
Establishing a Benchmark Dataset for
Traceability Link Recovery between Software

Architecture Documentation and Models

Dominik Fuchß[0000−0001−6410−6769], Sophie Corallo[0000−0002−1531−2977], Jan
Keim[0000−0002−8899−7081], Janek Speit, and Anne Koziolek[0000−0002−1593−3394]

KASTEL – Institute of Information Security and Dependability
Karlsruhe Institute of Technology, Karlsruhe, Germany

{dominik.fuchss,sophie.corallo,jan.keim,koziolek}@kit.edu

Abstract. In research, evaluation plays a key role to assess the per-
formance of an approach. When evaluating approaches, there is a wide
range of possible types of studies that can be used, each with different
properties. Benchmarks have the benefit that they establish clearly de-
fined standards and baselines. However, when creating new benchmarks,
researchers face various problems regarding the identification of potential
data, its mining, as well as the creation of baselines. As a result, some
research domains do not have any benchmarks at all. This is the case for
traceability link recovery between software architecture documentation
and software architecture models. In this paper, we create and describe
an open-source benchmark dataset for this research domain. With this
benchmark, we define a baseline with a simple approach based on in-
formation retrieval techniques. This way, we provide other researchers a
way to evaluate and compare their approaches.

Keywords: Software Architecture Documentation · Natural Language
Processing · Traceability link recovery · Mining Software Repositories.

1 Introduction

Benchmarks for evaluation bring numerous benefits (cf. Sim et al. [17]). These
benefits include, among others, clearly defined standards and expectations, an in-
creased awareness on related work as well as more frequent collaborations within
a domain. However, a recent study by Konersmann et al. [9] shows that between
2017 and 2021 only 2.6% of the 153 full technical papers at the conference-
series European Conference on Software Architecture (ECSA) and International
Conference on Software Architecture (ICSA) used benchmarks for evaluation.
Instead, the most used evaluation strategies are case studies and technical ex-
periments (57%). In order to counteract, the authors propose to mine the public
available case studies from the papers to create benchmarks. According to von
Kistowski et al. [7], studies can result in such a benchmark. For this purpose,
Konersmann et al. [9] provide an overview of different papers that made their
case studies publicly available.



2 D. Fuchß et al.

Mining existing case studies and example systems to build datasets is a great
opportunity for the software engineering domain. The main difficulty is to find
such case studies that are reliable and comparable to a specific problem domain.
However, it might be hard to find these comparable and exchangeable data. In
our case, we look into the well-established research area of traceability link re-
covery (TLR). TLR approaches create trace links between two or more existing
artifacts. These links are particularly helpful for maintenance but help for the
overall understanding of a system and how different artifacts and views are con-
nected. However, there are different kinds of artifacts that are traced. Common
artifacts are requirement documents, code documents, and issues, but may also
include documentation (e.g., textual software architecture documentation) and
models. Consequently, many approaches focus on links between requirements and
code [1,3,14,18,19], test cases [12], and architecture [11]. Our main focus is re-
covering trace links between textual software architecture documentation (SAD)
and software architecture models (SAM) (cf. [6]). Whenever we mention SAD
in the following, we refer to natural language text. SAMs are machine-readable
models with an explicit meta-model.

To the best of our knowledge, there is no other work, yet, dealing with links
between architecture documentation and models. To allow replicability and to
promote comparability, we create a benchmark for traceability link recovery
between SAD and SAM. For this, we mine public software repositories, transform
the extracted data in unified formats, and label them. The resulting dataset is
publicly available [5]. Further, we present a baseline approach to show how the
dataset can be used in an evaluation and to provide reference values.

The rest of the paper is structured as follows: We first present the creation
of the benchmark dataset (section 2). Following that, we describe its contents in
detail (section 3). Lastly, we discuss challenges and opportunities we encountered
during creation in section 4.

2 Creating a Benchmark Dataset

Before we created the benchmark dataset, we searched for used datasets in the
TLR community. Thereby we found the CoEST 1 repository. It currently consists
of 15 projects with gold standards for TLR between requirements and source
code. However, CoEST is not applicable for our work: On the one hand, CoEST
does not consider architectural descriptions. Further, several projects contain
languages other than English. On the other hand, the dataset does not include
any architectural models. Although it is possible to synthesize single artifacts by
transforming from the other existing artifacts, creating all artifacts synthetically
is undesirable. As a result, we can state that we are not aware of a dataset that
provides the needed information for TLR between SAD and SAM.

We started to mine open-source software projects for documentations and
models to create an initial dataset. In order to find relevant data for our ap-
proach, we searched for open-source projects that already contain SADs. We

1 http://sarec.nd.edu/coest/datasets.html

http://sarec.nd.edu/coest/datasets.html


Establishing a Benchmark Dataset for TLR between SAD and SAM 3

contacted the authors of [2] and retrieved a list of open-source projects that
have some architecture documentation from them. In addition, we looked at the
repositories of the Lindholmen dataset [4]. Even so, we did not find projects with
an extensive SAD and a presentation of the architecture (as figure, diagram,
or something similar). The lack of architecture documentation in open-source
projects is common for small projects. Architecture documents are more often
created and maintained in large, successful projects [2].

Since we want the dataset to be heterogeneous, we searched for case studies
and example systems of other SAM-based approaches and chose five projects for
our initial benchmark dataset:

MediaStore2 is a “model application built after the iTunes Store”. Its architecture
was used for exemplary performance analyses on SAMs.

TEAMMATES3 is an open-source “online tool for managing peer evaluations and
other feedback paths of your students”. TEAMMATES is used as a
case study in several SAD-based approaches (cf. [6,15]).

BigBlueButton4 is a non-scientific application that provides a web conferencing sys-
tem with the focus on creating a “global teaching platform”.

TeaStore5 is a scientific application [8] that is used as a “micro-service refer-
ence test application”. Like MediaStore, it is used for evaluations of
architecture performance analyses.

JabRef6 is a tool to manage citations and references in bibliographies. It has
features to collect, organize, cite, and share research work.

In order to get more information about the projects used for the benchmark,
Table 1 provides a short characterization of them. The table summarizes the
main languages (w.r.t. their lines of code), the number of forks, and the amount
of contributors. For the MediaStore project, we could not count the number of
forks or contributors since it is not published on GitHub.

For each project, we created SAMs for the projects based on either existing
models or with the help of the documentation of the projects. We extracted
plain-text version from their SADs and created a sentence-wise gold standard
for TLR between the SAD and the SAM. More details about the creation of the
gold standard and the other artifacts follow in section 3.

The resulting benchmark dataset is described in detail in section 3 and can
be found in our public repository [5]. By making the dataset publicly available,
we give other researchers the possibility to replicate our results and compare the
results of their approaches.

2 http://sdq.kastel.kit.edu/wiki/Media_Store
3 http://github.com/TEAMMATES
4 http://bigbluebutton.org
5 http://github.com/DescartesResearch/TeaStore
6 http://github.com/JabRef/jabref

http://sdq.kastel.kit.edu/wiki/Media_Store
http://github.com/TEAMMATES
http://bigbluebutton.org
http://github.com/DescartesResearch/TeaStore
http://github.com/JabRef/jabref


4 D. Fuchß et al.

Project Languages (kLOC)7 Forks Contributors

MediaStore Java(4) N/A N/A
TEAMMATES Java(91), TypeScript(54) ≈ 2.6k ≈ 500
BigBlueButton JavaScript(69), JSX(47),

Scala(22), Java(21)
≈ 5.8k ≈ 180

TeaStore Java(12) ≈ 0.1k ≈ 15
JabRef Java(157) ≈ 2.0k ≈ 490

Table 1. Characteristics of the projects in the benchmark.

3 A Benchmark Dataset for TLR between SAD and SAM

As described in section 2, traceability link recovery benchmarks are very specific
regarding their (different) inputs, outputs, and gold standards. Nevertheless,
the format of the data should be easily applicable for others. In this section, we
provide a closer look on the parts of our dataset and describe our considerations.

3.1 Software Architecture Documentations

Software architecture documentations are one of two input artifacts in our TLR
approach. For the benchmark, we obtained the texts of each project by search-
ing their repositories for documentation and looking on their websites for their
SAD. Since texts are usually read in and pre-processed with natural language
processing tools, we removed tables and figures from the descriptions to provide
processable plain text. We additionally cleaned up the texts so that, for example,
special characters like curly brackets or captions were removed. For reproduc-
tion, we documented all changes made to the texts in the repository. We created
for each project a text file containing all sentences of their documentations. In
order to simplify the definition of a gold standard for linking sentences and model
elements, each line of the file contains exactly one sentence.

In Table 2, we provide insights about the resulting SADs of the projects used
for the benchmark dataset, i.e., the number of words and sentences for each
SAD. Currently, the shortest SAD of the benchmark consists of 13 sentences
(JabRef). The largest includes 198 sentences (TEAMMATES).

3.2 Software Architectural Models

There are different ways to represent software architecture models. MediaStore
and TeaStore are systems that we considered for the initial dataset. Since they
have already been modeled with the Palladio Component Model (PCM) [13],
PCM is our main candidate. Moreover, we chose PCM as meta model because it

7 rounded kLOC for programming languages with most LOC (calculated via cloc)



Establishing a Benchmark Dataset for TLR between SAD and SAM 5

Project Words Sentences

Mediastore 572 37
TeaStore 661 43
TEAMMATES 2509 198
BigBlueButton 1190 85
JabRef 237 13

Table 2. Information about the SADs of the projects in the benchmark.

can cover different views of software architecture (e.g., components and deploy-
ment). Thereby, we want to ensure that the benchmark can easily extended. The
repository view contains the minimum information to describe the components
of a software system. This is enough to run all currently existing approaches.
Therefore, when adding further cases to the benchmark that do not provide
SAMs as PCM, we only provide the repository view describing the components.
If the PCM model of a project already contained more views (e.g., allocation
model), we also provide these in our benchmark repository. In general, we plan
to add further views to provide more than just the component information of
a system. Additionally, we also plan to expand to more model types than just
PCM models. In order to increase the benchmark’s compatibility with existing
approaches, we created UML component models 8 that match the PCM models.

Concluding this section, we summarize information about the different archi-
tecture models of the benchmark’s projects in Table 3. Since current approaches
for TLR between SAD and SAM focus on components, we provide the number
of component and number of interfaces of the models of our benchmark. The
number of components per project range from 6 to 14 components. Due to the
focus on components, the model of JabRef does not contain interfaces.

Project Components Interfaces

Mediastore 14 9
TeaStore 11 8
TEAMMATES 8 8
BigBlueButton 12 12
JabRef 6 –

Table 3. Information about the SAMs of the projects in the benchmark.

8 http://www.eclipse.org/papyrus/

http://www.eclipse.org/papyrus/


6 D. Fuchß et al.

3.3 Gold Standard

Besides the input data (SADs and SAMs), the core artifact of our dataset is
the manually created gold standard for TLR between SAD and SAM. For each
project, the gold standard is available as CSV file. It defines the expected trace
links between the sentences of the software architecture documentation and the
architectural model elements.

The first project that has been added to our benchmark was TEAMMATES.
Its trace links base on a small user study performed as part of a master’s the-
sis [16]. For the other projects, the gold standards have been created separately.
To do so, for each project a gold standard has been manually created by one of
the authors. Afterwards, the gold standards were analyzed by another author. In
the case of different traceability links, the differences were discussed and resolved
together. Finally, the gold standard is stored as a CSV file.

To give an example, we consider the eleventh sentence of MediaStore’s SAD:
“The UserManagement component answers the requests for registration and
authentication.” The repository model of MediaStore contains, among other el-
ements, Basic Components that represent components of the system. Since the
example sentence mentions the component UserManagement, the gold standard
contains a link that connects the eleventh sentence referenced by the sentence
number (starting at 1) and the component referenced by its unique identifier.

In order to provide more insights about the different projects of the bench-
mark, we provide numbers for each gold standard in Table 4. We provide the
number of trace links, the number of components that have at least one trace
link, and the number of sentences that have at least one trace link. Regarding
components, we observe that not all components are part of a trace link. Only
the SAD of TEAMMATES mentions all components of the model. Additionally,
we observe that the share of sentences that contain trace links varies noticeably
depending on the project (20% for TEAMMATES and up to 77% for JabRef).

Project Trace Links
Components Sentences

with TL with TL

Mediastore 29 10 28
TeaStore 27 6 23
TEAMMATES 50 8 39
BigBlueButton 52 11 41
JabRef 18 5 10

Table 4. Information about the gold standards of the projects in the benchmark.



Establishing a Benchmark Dataset for TLR between SAD and SAM 7

3.4 Simple Tracelink Discovery (STD)

Together with our dataset, we provide Simple Tracelink Discovery (STD)9, a
baseline approach for TLR between SAD and SAM. We provide this approach
to provide a simple baseline. Additionally, the approach provides an example on
how to use the benchmark and, thus, works as guidance for other researchers.

The main idea of STD is to provide a lower bound. In TLR, it is often as-
sumed that same elements in different artifacts have same names. Thus, a simple
base line is to create trace links only when the name of a model element, like a
component, is directly mentioned in the text. Therefore, STD matches n-grams
of model element names with n-grams of the words within the documentation
text. As a result, the precision is usually high while the recall suffers due to the
strict assumption. To relax this restriction, there is the option to employ normal-
ized Levenshtein Distance (cf. [10]) to assess name equality, based on a defined
threshold. Table 5 displays the evaluation results of STD for the benchmark.

Project Precision Recall F1-Score

Mediastore 1.00 0.62 0.77
TeaStore 0.94 0.57 0.71
TEAMMATES 0.89 0.57 0.70
BigBlueButton 0.88 0.44 0.59
JabRef 0.87 0.42 0.57

Table 5. Evaluation results for the baseline approach STD on the benchmark.

The approach is intended for recovering links between SAD and SAM. Due to
its simplicity, it can be easily adapted for other types of artifacts. However, the
approach does not perform well if the names of model elements do not appear in
both artifacts. For example, if artifacts have a vastly different level of abstraction
(e.g., between requirements and code), this baseline approach will most likely
perform much worse.

4 Discussion

In this paper, we first discussed the benefits and need for benchmark datasets.
Benchmarks enable clear evaluations, comparisons, and provide room for col-
laborations [17]. Therefore, benchmarks should be established in more research
areas. However, lots of research areas are very specific, tailored to particular in-
put and special outputs, and have only small communities. In any of these cases,
it is hard to create a dataset or benchmark for the evaluation of an approach.
Not only the mining of software repositories and the creation of benchmarks is

9 http://github.com/ArDoCo/SimpleTracelinkDiscovery

http://github.com/ArDoCo/SimpleTracelinkDiscovery


8 D. Fuchß et al.

a difficult problem, but also the identification of potentially usable data. There-
fore, we suggested to extract such data from case studies or examples from other
scientific publications relying on the same or very similar inputs. With this data,
a dataset with a gold standard can be created.

We followed this idea to create a benchmark dataset with software architec-
tures, texts of software architecture documentation, a gold standard for traceabil-
ity link recovery, as well as a baseline approach. We also showed the applicability
of this process by means of a baseline approach for this traceability link recovery
problem.

There are some threats to the validity for the process and our resulting
benchmark dataset. First, there may be a threat to validity due to the selected
projects. These projects are selected based on literature. All projects have dif-
ferent size and have different architecture styles and patterns. The projects are
also from different domains, although they are web-based applications. Addi-
tionally, we also assumed similar abstraction levels for SADs and SAMs, which
might introduce some bias. Lastly, we created the gold standards ourselves and,
thus, might have introduced some bias. We used commonly used techniques like
mediation sessions for creating these gold standards, but we cannot rule out that
there can still be a certain amount of bias.

In future work, we plan to extend the benchmark dataset with more details
for already existing projects. This includes other types of models, more detailed
models etc. Moreover, we plan to add more projects to better ensure generaliz-
ability of the results when applying the benchmark.

Acknowledgments

This work was supported by funding from the topic Engineering Secure Systems
of the Helmholtz Association (HGF) and by KASTEL Security Research Labs.
This publication is based on the research project SofDCar, which is funded by
the German Federal Ministry for Economic Affairs and Climate Action.

References

1. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: A systematic mapping
of information retrieval approaches to software traceability. Empirical Software
Engineering 19(6), 1565–1616 (2014). https://doi.org/10.1007/s10664-013-9255-y

2. Ding, W., Liang, P., Tang, A., Van Vliet, H., Shahin, M.: How do open source
communities document software architecture: An exploratory survey. In: 2014 19th
International Conference on Engineering of Complex Computer Systems. pp. 136–
145 (2014). https://doi.org/10.1109/ICECCS.2014.26

3. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software trace-
ability using deep learning techniques. In: Proceedings of the 39th International
Conference on Software Engineering. p. 3–14. ICSE ’17, IEEE Press (2017).
https://doi.org/10.1109/ICSE.2017.9

https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1109/ICECCS.2014.26
https://doi.org/10.1109/ICSE.2017.9


Establishing a Benchmark Dataset for TLR between SAD and SAM 9

4. Hebig, R., Quang, T.H., Chaudron, M.R.V., Robles, G., Fernandez, M.A.: The
quest for open source projects that use uml: Mining github. In: Proceedings of
the ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems. p. 173–183. MODELS ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/2976767.2976778

5. Keim, J., Fuchß, D., Corallo, S.: Architecture Documentation Consistency
Benchmark (2022). https://doi.org/10.5281/zenodo.6966831, https://github.

com/ArDoCo/Benchmark

6. Keim, J., Schulz, S., Fuchß, D., Kocher, C., Speit, J., Koziolek, A.: Trace link
recovery for software architecture documentation. In: Biffl, S., Navarro, E., Löwe,
W., Sirjani, M., Mirandola, R., Weyns, D. (eds.) Software Architecture. pp. 101–
116. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-
3-030-86044-8 7

7. v. Kistowski, J., Arnold, J.A., Huppler, K., Lange, K.D., Henning, J.L., Cao,
P.: How to build a benchmark. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. p. 333–336. ICPE
’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2668930.2688819

8. von Kistowski, J., Eismann, S., Schmitt, N., Bauer, A., Grohmann, J., Kounev,
S.: TeaStore: A Micro-Service Reference Application for Benchmarking, Mod-
eling and Resource Management Research. In: Proceedings of the 26th IEEE
International Symposium on the Modelling, Analysis, and Simulation of Com-
puter and Telecommunication Systems. MASCOTS ’18 (September 2018).
https://doi.org/10.1109/MASCOTS.2018.00030

9. Konersmann, M., Kaplan, A., Kühn, T., Heinrich, R., Koziolek, A., Reussner,
R., Jürjens, J., al Doori, M., Boltz, N., Ehl, M., Fuchß, D., Großer, K., Hahner,
S., Keim, J., Lohr, M., Sağlam, T., Schulz, S., Töberg, J.P.: Evaluation methods
and replicability of software architecture research objects. In: 2022 IEEE 19th
International Conference on Software Architecture (ICSA). pp. 157–168 (2022).
https://doi.org/10.1109/ICSA53651.2022.00023

10. Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions,
and reversals. In: Soviet physics doklady. vol. 10, pp. 707–710. Soviet Union (1966)

11. Molenaar, S., Spijkman, T., Dalpiaz, F., Brinkkemper, S.: Explicit alignment of
requirements and architecture in agile development. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) Requirements Engineering: Foundation for Soft-
ware Quality. pp. 169–185. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-44429-7 13

12. Rempel, P., Mäder, P.: Estimating the implementation risk of requirements in agile
software development projects with traceability metrics. In: Fricker, S.A., Schnei-
der, K. (eds.) Requirements Engineering: Foundation for Software Quality. pp. 81–
97. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-
3-319-16101-3 6

13. Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek,
A., Koziolek, H., Krogmann, K., Kuperberg, M.: The palladio component
model. Tech. Rep. 14, Karlsruher Institut für Technologie (KIT) (2011).
https://doi.org/10.5445/IR/1000022503

14. Rodriguez, D.V., Carver, D.L.: Multi-objective information retrieval-based NSGA-
II optimization for requirements traceability recovery. In: 2020 IEEE Interna-
tional Conference on Electro Information Technology (EIT). pp. 271–280 (2020).
https://doi.org/10.1109/EIT48999.2020.9208233, ISSN: 2154-0373

https://doi.org/10.1145/2976767.2976778
https://doi.org/10.5281/zenodo.6966831
https://github.com/ArDoCo/Benchmark
https://github.com/ArDoCo/Benchmark
https://doi.org/10.1007/978-3-030-86044-8_7
https://doi.org/10.1007/978-3-030-86044-8_7
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/ICSA53651.2022.00023
https://doi.org/10.1007/978-3-030-44429-7_13
https://doi.org/10.1007/978-3-319-16101-3_6
https://doi.org/10.1007/978-3-319-16101-3_6
https://doi.org/10.5445/IR/1000022503
https://doi.org/10.1109/EIT48999.2020.9208233


10 D. Fuchß et al.

15. Schröder, S., Riebisch, M.: An ontology-based approach for documenting and vali-
dating architecture rules. In: Proceedings of the 12th European Conference on Soft-
ware Architecture: Companion Proceedings. ECSA ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3241403.3241457,
https://doi.org/10.1145/3241403.3241457

16. Schulz, S.: Linking Software Architecture Documentation and Mod-
els. Master’s thesis, Karlsruher Institut für Technologie (KIT) (2020).
https://doi.org/10.5445/IR/1000126194

17. Sim, S.E., Easterbrook, S., Holt, R.C.: Using benchmarking to advance research: A
challenge to software engineering. In: Proceedings of the 25th International Confer-
ence on Software Engineering. p. 74–83. ICSE ’03, IEEE Computer Society, USA
(2003)

18. Wang, W., Niu, N., Liu, H., Niu, Z.: Enhancing automated requirements traceabil-
ity by resolving polysemy. In: 2018 IEEE 26th International Requirements Engi-
neering Conference. pp. 40–51 (2018). https://doi.org/10.1109/RE.2018.00-53

19. Zhang, Y., Wan, C., Jin, B.: An empirical study on recovering requirement-to-code
links. In: 2016 17th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD).
pp. 121–126 (2016). https://doi.org/10.1109/SNPD.2016.7515889

https://doi.org/10.1145/3241403.3241457
https://doi.org/10.1145/3241403.3241457
https://doi.org/10.5445/IR/1000126194
https://doi.org/10.1109/RE.2018.00-53
https://doi.org/10.1109/SNPD.2016.7515889

	Establishing a Benchmark Dataset for Traceability Link Recovery between Software Architecture Documentation and Models

