
Derivation of Soil Roughness Using Multi-Temporal
Laser Scanning Point Clouds

Abstract

The present paper deals with the derivation of roughness parameters of soil from laser scan-
ning point clouds, allowing to draw conclusions about properties of the soil (e. g. soil aggre-
gation, soil sealing) and related to this its vulnerability to soil erosion. For this purpose, soil
erosion scenes with agricultural cultivation are acquired in five measuring epochs under field
conditions. For geo-referencing of the acquired time series of point clouds, a target-based
and a data-driven approach are compared. In order to derive roughness parameters, the point
clouds are cleaned of vegetation and then modelled to reduce the measurement noise. For
this purpose, a collocation-based approach is used, in which a trend surface roughly approxi-
mates the point clouds. Remaining systematic deviations, which are caused by the insufficient
functional approximation, are caught with the help of a stochastic signal, the variances and
correlations lengths of which simultaneously provide information about the soil’s roughness.

1 Introduction

Human cultivation of the ground by means of agriculture has increased the vulnerability
of soils with respect to wind and water erosion. According to Germany’s Welthungerhilfe,
23 % of vegetated land is considered to be permanently damaged by soil erosion, with the
majority of soil erosion (60-80 %) being caused by human action. Serious consequences of
soil erosion can be observed both directly on cultivated land (e. g. reduced fertility, crop
failures) and apart from it (e. g. landslides, increased risk of flooding) (WELTHUNGERHILFE
2022).

The soil’s vulnerability to erosion by water (erodibility) is determined by its texture, the soil’s
organic carbon content, rock fragments as well as its permeability (BRYAN 2000) and, thus,
by the roughness of the soil surface. The soil surface’s roughness is also referred to as soil
microtopography (THOMSEN et al. 2015) and directly affects the surface’s water storage
and its infiltration capacity. Furthermore, the soil’s microtopography at the millimetre to
decimetre range determines the hydraulics of surface runoff and the dissipation of rain-drop
energy. At the same time, it is subject to short-term changes caused by rainfall, run-off as
well as transport and sedimentation of soil particles (SCHMID et al. 2012). Determining soil
roughness, thus, allows risk assessment in terms of the soil’s vulnerability to erosion, while
monitoring the microtopography over time provides evidence of occurred erosion.
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Within classical methods for the monitoring of soil erosion by water, a distinction is made
between point-based strategies, with erosion pins being the most famous ones (see e. g.
HAIGH 1977, ZHANG & RUTHERFURD 2020), profile-based strategies like contact pro-
file meters (see e. g. HEGAZY 2013) and volume related strategies, which usually de-
rive the volume by integrating the information of several profiles (STEINHOFF-KNOPP &
BURKHARD 2018, ABERGEL et al. 2008). These classical strategies are usually manual and,
thus, cumbersome (ABERGEL et al. 2008). Furthermore, as they require the installation of
instruments within the scenes to be monitored, they are invasive (AFANA et al. 2010) and,
hence, have an impact on the erosion. The measurements are either performed locally or at
a multitude of measurement sites, resulting in an incomplete representation of the monitored
scene (ABERGEL et al. 2008) and in laborious and time consuming measurements (SCHMID
et al. 2012).

Alternatively, area-wise measurement techniques like terrestrial laser scanning (TLS) allow
for a fast, efficient, contactless and large-scale data acquisition. The acquired data are of
high spatial resolution and give a quasi-continuous description of the acquired scene. Due to
these properties, TLS as a measurement technique outperforms the above mentioned classical
strategies, as e. g. demonstrated by (THOMSEN et al. 2015) and, thus, has been established
as a standard measuring technique within soil sciences (ELTNER et al. 2013).

Although the measuring technique itself is very powerful, the subsequent data analysis is
usually carried out on a fairly simple level so far. Typically, the acquired laser scanning point
clouds are initially rasterized to derive a digital terrain model (DTM) (see e. g. CAO et
al. 2021, ELTNER & BAUMGART 2015, ASENSIO et al. 2019). By forming the differences
between two DTMs, the soil loss due to erosion can be determined. However, the measured
point cloud is usually directly used for these computations. A filtering of the point clouds
to reduce the measurement noise, e. g. by means of a moving least squares filter (ELTNER
& BAUMGART 2015) is rarely performed. Visual comparisons of the DTMs furthermore
allow for broad statements regarding the change of roughness (ELTNER et al. 2013). A much
more objective way to quantify soil roughness is the random roughness, which is defined
as the standard deviation from points within the acquired point cloud after eliminating the
slope effect, typically being realized by means of a plane estimation (ASENSIO et al. 2019,
THOMSEN et al. 2015). This random roughness, however, is limited in its informative value
as e. g. a planar trend surface usually only gives a very rough approximation of the soil surface
and as anisotropies of the roughness cannot be taken into account. For this reason, the random
roughness as a roughness measure for soil is extended for 3d point clouds captured by TLS
in two ways in this paper:

• Different trend surfaces are used to eliminate deterministic effects in the 3d point clouds.
Starting with planes, the trend surfaces’ complexity is increased by using B-spline sur-
faces with an increasing number of control points. Thus, by improving the approxi-
mation quality of the trend surfaces, the soil roughness can be regarded on different
scales.

• The standard deviation usually used to describe the random roughness is extended by
using variograms. In this way, the roughness is considered perpendicular as well as
along the trend surface. Moreover, this approach allows for the modelling of anisotropies
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and, thus, the consideration of an oriented roughness.

The paper is structured as follows: Section 2 provides the methodological basics for the
development of the presented approach. The data acquisition and preprocessing is described
in Section 3. Section 4 introduces the extended determination of soil surface roughness, and
the results yielded for the acquired data sets are analysed and evaluated in Section 5. Finally,
a conclusion is drawn and an outlook is given in Section 6.

2 Spatial stochastic processes

2.1 Definitions and properties

A univariate spatial stochastic process is a collection of spatially dependent random variables
Z (X), with the location in space X ∈ D varying continuously throughout the region D ⊂ R

3

(CRESSIE 1993):

Ψ(X) = {Z (X)} . (1)

A Gaussian spatial stochastic process is characterized by its first two statistical moments:
its expectation value and its covariance. In case of stationarity, the expectation value μ is
location invariant and the covariance C(d) of two data points solely depends on their dis-
tance d in space, with d typically being referred to as lag vector. A spatial stochastic process
is furthermore called isotropic if the covariance is direction-independent and, hence, solely
depends on the absolute value d, the lag distance. As the assumption of stationarity is of-
ten not fulfilled in geostatistical applications, the weaker assumption of intrinsic stationarity
(WACKERNAGEL 2003) is often used instead, stating that the variance of the differences
2γ(d) is location independent:

2γ(d) = Var{Z (X1)−Z (X2)} , d = ||X2 −X1||. (2)

2γ(d) is typically referred to as (semi-)variogram.

2.2 Variogram estimation and interpretation

Assuming isotropy and a constant mean, the empirical variogram can be estimated based on
the acquired data {s(X)} (CRESSIE 1993):

2γ̂(dk) =
1

|Nk| ∑
(Xk1 ,Xk2 )∈Nk

(
s(Xk1)− s(Xk2)

)2
, with: k1 = 1, ...,nl . (3)

Equation (3) requires a subdivision of the data points’ separation distances dk2,k1 = ||Xk2 −
Xk1 || into nN consecutive intervals Nk of size |Nk| with a mean lag distance dk. If the stochas-
tic process is anisotropic, the point pairs have to be additionally grouped according to the
orientation θk2,k1 of the lag vector dk2,k1 , resulting in directional empirical variograms. In
Figure 1 (left) a typical variogram is depicted: the variance increases with increasing lag
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Fig. 1: Variograms. Left: Parameters of a variogram; Right: Geometric (top) and zonal
(bottom) anisotropies in directional variograms. (Directions are differentiated by
colouring.) (Own illustration)

distance d, with the slope’s magnitude indicating how fast the spatial dependence of point
pairs decreases. The variance’s convergence against an upper bound indicates second-order
stationarity. The bound is denoted as sill variance and equals the process’s variance. The lag
distance after which the sill variance (or 95% of it) is reached, is denoted as the range. This
parameter indicates the minimal distance between uncorrelated point pairs. The final vari-
ogram parameter is the nugget variance C0, which is recognizable by the positive intercept
between variogram and ordinate. This discontinuity is caused by an uncorrelated component,
like e. g. measurement noise (OLIVER and WEBSTER 2015).

Directional variograms allow for the identification of two types of anisotropies, presented in
Figure 1 (right). In the top Figure, three directional variograms converge against the same
sill variance, but are characterized by different ranges (geometric anisotropy). Within zonal
anisotropy (bottom Figure), the sill values vary in dependence of the variogram’s direction.

3 Data acquisition and preprocessing

3.1 Field campaign

The study area is located in the southern part of Lower Saxony, Germany, near Lamspringe,
at about 60 km south of Hanover. The mean annual precipitation is 800 mm, which is close
to the average for Germany. Due to topsoil properties and relatively high relief energy, the
area is prone to soil erosion by water. In a long-term monitoring, soil erosion is regularly
mapped in semi-quantitative field surveys in this area since 2000 (STEINHOFF-KNOPP &
BURKHARD 2018). In order to capture soil surface changes under real cultivation conditions,
the area under investigation is situated on managed cropland.

The measurement campaign took place from 11th May 2022 to 08th June 2022 and was car-
ried out on a weekly basis, starting immediately after sowing. Three plots, each covering
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Fig. 2: Field campaign. Left: Plot setup between measurements. Right: Plot setup dur-
ing scanning with TLS. Blue arrows are showing the positions of ground sleeves
as target positioning markers resp. the installed sphere targets. Black arrows high-
light ground sleeves marking the plot edges throughout the field campaign. (Own
illustration)

2x3 m, were selected based on previously recorded erosion events considering different gra-
dients between approx. 3 and 14 degrees in the microtopography. As most erosion events
are expected at times when low soil cover coincides with heavy rainfall occurrence, the plots
were placed on agricultural soil with a late sowing field crop, in this case maize.

3d point clouds were acquired from two stations in a distance of about 1 m. This measuring
set-up results in a maximal incidence angle of approximately 50 degrees for each plot when
assuming a plane area. Shadowing and varying incidence angles depending on the roughness
of the surface were compensated by scanning from two sides of the plot. Masking of soil
aggregates, tyre marks and growing vegetation lead to inhomogeneous point density which
limits the transferability to a planar surface. Growing field crops lead to an increasing het-
erogeneity of the point density and a decline of the points representing soil surface over time.
The utilized scanner Zoller+Frhlich (Z+F) IMAGER 5010X has an integrated high dynamic
range camera, providing additional RGB information for the 3d point clouds.

In order to set up a stable reference coordinate system, each plot was established with six
control points (CP) temporarily marked with spheres (145 mm diameter) in a distance of 1 m
around the plot (see Fig. 2). The CP positions and the edges of the plot were marked by
ground sleeves driven 25 cm deep into the soil, as shown in Figure 2. The ground sleeves
remained during the entire field campaign, whereas the spheres were removed after each
measurement epoch to avoid interference with the agricultural cultivation. In order to exclude
movements of the CP, i. e. the ground sleeves, their absolute positions were observed before
the weekly scanning procedure. These control measurements were conducted by means of
a Trimble R8s GNSS System using an RTK-positioning with respect to a close-by SAPOS
reference station and a measurement duration of 3 minutes per CP.
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3.2 Geo-referencing of both stations and the acquired time series

The weekly determined CP coordinates are analysed and subsequently aggregated per CP
and epoch. Within this calculation the standard deviation of this aggregation process serves as
quality indicator. The standard deviation of the horizontal coordinate component is σh ≈ 6mm
and the standard deviation of the vertical coordinate component is σv ≈ 12mm and thus,
in the range of the RTK-GNSS accuracy for all three plots of the measurement campaign.
Therefore, it can be assumed that no critical movements of the CP have occured.

The two acquired 3d point clouds per measurement epoch have to be (a) registered per epoch
and (b) geo-referenced with respect to the reference coordinate system established by means
of the CP. Both steps can be jointly performed by means of the CP equipped with spheres.
The software Z+F LaserControl (9.3.1.33653) was used for target fitting and for the target-
based registration / georeferencing. As an alternative to the target-based registration, the
built-in iterative closest point (ICP) algorithm was used for registering the point clouds. As
a third variant, a plane-based approach delivered by the software Scantra (Version 3.0.1.256)
was applied, which jointly performs a bundle adjustment of CPs and planes to determine an
optimal geo-referencing.

To compare the geo-referencing results yielded by the three approaches, the mean deviations
and statistics of the CPs are considered. The registration per epoch yields a mean deviation
of 0.7mm with a standard deviation of 0.3mm for the pure target-based approach. The ICP
algorithm performs comparably worse with standard deviations of ≈ 6.2mm and an overlap
of ≈ 60 %. Thus, these results are not considered in the subsequent geo-referencing proce-
dure. For the pure target-based geo-referencing, mean deviations of 3.9mm with a standard
deviation of 1.5mm are obtained. In the plane-based approach ≈ 100− 250 plane identi-
ties are found to stabilise the geo-referencing. The plane identities are only established in
this approach if no significant movements of the plane patches are detected. The final geo-
referencing obtained from a bundle adjustment yields a standard deviation for the translation
vector of each station of 2.1mm and a mean deviation of the CP of 4.2mm. Thus, comparable
results for the pure target-based and the plane-based approach are obtained. It can be con-
cluded that the use of targets is essential for the subsequent analysis of 3D point cloud time
series in this specific application.

3.3 Ground filtering

As the measurements were taken under field conditions, filtering is needed to remove veg-
etation. The ground filtering is carried out using the open source software CloudCompare
(v2.12beta). Improvement of data handling and noise removal is realized by a subsampling
of the 3d point cloud using voxel grid filtering with a voxel size of 1 mm. As the measurement
precision is larger than the chosen voxel size, no falsification of the roughness determination
is expected from this preparatory step. The homogenized 3d point cloud is levelled in order
to exclude the influence of the underlying inclination on the geometric filter algorithm and to
increase the comparability between both tested filter algorithms.

After levelling the 3d point cloud, the filter algorithms Cloth Simulation Filter (CSF) and
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CANUPO, implemented in CloudCompare, are tested and evaluated by means of a manu-
ally cleaned reference ground surface. The CSF computes a horizontal cloth grid covering
the inverted 3d point cloud surface. Afterwards, the filter algorithm compares the distances
between the original 3d point cloud and the computed surface and separates the points into
ground and non-ground points (see ZHANG et al. 2016). In contrast to CSF, the CANUPO
algorithm is a classifier that uses point coordinates and compares the relationship of each
point in the 3d point cloud to its adjacent points at multiple scales based on predefined train-
ing classes. The number of scales taken into account is one of the input settings. The more
scales are set, the smaller the radius of the points considered together. These points are then
categorized according to a previously created training data set. The result is a trained classi-
fier, which can be applied on different point clouds. In its basic implementation, CANUPO
considers the geometry, meaning the neighbourhood of points, as classification parameter,
but there is also the possibility to include scalar fields (BRODU and LAGUE 2012). For the
presented application, the best results are achieved by including RGB values rather than in-
tensity values into the classification process as this increases the separability between living
vegetation and mulch residues. Since the vegetation has grown significantly during the mea-
surement period, each epoch contains a different amount of points representing the vegetation
class. For this reason, the produced training data for the CANUPO algorithm includes vege-
tation and soil class of all epochs combined. Furthermore, since the population of the classes
is not evenly distributed, the ratio is approximately kept the same in the training data. This
reinforces the difficult process of distinguishing mulch from vegetation in epoch E2.

Both algorithms are first carried out separately with different settings and lastly in combina-
tion using CANUPO followed by CSF, with CSF eliminating outliers yielded by CANUPO.
This produces the best results, on which we focus in the following. With this procedure a
substantial balanced accuracy of 0.67 for epoch E2 is achieved, whereas epochs E3 to E5
even show very high balanced accuracies of above 0.91 (see table 1). Increasing green pro-
portion in the colour index and changes in the geometrical structure of emerging vegetation in
subsequent epochs may be the cause of the lower accuracy in epoch E2 as mentioned above.
Simultaneously, the larger crop height at later epochs leads to an increase in shading and, as

Table 1: Filtering performance for all epochs for an examplary plot as confusion matrix
generated by comparison with a manually cleaned reference ground surface

Predicted Condition

Epoch E2 Epoch E3 Epoch E4 Epoch E5

P N P N P N P N

Actual P 3 131 8 799 27 403 5 672 82 588 5 655 221 859 2 560

Condition N 24 192 1 923 922 26 951 1 719 568 59 357 1 968 993 3 824 1 667 528

Prevalence 0.01 0.02 0.04 0.12

Prevalence Threshold 0.18 0.12 0.15 0.05

Accuracy 0.98 0.98 0.97 1.00

Balanced Accuracy 0.67 0.91 0.95 0.99

Cohens’ Kappa 0.15 0.62 0.91 0.98
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Fig. 3: Filtering performance in Epoch E5. Left: Unfiltered 3d point cloud. Right: Filtered
3d point cloud using both CANUPO and CSF. (Own illustration)

a consequence, an increase in missing information in the 3d point cloud. Epoch E5 is shown
as an example in Figure 3. The ground filtering was not applied for epoch E1 due to missing
vegetation.

4 Extended determination of soil roughness

4.1 Basic considerations

The extended determination of soil roughness takes up the basic ideas of least squares col-
location (LSC). Accordingly, the acquired 3d point cloud is decomposed into three parts: a
deterministic trend, giving a rough approximation of the soil’s surface, the stochastic mea-
surement noise, reflecting the laser scanner’s measurement uncertainties, and the stochastic
signal (HEUNECKE et al. 2013). The latter is of major interest here, as it contains information
about the soil surface that is not captured by the trend and, thus, provides information about
the soil roughness. Following this idea, the soil roughness is interpreted to be a realization
of a spatial stochastic process, which can be analysed by means of variograms. In order to
illustrate this, Figure 4 presents three exemplary soil surfaces (dashed blue, solid red, dotted
green) and a planar trend surface (black), which all soil surfaces vary around. The dashed

Trend surface

Fig. 4: Soil roughness and variogram parameters. Red (solid): Large variance, large range.
Blue (dashed): Smaller variance, large range. Green (dotted): Smaller variance,
smaller range. (Own illustration)
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blue surface fluctuates more slowly around the planar trend than the dotted green one. This
behaviour is indicated in a variogram by a larger range. The dashed blue and the solid red
surface have a similar variation rate, resulting in a similar range. However, they differ in the
residuals’ magnitude with respect to the trend surface. This behaviour is characterized by the
variogram’s sill variance, which is larger for the solid red surface than for the dashed blue one.
Consequently, sill variance and range can be used to describe soil roughness. However, a var-
iogram’s shape is strongly influenced by the estimated trend surface. By increasing the trend
surface’s complexity, both the variance and the range decrease, as the residuals’ informative
parts are reduced. Simultaneously, the signal’s local properties emerge in the residuals.

These considerations lead to the following workflow: At first, trend surfaces with increas-
ing complexity are estimated (section 4.2), with the simpler surfaces allowing for the mod-
elling of global roughness properties and the more complex ones enabling the modelling of
local properties. Secondly, the residuals with respect to the trend surface are analysed for
anisotropies in order to detect major roughness directions (section 4.3). Finally, directional
variograms are estimated and the parameters describing the soil roughness (sill variance and
range) are derived (section 4.4).

4.2 Trend estimation

A planar trend is eliminated in a first step. Figure 5 (left) presents as an example the residuals
v of epoch E2 with respect to this trend. As can be seen, the planar trend gives only a rough
idea about the acquired data, resulting in residuals with a magnitude of up to 8cm. Addition-
ally, the residuals’ regular pattern is striking. These rills are caused by the sowing procedure.
The residuals with respect to the planar trend, thus, allow for a large-scale description of the
soil roughness. In order to observe the roughness on smaller scales, more complex trend sur-
faces are determined. For this purpose, B-spline surfaces (PIEGL & TILLER 1997) are used,
the approximation quality of which can be adjusted by means of the number of estimated
control points (nP + 1) · (mP + 1): The larger the number of control points, the smaller the

Fig. 5: Residuals with respect to estimated trend surfaces (epoch E2). Left: Planar trend
surface. Right: B-spline surface B2. (Own illustration)
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sum of squared residuals. However, the improvement of the approximation turns into an over-
fitting at a certain number of control points, which is why this parameter cannot be increased
arbitrarily. In this study, three different B-spline trend surfaces are used, with the number of
control points being varied from 8 · 8 = 64 (B1) to 9 · 12 = 108 (B2) to 10 · 18 = 180 (B3).
Figure 5 (right) presents, as an example, the residuals v of epoch E2 with respect to B2. As
can be seen from the residuals’ magnitude, this trend surface approximates the acquired data
better than the planar one, resulting in residuals with a maximum magnitude of about 5cm.
Despite the flexible model, the pattern recognizable in Figure 5 (left) can also be observed
in Figure 5 (right), albeit less extreme in the highs and lows. At the same time, new, less
pronounced patterns become apparent.

4.3 Anisotropy analysis

The residuals with respect to the trend surfaces are the basis for the estimation of variograms
(see section 2.2). As visible in Figure 5, the underlying stochastic process cannot be assumed
to be isotropic. Thus, directional variograms are estimated, with the lag vectors’ orientations
θk1,k2 being grouped into four classes θ45◦ – θ180◦ . A symmetry of the classes is assumed
(e. g. θ45◦ = θ225◦ etc.). The subscript indicates the upper bound of the respective class,
meaning that i. e. class θ45◦ contains all lag vectors with 0◦ < θ45◦ ≤ 45◦ (see Fig. 6
(left) for a graphical representation). As an example, the estimated directional variograms
of epoch E2 are presented for the planar trend surface in Figure 6 (right). Three of the vari-
ograms (yellow, blue and purple) are similar in all three variogram parameters, indicating an
isotropic behaviour in these three space directions. However, the red variogram, belonging
to the direction θ90◦ indicates an anisotropy. Comparing the variograms’ directions with the
residuals’ pattern (Fig. 6, left), it becomes obvious that θ90◦ contains the directions that run
across the soils’ rills. As a consequence, two directions will be considered for determining
the roughness parameters: θ90◦ as one of the major characteristic directions and θ180◦ as the
perpendicular direction which is chosen as the representative of the other directions.

Fig. 6: Directional variograms. Left: Four classes of space vectors according to their ori-
entation in space θ . Right: Estimated variograms for the planar trend surface (E2).
(Own illustration)
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4.4 Determination of roughness parameters

Following the ideas presented in section 4.1, the variograms in directions of θ90◦ and θ180◦
are estimated for all four trend surfaces for all five measurement epochs E1 – E5. In order to
derive the sill variance and the range, analytical variograms are fitted through the empirical
ones. For this purpose, an exponential model is chosen (OLIVER & WEBSTER 2015):

γ(d) =

{
C0 +C(1− e−

d
a ), for d > 0

0 for d = 0.
(4)

In equation (4), the parameter a denotes the range and the parameter C is the sill variance.
Thus, the estimation of analytical variograms directly provides the desired roughness param-
eters. Occurring periodicities in the empirical variograms (cf. Fig. 6 (right)) are neglected by
the exponential model. This approach is justifiable, because these periodicities reflect rough-
ness components that are explicitly modeled in the lower-scale approaches. In the higher-
scale approach, these periodicities provide information about the rills formed due to tillage
and sowing. For example, for epoch E2 it can be concluded that these rills repeat on average
every 0.4 m (cf. Fig. 6 (right)).

A nugget variance C0 is not visible in the empirical data (cf. Fig. 6 (right)) as the magnitude
of the multi-scale roughness investigated in this study clearly exceeds the magnitude of the
measurement noise. Therefore, a modelling of the nugget variance is neglected in this initial
study. This step becomes mandatory when the roughness is investigated at a smaller scale.

5 Results

The estimated variogram parameters are presented in Figure 7. The sill standard deviation√
C (Fig. 7, left), representing the mean deviation of the soil with respect to the trend surface,

slightly decreases in the direction of θ90◦ (solid lines) over the five epochs for all four trend
surfaces. Except for the last epoch, a similar behaviour can be observed in direction θ180◦
(dashed lines). This decrease in variance indicates a decrease in roughness over time. These
conclusions are confirmed by a visual analysis of the acquired soil surfaces (Fig. 8).

The variance’s different behaviour in the last epoch is assumed to be caused by the vegetation,
which could not be eliminated as well as in the other epochs. As a result, points representing
vegetation are still present in the filtered 3d point cloud and accumulate along the planting
direction θ180◦ . These outliers are incorporated in the variogram estimation and, thus, falsify
the results. Comparing the variances of the two main directions, it can be concluded that
the roughness along the rills is more pronounced than across them. However, it has to be
taken into account that remaining vegetation may again falsify this result. As expected, the
increase of the trend surfaces’ complexity yields a decrease of the variance. The almost
identical course of the curves belonging to the different trend surfaces shows that there are
no scale-dependent variations of the roughness.

The investigations have also revealed that the B-spline’s tensor product representation reaches
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Fig. 7: Estimated variogram parameters. Left: Sill standard deviation, right: Range. Solid
lines: direction θ90◦ ; dashed lines: direction θ180◦ . (Own illustration)

its limits in this application, which is characterized by very complex soil surfaces. These
limits are caused by the global definition of some parameter groups (e. g. the knot vectors),
which does not allow for an arbitrary improvement of the approximation quality by simply
increasing the number of control points. As a consequence, an overfitting occurs in some
regions, whereas other regions are not well approximated when reaching a certain complexity.
These effects introduce systematics into the residuals, which directly affect the estimated
variograms.

This “pseudo-roughness” can be seen in the range values a (Fig. 7, right). Although it is to
be expected that systematics and, thus, correlations decrease when using more complex trend
surfaces, a different behaviour is recognisable in direction θ180◦ : The curves of the more
complex trend surfaces (purple and yellow) indicate a larger range than those of the simpler
ones: For example, the range of the most complex B-spline surface is a≈ 0.15m, whereas the
range of the plane is a ≈ 0.1m in epoch E4. This effect is also observable for θ90◦ , although
not as strongly pronounced and only for the most complex trend surface. Leaving these
trend surfaces out of the interpretation, it can be seen that the ranges increase with time. This
behaviour can be seen especially well for the solid blue line, which increases from a ≈ 0.05m
to 0.2m from E1 to E5. Thus, correlations increase with time, indicating a blurrying of the
soil surface over the measuring epochs. This conclusion is supported by Figure 8, showing a

Fig. 8: Photos of the soil surfaces. Left to right: Epoch E1, E2 and E4. (Own illustration)
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decreasing soil roughness from epoch E1 to E4.

Despite of the approach’s potential, it is worth noting that the TLS’s uncertainty and reso-
lution limit the roughness determination: Only roughness structures in the magnitude of the
measurement noise and with an extension that exceeds the measurement resolution can be
detected.

6 Conclusion

In this contribution, a laser scanner-based determination of soil roughness is introduced. The
approach is based on the estimation of directional variograms and, thus, takes anisotropies
into account. Furthermore, it directly allows for the derivation of parameters that character-
ize the soil roughness. Although the parameters (sill variance and range) have a geostatistical
origin, they can be related to classical roughness parameters and, therefore, can be used to
draw conclusions about the soil’s properties. Due to the a-priori subtraction of trend surfaces
with increasing complexity, the roughness can be determined on different scales. The investi-
gations can be used as a basis for an LSC, allowing for a filtering of the acquired soil surface
which does not require a preceding rasterization. The application of the developed approach
on measured data is promising. However, a variety of issues to be solved were identified:

• As remaining vegetation has proven to have a serious impact on the roughness determi-
nation, future work will focus on improving ground filter methods for point clouds.

• The anisotropy analysis conducted is realized by four arbitrarily chosen directions. Fu-
ture work is going to investigate how the number and orientation of the major directions
can be detected automatically.

• In order to improve the multi-scale approach, trend surfaces are required that allow
for a better approximation of the complex soil surfaces. Using these trend surfaces,
a modelling of the nugget variance and, thus, a separation of measurement noise and
signal becomes mandatory. In this context, systematic effects of the scanner (e. g.
influence of the incidence angle and penetration depth) need to be investigated.

• Finally, the results achieved with the developed methods are going to be compared with
the results of classical methods.
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