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ABSTRACT

The progressing energy transition induces a growing need for re-
dispatch congestion management, and, thereby, a fair distribution
of its respective costs among the different system operators. In
this light, a very recent paper uses the Shapley value as such a
fair allocation rule to assign redispatch congestion costs to system
operators. However, this approach is based on DC optimal power
flow (OPF) and requires the sharing of detailed grid models from
all system operators. This is not preferred by them due to data
privacy concerns. W.r.t. real-world implementation, the present
paper extends the method by using AC OPF problem formulations
for more realistic results, and solving them by using a distributed
optimization algorithm, i.e., Augmented Lagrangian based Alter-
nating Direction Inexact Newton method (aladin), for preserving
data privacy. Simulation results of an illustrative example show
great potential of the proposed distributed approach in the aspects
of both solution accuracy and computing time. This makes the
presented approach generically feasible for real applications in the
energy transition.
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1 INTRODUCTION

With a rising energy demand, a stronger focus on renewables, and
more prosumers entering the market, power grids are working
increasingly close to their limits. As a result, congestion manage-
ment is becoming even more essential for operating electric power
systems, and the respective redispatch cost increased dramatically
recently.

E.g. Germanys power grid is composed of 4 transmission system
operators (TSOs) and more than 900 distribution system opera-
tors (DSOs). A centralized management is not preferred by system
operators—or is even forbidden by the respective regulation. Fur-
thermore, more grid operators prefer not to share their grid data. In
2021, the redispatch bill reaches 1.4 billion euros [1], and is expected
to multiply in the following years. Therefore, digital platforms, e.g.
PICASSO [2], are developed as an industry solution for coordinating
redispatch among transmission and distribution system operators.
However, under the current cost allocation rule, the TSOs pay the
redispatch cost mostly and shift the full charge to consumers, while
the DSOs profit from it without cost. Hence, the following unsolved
question arises: How can we share the redispatch costs fairly without

having to share grid model data?—This is a practical problem to
which industry does not have off-the-shelf answers.

The Shapley value, an allocation rule from the field of collabo-
rative game theory, could be such a fair solution, as it is the only
solution that fulfills desirable axioms of fairness. Other allocation
rules, such as the nucleolus [17] and core or Z-bus matrix [10]
do not meet these properties. In fact, the Shapley value has been
widely studied for allocating costs in operating power systems.

In the present paper, we focus on redispatch congestion cost
allocation: Several works have dealt with congestion management
already 20 years ago [8, 9]. In a very recent study [20], the conges-
tion cost allocation problem is formulated as a cooperative game,
and the Shapley value is introduced as a unique fair allocation rule
to assign costs to all system operators. By exploiting the structure
of the congestion cost allocation problem and the respective Shap-
ley algorithm, the authors propose to obtain the Shapley value by
solving several DC OPF problems sequentially and to reduce the
amount of required computation by further simplification methods.
Simulation results show that the proposed algorithm can save al-
most half of the computing time while preserving high accuracy.
However, the algorithm has two main disadvantages w.r.t. real-
world implementation. On the one hand, the respective Shapley
value is obtained based on suboptimal solutions because solutions
of DC OPF are never AC feasible [5]. On the other hand, the DC OPF
problems are solved by a centralized approach, by which a central-
ized entity requires all detailed grid models from system operators.
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As discussed above, this is not preferred or is even forbidden by the
respective regulation due to data privacy concerns.

W.r.t. real-world implementation, solving AC OPF problems by
distributed approach is the intuitive next step. Themost well-known
distributed algorithms for tackling the AC OPF problems are Op-
timality Condition Decomposition (ocd) [16], Auxiliary Problem
Principle (app) [6], and Alternating Direction Method of Multipliers
(admm) [12]. However, AC OPF problems are generally NP-Hard [7],
and all of these first-order optimization algorithms have no guaran-
teed convergence for the nonconvex AC OPF in general. They are
hard to converge in practice. In [14], the Augmented Lagrangian
based Alternating Direction Inexact Newton method (aladin) is
first proposed as a second-order distributed optimization algorithm.
In contrast to the mentioned existing approaches, aladin can pro-
vide a local convergence guarantee with a quadratic convergence
rate for generic distributed nonconvex optimization problems, if
suitable Hessian approximations are used. By applying aladin for
solving AC OPF problems, exchanging the original grid data is not
required, and thus the information privacy can be preserved. Some
recent studies focus on AC OPF problems of transmission grids [3]
and of AC/DC hybrid grids [22], in which medium-scale power
systems are studied. They show high potential of scalability and
numerical robustness for aladin in solving AC OPF problems.

Following the main idea from [20], the present paper aims to
propose a Shapley value-based distributed AC OPF approach for
redispatch congestion cost allocation respecting data privacy to
distribute the total cost to system operators fairly. The main contri-
butions of the present paper further develop the approach in [20]
as follows:

(1) Instead of the DC approximation in [20], the Shapley value
in the present paper is computed based on AC OPF problems,
which would provide more realistic results.

(2) By using the aladin algorithm, AC OPF problems within
Shapley algorithm are solved by a distributed optimization
algorithm. In this way, sharing detailed grid models is not
required.

The rest of this paper is structured as follows. In Section 2 de-
scribes a distributed approach of Shapley value calculation for the
redispatch congestion cost allocation problem. The numerical sim-
ulations are presented in Section 3 for validating the proposed
approach using an illustrative example. Section 4 concludes this
paper and gives an outlook on future work.

2 METHODOLOGY

In this section, a Shapley-based distributed approach is introduced
for the redispatch congestion cost allocation problem, in which AC
OPF is solved by a distributed optimization algorithm and thus the
detailed grid data is preserved.

2.1 Nomenclature

In the present paper, we describe the network of a power system
as W = (R, N , L), where R represents the set of all regions
operated by different system operators, N denotes the set of all
buses, L the set of all branches. For the purpose of simplifying the
calculation of the Shapely value, following [20], for all congested
lines connecting bus 𝑖 and bus 𝑗 , are taken as players 𝜉 := (𝑖, 𝑗) ∈

L𝑝 , where L𝑝 ⊆ L denotes the set of all congested lines (players).
Besides, we use coalition Ω ∈ P(L𝑝 ) to represent a possible group
of congested lines, where P(L𝑝 ) is the power set of L𝑝 . As a
result, the congestion cost allocation problem can be described as a
cooperative game G = (L𝑝 , Φ), where Φ is a map that assigns the
operation cost Φ(Ω) to every possible coalition Ω.

2.2 Shapley Value for Cost Allocation

The goal of congestion cost allocation is to find a fair distribution of
the costs of a grand coalition Φ(L𝑝 ), under which power systems
operate in a safe mode and none of the line is overloaded. In the
present work, the Shapley value is applied for redispatch conges-
tion cost allocation following [20]. It yields the expected marginal
contribution of a player over all collaborations, and is a unique
allocation rule that satisfies fairness conditions for cost allocation
problems [20].

Remark 1 (Fairness Condition). An allocation rule is called

fair, if the following properties are satisfied

– Null agent: for all players who do not invoke costs should

have a Shapley value of 0, i.e.,

Ψ𝜉 (Φ) = 0, ∀𝜉 ∈ {𝜉 ∈ L𝑝 | Φ(𝜉 ) = 0}, (1)

– Additivity: a combined cost function Φ + Λ should yield the

sum of both Shapley values, i.e.,

Ψ(Φ + Λ) = Ψ(Φ) + Ψ(Λ), (2)

– Symmetry: two players with the same costs yield the same

Shapley values, i.e.,

Φ𝜉 (Φ) = Φ𝜁 (Φ), ∀(𝜉, 𝜁 ) ∈ { (𝜉, 𝜁 ) | Φ(𝜉 ) = Φ(𝜁 ) } . (3)

The Shapley value of a specific player 𝜉 can be written as follow-
ing, cf.[19]

Ψ𝜉 (Φ) =
∑︁

Ω∈L𝑝 \{𝜉 }

|Ω |! ( |L𝑝 | − |Ω | − 1)!
| L𝑝 |! {Φ (Ω ∪ 𝜉 ) − Φ (Ω) } , (4)

where Φ (Ω ∪ 𝜉) − Φ (Ω) can be interpreted as congestion cost
with respect to the player 𝜉 , and its weight |Ω |! ( |L𝑝 |− |Ω |−1)!

| L𝑝 |! can
be interpreted as the probability of occurrence of the coalition
Ω. Consequently, the Shapley value can be viewed as the average
marginal costs added to all coalition Ω by player 𝜉 [20], and satisfied
the efficiency criterion.

Remark 2 (Efficiency Criterion). The total cost of all players
must be shared precisely among the players, i.e.,∑︁

𝜉 ∈L𝑝

Ψ𝜉 (Φ) = Φ(L𝑝 ) . (5)

The Shapley algorithm is depicted in Figure 1. It is executed
sequentially and can be divided in two parts. Firstly, the operation
cost Φ is determined by the corresponding OPF problem. Based on
those operation costs of different coalitions, the Shapley values are
computed in the second part. Different from [20], we use AC model
for OPF problems for a more realistic and fair allocation, and solve
them by using the distributed optimization approach to preserve
data privacy.
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Operation costs 𝑓 (Ω),
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Congested costs
per congested line

Allocated costs per
system operator

Figure 1: Shapley algorithm with ALADIN for distributed

optimal power flow calculations.

2.3 Optimization Problems within Shapley

Within the Shapely algorithm, AC OPF problems are solved sequen-
tially. We formulate the AC OPF problems following [13].The com-
plex voltages are formulated in polar coordinates, i.e., 𝑉𝑖 = 𝑣𝑖𝑒

j𝜃𝑖 ,
where 𝑣𝑖 is voltage magnitude, 𝜃𝑖 is voltage angle, 𝑝𝑖 and 𝑞𝑖 denote
active and reactive power at the bus 𝑖 , while 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 denote
active and reactive power flow along the line (𝑖, 𝑗) ∈ L.

W.r.t. a specific coalition Ω, only the power limits for all lines
(𝑖, 𝑗) ∈ L̃ = L \ Ωc are considered in the corresponding AC
OPF problem, while the limits for all lines (𝑖, 𝑗) ∈ Ωc are ignored.
Thereby, Ωc denotes the complement of the coalition Ω in the set
of all congested lines, i.e., Ωc = L𝑝 \ Ω. Hence, the resulting AC
OPF problem can be written as

min
𝑥

𝑓 (𝑥 ) =
∑︁
𝑖∈N

{
𝑎𝑖

(
𝑝
𝑔

𝑖

)2
+ 𝑏𝑖𝑝

𝑔

𝑖
+ 𝑐𝑖

}
(6a)

s.t. 𝑝𝑔
𝑖
− 𝑝𝑙𝑖 = 𝑣𝑖

∑︁
𝑘∈N

𝑣𝑘 (𝐺𝑖𝑘 cos𝜃𝑖𝑘 + 𝐵𝑖𝑘 sin𝜃𝑖𝑘 ) , ∀𝑖 ∈ N (6b)

𝑞
𝑔

𝑖
− 𝑞𝑙𝑖 = 𝑣𝑖

∑︁
𝑘∈N

𝑣𝑘
(
𝐺𝑖𝑘 sin𝜃𝑖𝑘 − 𝐵𝑖 𝑗 cos𝜃𝑖𝑘

)
, ∀𝑖 ∈ N (6c)

𝑝𝑖 𝑗 = 𝑣2𝑖𝐺𝑖 𝑗 − 𝑣𝑖 𝑣𝑗
(
𝐺𝑖 𝑗 cos𝜃𝑖 𝑗 + 𝐵𝑖 𝑗 sin𝜃𝑖 𝑗

)
, ∀(𝑖, 𝑗 ) ∈ L̃ (6d)

𝑞𝑖 𝑗 = −𝑣2𝑖𝐺𝑖 𝑗 − 𝑣𝑖 𝑣𝑗
(
𝐺𝑖 𝑗 sin𝜃𝑖 𝑗 − 𝐵𝑖 𝑗 cos𝜃𝑖 𝑗

)
, ∀(𝑖, 𝑗 ) ∈ L̃ (6e)

𝑝2𝑖 𝑗 + 𝑞
2
𝑖 𝑗 ≤ 𝑠2𝑖 𝑗 , ∀(𝑖, 𝑗 ) ∈ L̃ (6f)

𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖 , 𝑝𝑔
𝑖
≤ 𝑝

𝑔

𝑖
≤ 𝑞

𝑔

𝑖
, 𝑞𝑔

𝑖
≤ 𝑞

𝑔

𝑖
≤ 𝑞

𝑔

𝑖
, ∀𝑖 ∈ N (6g)

with 𝑥 = (𝜃, 𝑣, 𝑝𝑔, 𝑞𝑔), where 𝜃𝑖 𝑗 denotes the phase angle differ-
ence between buses 𝑖 and 𝑗 , 𝑝𝑔

𝑖
𝑞
𝑔

𝑖
the power of generator at bus

𝑖 , 𝑝𝑙
𝑖
and 𝑞𝑙

𝑖
denote the load at the bus 𝑖 , 𝐺𝑖 𝑗 and 𝐵𝑖 𝑗 are the real

and reactive components of the bus admittance matrix. Thereby,
(6a) denotes a quadratic function for total generation cost; (6b)-(6c)
denotes nodal power balance at each bus; (6d)-(6c) represent line
limits with respect to apparent power flow; (6g) denotes the corre-
sponding upper and lower bounds on state variables. A solution to
the problem (6) can be written as

𝑥∗ = argmin
𝑥

𝑓 (𝑥 ), s.t. 𝑥 ∈ X(Ω), (7)

where X(Ω) denotes the feasible set of 𝑥 determined by the con-
straints (6b)-(6g) w.r.t. the coalition Ω. Thereby, the operation cost
Φ can be determined by optimal objective value of the problem (6)

Φ(Ω) := 𝑓 (𝑥∗ ) . (8)

2.4 Distributed Approach

In order to prevent exchanging detailed grid data, AC OPF problems
in Shapely algorithm are solved by using a distributed approach in
the present paper, i.e., the Augmented Lagrangian based Alternating
Direction Inexact Newton method (aladin).

2.4.1 Distributed Problem Formulation. Before further description
of the distributed optimization algorithm, the distributed formu-
lation of OPF needs to be discussed first. Instead of cutting the
tie-lines [3], we reformulate the OPF by sharing components to en-
sure physical consistence. As a result, OPF problems can be written
in the affinely coupled distributed form

min
𝑥

𝑓 (𝑥 ) :=
∑︁
ℓ ∈R

𝑓ℓ (𝑥ℓ ) (9a)

s.t.
∑︁
ℓ ∈R

𝐴ℓ𝑥ℓ = 𝑏 | 𝜆 (9b)

ℎℓ (𝑥ℓ ) ≤ 0 | 𝜅ℓ , ℓ ∈ R (9c)

where (9a) is the separable objective, (9b) includes all the consensus
constraints introduced by sharing components, (9c) summarizes
all local constraints for local systems, and 𝜆, 𝜅ℓ denote the dual
variables (Lagrangian multipliers) of constraints (9b) and (9c), re-
spectively. We refer to [11, 18] for more detailed information about
the problem reformulation.

Algorithm 1 aladin
Input: 𝑧, 𝜆, 𝜌 > 0, 𝜇 > 0 and scaling symmetric matrices Σℓ ≻ 0
Repeat:

leftm1rg1n=10pt solve the following decoupled nlps for all ℓ ∈ R

min
𝑥ℓ

𝑓ℓ (𝑥ℓ ) + 𝜆⊤𝐴ℓ𝑥ℓ +
𝜌

2
∥𝑥ℓ − 𝑧ℓ ∥2Σℓ (10a)

s.t. ℎℓ (𝑥ℓ ) ≤ 0 | 𝜅ℓ (10b)

leftm2rg2n=20pt compute the gradient 𝑔ℓ , the Jacobian matrix 𝐽ℓ of active
constraints ℎactℓ and the approximated Hessian 𝐻ℓ at the
local solution 𝑥ℓ by

𝑔ℓ = ∇𝑓ℓ (𝑥ℓ ), 𝐽ℓ = ∇ℎactℓ (𝑥ℓ ), 𝐻ℓ ≈ ∇2 {𝑓ℓ (𝑥ℓ ) + 𝜅⊤
ℓ ℎℓ (𝑥ℓ )

}
≻ 0 (11)

leftm3rg3n=30pt terminate if ∥𝐴𝑥 − 𝑏 ∥2 ≤ 𝜖 and ∥Σ(𝑥 − 𝑧 ) ∥2 ≤ 𝜖 are
satisfied.

leftm4rg4n=40pt obtain (𝑝qp, 𝜆qp ) by solving coupled qp

min
𝑝qp,𝑠

∑︁
ℓ ∈R

{
1
2
(
𝑝
qp
ℓ

)⊤
𝐻ℓ 𝑝

qp
ℓ + 𝑔⊤ℓ 𝑝

qp
ℓ

}
+ 𝜆⊤ 𝑠 + 𝜇

2
∥𝑠 ∥22 (12a)

s.t.
∑︁
ℓ ∈R

𝐴ℓ (𝑥ℓ + 𝑝
qp
ℓ ) = 𝑏 + 𝑠 | 𝜆qp (12b)

𝐽ℓ 𝑝
qp
ℓ = 0, ℓ ∈ R (12c)

leftm5rg5n=50pt update the primal and the dual variables with full step

𝑧+ = 𝑥 + 𝑝qp and 𝜆+ = 𝜆qp (13)

2.4.2 Distributed Optimization Algorithm. aladin was first intro-
duced in [14] to handle distributed nonlinear programming. aladin
for AC OPF problems is outlined in Algorithm 1. The algorithm has
two main steps, i.e., a decoupled nlp step 1 and a coupled qp step 4.
Following the idea of augmented Lagrangian, the local problem is
formulated as (10) in step 1, where 𝜌 is the penalty parameter and
Σℓ is the positive-definite weighted matrix for the region ℓ . Based
on the result from local nlps (10), the aladin algorithm terminates
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Figure 2: Regions of system operators and simulation results

of the IEEE 9-bus grid. Red = congested lines, blue/green =

generator ramping up/down, yellow = load.

if both the primal and the dual residuals are smaller than tolerance
𝜖 .

Based on curvature information (11), aladin builds a coupled
quadratic program (qp) (12) to coordinate the results of the decou-
pled step from all regions. Additionally, a slack variable 𝑠 and a
corresponding penalty parameter 𝜇 is introduced in the consensus
step to ensure feasibility of the coupled qp. Based on the second-
order information, aladin achieves a locally quadratic convergence
rate. A detailed proof of local convergence can be found in [3] [15].

3 ILLUSTRATIVE EXAMPLE

3.1 Setting

The standard IEEE 9-bus system is used as an illustrative example,
cf. Figure 2. Using the open-source toolbox rapidpf [18]1, the grid is
partitioned into two regions, R1 = {1, 4, 5, 9} and R2 = {2, 3, 6, 7, 8},
representing different transmission grids. The framework is built
on matlab-R2021a, the case studies are carried out on a standard
desktop computer with Intel® i5-6600K CPU @ 3.50GHz and
32.0 GB installed ram. The casadi toolbox [4] is used in matlab,
and ipopt [21] is used as nonlinear solver. The centralized reference
solution is obtained by using the default solver in matpower.

3.2 Shapley value-based Cost Allocation

The costs allocated to the congested lines by the Shapley value are
based on their average contribution to any combination of lines
being congested at the same time. They are usually not proportional
to the overloads, but redistribute the costs depending on the lines
overall influence.

3.2.1 Shapley values. The Shapley values of the 9-bus example
represent the congestion management costs of congested lines.

Figure 2 shows the two regions of system operators and the sim-
ulation results. Lines (1, 4) and (3, 6) have a capacity of 20MW and
70MW each. They are overloaded by 382% and 123%, corresponding
to 57MW and 16MW. The two generators at busses 1 and 3 produce
72MW and 85MW each, the generator at bus 2 produces 163MW.
Minus losses, all three sum up to the load of 315MW, distributed
on busses 5, 7 and 9.

1The code is available on https://github.com/xinliang-dai/rapidPF

The Shapley values of the overloaded lines are 424 and 135. This
is roughly proportional to the overloads of the lines, although the
system operator of region R1 pays slightly more in comparison.

3.2.2 Distributed vs. Centralized. The Shapley value is heavily de-
pendent on the solution accuracy of the corresponding AC OPF
problem, cf. (4). In order to validate the distributed approach pro-
posed in the present paper, i.e., aladin, we introduce two quantities:

– deviation of optimization variables: ∥𝑥 − 𝑥∗∥2,
– solution gap: | 𝑓 (𝑥

∗ )−𝑓 (𝑥 )
𝑓 (𝑥∗ ) |,

where 𝑥∗ and 𝑓 (𝑥∗) are provided by the centralized matpower
default solver.

As shown in Table 1, solving AC OPF problems by using aladin
can obtain a very high accuracy solution in terms of the optimal
objective value. The deviation of the resulting Shapley value is less
than 1 × 10−6, compared with a centralized reference value.

Table 1: Comparisons

Coalition Ω Iter Time [s] ∥𝑥 − 𝑥∗ ∥2 Solution Gap

{∅} 7 0.129 4.54 × 10−4 2.19 × 10−6

{ (1, 4) } 7 0.128 7.82 × 10−6 4.60 × 10−7

{ (3, 6) } 7 0.131 9.90 × 10−4 6.04 × 10−8

{ (1, 4), (3, 6) } 7 0.129 1.135 × 10−6 9.54 × 10−8

Figure 3 displays the convergence behavior of aladin for ACOPF
problems w.r.t. the grand coalition Ω = L𝑝 = {(1, 4), (3, 6)}, i.e., all
congested lines are taken into consideration. It can be concluded
that aladin can converge to a high accuracy solution rapidly for the
optimization problems in Shapley value, in terms of the deviation
of state variables, the solution gap, primal residual ∥𝐴𝑥 − 𝑏∥2 and
dual residual ∥𝑥 − 𝑧∥2.

5 10

10−6

10−4

10−2

100

∥x− x∗∥2

5 10

10−8

10−6

10−4

10−2

100

∣∣∣ f(x)−f(x∗)
f(x∗)

∣∣∣

5 10

10−8

10−6

10−4

10−2

100

Iteration

∥Ax− b∥2

5 10

10−8

10−6

10−4

10−2

100

Iteration

∥x− z∥2

Figure 3: Convergence behaviours of aladin for the grand

coalition Ω = L𝑝

4 CONCLUSIONS AND FUTUREWORK

In the present paper, a distributed approach to the calculation of
the Shapley value for redispatch congestion cost allocation is intro-
duced. Different from the recently introduced method in [20], the
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proposed method uses AC models for OPF problems for a more re-
alistic and fairer allocation. Besides, by using the aladin algorithm
for solving the AC OPF, data privacy can be preserved while the
high-quality solution can be maintained. Simulation results of an il-
lustrative example show great potential of the proposed distributed
approach in the aspects of both solution accuracy and comput-
ing time. This makes the presented approach generically feasible
for real applications in the energy transition. Future directions of
the work include introducing approximation methods of both the
Shapley value, the OPF and the grid. Another important direction
is scaling up the method to larger systems that also differentiate
between transmission and distribution systems.
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