsω,B), ω ∈ Ω, s ∈ G, B ∈ G. (2.2)

Let us illustrate these concepts with two examples.

Example 2.1. Assume that (Ω,F) = (M,M) and define θsµ := µ(·+ s), for µ ∈ M and
s ∈ G. Then {θs : s ∈ G} is a flow and the identity on M is invariant.

Example 2.2. Let H be a (non-empty) Polish space equipped with the Borel σ-field H
and consider the space HG of all functions ω : G → H. For each s ∈ G we define the
shift-operator θs : H

G → HG by θsω := ω(· + s). Assume now that F is shift-invariant
subset of HG equipped with a σ-field F such that (ω, s) 7→ (θsω, ω(0)) is measurable with
respect to F ⊗ H. For instance we can take G = Rd, H = R, F as the Skorohod space
of all càdlàg functions (see e.g. [8]) and F as the smallest σ-field rendering the mappings
ω 7→ ω(t), t ∈ G, measurable. Then even (ω, t) 7→ ω(t) is measurable and therefore also
(ω, s) 7→ θsω, as required. An example of an invariant random measure (defined on F) is
ξ(ω) :=

∫

1{t ∈ ·}f(θtω) λ(dt), where f : F → [0,∞) is measurable and bounded.

In view of the preceding examples it is helpful to think of θsω as of ω shifted by s. A
measure P on (Ω,A) is called stationary if it is invariant under the flow, i.e.

P ◦ θs = P, s ∈ G,

where θs is interpreted as a mapping from A to A in the usual way:

θsA := {θsω : ω ∈ A}, A ∈ A, s ∈ G.
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Throughout the paper P will denote a σ-finite stationary measure on (Ω,A).
Let B ∈ G be a set with positive and finite Haar measure λ(B) and ξ be an invariant

random measure on G. The measure

Pξ(A) := λ(B)−1

∫∫

1A(θsω)1B(s) ξ(ω, ds)P(dω), A ∈ A, (2.3)

is called the Palm measure of ξ (with respect to P).
For discrete groups the previous definition becomes very simple:

Example 2.3. Assume that G is discrete. Then we can take B := {0} and obtain that

Pξ(A) = E1Aξ({0}).

The intensity of ξ is the number γξ := E[ξ(B)] = Pξ(Ω). If this intensity is positive
and finite then the normalized Palm measure

P0
ξ := γ−1

ξ Pξ

is called Palm probability measure of ξ (w.r.t. P). Note that Pξ and P0
ξ are defined on

the underlying space (Ω,A). The Palm distribution of ξ is the distribution P0
ξ(ξ ∈ ·) of

ξ under P0
ξ . If ξ is a simple point process (that is ξ({s}) ≤ 1 for all s ∈ G), the number

P0
ξ(A) can be interpreted as the conditional probability of A ∈ A given that ξ has a point

at 0 ∈ G.
In the general case the Palm measure Pξ is σ-finite. Moreover, if γξ > 0 and A ∈ A is

flow-invariant (that is θsA = A for each s ∈ G), then P(A) = 0 iff Pξ(A) = 0. Since the
definition (2.3) does not depend on B, we have the refined Campbell theorem

∫∫

f(θsω, s) ξ(ω, ds)P(dω) =

∫∫

f(ω, s) λ(ds)Pξ(dω) (2.4)

for all measurable f : Ω×G → [0,∞]. We write this as

E

[
∫

f(θs, s) ξ(ds)

]

= EPξ

[
∫

f(θ0, s) λ(ds)

]

, (2.5)

where E and EPξ
denote integration with respect to P and Pξ, respectively. Note that

Pξ(ξ(G) = 0) = 0. (2.6)

If ξ is a point process, then Pξ is concentrated on the event {ω ∈ Ω : ξ(ω, {0}) ≥ 1}.
Let ξ be an invariant random measure on G and let h̃ : Ω×G → [0,∞] be a measurable

function such
∫

h̃(θ0, s) ξ(ds) = 1{ξ(G) > 0} P-a.e. Then the refined Campbell theorem
implies the inversion formula

E1{ξ(G) > 0}f = EPξ

∫

f(θ−s)h̃(θ−s, s) λ(ds), (2.7)

for each measurable f : Ω → [0,∞]; see also [15]. This shows that the restriction of the
measure P to {ξ(G) > 0} is uniquely determined by Q.

Let ξ and η be two invariant random measures on G and g : Ω × G → [0,∞] be
measurable. Neveu’s [16] exchange formula says that

EPξ

[
∫

g(θ0, s) η(ds)

]

= EPη

[
∫

g(θs,−s) ξ(ds)

]

. (2.8)
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3 Allocations, point- and mass-stationarity

As in Section 2 we consider a measurable space (Ω,A) equipped with a measurable flow
{θs : s ∈ G} and a stationary σ-finite measure P.

A measurable function τ : Ω × G → G ∪ {∞} (it is understood here that ∞ /∈ G) is
said to be an allocation, if it satisfies the covariance property

τ(θtω, s− t) = τ(ω, s)− t, s, t ∈ G, ω ∈ Ω, (3.1)

where ∞− t := ∞. Given such an allocation we define the (random) sets

Cτ (s) := {t ∈ G : τ(t) = s}, s ∈ G, (3.2)

where, as usual, τ(t) := τ(·, t).
The following result generalizes [12, Theorem 4.1]. The latter arises in the special case

where G = Rd and ξ equals Lebesgue measure. We denote by supp µ the support of a
measure µ on G.

Proposition 3.1. Suppose that ξ is an invariant random measure and that η is a simple
invariant point process. Let τ be an allocation satisfying

τ(s) ∈ supp η ∪ {∞}, ξ-a.e. s ∈ G, P-a.e.

Let h : Ω× Ω → [0,∞] be measurable. Then

EPξ
1{τ(0) 6= ∞}h(θ0, θτ(0)) = EPη

∫

Cτ (0)

h(θs, θ0) ξ(ds). (3.3)

Proof. It follows from (2.2) and (3.1) that the event consisting of all ω ∈ Ω satisfying

ξ(ω, {s ∈ G : τ(ω, s) /∈ (supp η(ω) ∪ {∞}}) = 0

is shift-invariant. Therefore,

Pξ(τ(0) /∈ (supp η ∪ {∞})) = 0. (3.4)

The proof proceeds now as the one of [12, Theorem 4.1], applying the exchange formula
(2.8) instead of the refined Campbell theorem. We apply (2.8) with the function (ω, s) 7→
h(ω, θsω)1{τ(ω, 0) = s}. In view of (3.4), the left-hand coincides with the left-hand side
of (3.3). The right-hand side equals

EPη

∫

h(θs, θ0)1{τ(θs, 0) = −s} ξ(ds).

Since τ(θs, 0) = τ(θ0, s)− s, this equals the right-hand side of (3.3).

Let ξ, η and τ be as in Proposition 3.1 and assume moreover that P-a.e. ξ(Cτ (s)) = 1
for all s ∈ supp η. Then (3.3) implies the shift-coupling

EPξ
1{τ(0) 6= ∞}1{θτ(0) ∈ ·) = Pη. (3.5)
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The additional assumption on τ is equivalent to the balancing property
∫

1{τ(s) 6= ∞, τ(s) ∈ ·} ξ(ds) = η, P-a.e. (3.6)

Since the above balancing event is easily seen to be flow-invariant, equation (3.6) does
also hold Pξ-a.e. and Pη-a.e. Of particular interest is the case ξ = η. Then (3.6) implies
P-a.e. that τ(s) 6= ∞ for all s ∈ supp ξ and (3.6) means that τ(ω, ·) induces for P-a.e. ω a
bijection between the points of supp ξ. We say that τ is a bijective point map for ξ w.r.t.
P (see [21, 7]) and use this terminology also for other measures P.

Given an invariant simple point process ξ and a measure Q on Ω, we call ξ point-
stationary if Q(0 /∈ supp ξ) = 0 and Q(θτ(0) ∈ ·) = Q holds for each bijective point map
τ for ξ w.r.t. Q. It was proved in [7] that a σ-finite measure Q on Ω is point-stationary
iff it is the Palm measure of ξ with respect to some σ-finite stationary measure on Ω.
A key ingredient of the proof is the following intrinsic characterization of general Palm
measures; see [15, Satz 2.5]. Mecke proved his fundamental result in a canonical setting.
As discussed in [14] his proof applies in our more general framework.

Theorem 3.2 (Mecke 1967). Let ξ be an invariant random measure on G and Q be a
σ-finite measure on (Ω,A). Then Q is the Palm measure of ξ w.r.t. a σ-finite stationary
measure on Ω iff Q(ξ(G) = 0) = 0 and

EQ

∫

g(θs,−s) ξ(ds) = EQ

∫

g(θ0, s) ξ(ds) (3.7)

for all measurable g : Ω×G → [0,∞]. Equation (3.7) determines the stationary measure
on {ξ(G) > 0}.

The final assertion of Theorem 3.2 follows from the inversion formula (2.7). .
Point stationarity was extended in [14] to mass-stationarity of an invariant random

measure ξ w.r.t. a given σ-finite measure Q on Ω. Roughly speaking, mass-stationarity
of ξ can be described as follows. Let C ∈ G be a relatively compact set with positive
Haar measure whose boundary is not charged by λ. Let U be a random element of G,
independent of ξ and with distribution λ(C)−1λ(C ∩ ·). Given (ξ, U) pick a random point
V according to the normalized restriction of λ to C − U . If Q is the Palm measure of ξ
w.r.t. some stationary measure, then

Q((ξ ◦ θV , U + V ) ∈ ·) = Q((ξ, U) ∈ ·).

As shown by [14, Theorem 6.3], a version of this property (assumed to be true for all C as
above) is equivalent to (3.7) and hence provides another intrinsic chracterization of Palm
measures. Justified by this result we call ξ mass-stationary (w.r.t. Q) if (3.7) holds. In
this paper Q will always denote a probability measure while, as a rule, P is only σ-finite.

4 Exceedance random measures

Let H be a (non-empty) Polish space equipped with the Borel σ-field H. Assume that
| · | : H → [0,∞) is a measurable mapping. One might think of H = Rd equipped with the
Euclidean norm.

6



In this and later sections we consider a measurable mapping Y : Ω × G → H. For
s ∈ G we write Ys for the random variable ω 7→ Ys(ω). Then Y can be considered as a
(measurable) random field (Ys)s∈G. We assume the shift-covariance

Ys(θtω) = Ys+t(ω), (ω, s, t) ∈ Ω×G×G. (4.1)

We call

ξ :=

∫

1{s ∈ ·, |Ys| > 1} λ(ds) (4.2)

the exceedance measure of Y . By (4.1) this is an invariant random measure. If G is
discrete, ξ is a simple point process. The Palm measure of ξ takes a rather simple form:

Lemma 4.1. Let P be a σ-finite stationary measure on Ω. Then

Pξ = P(· ∩ {|Y0| > 1}). (4.3)

Proof. Let B ∈ G satisfy λ(B) = 1. Then

Pξ = EP

∫

1{θs ∈ ·}1{s ∈ B} ξ(ds) = EP

∫

1{θs ∈ ·}1{s ∈ B, |Ys| > 1} λ(ds)

=

∫

B

EP[1{θs ∈ ·, |Ys| > 1}]λ(ds) =

∫

B

EP[1{θ0 ∈ ·, |Y0| > 1}]λ(ds),

where we have used stationarity of P to get the final equation. This proves the assertion.

In this paper we will mostly be concerned with a probability measure Q on (Ω,A)
such that ξ is mass-stationary w.r.t. Q. In this case Theorem 3.2 shows that there exists
a unique σ-finite stationary measure P on Ω satisfying Pξ = Q and P(ξ(G) = 0) = 0. If
Q(ξ(G) < ∞) = 1 then P cannot be finite:

Remark 4.2. Let Q be as above and assume that Q(0 < ξ(G) < ∞) = 1. Define a
measure P on Ω by

P := EQξ(G)−1

∫

1{θs ∈ ·} λ(ds). (4.4)

Since ξ(G) is invariant under shifts, this measure is stationary. Let f : M → [0,∞] be
measurable and B ∈ G with λ(B) = 1. A simple calculation (using invariance of ξ and
Fubini’s theorem) shows that

EP

∫

1{s ∈ B}f ◦ θs ξ(ds) = EQξ(G)−1

∫

f ◦ θs ξ(ds).

Since we have assumed ξ to be mass-stationary, we can use the Mecke equation (3.7) to
find that the latter expression equals EQf . Hence Q is the Palm measure of ξ. Note that
P(Ω) = ∞, unless λ(G) < ∞.
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5 Spectrally decomposable fields

In this and later sections we take (Ω,A) as the function space (F,F) satisfying the
assumptions of Example 2.2. In addition we assume that H is a measurable cone, that is,
there exists a measurable mapping (u, x) 7→ u ·x from (0,∞)×H to H such that 1 ·x = x
and u · (v · x) = (uv) · x for all x ∈ H and u, v ∈ (0,∞). We mostly write ux instead of
u · x. The function | · | is assumed to be homogeneous, that is |ux| = u|x| for all u > 0
and x ∈ H. If ω ∈ HG and u ∈ (0,∞), then, as usual, u · ω ≡ uω is the function in
HG given by uω(s) := u · ω(s), s ∈ G. We assume that F is closed under the action of
(0,∞). The σ-field F has been assumed to render the mapping (ω, s) 7→ (θsω, ω(0)) to be
measurable and we assume now in addition that the mapping (ω, u) 7→ u ·ω is measurable
on F × (0,∞). If G is discrete, then we take F = HG and equip it with the product
σ-algebra. We write Ys for the mapping ω 7→ ω(s), s ∈ G, and note that (ω, s) 7→ Ys(ω)
is measurable. We also write Y := (Ys)s∈G, which is simply the identity on F. We define
another random field W , by Ws := |Y0|

−1Ys if |Y0| > 0 and by Ws := x0 otherwise, where
x0 is some fixed element of H with |x0| = 1. Since we do not assume H to contain a zero
element we make the general convention |y|−1x := x0 whenever x, y ∈ H and |y| = 0.

Remark 5.1. Assume that F′ ⊂ HG is shift-invariant and closed under the action of
(0,∞). Assume that F′ is equipped with the Kolmogorov product σ-field, that is, the
smallest σ-field making the mappings ω 7→ ω(s) (from F′ to H) measurable for each s ∈ G.
Assume, moreover, that (ω, s) 7→ ω(s) is a (jointly) measurable mapping on F′×G. Then
it is easy to see that (ω, s, u) 7→ (θsω, u · ω) is a measurable function on F′ ×G× (0,∞).
This shows that for a proper choice of F, the product σ-field is a natural candidate for F .

We often consider a probability measure Q on F with the following properties. The
probability measure Q(|Y0| ∈ ·) is a Pareto distribution on (1,∞) with parameter α > 0
and W is independent of |Y0|. To achieve this, we take a probability measure Q′ on F

such that Q′(|Y0| = 1) = 1 and define

Q :=

∫∫

1{uω ∈ ·, u > 1}αu−α−1Q′(dω) du. (5.1)

For the special groups G = Zd and G = R such processes occur in extreme value theory;
see the seminal paper [1] (treating G = Z) and [10, 3, 20]. Note that W is a measurable
function of Y , that Q(W ∈ ·) = Q′ and that the pair (W,Y0) has the desired properties.
We say that Y is spectrally decomposable with index α (w.r.t. Q) or, synonomously, that
Q is spectrally decomposable.

Define the exceedance random measure ξ by (4.2). If Q is given as in (5.1), it is natural
to characterize mass-stationarity of ξ (w.r.t. Q) in terms of suitable invariance properties
of the field W . In the context of tail processes the following property (5.2) was proved in
[1] in the case G = Z (see also [3, 18]) and in the case G = R in [20]. The fact that (5.2)
implies mass-stationarity in the case G = Zd was derived in [17], exploiting the connection
to regularly varying random fields. We use here an intrinsic non-asymptotic approach. It
is worth noticing that [9] identifies (5.2) (in the case G = Z) as being characteristic for
the tail processes introduced in [1].
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Theorem 5.2. Assume that Y is spectrally decomposable with index α. Then the ex-
ceedance random measure ξ is mass-stationary if and only if

EQ

∫

g(θsW,−s)1{|Ws| > 0} λ(ds) = EQ

∫

g(|Ws|
−1W, s)|Ws|

α λ(ds), (5.2)

holds for all measurable g : F×G → [0,∞].

Proof. Let us first assume that ξ is mass-stationary. We generalize the arguments from
the proof of Lemma 2.2 in [18]. Let h : F × G → [0,∞] be measurable and ε ∈ (0, 1].
Then

I := EQ

∫

h(θsY,−s)1{|Ys| > ε} λ(ds)

= EQ

∫∫

h(uθsW,−s)1{u|Ws| > ε}1{u > 1}αu−α−1 du λ(ds)

= ε−α EQ

∫∫

h(εvθsW,−s)1{v|Ws| > 1}1{v > 1/ε}αv−α−1 dv λ(ds),

where we have made the change of variables v := u/ε to get the second identity. Since
1/ε > 1 we obtain that

I = ε−α EQ

∫

h(εθsY,−s)1{|Ys| > 1}1{|Y0| > 1/ε} λ(ds)

= ε−α EQ

∫

h(εθsY,−s)1{|Y0| > 1/ε} ξ(ds).

Using now the assumption (3.7) together with Y0 = (Y ◦ θs)−s we arrive at

I = ε−α EQ

∫

h(εY, s)1{|Ys| > 1/ε} ξ(ds),

that is

EQ

∫

h(θsY,−s)1{|Ys| > ε} λ(ds) = ε−αEQ

∫

h(εY, s)1{|Ys| > 1/ε} λ(ds). (5.3)

We apply this with h(Y, s) := g(|Ys|
−1Y, s) for some measurable function g : F × G →

[0,∞], noting that

h(θsY,−s) = g(|(θsY )−s|
−1θsY,−s) = g(|Y0|

−1θsY,−s) = g(θsW,−s).

Using monotone convergence this yields

EQ

∫

g(θsW,−s)1{|Ws| > 0} λ(ds)

= lim
ε→0

ε−αEQ

∫

g(|Ws|
−1W, s)1{|Y0||Ws| > 1/ε} λ(ds).

9



We have that

ε−αEQ

∫

g(|Ws|
−1W, s)1{|Y0||Ws| > 1/ε} λ(ds)

= ε−αEQ

∫

g(|Ws|
−1W, s)1{u|Ws| > 1/ε}1{u > 1}αu−α−1 du λ(ds)

= ε−αEQ

∫

g(|Ws|
−1W, s)min{|Ws|

αεα, 1} λ(ds)

= EQ

∫

g(|Ws|
−1W, s)min{|Ws|

α, ε−α} λ(ds).

As ε → 0 the latter term tends to EQ

∫

g(|Ws|
−1W, s)|Ws|

α λ(ds), yielding (5.2).
To prove the converse implication we assume that (5.2) holds. We take a measurable

g : F×G → [0,∞] and aim at establishing (3.7). We have that

I ′ := EQ

∫

g(θsY,−s) ξ(ds) = EQ

∫

g(θsY,−s)1{|Ys| > 1} λ(ds)

=

∫
[

EQ

∫

g(uθsW,−s)1{u|Ws| > 1} λ(ds)

]

1{u > 1}αu−α−1 du.

For each u > 1 we can apply (5.2) with the function h̃(ω, s) = g(uω, s)1{u|ω(0)| > 1}.
Then h̃(θsW,−s) = g(uθsW,−s)1{u|Ws| > 1} and

h̃(|Ws|
−1W, s) = g(u|Ws|

−1W, s)1{u|Ws|
−1 > 1}

Therefore

I ′ = EQ

∫∫

g(u|Ws|
−1W, s)|Ws|

α1{u|Ws|
−1 > 1, u > 1}αu−α−1 du λ(ds).

In the above inner integral we can assume that |Ws| > 0. After the change of variables
v := |Ws|

−1u we obtain that

I ′ = EQ

∫∫

g(vW, s)1{v > 1, v|Ws| > 1}αv−α−1 dv λ(ds)

= EQ

∫∫

g(Y, s)1{|Ys| > 1} λ(ds),

establishing (3.7).

Remark 5.3. The equations (5.2) are clearly equivalent to

EQh(θ−sW )1{|W−s| > 0} = EQh(|Ws|
−1W )|Ws|

α, λ-a.e. s ∈ G, (5.4)

for all measurable h : F → [0,∞]. They are also equivalent to the equations

EQ

∫

g(W,−s)1{|Ws| > 0} λ(ds) = EQ

∫

g(|Ws|
−1θsW, s)|Ws|

α λ(ds). (5.5)
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as well as to the equations

EQ

∫

g(W,−s)|Ws|
α λ(ds) = EQ

∫

g(|Ws|
−1θsW, s)1{|Ws| > 0} λ(ds). (5.6)

To see the latter equivalence, we can use the function h̃ : F × G → [0,∞) given by
h̃(ω, s) := |ω(−s)|. If |Ws| > 0 we have that h̃(|Ws|

−1θsW, s) = |Ws|
−1. Applying (5.5)

with g · h̃α instead of g yields (5.6).

Remark 5.4. Assume that G is discrete and that Y is spectrally decomposable with
index α. Then ξ is mass-stationary iff

EQg(θ−sW )1{|W−s| > 0} = EQg(|Ws|
−1W )|Ws|

α (5.7)

holds for all measurable g : F → [0,∞] and all s ∈ G.

In the case G = Z equation (5.2) (see also equation (5.7)) was called time change
formula. In our general setting (and in particular for G = Zd or G = Rd) this terminology
might be replaced by space shift formula. We can rewrite (5.2) as

EQ

∫

g(θsW,−s) ξ′(ds) = EQ

∫

g(|Ws|
−1W, s)|Ws|

α ξ′(ds), (5.8)

where ξ′ is the invariant random measure defined by

ξ′ :=

∫

1{s ∈ ·, |Ws| > 0} λ(ds). (5.9)

This makes the intimate relationship between (3.7) and (5.2) even more transparent.

Remark 5.5. If P(ξ′(G) = 0) = 1 then the equations (5.2) are empty. In the spectrally
positive case it is, however, quite natural to assume that P(ξ′(G) = 0) = 0. Indeed, if G is
discrete or if Y has suitable continuity properties. then this follows from P(|Y0| > 0) = 0.

In the spectrally decomposable case the space-shift formula has the following equiva-
lent version; see [18, 20].

Lemma 5.6. Assume that Y is spectrally decomposable with index α. Then the equations
(5.2) hold iff the following equations holds for all measurable g : F×G → [0,∞]:

EQ

∫

g(Y, s)1{|Ys| > r} λ(ds) = r−α EQ

∫

g(rθ−sY, s)1{r|Y−s| > 1} λ(ds), r > 0,

(5.10)

Proof. Assume that the equations (5.10) hold. Clearly they are equivalent with (5.3). We
have already seen in the proof of Theorem 5.2 that (5.3) implies (5.2).

Assume, conversely, that (5.2) holds. We can assume that P(ξ′(G) > 0) > 0. (Other-
wise there is nothing to prove.) Define Q̃ := Q(· | ξ′(G) > 0) and Q′′ := Q′(· | ξ′(G) > 0).
Then (5.1) holds with (Q,Q′) replaced by (Q̃,Q′′). Hence Q̃ is spectrally decomposable.
The measure Q satisfies (5.10) (resp. (5.2)) iff this is the case for Q̃. Hence it is no loss
of generality to assume that Q(ξ′(G) > 0) = 1. Corollary 6.12 will show that there is a
σ-finite stationary measure ν on F such that Q = νξ. Equation (5.10) then follows easily
from the homogeneity of ν, to be discussed in the next section; see Remark 6.14.
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In the following we denote σ-finite (stationary) measures on F with greek letters. This
is at odds with Section 2 (and parts of point process literature), but in accordance with
extreme value theory.

Remark 5.7. Assume that Y is spectrally decomposable and that the exceedance random
measure ξ is mass-stationary and satisfies Q(ξ(G) = 0) = 0. By Theorem 3.2, there exists
a unique σ-finite stationary measure ν such that ν(ξ(G) = 0) = 0 and νξ = Q. Let
H : F×G → [0,∞) be measurable such that

∫

H(Y, s)1{|Ys| > 1} λ(ds) = 1, ν-a.e. (5.11)

By the inversion formula (2.7) we have that

ν = EQ

∫

1{θ−sY ∈ ·}H(θ−sY, s) λ(ds).

Inserting here the spectral decomposition (5.1), yields

ν = EQ

∫∫

1{uθ−sW ∈ ·}H(uθ−sW, s)1{u > 1}αu−α−1 du λ(ds). (5.12)

Example 5.8. Consider the setting of Remark 5.7 and assume moreover thatG is discrete.
Let τ be an allocation such that

∑

s∈G

1{τ(Y, 0) = s, |Ys| > 1} = 1, ν-a.e. (5.13)

Then we can apply (5.12) with H(Y, s) := 1{τ(Y, 0) = s}. Since τ(θ−sY, 0) = τ(Y,−s)+s
we can change variables s := −s to obtain that the measure (5.12) is given by

ν = EQ

∑

s∈G

∫

1{uθsW ∈ ·, τ(uW, s) = 0}1{u > 1}αu−α−1 du. (5.14)

Remark 5.9. The preceding results can be generalized as follows. Let (Ω,A) be a
measurable space and suppose that that there is measurable action (u, ω) 7→ uω from
(0,∞)× Ω to Ω. Let Y be a random element of F satisfying (4.1) and also

Ys(uω) = uYs(ω), (ω, s, u) ∈ Ω×G× (0,∞). (5.15)

Let Q be a probability measure on Ω given by (5.1), where Q′ is a probability measure
on Ω such that Q′(|Y0| = 1) = 1. Then ξ is mass-stationary w.r.t. Q iff

EQ

∫

g(ϑs,−s)1{|Ws| > 0} λ(ds) = EQ

∫

g(|Ws|
−1ϑ0, s)|Ws|

α λ(ds), (5.16)

for each measurable g : F × G → [0,∞], where ϑsω := |Y0(ω)|
−1θsω, ω ∈ Ω, whenever

|Y0(ω)| > 0. Such a generalization is certainly useful when considering more randomness.
For instance we may consider a second Polish space H′ and a suitable subset of (H×H′)G.
The shifts are defined as before, while multiplication acts only on the first component Y (ω)
of an element ω ∈ (H × H′)G. If Q(ξ(G) = 0) = 0, Palm theory would still guarantee
the existence of stationary measure P (uniquely determined on {ξ(G) > 0}) such that
Pξ = P(· ∩ {|Y0| > 1}) = Q.
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6 Tail measures

In this section we let (F,F) be as in Section 5. Throughout we work with the exceedance
random measure ξ (defined by (4.2)) and the random measure ξ′, defined by (5.9). We
say that a measure ν on F is a tail measure if

∫

1{|Ys| > 0} λ(ds) > 0, ν-a.e., (6.1)

Eνξ(B) < ∞, B ∈ G compact, (6.2)

and if there exists an α > 0 such that ν is α-homogeneous, that is

ν(uY ∈ ·) = uαν(Y ∈ ·), u > 0. (6.3)

In accordance with the literature we call α the index of ν.
This definition extends the one in [3]. A rather general (but slightly different) definition

of a tail measure has very recently been given in [2]. In this paper we are mostly interested
in stationary tail measures. In this case (6.2) implies that B 7→ Eνξ(B) (the intensity
measure of ξ) is a finite multiple of the Haar measure λ. In accordance with the literature
we shall always assume then, that this multiple equals 1, that is

Eν

∫

1{s ∈ B, |Ys| > 1} λ(ds) = λ(B), B ∈ G, (6.4)

or, equivalently,

ν(|Y0| > 1) = 1. (6.5)

Up to Remark 6.1 our definition of a stationary tail measure generalizes the one given
[20] in the case G = R.

If Q is a probability measure on F such that Q(ξ(G) = 0) = 0 and ξ is mass-stationary
w.r.t. Q, then Theorem 3.2 shows that there exists a stationary measure ν on F (uniquely
determined on {ξ(G) > 0}) such that Q = νξ is the Palm measure of ξ w.r.t. ν. The main
purpose of this section is to show that, if Q is spectrally decomposable, then ν is a tail
measure.

Remark 6.1. Condition (6.1) means that ν(ξ′(G) = 0) = 0 and should be compared with
the condition ν(Y ≡ 0) = 0, made in [20]. Our assumption is (slightly) stronger, also in
the stationary case. Without any topological structure of F such a stronger assumption
appears to be appropriate. (The set {Y ≡ 0} does not even need to be measurable.)

If ν is a σ-finite measure on F and η a random measure on G we define the Campbell
measure

Cν,η := Eν

∫

1{(Y, s) ∈ ·} η(ds),

which is a measure on F×G. It is well-known (and easy to prove) that Cν,ξ′ determines
P on the event {ξ′(G) > 0}. For tail measures this can be refined as follows.
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Lemma 6.2. Let ν be a tail measure on F. Then ν is σ-finite and uniquely determined
by Cν,ξ.

Proof. It follows from (6.1) and (6.2) that

Eν

∫

1{s ∈ B, |Ys| > c} λ(ds) < ∞

for each c > 0 and whenever B ⊂ G is compact. Take a sequence Bk, k ∈ N, of compact
sets increasing towards G. Then ν is finite on the sets

Uk :=
{

ω ∈ F :

∫

1{s ∈ Bk, |ω(s)| ≥ 1/k} λ(ds) ≥ 1/k
}

, k ∈ N, (6.6)

which increase towards
{

ω ∈ F :
∫

1{|ω(s)| > 0} λ(ds) > 0
}

. In view of (6.1) we obtain
that ν is σ-finite.

By homogeneity the Campbell measure Cν,ξ determines the Campbell measures

Eν

∫

1{(Y, s) ∈ ·}1{|Ys| > c} λ(ds)

for each c > 0 and hence also Cν,ξ′. Take a measurable h̃ : F × G → [0,∞) such that
∫

h̃(ω, s)ξ′(ds) = 1, whenever ξ′(ω,G) > 0; see Remark 6.11. Then we obtain for each
measurable g : F → [0,∞] that

Eν1{ξ
′(G) > 0}g(Y ) = Eν

∫

g(Y )h̃(Y, s) ξ′(ds) =

∫

g(ω)h̃(ω, s)Cν,ξ′(d(ω, s)).

Since ν(ξ′(G) = 0) = 0, this proves the second assertion.

Given a σ-finite stationary measure ν on F, we recall that νξ = ν(· ∩ {|Y0| > 1}) is
the Palm measure of ξ w.r.t. ν. If ν(ξ′(G) = 0) = 0 (e.g. if ν is a tail measure), then the
definition (2.3) and the shift-invariance of the event {ξ′ = 0} show that

νξ(ξ
′ = 0) = 0. (6.7)

Corollary 6.3. A stationary tail measure ν is uniquely determined by νξ.

Proof. Let ν ′ be another stationary tail measure with νξ = ν ′

ξ. By the refined Campbell
theorem (2.4) we obtain that Cν,ξ = Cν′,ξ. Lemma 6.2 shows that ν = ν ′, as asserted.

Next we connect tail measures with spectrally decomposable fields. The first part of
the following proposition is a classical result.

Proposition 6.4. Let ν be a stationary tail measure with index α > 0. Then there exists
a probability measure Q′ on F such that Q′(|Y0| = 1) = 1 and

ν(· ∩ {|Y0| > 0}) =

∫∫

1{uω ∈ ·}1{u > 0}αu−α−1Q′(dω) du. (6.8)

Moreover, ξ is mass-stationary with respect to the probability measure

Q :=

∫∫

1{uω ∈ ·}1{u > 1}αu−α−1Q′(dω) du. (6.9)

Further we have νξ = Q.
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Proof. The first part follows by a classical argument; see also [5] for a general version.
For the convenience of the reader we give the short proof. Define

Q′ := ν({ω ∈ F : |ω(0)| > 1, |ω(0)|−1ω ∈ ·}).

By (6.5) (and stationarity), this is a probability measure and we have thatQ′(|Y0| = 1) = 1
by definition. Take u > 0 and A ∈ F . By (6.3),

ν({ω ∈ F : |ω(0)| > u, |ω(0)|−1ω ∈ A} = u−αQ′(A).

This implies (6.8).
To prove the second assertion we proceed similarly as in the first part of the proof of

Theorem 5.2. Let us first note, that

Q = ν(· ∩ {|Y0| > 1}). (6.10)

Let h : F×G → [0,∞] be measurable and ε ∈ (0, 1]. Then

I := EQ

∫

h(θsY,−s)1{|Ys| > ε} λ(ds)

= EQ′

∫∫

h(uθsW,−s)1{u|Ws| > ε, u > 1}αu−α−1 du λ(ds)

= ε−α EQ′

∫∫

h(εvθsW,−s)1{v|Ws| > 1, v > ε−1}αv−α−1 dv λ(ds).

By (6.8) and Q′(|W0| = 1) = 1,

I = ε−α Eν

∫∫

h(εθsY,−s)1{|Ys| > 1, |Y0| > ε−1}αv−α−1 dv λ(ds)

= ε−α Eν

∫∫

h(εY,−s)1{|Y0| > 1, |Y−s| > ε−1}αv−α−1 dv λ(ds),

where we have used stationarity, to obtain the second equality. From here we can proceed
as in the proof of Theorem 5.2 to obtain (5.2).

The final assertion νξ = Q follows from (6.10) and Lemma 4.1.

Remark 6.5. Let ν be a tail measure. By Proposition 6.4, νξ(W ∈ ·) (= Q) determines
νξ and hence, by Corollary 6.3 also ν.

Generalizing [3, Theorem 2.9] (treatingG = Z) and [20, Theorem 2.3] (treatingG = R)
we next provide a construction of a stationary tail measure ν, assuming the space shift
formula (5.2) to hold for some given probability measure Q. This measure ν satisfies
νξ = Q. A function h from F into some space is said to be 0-homogeneous if h(uω) = h(ω)
for each ω ∈ F and each u > 0.

Theorem 6.6. Assume that Q is a spectrally decomposable probability measure on F such
that the space shift formula (5.2) holds for some α > 0. Assume that H : F×G → [0,∞]
is a measurable function, 0-homogeneous in the first coordinate and such that

∫

H(θtW, s− t)1{|Ws| > 0} λ(ds) = 1, λ-a.e. t, Q-a.s. (6.11)
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Define a measure νH on F by

νH = EQ

∫∫

1{uθ−sW ∈ ·}H(θ−sW, s)1{u > 0}αu−α−1 du λ(ds). (6.12)

Then νH is a stationary tail measure satisfying (νH)ξ = Q.

Proof. For the proof we generalize some of the arguments from [3, 20]. The fact that
νH is α-homogeneous is an immediate consequence of the definition. Assumption (6.11)
implies that Q(ξ′(G) = 0) = 0. Since {ξ′(G) = 0} is shift and scale invariant, we obtain
again directly from the definition of νH that νH(ξ′(G) = 0) = 0, that is (6.1).

Let f : F×G → [0,∞] be measurable and set ρ(du) := 1{u > 0}αu−α−1du. Then

I := EνH

∫

f(θtY, t) ξ(dt) = EνH

∫

f(θtY, t)1{|Yt| > 1} λ(dt)

= EQ

∫∫∫

f(uθt−sW, t)1{u|Wt−s| > 1, H(θ−sW, s) ρ(du) λ(ds) λ(dt)

= EQ

∫∫∫

f(v|Wt−s|
−1θt−sW, t)|Wt−s|

αH(θ−sW, s)}1{v > 1} λ(ds) λ(dt) ρ(dv),

where we have used the homogeneity of H and a change of variables. By the invariance
properties of Haar measure (set r := t− s in the inner integral),

I = EQ

∫∫∫

f(v|Wr|
−1θrW, t)|Wr|

αH(θr−tW, t− r)}1{v > 1} λ(dr) λ(dt) ρ(dv).

Now we can use assumption (5.2) (and again the homogeneity of H) to obtain that

I = EQ

∫∫∫

f(vW, t)H(θ−tW, r + t)}1{|Wr| > 0}1{v > 1} λ(dr) λ(dt) ρ(dv).

By assumption (6.11),

EνH

∫

f(θtY, t) ξ(dt) = EQ

∫∫

f(vW, t)1{v > 1} λ(dt) ρ(dv). (6.13)

From (6.13) we conclude that (6.4) holds for ν = νH . The right-hand side of (6.13)
does not depend on the specific choice of H . Take r ∈ G and apply (6.13) with Hr instead
of H , where Hr(ω, s) := H(θrω, s− r). Lemma 6.2 yields that νH = νHr . On the other
hand we obtain for each measurable g : F → [0,∞] that

EνHr g(θrY ) = EQ

∫∫

1{uθr−sW ∈ ·}H(θr−sW, s− r)1{u > 0}αu−α−1 du λ(ds),

which equals EνHg(Y ). Hence νH is stationary and (6.13) shows that (νH)ξ = Q.

Next we discuss some special cases of Theorem 6.6. Given a measurable function
G : G → [0,∞] we define a measurable function JG : F → [0,∞] by

JG(ω) :=

∫

|ω(s)|αG(s) λ(ds), ω ∈ F. (6.14)

and a measure QG on F by

QG := EQ

∫

1{JG(θ−sW )−1/αθ−sW ∈ ·}G(s) λ(ds). (6.15)
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Corollary 6.7. Let Q satisfy the assumptions of Theorem 6.6. Let G : F → [0,∞] be a
measurable function satisfying

0 <

∫

|Ws|
αG(s+ r) λ(ds) < ∞, λ-a.e. r, Q-a.s. (6.16)

Then

νG := EQG

∫

1{uY ∈ ·, u > 0}αu−α−1 du (6.17)

is a stationary tail measure satisfying (νG)ξ = Q.

Proof. We wish to apply Theorem 6.6 with the function

H(ω, t) := JG(ω)
−1|ω(t)|αG(t).

For each t ∈ G we have
∫

H(θtW, s− t)1{|Ws| > 0} λ(ds) = JG(θtW )−1

∫

|Ws|
αG(s− t) λ(ds).

By assumption (6.16) this equals 1 for λ-a.e. t. Since |(θ−sW )s| = |W0| = 1 we obtain
that νH is given by

EQ

∫∫

1{vθ−sW ∈ ·, v > 0}JG(θ−sW )−1G(s)αv−α−1 dv λ(ds).

Changing variables u := JG(θ−sW )v yields the assertion.

Corollary 6.8. Let Q be a spectrally decomposable probability measure on F such that
Q(ξ′(G) = 0) = 0. Assume that the space shift formula (5.2) holds for some α > 0.
Let G : F → (0,∞) be measurable with

∫

Gdλ = 1. Define a probability measure QG by
(6.15). Then νG defined by (6.17) is a stationary tail measure satisfying (νG)ξ = Q.

Proof. We wish to apply Corollary 6.7. The first inequality in (6.16) follows from our
assumptions Q(ξ′(G) > 0) = 1 and G > 0. Assumption (5.2) implies for each r ∈ G that

EQ

∫

|Ws|
αG(s+ r) λ(ds) ≤

∫

G(t+ s) λ(ds) ≤ 1.

Hence the second inequality in (6.16) holds as well, proving the result.

Remark 6.9. The assumption Q(ξ′(G) > 0) = 1, made in Corollary 6.8, is a probabilistic
counterpart of (6.1). This assumption is very natural (see Remark 5.5) and cannot be
avoided in our general setting.

Remark 6.10. Consider the assumptions of Theorem 6.6 and assume moreover that
Q(|Ys| > 0) = 1 for λ-a.e. s ∈ G. Then we can choose G = 1B for any B ∈ G with
0 < λ(B) < ∞. If, for instance, Q is discrete, then we can take B = {0} to obtain that
QG = Q; see also [3, Remark 2.10].
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Remark 6.11. We can follow [15] to construct a function H satisfying the assumptions
of Theorem 6.6. Take a measurable partition {Bn : n ∈ N} of G into relatively compact
Borel sets. Define H̃ : F×G → (0,∞) by

H̃(ω, s) :=
∑

n

2−n(ξ′(ω,Bn) + 1)−11{s ∈ Bn}.

Since ξ′(ω) = ξ′(W (ω)) we have that H̃(ω, s) = H̃(W (ω), s). Define a random variable
S by S(ω) :=

∫

H̃(ω, s) ξ′(ω, ds), ω ∈ Ω. Then S ≤ 1 and S > 0, whenever ξ′(G) > 0.

Define a function H by H(ω, s) := S−1(ω)H̃(ω, s). By definition of ξ′, H̃ and hence also
H is 0-homogeneous in the first argument. Furthermore we have for t ∈ G that

∫

H̃(θtW (ω), s− t)1{|Ws(ω)| > 0} λ(ds) =

∫

H̃(θtW (ω), s− t) ξ′(W (ω), ds)

=
∑

n

2−n(ξ′(θtW (ω), Bn) + 1)−11{s− t ∈ Bn} ξ
′(W (ω), ds)

=
∑

n

2−n(ξ′(W (ω), Bn + t) + 1)−1ξ′(W (ω), Bn + t).

This is positive as soon as ξ′(ω,G) > 0. Since

S(θtW (ω)) =

∫

H̃(θtW (ω), s) ξ′(θtW (ω), ds) =

∫

H̃(θtW (ω), s− t) ξ′(W (ω), ds),

we obtain (6.11), provided that Q(ξ′(G) > 0) = 1.

Corollary 6.12. Suppose that Q is a spectrally decomposable probability measure on F

such that Q(ξ′(G) > 0) = 1. Assume that ξ is mass-stationary w.r.t. Q. Then there exists
a unique stationary tail measure ν such that νξ = Q. This tail measure is given by (6.17)
and (under the hypothesis (6.11)) also by (6.12)

Proof. Theorem 5.2, assumption Q(ξ′(G) > 0) = 1 and Remark 6.11 allow us to apply
Theorem 6.6. Combining this with Corollary 6.3 shows that (6.12) is the unique tail
measure ν with νξ = Q. By Corollary 6.8, ν is also given by (6.17).

By (2.6), Corollary 6.12 (or Corollary 6.8) has the following (quite natural) conse-
quence.

Corollary 6.13. Assume that Y is spectrally decomposable and that ξ is mass-stationary
w.r.t. Q. If Q(ξ′(G) = 0) = 0, then Q(ξ(G) = 0) = 0.

Remark 6.14. Suppose that ν is a tail measure and write Q = νξ. Let g : F×G → [0,∞]
be measurable and r > 0. Then

EQ

∫

g(Y, s)1{|Ys| > r} λ(ds) = Eν

∫

g(Y, s)1{|Y0| > 1, |Ys| > r} λ(ds).
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By homogeneity and stationarity of ν this equals

r−αEν

∫

g(rY, s)1{r|Y0| > 1, |Ys| > 1} λ(ds)

= r−αEν

∫

g(rθ−sY, s)1{r|Ys| > 1, |Y0| > 1} λ(ds),

which yields (5.10). In view of Corollary 6.12 this completes the proof of Lemma 5.6.

Example 6.15. Assume that G is discrete, (5.7) holds and that T : F → G ∪ {∞} is a
measurable and 0-homogeneous mapping satisfying

∑

s∈G

1{T (θtW ) = s+ t, |Ws+t| > 0} = 1, Q-a.s., t ∈ G, (6.18)

Then we can apply Theorem 6.6 with H(W, s) = 1{T (W ) = s}. The measure (6.12) takes
the form

νT := EQ

∑

s∈G

∫

1{uθ−sW ∈ ·, T (θ−sW ) = s}1{u > 0}αu−α−1 du, (6.19)

providing a modest generalization of [3, Proposition 2.12]. Using the arguments in [3,
Section 2.4] (and assuming Q(Y ≡ 0) = 0) it is possible to construct a mapping T with
the preceding properties.

Remark 6.16. We can extend the mapping T from Example 6.15 to an allocation by
setting τ(ω, s) := T (θsω, 0) + s. Then the formulas (5.14) and (6.19) look very similar.
The crucial difference is that the allocation in the first formula picks a point from ξ
while the one from (6.19) picks a point from ξ′. This explains the difference in the range
of integration for the scaling variable u. A similar remark applies to Remark 5.7 and
Theorem 6.6.

7 Spectral representation

Again we establish the canonical setting of Section 5. Let ν be a measure on F. In
accordance with the literature we say that ν has a spectral representation, if there exists
a probability measure Q∗ on F and an α > 0 satisfying

ν = EQ∗

∫

1{uY ∈ ·, u > 0}αu−α−1 du. (7.1)

In this case we refer to Q∗ as a spectral measure of ν and to α as the index of ν. Our
previous results will show rather quickly that any stationary tail measure has a spectral
representation. In a sense this section is dual to the previous one. We start with the
non-probabilistic object ν and derive the probabilistic representation (7.1).

First we will state a few basic properties of a spectral representation, to be found (in
special cases) in [3, 20] and in the recent preprint [2] dealing with more general fields.
Recall that a stationary tail measure is assumed to be normalized as in (6.4).
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Proposition 7.1. Suppose that ν admits a spectral representation with spectral measure
Q∗ and index α > 0. Assume that Q∗(ξ′(G) > 0) = 1. Then we have:

(i) ν is a tail measure iff

EQ∗

∫

1{s ∈ B}|Ys|
α λ(ds) < ∞, B ∈ G compact. (7.2)

(ii) Assume in addition that (7.2) holds. Then ν is stationary iff

EQ∗

∫

g(Y, s)|Ys|
α λ(ds) = EQ∗

∫

g(θ−sY, s)|Y0|
α λ(ds), (7.3)

holds for all measurable g : F × G → [0,∞] which are 0-homogeneous in the first
argument. If these conditions hold, then ν is a stationary tail measure iff

EQ∗|Ys|
α = 1, λ-a.e. s ∈ G. (7.4)

Proof. For the proof we generalize the arguments in [3] (given for G = Z) in a straightfor-
ward manner. Clearly ν is α-homogeneous. By Q∗(ξ′(G) > 0) = 1 and (7.1), ν satisfies
property (6.1).

(i) Let B ∈ G. Then

Eν

∫

1{s ∈ B, |Ys| > 1} λ(ds) = EQ∗

∫∫

1{s ∈ B, u|Ys| > 1}αu−α−1 du λ(ds)

= EQ∗

∫

1{s ∈ B}|Ys|
α λ(ds). (7.5)

Hence (6.4) and (7.2) are equivalent.
(ii) Assume that ν is stationary and take a measurable g : F × G → [0,∞] which is

0-homogeneous in the first argument. Then

EQ∗

∫

g(Y, s)|Ys|
α λ(ds) = EQ∗

∫∫

g(uY, s)1{u|Ys| > 1}αu−α−1 du λ(ds)

= Eν

∫

g(Y, s)1{|Ys| > 1} λ(ds).

By stationarity of ν this equals

Eν

∫

g(θ−sY, s)1{|Y0| > 1} λ(ds) = EQ∗

∫∫

g(θ−sY, s)1{u|Y0| > 1}αu−α−1 du λ(ds).

This equals the right-hand side of (7.3).
Assume now that (7.3) holds. Take a measurable f : F×G → [0,∞] and t ∈ G. Then

I := Eν

∫

f(θtY, s)1{|Ys+t| > 1} λ(ds)

= EQ∗

∫∫

f(uθtY, s)1{u|Ys+t| > 1}αu−α−1 du λ(ds)

= EQ∗

∫∫

f(uθtY, s− t)1{u|Ys| > 1}αu−α−1 du λ(ds)

= EQ∗

∫∫

f(|Ys|
−1vθtY, s− t)|Ys|

α1{v > 1}αv−α−1 dv λ(ds).
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By the homogeneity of |Ys|
−1Y and (7.3),

I = EQ∗

∫∫

f(|Y0|
−1vθt−sY, s− t)|Y0|

α1{v > 1}αv−α−1 dv λ(ds)

= EQ∗

∫∫

f(uθt−sY, s− t)1{u|Y0| > 1}αu−α−1 du λ(ds)

= EQ∗

∫∫

f(uθ−sY, s)1{u|Y0| > 1}αu−α−1 du λ(ds).

This shows that the Campbell measures Cν◦θt,ξ′ do not depend on t ∈ G. But ν ◦ θt does
also satisfy (6.1) and (6.3) along with the assumption of (ii). Hence Lemma 6.2 implies
that ν is stationary.

The final assertion follows from (7.5).

Let us mention the following fact; cf. [20, (2.8)].

Corollary 7.2. Suppose that ν is a stationary tail measure with index α > 0. Let Q∗ be
a spectral measure of ν. Then

νξ(W ∈ ·) = EQ∗1{|Ys|
−1θsY ∈ ·}|Ys|

α, λ-a.e. s.

Proof. In the proof of Proposition 7.1 we have seen that

EQ∗

∫

g(Y, s)|Ys|
α λ(ds) = Eν

∫

g(θ−sY, s)1{|Y0| > 1} λ(ds).

holds, provided that g is 0-homogeneous in the first argument. The right-hand side equals
Eνξ

∫

g(θ−sY, s)λ(ds). Equivalently,

EQ∗

∫

g(θsY, s)|Ys|
α λ(ds). = Eνξ

∫

g(Y, s) λ(ds)

Applying this with g(Y, s) := h(|Y0|
−1Y, s) for a measurable h : F×G → [0,∞] yields the

assertion.

The following result extends the stationary case of [3, Theorem 2.4] (covering the case
G = Z) and [20, Theorem 2.3] (dealing with the case G = R). A general non-stationary
(and therefore less specific) version can be found as Lemma 3.10 in the recent preprint
[2].

Theorem 7.3. Suppose that ν is a stationary tail measure with index α > 0. Then ν has
a spectral representation with a spectral measure Q∗ satisfying (7.3) and (7.4).

Proof. By Theorem 3.2 the measure Q := νξ is mass-stationary. By Proposition 6.4,
Theorem 5.2 and (6.7), Q satisfies the assumptions of Theorem 6.6. By Corollary 6.8 we
can therefore define a tail measure ν ′ (with index α) by (6.17) for some given function
G with the required properties. Then ν ′ admits a spectral representation with spectral
measure Q∗ := QG. By Corollary 6.8 we also have ν ′

ξ = Q, that is ν ′

ξ = νξ. Corollary
6.3 shows that ν = ν ′, proving the spectral representation (7.1). By Proposition 7.1, Q∗

satisfies (7.4) and (7.3).
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Remark 7.4. The existence of a spectral representation of a tail measure ν can also be
derived from Proposition 2.8 in [5]. Indeed, the sets Uk defined in (6.6) satisfy the as-
sumptions of that proposition. However, Theorem 7.3 and its proof provide more detailed
information on the spectral measure Q∗. In fact, Q∗ is explicitly given in terms of the
Palm measure νξ of ξ w.r.t. ν.

A spectral measure is not uniquely determined by the tail measure. Depending on the
properties of νξ, the proof of Theorem 7.3 provides several ways of constructing a spectral
measure. The recent preprint [6] contains a systematic discussion of the relationships
between random fields (on Rd or Zd) satisfying (7.3) and stationary tail measures.

Remark 7.5. Let ν be a stationary tail measure. Then νξ is said to be the distribution
of the tail process associated with ν; see [3, 20]. Under νξ the process W is called a
spectral (tail) process associated with ν; see again [3, 20]. By Corollary 6.3, ν is uniquely
determined by νξ(W ∈ ·). But in general, νξ(W ∈ ·) is not a spectral measure of ν. This
clash of terminology is a bit unfortunate.

A tail measure ν is said to admit a moving shift representation if there exists a prob-
ability measure Q∗ on F such that

ν = EQ∗

∫∫

1{uθsY ∈ ·, u > 0}αu−α−1 du λ(ds). (7.6)

Theorem 7.6. Suppose that ν is a stationary tail measure with index α > 0. Then there
exists a probability measure Q∗ on F such that (7.6) holds iff

∫

|Ys|
αλ(ds) < ∞, ν-a.e. (7.7)

Proof. Assume first, that (7.7) holds. As noticed in the proof of Theorem 7.3 the proba-
bility measure Q := νξ satisfies the assumptions of Theorem 6.6. Define the probability
measure

Q∗ := Q(Z−1/αW ∈ ·), (7.8)

where Z :=
∫

|Ws|
αλ(ds). Applying Corollary 6.7 with G ≡ 1 shows the right-hand side

of (7.6) is a stationary tail measure ν ′ with ν ′

ξ = Q. As in the proof of Theorem 7.3 we
obtain ν = ν ′.

Assume, conversely, that (7.6) holds. Then

1 = ν(|Y0| > 1) = EQ∗

∫∫

1{u|Ys| > 1, u > 0}αu−α−1 du λ(ds) = EQ∗

∫

|Ys|
α λ(ds).

Hence Q∗(A) = 0, where A := {
∫

|Ys|
αλ(ds) = ∞}. Since A is invariant under translation

and scaling, we obtain from (7.6) that ν(A) = 0.

We refer the reader to [3, 4, 20] for a more detailed analysis of moving shift representa-
tions for special groups G and under additional continuity assumptions on Y . Extending
some of those results to general groups is an interesting task, beyond the scope of this
paper.
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8 Anchoring maps

In this section we let Y and ξ be as in Section 4 and suppose that Q is a probability
measure on (Ω,A) such that ξ is mass-stationary w.r.t. Q.

Following [17, 20] we say that a measurable mapping T : F → G is an anchoring map
if

T (θsω) = T (ω)− s, s ∈ G, if 0 < ξ(ω,G) < ∞. (8.1)

In stochastic geometry such functions are known as center functions; see e.g. [13, Chapter
17].

In the following the number

ϑ := EQξ(G)−1. (8.2)

will play an important rule. If Q(ξ(G) < ∞) > 0, then ϑ > 0.

Proposition 8.1. Assume that ξ is mass-stationary w.r.t. Q. Assume also that

Q(0 < ξ(G) < ∞) = 1 (8.3)

and ϑ < ∞. Let T be an anchoring map and define the probabiliy measure

QT := ϑ−1EQξ(G)−11{θT ∈ ·} (8.4)

Then we have for all measurable g : Ω → [0,∞] that

EQg = ϑEQT

∫

g ◦ θs ξ(ds). (8.5)

Proof. Let ν be the σ-finite stationary measure on Ω such that Q = νξ and ν(ξ(G) =
0) = 0. Define an allocation τ by τ(ω, s) := T (θsω) + s. By assumption τ(ω, s) = T (ω)
for each s ∈ G, provided that 0 < ξ(ω,G) < ∞. Moreover,

η := 1{0 < ξ(ω,G) < ∞}1{T ∈ ·}

is an invariant simple point process. By Proposition 3.1 we have for each measurable
h : Ω× Ω → [0,∞] that

EQh(θ0, θτ(0)) = Eνη

∫

1{τ(s) = 0}h(θs, θ0) ξ(ds).

Since νη(ξ(G) ∈ {0,∞}) = 0, this means

EQh(θ0, θT ) = Eνη

∫

1{T = 0}h(θs, θ0) ξ(ds).

It follows straight from the definition (2.3) that νη(T 6= 0) = 0. Therefore

EQh(θ0, θT ) = Eνη

∫

h(θs, θ0) ξ(ds). (8.6)

Applying this to the function (ω, ω′) 7→ ξ(ω′,G)−1g(ω′) (for some measurable g : Ω →
[0,∞]) yields

EQξ(G)−1g(θT ) = Eνηg

and therefore QT = ϑ−1νη. Hence (8.5) follows from (8.6).

23



Example 8.2. Assume that G is discrete as in Example 2.3, so that ξ is a simple point
process on G. Under assumption (8.3) we have ϑ ≤ 1 with equality iff Q(ξ(G) = 1) = 1.
From (8.5) we obtain for each measurable f : F → [0,∞] that

EQf1{T = 0} = ϑEQT

∫

f ◦ θs1{T ◦ θs = 0} ξ(ds)

= ϑEQT

∫

f ◦ θs1{T = s} ξ(ds) = EQT
f1{|Y0| > 1},

where we have used that QT (T = 0) = 1. As in [17] it is natural to assume that

|YT | > 1. (8.7)

Then EQf1{T = 0} = EQT
f . Hence ϑ = Q(T = 0) and QT = Q(· | T = 0). There-

fore Proposition 8.1 extends [17, Proposition 3.2]. Further formulas in the spectrally
decomposable case can be found in Subsection 3.3 of [17].

In the remainder of this section we establish the canonical setting of Section 5. We
assume that Q is spectrally decomposable and satisfies Q(ξ′(G) = 0) = 0. By Corollary
6.8 we can associate with Q a unique stationary tail measure ν such that νξ = Q. We
assume moreover that

∫

|Ys|
αλ(ds) < ∞, Q-a.e. (8.8)

Note that

ξ(G) ≤

∫

1{|Ys| > 1}|Ys|
α λ(ds) ≤

∫

|Ys|
α λ(ds),

so that Q(0 < ξ(G) < ∞) = 1; see also Corollary 6.13. Since (8.8) does also hold ν-a.e.,
we can and will use the moving shift representation (7.6) with Q∗ given by (7.8).

For each ω ∈ F the function u 7→
∫

1{|ω(s)| > u−1} λ(ds) from (0,∞) to [0,∞] is
increasing and left-continuous. Therefore we can define a random variable κ by

κ := inf{u > 0 : ξ(uZ−1/αW,G) > 0}. (8.9)

The following lemma gives an alternative expression for the number ϑ defined by (8.2).

Lemma 8.3. Assume that Q is spectrally decomposable, that ξ is mass-stationary w.r.t.
Q and that (8.8) holds. Then ϑ = EQκ

α.

Proof. We start with a preliminary comment. Since Q(|Y0| > 0) = 1 we have Q-a.e.
Z−1/αW = Z̃−1/αY , where

Z̃ :=

∫

|Ys|
α λ(ds).

In particular,

κ = inf{u > 0 : ξ(uZ̃−1/αY,G) > 0}. (8.10)
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By our assumptions, Q(0 < Z̃ < ∞) = 1. Since for each v > 0
∫

1{v|Ys| > 1} λ(ds) ≤ vα
∫

|Ys|
α λ(ds),

we obtain

ξ(uZ̃−1/αY,G) < ∞, u > 0, Q-a.e. (8.11)

Since Q is the Palm measure of ξ w.r.t. ν we have ϑ = Eν1{|Y0| > 1}ξ(G)−1. Hence
we obtain from (7.6) and (7.8) that

ϑ = EQ

∫∫

1{uZ̃−1/α|Ys| > 1}ξ(uZ̃−1/αY,G)−1αu−α−1 du λ(ds).

By Fubini’s theorem and (8.11),

ϑ = EQ

∫

1{ξ(uZ̃−1/αY,G) > 0}αu−α−1 du.

By (8.10) this yields ϑ = EQ

∫

1{u > κ}αu−α−1 du and hence the asserted formula.

Let τ be an allocation such that

τ(uω, s) = τ(uω, 0) ∈ G, Q⊗ λ⊗ λ+-a.e. (ω, s, u), (8.12)

where λ+ denotes Lebesgue measure on (0,∞). In view of (8.11) we can interpret τ(0) as
an almost every version of an anchoring map. Motivated by [20, Section 2.3] we collect
some (preliminary) information on the distribution of (τ(Y, 0), Y ). Though the principal
calculations are similar, we cannot use the specific moving shift representation from [20,
Theorem 2.9].

Lemma 8.4. Assume that the assumptions of Lemma 8.3 hold. Let τ be an allocation
satisfying (8.12) and suppose that g : F×G → [0,∞] is measurable and shift-invariant in
the first coordinate. Then

EQg(Y, τ(0)) = EQ∗

∫∫

1{u > κ}1{u|Ys+τ(uY,0)| > 1}g(uY,−s)αu−α−1 du λ(ds). (8.13)

In particular Q(τ(0) ∈ ·) has the λ-density

fτ (s) := EQ∗

∫

1{u > κ, u|Y−s+τ(uY,0)| > 1}αu−α−1 du, s ∈ G. (8.14)

Proof. We have

EQg(Y, τ(0)) = Eν1{|Y0| > 1}g(Y, τ(0))

= EQ∗

∫∫

1{u|Ys| > 1}g(uθsY, τ(uθsY, 0))αu
−α−1 du λ(ds)

= EQ∗

∫∫

1{u|Ys| > 1}g(uY, τ(uY, 0)− s)αu−α−1 du λ(ds),
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where we have used that τ(uθsY, 0) = τ(uY, s) − s = τ(uY, 0) − s holds for λ ⊗ λ+-a.e.
(s, u) and Q∗-a.e. Changing variables gives

EQg(Y, τ(0)) = EQ∗

∫∫

1{u|Ys+τ(uY,0)| > 1}g(uY,−s)αu−α−1 du λ(ds).

If u < κ then
∫

1{u|Ys+τ(uY,0)| > 1} λ(ds) = 0. Therefore (8.13) follows. The second
assertion is an immediate consequence.

In the remainder of the section we assume that τ is an allocation satisfying (8.12).
Suppose that h : F → [0,∞) is measurable and shift invariant. Then we obtain from
(8.13) that

E[h(Y ) | τ(0) = s] = fτ (s)
−1EQ∗

∫

1{u > κ}1{u|Ys+τ(uY,0)| > 1}h(uY )αu−α−1 du (8.15)

holds for Q(τ(0) ∈ ·)-a.e. s. To discuss this formula we make the ad hoc assumption

lim
s→0

1{u|Ys+τ(uY,0)| > 1} = 1, u > κ, λ+-a.e. u, Q-a.e., (8.16)

see [20, (2.25)] for a similar hypothesis in the case G = R. This can be seen as a continuous
space version of (8.7) and might be achieved under appropriate continuity assumptions
on Y . If, in addition, ϑ = Eκα < ∞, then dominated convergence yields the existence of
the limit

lim
s→0

fτ (s) = ϑ. (8.17)

If

EQ∗

∫

1{u > κ}h(uY )αu−α−1 du < ∞

then dominated convergence yields the existence of the limit

lim
s→0

E[h(Y ) | τ(0) = s] = ϑ−1EQ∗

∫

1{u > κ}h(uY )αu−α−1 du. (8.18)

In particular we may take h(Y ) = ξ(G). Indeed, we have that

EQ∗

∫

1{u > κ}ξ(uY,G)αu−α−1 du = EQ∗

∫∫

1{u|Ys| > 1}αu−α−1 du λ(ds)

= EQ∗

∫

|Ys|
α λ(ds) = EQ

∫

Z−1|Ws|
α λ(ds) = 1.

Therefore,

lim
s→0

E[ξ(G) | τ(0) = s] = ϑ−1; (8.19)

see [20, (2.26)] for the case G = R. In view of the discussion in [10, 20] we might call ϑ
the candidate extremal index of Y .

The results of this section are certainly preliminary. But without continuity assump-
tions on the elements of F it seems difficult to make further progress. If G = Rd and F is
a Skorohod space (see Example 2.2), then it might be possible to establish an analog of
[20, Theorem 2.9]. In particular the assumptions of Lemma 8.3 should then imply ϑ < ∞.
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9 Concluding remarks

The results from Sections 5-7 generalize to the setting described in Remark 5.9. This
would mean, for instance, that tail measures are then defined on a more general space Ω
and not just on the function space F. To avoid an abstract (and potentially confusing)
notation we have chosen to stick to the present more specific setting.

Given the results of this paper, one might define a tail process in an intrinsic way,
namely as a spectrally decomposable random field Y = (Ys)s∈G such that the exceedance
random measure is mass-stationary. It would be interesting to identify such processes as
the tail processes of regularly varying stationary fields, beyond the known special cases.
It would also be interesting to further study tail measures of such fields, as introduced in
great generality in [19]. In particular it might be worthwhile exploring further relation-
ships between tail measures, tail processes and Palm calculus.
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