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Abstract We adopt the quantum field theoretical method to
calculate the amplitude and event rate for a neutrino oscilla-
tion experiment, considering neutrino production, propaga-
tion and detection as a single process. This method allows to
take into account decoherence effects in the transition ampli-
tude induced by the quantum mechanical uncertainties of
all particles involved in the process. We extend the method
to include coherence loss due to interactions with the envi-
ronment, similar to collisional line broadening. In addition
to generic decoherence induced at the amplitude level, the
formalism allows to include, in a straightforward way, addi-
tional damping effects related to phase-space integrals over
momenta of unobserved particles as well as other classical
averaging effects. We apply this method to neutrino oscil-
lation searches at reactor and Gallium experiments and con-
firm that quantum decoherence is many orders of magnitudes
smaller than classical averaging effects and therefore unob-
servable. The method used here can be applied with minimal
modifications also to other types of oscillation experiments,
e.g., accelerator based beam experiments.
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1 Introduction

Conceptual questions related to quantum decoherence effects
in neutrino oscillations are the topic of ongoing discussions
in the literature since several decades. For early papers on
the topic see [1–12], some examples of further investigations
are e.g., [13–19]. Recently, this discussion received further
attention in the context of short-baseline reactor [20–23] and
radioactive source Gallium experiments [24–27] searching
for sterile neutrino oscillations [28–32]. These papers dis-
cuss the question whether quantum decoherence could help
to reduce tension in the data [28,32] which arises in stan-
dard sterile neutrino explanations, see e.g., [33–36]. Possible
decoherence effects in the upcoming high-precision JUNO
reactor experiment have been discussed in Refs. [37–39].

In this paper we contribute to this discussion by adopt-
ing the quantum field theoretical (QFT) approach to neutrino
oscillations [4,6,13,40,41]. In this approach the combined
process of neutrino production, propagation, and detection
is considered as a single process whose amplitude is calcu-
lated by usual S-matrix methods, adapted to the situation of
macroscopically separated production and detection regions.
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The neutrino is treated as an internal line and coherence prop-
erties of the flavour transition are completely determined by
the localization of the external particles at the source and at
the detector.

We will follow largely the methods discussed by Beuthe in
the review article Ref. [13], with some modifications relevant
to the experimental situations of interest to us. In particular,
we generalize the formalism to take into account decaying
particles (see also [15,42–44]) as well as coherence loss due
to interactions of external particles with the environment.
We focus on quantities which are actually observed in exper-
iments, for instance the energy of the positron produced by
the inverse beta-decay reaction in the detectors of reactor
neutrino experiments. The formalism naturally allows a dis-
tinction of “quantum decoherence” (at the amplitude level)
compared to “classical averaging” (at the probability level),
which are, however, indistinguishable observationally. Our
work is complementary to the recent paper by Akhmedov and
Smirnov [29], who base their argumentation on the neutrino
wave packet approach, reaching very similar conclusions as
we do. A somewhat different approach has been pursued by
Jones, Marzec and Spitz [45] whose results for the decoher-
ence parameters differ quantitatively from ours.

We provide here some guideline on how to read this paper.
In Sect. 2 we introduce the notation by discussing external
wave packets for single vertex processes, such as scattering or
decay. Our ansatz of how to include decoherence effects due
to interactions with the environment as well as decaying par-
ticles is introduced in Sect. 2.1. In Sect. 3 we sketch the QFT
calculations for the oscillation amplitudes. A reader mainly
interested in the final result may, after a look at the central
expression in Eq. (3.14), skip directly to Sect. 3.2, which con-
tains a brief discussion of the decoherence effects, and Sect.
3.4, where we comment on classical averaging and stress the
equivalence of quantum and classical decoherence. Section 4
contains the numerical estimates for reactor and Gallium
source experiments, where in Sect. 4.1 we give some details
of how we estimate the localizations of all involved parti-
cles. Readers interested only in the main numerical results
may proceed directly to Sect. 4.2, where we discuss the effec-
tive localization and energy spreads and show that they are
many orders of magnitude below the observable level. We
summarize our findings in Sect. 5. Supplementary material
is provided in Appendices A–C. In particular, Appendix B
contains a discussion of how to derive standard expressions
for scattering cross sections and decay rates within our for-
malism, and in Appendix B.3 we discuss how the amplitude
for the neutrino oscillation process derived in the QFT for-
malism can be related to differential event rates in a neutrino
oscillation experiment.

2 Single-vertex calculation

In the QFT approach to neutrino oscillations the combined
process of neutrino production, propagation, and detection
is evaluated. There, we face the unusual situation that two
vertices of the process (production and detection) are macro-
scopically separated in space-time. Before we calculate the
amplitude for the oscillation process in Sect. 3, we discuss
first the conceptually simpler case, where there is only one
interaction region, as in standard particle physics interaction
calculations. This will serve to introduce the formalism, fix
the notation, and to discuss the modifications we introduce to
model the specific physical situations of decaying particles
as well as particles confined by frequent interactions with the
environment. We consider wave packets for both, initial and
final state particles. In Appendix B we show that, in the limit
of plane waves and the appropriate normalization, we can
recover standard text book expressions for scattering cross
sections and decay rates from our approach.

We define states as superpositions of momentum eigen-
states |k〉 as

|φ〉 =
∫

dk̃φ(k)|k〉, dk̃ ≡ 1

2Ek

d3k

(2π)3 . (2.1)

Three-vectors are denoted by bold-face letters. Momentum
states are normalized as

〈k′|k〉 = 2Ek(2π)3δ(3)(k − k′) (2.2)

and the wave packets as

∫
d3k

(2π)3 |φ(k)|2 = 1. (2.3)

In the following we will consider the specific case of Gaus-
sian wave packets. While this is not true in general, it serves
as a useful approximation for the purpose of describing the
relevant physics and for order-of-magnitude estimates. The
technical advantage is that many integrals can be performed
analytically in the case of Gaussian wave packets. Taking
into account the above normalization condition, we have

φ(k) =
(

2π

σ 2

)3/4

e− (k−p)2

4σ2 . (2.4)

Here, p is the mean momentum and σ is the momentum
spread. We will use the symbol “σ” to denote uncertainties
of dimension 1 (i.e., momentum or energy) and the symbol
“δ” to denote uncertainties of dimension −1 (i.e., space or
time); they are related via σδ = 1/2.

Let us now consider a process with a set of Ni initial and
N f final state particles, |φi 〉 and |φ f 〉, respectively. They are
the product of states, each having the form as defined in Eq.
(2.1). Then, the total transition probability for the process
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i → f is given by the S-matrix [46,47]:

Pi f = |〈φ f |iT |φi 〉|2 ≡ |iA|2, (2.5)

where iT is the non-trivial part of the S matrix: S = 1 + iT .
We use Eq. (2.1) and the standard definition of the matrix
element for momentum states [46],⎛
⎝∏

f

〈k f |
⎞
⎠ iT

(∏
i

|ki 〉
)

= (2π)4δ(4)

⎛
⎝∑

f

k f −
∑
i

ki

⎞
⎠ iM, (2.6)

where in general M depends on all momenta. Then, we
obtain the transition amplitude as

iA =
∏
f

∫
dk̃ f φ

∗
f (k f )

∏
i

∫
dk̃iφi (ki )(2π)4δ(4)

⎛
⎝∑

f

k f −
∑
i

ki

⎞
⎠ iM

(2.7)

=
∫

d4x
∏
f

∫
dk̃ f φ

∗
f (k f )e

ik f x

×
∏
i

∫
dk̃iφi (ki )e−iki x iM. (2.8)

In the second step we used the Fourier-transform of the δ-
function to introduce an integral over configuration space
d4x . This integral will receive contributions from the “inter-
action region” in space-time, determined by the overlap of
the wave packets.

We now proceed by performing the momentum integrals
by adopting the following approximations. First, we assume
that the matrix element M varies slowly with momenta on
the scales σi, f and we can replaceM(ki ,k f ) ≈ M(pi ,p f ).
Then it can be pulled out of the integrals. Second, consider
the exponentials eiki, f x . For a generic ki, f we have kx =
Ekt − kx. Again we assume that the momentum is not too
far from its mean value p and approximate

Ek ≈ Ep + v(k − p) (2.9)

with the group velocity

v ≡ ∂Ek

∂k

∣∣∣∣
k=p

. (2.10)

The physical implication of the approximation Eq. (2.9) is
that the wave packets are not spreading in time.1 Stationary

1 Wave packet dispersion would be described by the second order term
in the expansion Eq. (2.9), which is of order σ 2/Ep . This term is small
compared to typical energy widths σm , σE , �col derived below, because
σ/Ep 	 1. Physically this means that on time scales relevant for the
coherent interaction the spreading of wave packets can be neglected.
This is the case in the situations of interest to us in this work, but may
not hold in general (for instance in cases where v and/or � vanish).

states correspond to v = 0. For free particles we have v =
p/Ep. However, at this point we do not need to specify the
dispersion relation and can allow for arbitrary k dependence
of Ek .

With these two approximations all integrals become inte-
grals over Gaussians, which can be performed, see e.g., [13].
The momentum integrals are all of the type

∫
dk̃φ(k)e∓ikx ≈ N e∓i px−(x−tv)2σ 2

,

N ≡ 1√
2Ep

(2σ)3/2

(2π)3/4 . (2.11)

Using this in Eq. (2.8), we obtain

iA = iM
∫

d4x
∏
i, f

NiN f exp

⎡
⎣i
⎛
⎝∑

f

p f −
∑
i

pi

⎞
⎠ x

−
∑
i, f

(x − tvi, f )2σ 2
i, f

⎤
⎦ . (2.12)

In order to simplify the exponential we introduce some nota-
tion:

	E ≡
∑
i

E pi −
∑
f

E p f ,

	p ≡
∑
i

pi −
∑
f

p f , (2.13)

such that 	E = 0 and 	p = 0 correspond to exact energy
and momentum conservation, respectively. We define the
total momentum spread by

σ 2
p ≡

∑
i, f

σ 2
i, f , (2.14)

and a weighted velocity and velocity-squared:

v ≡ 1

σ 2
p

∑
i, f

σ 2
i, f vi, f ,

� ≡ 1

σ 2
p

∑
i, f

σ 2
i, f v

2
i, f . (2.15)

Using these definitions to rewrite the argument of the expo-
nential, the d4x integration can be performed as well:

iA = iM
∏
i, f

NiN f

∫
d4x exp

[−i(	Et − 	px)

−σ 2
p(x

2 − 2xvt + �t2)
]

(2.16)
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= iM
∏
i, f

NiN f
π2

σ 3
pσe

× exp

[
− (	p)2

4σ 2
p

− (	E − 	pv)2

4σ 2
e

]
, (2.17)

where the effective energy spread is obtained as

σ 2
e ≡ σ 2

p(� − v2). (2.18)

We notice that the quantities σe and σp correspond to the
amounts within which energy and momentum conservation
can be violated. It is easy to see that they fulfill 0 ≤ σe ≤ σp.
The momentum uncertainty, Eq. (2.14), is just the sum of
the squares of the momentum uncertainty of all particles.
Hence, it is dominated by the particle with the largest uncer-
tainty. For hierarchical uncertainties, σe is generally dom-
inated by the particle with the second largest uncertainty,
see e.g., [13] for a discussion. Note that “energy–momentum
violation” happens for the mean quantities pi , p f , whereas
for the actual 4-momenta picked at the interaction vertex,
energy–momentum conservation is exact, as manifest by the
δ-function in Eq. (2.7). Therefore, it is not surprising that
the mean quantities need to fulfill 4-momentum conserva-
tion only approximately.

2.1 Interactions with the environment and particle decay

We consider now the case that the involved particles prop-
agate through a medium, with frequent collisions. When an
interaction happens, the particle wave function picks up a
random phase, which leads to loss of coherence. We model
this effect by restricting the time integration in Eq. (2.16)
from t = 0 till the time when the next interaction happens by
introducing an exponential e−t�col/2, where �col is the col-
lision rate. This is motivated by considering the scattering
as a Poissonian process.2 Hence, the integral in Eq. (2.16)
becomes
∫

d4x e−i(	Et−	px)−σ 2
p(x

2−2xvt+�t2)e−t�col/2
(t)

= π3/2

σ 3
p
e
− (	p)2

4σ2
p

∫ ∞

0
dt e−σ 2

e t
2−i t�−t�col/2 (2.19)

→ π3/2

σ 3
p
e
− (	p)2

4σ2
p

1

i� + �col/2
, (2.20)

with � ≡ 	E − 	pv, and in the last step we assumed
σe 	 �col. Hence, after squaring the amplitude, instead of
the energy Gaussian factor in Eq. (2.17) we obtain the typ-
ical Lorentzian shape ∝ 1/(�2 + �2

col/4). This modelling

2 See also [44] for a similar approach.

describes correctly the collisional line broadening [48], see
Appendix B.2.

Actually, we will take this picture as the physical origin
of wave packets for our external particles: the interactions
with the environment lead to the localization of the particle
within a length δx which in turn determines the momentum
spread σ via σδx = 1/2 as well as the mean time between
two scatterings as δx/|v|. We adopt now the following ansatz
for the effective collision rate �col

�2
col ≡

∑
i, j

σ 2
i, f v

2
i, f = σ 2

p�, (2.21)

i.e., adding the interaction rates in squares.3 Hence, �col is
dominated by the particle with the fastest interaction rate:
as soon as one of the involved particles interacts with the
environment, coherence is lost. Comparing Eq. (2.21) with
the expression for the energy spread in Eq. (2.18), we see that
σe ≤ �col. In Sect. 4 we will find for our cases of interest
that σe ≈ �col because in most cases v2 	 �.

As we have seen, our physical picture leads to a constraint
on � with Lorentzian shape. In the following we will, how-
ever, replace the Lorenzian with a corresponding Gaussian
factor with width �col. This approximation will still capture
the relevant physics, but simplify the calculations signifi-
cantly, because integrals can be taken analytically. Hence,
we recover an expression for the amplitude, similar to Eq.
(2.17), but with the replacement

σ 2
e → σ 2

e + �2
col = σ 2

p(2� − v2). (2.22)

In neutrino oscillation experiments neutrinos are very
often produced in particle decays, e.g., beta-decay of a
nucleus in reactor experiments or pion decay in accelera-
tor experiments. We can model the decay of a particle in
complete analogy to the interaction with the environment by
introducing an additional factor e−t�dec/2 in (2.19). Hence,
the width of the Lorentzian becomes just �col + �dec. As we
show in Appendix B.2, in the limit �col � �dec (frequent
collisions) this ansatz describes the collisional line broaden-
ing of a decay line, whereas in the limit �col 	 �dec (fast
decay and negligible collisions) it reproduces the standard
definition of the decay width in terms of the matrix element.
In the Gaussian approximation we simply obtain the effective
energy spread by

σ 2
e → σ 2

E ≡ σ 2
e + �2

col + �2
dec

= σ 2
p(2� − v2) + �2

dec. (2.23)

3 The reason for this ansatz is our Gaussian approximation, see below,
where naturally all spreads are added quadratically. An alternative def-
inition could be to add them linearly, �̃col =∑i, f σi, f |vi, f |. It is easy

to show that �̃col ≥ �col. Numerically we find with the numbers from
Sect. 4 that in our cases of interest we have �̃col ≈ �col.
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Fig. 1 Feynman diagram for the total process in an oscillation exper-
iment

For neutrino production in a nuclear reactor as well as the
source in Gallium experiments, the lifetimes of the relevant
beta decays are typically much longer than the interaction
times with the environment (see Sect. 4), and therefore, it is
safe to negect �dec compared to �col. This may not be the
case for experiments using pion decay, where pions decay
in a decay tunnel essentially without interacting, see e.g.,
[17,18] for discussions of this case.

Although we can combine the energy spread σe, the col-
lision rate, and the decay rate in the same effective quantity
σE (thanks to the Gaussian approximation for all of them)
their physical origins are different. 1/σe corresponds to the
effective interaction time due to the wave packet overlap of
all involved particles, �col describes the coherence loss due
to interactions of each of the involved particles with the envi-
ronment, and �dec takes into account the energy spread due
to the finite lifetime of a decaying particle.

3 Neutrino oscillation amplitude and event rate

We now move to the discussion of the amplitude relevant for
neutrino oscillation experiments consisting of neutrino pro-
duction, propagation and detection. To be specific, we con-
sider neutrino production by the decay of a particle A into
two final state particles and an anti-neutrino, A → 1+2+ ν̄,
and anti-neutrino detection via the process B + ν̄ → 3 + 4.
We have in mind reactor neutrinos, where the production
process corresponds to the beta decay of a nucleus (A), and
the detection process is the inverse beta decay reaction on a
proton (B), but many of our considerations will apply also
in other circumstances with minor modifications. The total
process A + B → 1 + 2 + 3 + 4 is illustrated in fig. 1. The
neutrino is considered as an internal propagator and does
not appear as external particle [4,6,40]. We now follow the
common approach [13] and calculate the amplitude for the
total process, by assuming wave packets for all external par-
ticles, both initial state (A, B) as well as final state particles
(1, 2, 3, 4).

We proceed in complete analogy to the discussion in Sect.
2 but generalize it to the case of macroscopically separated
production (P) and detection (D) regions. In analogy to Eq.
(2.17), we obtain the following expression for the amplitude

describing production of an anti-neutrino with flavour α and
detection of an anti-neutrino with flavour β4 (see e.g., [13,15]
for explicit derivations):

iAαβ =
∑
j

Uα jU
∗
β j

⎛
⎝ ∏

i=A,B, f

Ni

⎞
⎠
∫

d4 p

(2π)4 iM̃P

× /p − m j

p2 − m2
j + iε

iM̃D e−i p(xD−xP )

×
∏

I=P,D

π2

σ 3
pIσE I

exp

[
− (p − pI )

2

4σ 2
pI

− (p0 − EI − vI (p − pI ))
2

4σ 2
E I

]
. (3.1)

Here,Uα j are elements of the PMNS mixing matrix, the nor-
malization factors Ni are defined in Eq. (2.11), M̃P,D are
the reduced matrix elements of the production and detec-
tion processes, the sum over j runs over the neutrino mass
states with neutrino mass m j , xP,D are space-time points
located in the production and detection region. In the sec-
ond line of Eq. (3.1) we obtain two Gaussian factors related
to the approximate energy–momentum conservation at pro-
duction and detection points, with the momentum spreads
σpI , energy spreads σE I , and velocities vI (with I = P, D)
defined as in Eq. (2.14), Eqs. (2.23), (2.15), respectively. Fur-
thermore, we have defined the kinematic 4-momenta of the
neutrino at the production and detection vertices:

pP = pA − p1 − p2, (3.2)

pD = −pB + p3 + p4, (3.3)

and EP , ED are the time-components of the corresponding
4-vectors.

Next we perform the integral over d3 p by using the
Grimus-Stockinger theorem [6], which allows us to take into
account the macroscopic separation of source and detector.
In the relevant limit the propagating neutrinos go on-shell,
and we obtain

4 In the case of reactor neutrino experiments we have of course α =
β = e.
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iAαβ =
∑
j

Uα jU∗
β j

4πL

⎛
⎝ ∏

i=A,B, f

Ni

⎞
⎠

× iMPiMD
π4

σ 3
pPσEPσ 3

pDσED

×
∫

dp0

2π
exp
[
−i p0T + i p j L − f j (p

0)
]
, (3.4)

where L = xD − xP , L = |L|, l̂ = L/L , T = tD − tP .
The function f j (p0) is obtained from the exponential in the
second line of Eq. (3.1), where according to the Grimus-
Stockinger theorem p → p j with

p j = p j l̂, p j =
√

(p0)2 − m2
j . (3.5)

Following Ref. [13], we rewrite f j (p0) by decomposing the
vectors in components parallel and orthogonal to l̂:

f j (p
0) =

∑
I=P,D

[
(p j − pI )2

4σ 2
pI

+ (p0 − EI − vI (p j − pI ))2

4σ 2
E I

+ p2
I⊥

4σ 2
pI

]
, (3.6)

where pI and vI denote the components parallel to l̂ and we
have redefined

EI − vI⊥pI⊥ → EI . (3.7)

In order to keep notation concise we do not introduce a dif-
ferent symbol for this new variable.

3.1 Derivation of the decoherence terms

Equation (3.4) is the starting point to derive the terms leading
to decoherence effects, which will be the main focus of our
considerations in the following. We are not concerned with
overall factors and focus on the interference terms. First,
we have to square the amplitude and perform an integration
of the unobservable propagation time T , see discussion in
Appendix B.3, Eq. (B.17). We obtain a δ-function from the

integral
∫
dT e−i(p0−p′0)T and obtain

|Aαβ |2 ∝
∫

dT |Aαβ(T )|2

∝
∑
jk

Uα jU
∗
β jU

∗
αkUβk

×
∫

dp0 exp

[
i
	m2

k j L

2p0 − f j (p
0) − fk(p

0)

]
,

(3.8)

where we used that neutrino masses are small, m j 	 p0,
and expand the square root in the neutrino momenta as p j ≈
p0 − m2

j/(2p
0). We see that the time integration implies

that only neutrinos with the same energy can interfere and
different neutrino energies are summed incoherently [13,15].

The interference terms correspond to j �= k in Eq. (3.8),
for which we recognize the familiar oscillation phase depend-
ing on 	m2

k j ≡ m2
k −m2

j . Let us now simplify the discussion
and specialize to the case of two neutrino states with masses
m1,m2, and write

m2
1 = m2 − 1

2
	m2, m2

2 = m2 + 1

2
	m2. (3.9)

We are interested only in terms proportional to 	m2. Terms
depending only on the absolute neutrino mass m2 will lead
to (tiny) irrelevant global corrections which do not affect the
interference term. Furthermore, the quantitiesm2

I = E2
I − p2

I
(for I = P, D) are of order of the neutrino mass-squared
m2 and also independent of the neutrino mass indices j, k.
Therefore, we neglect also terms proportional to m2

I and set
EI ≈ pI . Using p j ≈ p0 − m2

j/(2p
0) also in the func-

tion f j (p0) and dropping all terms proportional to m2 and
independent of 	m2, we obtain at leading order in 	m2:

f1(p
0) + f2(p

0) =
∑

I=P,D

(p0 − EI )
2

2σ 2
I,eff

+ 1

2

(
	m2

4p0σm

)2

+
∑

I=P,D

p2
I⊥

2σ 2
pI

(3.10)

with

1

σ 2
I,eff

≡ 1

σ 2
pI

+ (1 − vI )
2

σ 2
E I

, (3.11)

1

σ 2
m

≡
∑

I=P,D

(
1

σ 2
pI

+ v2
I

σ 2
E I

)
. (3.12)

Already at this stage we obtain the term with σm which poten-
tially can lead to decoherence. We will comment on its phys-
ical interpretation in Sect. 3.2.

Next we perform the integral over p0. We expand the first
term in Eq. (3.10) around its minimum, which is at p0 = E0

with

E0 ≡ σ 2
eff

∑
I=P,D

EI

σ 2
I,eff

,
1

σ 2
eff

≡
∑

I=P,D

1

σ 2
I,eff

. (3.13)

The oscillatory phase i	m2L/(2p0) is expanded to first
order in (p0 − E0), and we set p0 = E0 in the term with σm
(ignoring higher order correction to this decoherence term).

123



Eur. Phys. J. C           (2023) 83:578 Page 7 of 19   578 

Then, the p0-integral can be performed with the method out-
lined in Appendix A and we obtain

|Aαβ |2 ∝ exp

[
i
	m2L

2E0

]
× exp

⎡
⎣−

∑
I=P,D

p2
I⊥

2σ 2
pI

⎤
⎦

× exp

⎡
⎣−1

2

(
	m2

4E0σm

)2

− 1

2

(
	m2Lσeff

2E2
0

)2

−1

2

(ED − EP )2

σ 2
P,eff + σ 2

D,eff

]
. (3.14)

This is a central result of the QFT approach to the oscillation
process; let us briefly comment on the terms appearing here.
In the first line we have the standard oscillation phase and a
term depending on the net momentum components orthogo-
nal to the neutrino direction. The latter term will constrain the
phase space integrals for the orthogonal components within
the momentum spreads σpI around zero. Because of the rela-
beling of the energy variables EP,D in Eq. (3.7), also the
oscillation phase depends on pI⊥ and in principle the inte-
gral over these components can lead to additional non-trivial
effects (we comment on it in Appendix C).

Note that in Eq. (3.14) we have three quantities corre-
sponding to an effective neutrino energy: the kinematic neu-
trino energies EP and ED at the production and detection
vertices defined in Eqs. (3.2) and (3.3), respectively, and E0

which is a weighted mean value of the former two. The last
term in Eq. (3.14) ensures, that all “three neutrino energies”
are the same within quantum mechanical uncertainties, deter-
mined by the sum of the effective energy–momentum uncer-
tainties at source and detector. Equation (3.14) is completely
symmetric with respect to source and detector.

3.2 Discussion of the decoherence terms

The first two terms in the second line of Eq. (3.14) describe
the exponential damping due to decoherence. We provide
here a brief review of the two decoherence terms, see e.g.,
Refs. [13–15,49] for more discussions. The two terms cor-
respond to two generic types of damping. We define

ξloc = exp

[
−1

2

(
	m2

4Eνσm

)2
]

= exp

[
−1

2

(
	m2δloc

2Eν

)2
]

, (3.15)

ξen = exp

[
−1

2

(
	m2L

2Eν

σen

Eν

)2
]

= exp

[
−1

2

(
	m2L

4E2
ν δen

)2
]

, (3.16)

with

σmδloc = 1

2
, σenδen = 1

2
. (3.17)

We introduced the generic energy spread σen, where in Eq.
(3.14) we have σen = σeff , and Eν is a relevant neutrino
energy, E0 in the version obtained in Eq. (3.14).

Both decoherence terms have a simple physical interpre-
tation. Starting with ξloc, the interpretation in the energy-
representation of this term is that the energy–momentum
uncertainty encoded in σm needs to be large enough, such that
individual mass states can neither be resolved at the produc-
tion nor at the detection process. If energy–momentum was
defined with an accuracy better than 	m2/Eν , the individual
neutrino mass states would be determined and no interference
of different mass states would be possible.

Another interpretation of this term becomes apparent in
the spatial representation: defining the oscillation length by

Losc = 2π
2Eν

	m2 , (3.18)

the decoherence terms can be written as

ξloc = exp

[
−2π2

(
δloc

Losc

)2
]

, (3.19)

ξen = exp

[
−2π2

(
L

Losc

σen

Eν

)2
]

. (3.20)

In this form we see that ξloc can also be interpreted as the
condition δloc 	 Losc, i.e., that both, source and detection
points need to be localized better than the oscillation length,
by noting that δ2

loc = δ2
P + δ2

D .
Moving now to ξen, this term says that for an experiment

around the oscillation maximum (L/Losc � 1), the neu-
trino energy needs to be sufficiently determined, such that
σen 	 Eν ; for experiments beyond the oscillation maxi-
mum the condition becomes correspondingly stronger. Using
σen = σeff with σeff defined in Eqs. (3.11) and (3.13), this is
a condition on the energy and momentum spreads of exter-
nal particles of the neutrino production and detection pro-
cesses. For L � Losc, decoherence will become relevant
only if σen � Eν , i.e., the quantum mechanical uncertainty
on the neutrino energy needs to become comparable to the
neutrino energy itself, implying that the neutrino would not
have a well defined energy. Note that we work under the
assumption that momentum spreads are small compared to
relevant momenta or energies, and therefore our approxima-
tions adopted in Sect. 2 to perform the integrals may not
apply if σen ∼ Eν .

In the above derivation we have integrated first over T
and then over p0, which is more convenient to derive deco-
herence terms. If the order of the T and p0 integrals are
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exchanged, one can see that an exponential factor makes sure
that the T integral is dominated by values of T constrained by
|T − L− Lm2

j/(2E
2
0)| � 1/σeff , which can be interpreted as

relating L � T v j , with v j ≈ 1 − m2
j/(2E

2
0) corresponding

to the “velocity” of the neutrino with mass m j [13,50]. This
suggests a wave packet interpretation of the internal neutrino
in the QFT approach [15]. In that picture the damping due
to ξen can be interpreted as wave packet separation of the
propagating neutrinos.

We note that the two terms ξloc and ξen have the oppo-
site dependence on the spreads σm and σen. This means
that for oscillations to be observable, quantum uncertainties
have to be big enough that different mass states can inter-
fere (σm � 	m2/Eν), but small enough that interference is
not damped (σen 	 EνLosc/L). Assuming that very roughly
σm ∼ σen, we see that there are many orders of magnitude
available to fulfill both requirements, thanks to the smallness
of 	m2/E2

ν or, in other words, due to the macroscopically
large oscillation length, LoscEν � 1.

3.3 Phase-space integrals over unobserved external
momenta

Equation (3.14) contains the intrinsic quantum mechanical
decoherence terms. So far we have only averaged the ampli-
tude squared over the unobservable time T (which actually
does not introduce a decoherence term). All other manipula-
tions are performed at the amplitude level; in particular, the
integral over p0 corresponds to an internal particle, which can
be performed already at amplitude level. In real experiments
there are of course always effects leading to additional aver-
aging at the probability level, i.e., of the amplitude squared
(see also Sect. 3.4). Some of these averages are intrinsically
unavoidable and related to the physical configuration of the
experiment.

Let us consider first the case of reactor neutrino oscilla-
tion experiments; a very similar discussion applies also to
accelerator or atmospheric neutrino experiments. In these
experiments usually the neutrino energy is reconstructed in
the detector, by measuring all (or some of) the outgoing par-
ticles at the detector, i.e., particles 3 and 4 in our example,
which allows to reconstruct ED via Eqs. (3.3) and (3.7) with
some accuracy. In contrast, initial and final state particles at
the production point usually are not observed.5 Therefore, in
order to calculate event rates RD in the detector, we need to
integrate the squared amplitude over the phase space of final
state particles in the production reaction, see also Appendix
B.3. By a suitable variable transformation, one of these inte-
grals can be chosen to be over EP . As we sketch in Appendix
C, the decoherence term emerging from this integral has the

5 We do not consider here so-called monitored neutrino beams [51],
which (at least in principle) would allow also to reconstruct EP .

same shape as ξen and can be combined with the original
term present already in Eq. (3.14) such that we obtain for the
event rate in the detector

RD(L , ED) ∝
∫

dEP |Aαβ |2

∝ exp

⎡
⎣i 	m2L

2ED
− 1

2

(
	m2

4EDσm

)2

−1

2

(
	m2LσD,eff

2E2
D

)2
⎤
⎦ . (3.21)

Hence, the energy spread in ξen is given by σen = σD,eff , i.e.,
it depends only on the uncertainties in the detector, while σm
in ξloc remains unchanged and contains contributions from
both, the production and detection process, see Eq. (3.12).

The integral over EP corresponds to a classical sum,
i.e., summing the squared amplitude. The corresponding
decoherence can therefore be considered as emerging from
classical averaging. Note, however, here this averaging is
in principle unavoidable, given the physical observables in
a neutrino oscillation experiment. In this way, Eq. (3.21)
depends only on the “observable neutrino energy” ED . Also
note that σD,eff ≥ σeff . Therefore, the classical averaging
due to the EP integration increases effectively the decoher-
ence, see Sect. 3.4. The fact that only the detection pro-
cess determines the decoherence in the last term of Eq.
(3.21) and all production-related uncertainties drop out fol-
lows from expanding the oscillation phase around ED and
from the Gaussianity of all involved uncertainties; this result
may not hold in the most general case. Note that we keep
only leading terms in the expansion parameters σ/E with
σ ∈ (σeff , σP,eff , σD,eff ) and E ∈ (E0, EP , ED), and dif-
ferences like σD,eff/ED − σP,eff/EP are of higher order in
this expansion. However, our result that the relevant energy
spread in the ξen term of Eq. (3.21) is larger than σeff as in
Eq. (3.14) is robust.

In typical detectors of modern reactor experiments only
the energy of the outgoing positron can be determined,
whereas the neutron momentum is not measured. Hence,
we need an additional phase-space integral over the neutron
momentum. This will provide another contribution to σen,
which however, is at most of the same order of magnitude
and typically much smaller (see the discussion of the p⊥
integral in Appendix C).

Moving to Gallium radioactive source experiments, these
are pure counting experiments, i.e., the detector does not pro-
vide energy information, whereas the neutrino source con-
sists of a couple of quasi-monochromatic neutrino lines from
an electron-capture decay N → N ′ + ν. In this case one
would naturally integrate the phase space over ED instead of
EP . The calculation is completely symmetric to the one out-
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lined above and we obtain the same result as in Eq. (3.21) with
the replacements ED → EP and σD,eff → σP,eff . Hence, in
this case the energy spread in ξen is set by the production pro-
cess and will be determined by the localization of the nuclei
N , N ′ as well as the (natural and/or thermal) linewidth of
the decay (see Sect. 4). The same comments as above apply
regarding the dropping out of σD,eff .

3.4 Classical averaging

In realistic experiments both production point and detection
point are known only within some uncertainty, related to the
size of the neutrino source and the vertex resolution of the
detector. Similarly, detectors can determine particle energy
and momentum only within certain resolutions, and hence the
neutrino energy ED can be reconstructed only within a finite
accuracy. These effects are taken into account in predicted
event rates by convoluting the neutrino oscillation proba-
bility with the corresponding resolution functions. Hence, a
classical average is performed.

Let us approximate these spatial and energy resolutions
by Gaussians with widths δclas and σclas, correspondingly:

∫
dL ′ RD(L ′, Eν)

1√
2πδclas

exp

[
− (L ′ − L)2

2δ2
clas

]
, (3.22)

∫
dE ′

D RD(L , E ′
D)

1√
2πσclas

exp

[
− (E ′

D − ED)2

2σ 2
clas

]
,

(3.23)

with RD(L , ED) given in Eq. (3.21). Assuming that the width
of the Gaussians is small compared to the other L or ED

dependent factors in RD , we can expand the oscillation phase
to linear order either in (L ′−L) or (E ′

D−ED) and see that the
integral takes again the same form as in Appendix A. Apply-
ing Eq. (A.4), we obtain decoherence terms of the same form
as ξloc for the L smearing and ξen for the energy resolution.
Hence, they can be combined with the corresponding terms
present in Eq. (3.21), which amounts to the replacement

δ2
loc → δ2

loc + δ2
clas, σ 2

D,eff → σ 2
D,eff + σ 2

clas. (3.24)

Hence, decoherence due to classical averaging has precisely
the same effect as intrinsical quantum mechanical decoher-
ence [5,9,52].6 These results reflect the following two (rather
obvious) statements: (i) quantum mechanical uncertainties
provide a fundamental lower bound on classical uncertain-
ties, and (ii) in order to observe effects of quantum mechan-
ical decoherence, classical averaging effects have to be sup-
pressed down to the quantum level.

6 This statement is consistent with the comments related to the integra-
tion over EP after Eq. (3.21).

4 Numerical estimates

The QFT formalism outlined above allows to calculate the
relevant uncertainties δloc (or equivalently σm) and σen rel-
evant for the localization and energy spread decoherence
factors ξloc and ξen, respectively, from the properties of the
involved external particles. The required input for their def-
initions in Eqs. (3.11) and (3.12) are the effective energy
and momentum uncertainties Eqs. (2.14) and (2.23), which
in turn are derived from the momentum spreads of all the
external particles in the production and detection processes,
as well as their velocities, as defined in Eq. (2.10). We will
now evaluate δloc and σen for reactor neutrino and Gallium
radioactive source experiments.

4.1 Particle localizations and velocities

First we need to estimate the momentum spreads σ of all
involved particles, as well as their velocities v. Similar esti-
mates have been performed recently in [29] in the context
of neutrino wave packets. The momentum spread is calcu-
lated via the spatial localization δx , assuming the uncertainty
principle δxσ = 1/2. We list the relevant quantities for all
the particles involved in the production and detection pro-
cesses in reactor and Gallium experiments in Table 1. They
are estimated as follows.

Reactor experiments. For the initial and final state nuclei
N , N ′ in the production process, via beta decay within the
nuclear fuel, we assume that the localization is determined
by a typical interatomic distance [49]. We estimate this by
using that the lattice parameter of uranium oxide UO2 is
a = 5.471 × 10−10 m and has 4 U and 8 O atoms in one
unit cell [53], which gives δx � a/121/3 � 0.24 nm. For
the initial state nucleus we assume a thermal velocity v =√
kBT/m, where the temperature in the nuclear fuel ranges

from 700 K at the outer egde to 2000 K in the center [54]. This
is justified, as the fission products termalize on time scales
much faster than their beta decay lifetimes [29]. For nuclei
with mass numbers in the range of 80–160, the velocity of
fission products lies in the range of 6.3 × 10−7–1.5 × 10−6.
For our estimates a typical value of vN � 10−6 is taken.
The recoiling nucleus after beta decay, N ′, is not in thermal
equilibrium and we estimate its velocity using v = |p|/E .
Assuming typical neutrino energies E � 4 MeV and mass
numbers from 80 to 160 we find vN ′ � 4 × 10−5.

The protons in the detector are typically bound in carbon
molecules. We assume a localization of 10−10 m correspond-
ing to the typical size of the C–H bound length. For the veloc-
ity we take thermal velocities at room temperature. Concern-
ing the neutron, after being produced it undergoes scattering
in the liquid scintilator. The spatial localization is therefore
estimated by the mean collision length l = 1/nσint, where
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Table 1 Spatial localization δx , momentum spread σ = 1/(2δx ), and velocity v of the external particles involved in the production (P) and
detection (D) processes (first column) of reactor and Gallium source experiments

Particle δx (nm) σ (eV) v

Reactor (P) N 0.24 410 1 × 10−6

N → N ′ + e− + νe N ′ 0.24 410 4 × 10−5

e− 260 0.38 0.99

Reactor (D) p 0.1 990 5 × 10−6

p + νe → n + e+ n 5 × 106 2 × 10−5 5 × 10−3

e+ 320 0.3 0.99

Gallium (P) Cr 0.20 480 7 × 10−7

Cr → V +νe V 0.20 480 2 × 10−5

Gallium (D) Ga 0.27 370 6 × 10−7

Ga +νe → Ge +e− Ge 0.27 370 1 × 10−5

e− 310 0.32 0.83

we use the neutron on CH2 scattering cross section from
[55]. For a typical kinetic neutron energy of Ekin � 10 keV
a cross section of σint ≈ 50 b leads to a mean collision length
of 4.8 mm. Here, the number density of CH2 was estimated
as n � 1/(3d3) for an interatomic distance d � 20 nm. The
velocity is calculated for a neutron with Ekin � 10 keV.

For the outgoing electron and positron passing through
the medium, either in the nuclear fuel or in the detector, we
proceed as follows. We consider the mean rate of energy
loss 〈−dE/dx〉 using the “Bethe equation” [56], which we
numerically integrate. As localization we take the distance
which the particle travels until it deposits one mean excitation
energy I . This should provide us with a good estimate for the
mean free path of the particle.

For the calculation of 〈−dE/dx〉 we need to know the
number density of elementary charges, which can be esti-
mated from the density and composition of the stopping
medium. For the reactor fuel we use the above mentioned
properties of UO2. As a typical detector material we assume
linear alkylbenzene (LAB), C6H5CnH2n+1, with n ranging
from 10 to 13; for definiteness we will assume n = 12.
We calculate the number density of elementary charges as
138NAρ/mmol, where 138 is the number of elementary
charges/electrons in one molecule of LAB, and the density of
LAB is taken to be ρ = 0.859 g cm−3 [57]. Furthermore, we
need the mean excitation energies I . As we consider materials
made up of different elements, the calculated mean excita-
tion energies were averaged over the contributions from the
different atoms. For atoms with high elementary charge Z
a good approximation is I = 10 eV · Z [58]. Thus, at the
source, this is used for UO2, where Z = 36 on average and
thus I = 360 eV. At the detector we have LAB which we
simplify to CH2. Then, the average excitation energy of one
molecule can be approximated to be I ≈ 48 eV [58]. With

these numbers we find that an electron (positron) with an
initial kinetic energy of 3 MeV deposits one I energy after
traveling 260 nm (320 nm), which we take as the localization
at the neutrino production (detection).

Gallium source experiments. To estimate the particle local-
izations at Gallium experiments we take the BEST exper-
iment as an example [26,27]. At the source 51Cr under-
goes electron capture to become 51V and an electron neu-
trino. Approximately 90% of the produced neutrinos have an
energy of 750 keV while 10% have energies of 430 keV. For
the sake of defineteness we consider the 750 keV neutrinos.
The temperature of the source is approximately the one of
the surrounding gallium, namely 300 K [26,27]. Therefore,
the thermal velocity of 51Cr (compound of nucleus + elec-
tron to be captured) is vCr = √

kBT/m = 7.3 × 10−7. The
final 51V is not thermal, instead its velocity is calculated as
vV = pV/EV = 1.5 × 10−5. The localizations of the 51Cr
and 51V are approximately the same and estimated from the
cristal lattice dimensions. They are bound in a bcc lattice with
2 atoms in one unit cell of size a = 2.88 × 10−10m [59]. This
leads to a spatial localization of δCr,V ≈ a/

√
2 = 0.20 nm.

At the detection we estimate the thermal velocity of Ga at
300 K to vGa = √

kBT/mGa = 6.3 × 10−7. The velocity of
Ge is not thermal, instead vGe = pGe/EGe = 1.15 × 10−5.
For the electron we obtain ve− = pe−/Ee− = 0.83. All
momenta are estimated to be of the order of Eν = 750 keV.
With the density of gallium ρ ≈ 6 gcm−3, we obtain the num-
ber density as n = ρNA/mmol and n−1/3 = 2.67 × 10−10m,
which we take as the localization for both the Ga and Ge
atoms. For the localization of the electron we proceed as
described for the reactor case and integrate 〈−dE/dx〉 until
the electron deposites one mean excitation energy, which
for Ga is I = 11 eV · Z = 341 eV [58]. This leads to
δe ≈ 310 nm.
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Our estimates for the particles involved in the production
processes reported in Table 1 are in agreement with the results
of [29] within about one order of magnitude. Ref. [29] does
not provide detailed estimates for the detector particles.

4.2 Effective energy–momentum spreads and decoherence
parameters

Now we are in the position to calculate the relevant effec-
tive uncertainies. For convenience we summarize again the
corresponding relations, as derived in Sects. 2 and 3. Here,
I = P, D labels production and detection processes, and the
sum is over all external particles a (initial and final state) of
the respective processes:

vI ≡ 1

σ 2
pI

∑
a∈I

σ 2
a va, �I ≡ 1

σ 2
pI

∑
a∈I

σ 2
a v

2
a, (4.1)

σ 2
pI ≡

∑
a∈I

σ 2
a , σ 2

eI ≡ σ 2
pI (�I − v2

I ), (4.2)

�2
I,col ≡

∑
a∈I

σ 2
a v

2
a = σ 2

pI�I , (4.3)

σ 2
E I ≡ σ 2

eI + �2
I,col + �2

I,dec = σ 2
pI (2�I − v2

I ) + �2
I,dec.

(4.4)

The upper part of Table 2 shows our results for these quan-
tities based on the input from Table 1. Momentum spreads
σpI are dominated in all cases by the localization of hadronic
particles and are of order few 100 eV to keV. Some comments
are in order concerning the velocity. The velocity vector vI
defined in Eq. (4.1) depends on the relative orientation of
the individual particle velocities va . The quantity ṽI given in
Table 2 is calculated by

ṽI ≡ 1

σ 2
pI

∑
a∈I

σ 2
a |va | ≥ |vI |. (4.5)

Hence, we obtain an upper bound on |vI |. From the table we
see that effective velocities and velocity spreads are all 	 1,
which implies σeI 	 σpI , and the σeI are approximately
given by the momentum spreads of the final state leptons
e±, except for the electron capture production (which has
no final state charged lepton). Furthermore, |vI | ≤ ṽI 	√

�I implies that σeI ≈ �I,col. Again, an exception is the
production in Gallium experiments, where the approximation
ṽI 	 √

�I is not very good; nevertheless, �P,col is still of
the same order as σeP also in this case. Finally, for typical
lifetimes for fission products of order 1 ms or larger, decay
widths are at most of order �P,dec ∼ 10−12 eV, and the
decay width of 51Cr is �Cr,dec ≈ 4 × 10−22 eV. Hence, the
decay widths are always completely negligible compared to
σeI and �I,col and can be savely neglected in Eq. (4.4) and
we have σE I ≈ √

2�IσpI ≈ √
2σeI . Therefore, also σEP

and σED are determined by the momentum spread (or by the
localization) of the outgoing charged lepton (again with the
exception of the electron-capture source).

Now we can move to the calculation of the effective uncer-
tainties summarized in the lower part of Table 2. We start with
σm , defined as

1

σ 2
m

≡
∑

I=P,D

(
1

σ 2
pI

+ v2
I

σ 2
E I

)
. (4.6)

Here, vI is actually the length of the component of vI par-
allel to the neutrino propagation direction. The small values
of vI ≤ ṽI imply that for reactors, σm is dominated by σpI ,
whereas in Gallium the small value of ṽP is partially com-
pensated by the small value of σEP , and the energy term
gives a non-negligible contribution to σm , although the order
of magnitude remains unchanged and σm ∼ σpI . We find for
both type of experiments values of order

σm � (400 − 500) eV,

δloc = 1

2σm
� 0.2 nm. (4.7)

For the localization term ξloc from Eq. (3.15) this implies

− ln ξloc = 1

2

(
	m2

4Eνσm

)2

≈ 1.3 × 10−19
(

	m2

1 eV2

)2

×
(

1 MeV

Eν

)2 (500 eV

σm

)2

. (4.8)

Hence, ξloc = 1 for all practical purposes and localization
decoherence is irrelevant in reactor and Gallium experiments.
We emphasize, however, that classical spatial averaging in
real experiments can be significant, with δclas ∼ 1 m (corre-
sponding to typical sizes of reactor cores or Gallium detec-
tors), which, depending on the value of 	m2, does play an
important role and has to be included in the analysis of these
types of experiments.

Moving to the energy spread, we note that

1

σ 2
I,eff

≡ 1

σ 2
pI

+ (1 − vI )
2

σ 2
E I

≈ 1

σ 2
E I

. (4.9)

In the last relation in Eq. (4.9) we have used that vI ≤ ṽI 	
1 and σE I 	 σpI to obtain σI,eff ≈ σE I . Hence, for the
effective energy spread we obtain
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Table 2 Effective velocities and energy–momentum spreads at neu-
trino production (P) and detection (D) for reactor and Gallium source
experiments. In the lower part we give the spreads relevant for the energy

and localization decoherence terms ξen and ξloc. For convenience we
give values for σ ’s in eV and δ’s in nm; in natural units they are related
by σenδen = 1/2 and σmδloc = 1/2

Reactor Gallium

I = P I = D I = P I = D

ṽI 2.1 × 10−5 5.3 × 10−6 8.2 × 10−6 6.4 × 10−6

√
�I 6.4 × 10−4 3.1 × 10−4 1.1 × 10−5 5.1 × 10−4

σpI 580 eV 990 eV 680 eV 520 eV

σeI 0.37 eV 0.30 eV 0.005 eV 0.27 eV

�I,col 0.37 eV 0.30 eV 0.0076 eV 0.27 eV

σE I ≈ σI,eff 0.53 eV 0.43 eV 0.0092 eV 0.375 eV

σm 500 eV 390 eV

δloc 0.20 nm 0.25 nm

σeff 0.33 eV 0.0092 eV

σen 0.43 eV 0.5 eV

δen 230 nm 200 nm

σeff ≡
⎡
⎣ ∑

I=P,D

1

σ 2
I,eff

⎤
⎦

−1/2

≈
⎡
⎣ ∑

I=P,D

1

σ 2
E I

⎤
⎦

−1/2

≈
{

0.33 eV (reactor),
0.0092 eV (Gallium),

(4.10)

dominated by the outgoing e± momentum spreads for reac-
tors and by the electron capture decay for Gallium exper-
iments, the latter leading to a value of σeff more than one
order of magnitude smaller.

As discussed above, σeff corresponds to the “pure quantum
mechanical” energy spread, c.f., Eq. (3.14). However, even
in idealized experimental configurations there is some un-
avoidable averaging, e.g., due to phase-space integrals over
unobserved momenta. Therefore, as argued in Sect. 3.3, the
relevant energy spread in reactor experiments is σD,eff , due
to the averaging of unobserved momenta at the production
region. This does not change the qualitative picture, as in
our approximation they are of the same order of magnitude.
Numerically we find for the spread relevant for ξen the values:

σen ≈ σD,eff ≈ 0.43 eV, δen ≈ 230 nm (reactor). (4.11)

For the Gallium source experiments, it is more natural to
integrate first over the phase-space of the detector particles,
as no momenta are measured in the detector. This would
imply σP,eff as the relevant energy spread. Here the effect
of the phase-space integration is even less important, as we
anyway have σP,eff ≈ σeff ≈ 0.0092 eV or δen ≈ 11µm.
However, in this case another fundamental (though classi-
cal) averaging effect needs to be taken into account, namely
the Doppler broadening due to the thermal motions of the
source particles [29,49]. This leads to an energy smearing

with Gaussian shape, with the width set by

σDoppler � vCrEν ≈ 0.5 eV. (4.12)

We can include this effect in a straight forward way, following
the discussion in Sect. 3.4. We see that σDoppler � σP,eff and
therefore it dominates the energy spread. Using Eq. (3.24)
with σclas = σDoppler, we obtain

σen ≈ σDoppler ≈ 0.5 eV, δen ≈ 200 nm (Gallium),
(4.13)

quite similar to the values obtained for reactor experiments
in Eq. (4.11).

Note that Doppler broadening is in principle relevant for
reactor experiments as well. In the neutrino source it would,
however, not induce additional decoherence, as we already
integrate over the effective neutrino energy in the source and
the additional smearing due to the Doppler broadening would
have no effect. However, it does contribute to the energy
resolution of the detector. Here, we consider it as part of the
classical energy resolution and do not include it in the spreads
given in Eq. (4.11).

For the energy spread decoherence ξen written as in Eq.
(3.20), we find

− ln ξen = 2π2
(

L

Losc

σen

Eν

)2

≈ 4.9 × 10−12
(

L

Losc

)2

×
(

1 MeV

Eν

)2 ( σen

0.5 eV

)2
, (4.14)
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which again implies ξen = 1, both for reactor and Gallium
experiments to very good accuracy.

The energy resolution of typical detectors in reactor exper-
iments is in the range (0.03–0.06) MeV

√
E/MeV [22,57,60]

and hence, σclas � 0.1 MeV, about 6 orders of magni-
tude larger as the intrinsic energy spread Eq. (4.11). Equa-
tion (4.14) shows that for these values, − ln ξen can become
of order one, which just means that the (classical) averag-
ing due to the energy resolution of neutrino detectors is an
important effect. On the other hand consider the upcoming
high precision JUNO reactor experiment [57], which aims
to observe oscillations due to the mass squared difference
	m2

31 � 2.5 × 10−3 eV2 at a distance of about 53 km.
This implies L/Losc ∼ 13 and − ln ξen ∼ 5 × 10−11 for
Eν � 4 MeV. Therefore, quantum decoherence effects will
remain completely unobservable also for JUNO.

Comparisonwith previous results.Our results of the uncer-
tainties in Eqs. (4.11) and (4.13) are in rough agreement
with [29], but differ by a factor of 103–104 from [45] where
δen � 10–400 pm is obtained. The authors of Ref. [45] con-
sider localization scales induced by nucleon-nucleon inter-
actions within the nucleus as well as the size of the decaying
nucleon. However, we argue that dynamics at length scales
much smaller than 1/|q|, with q being the typical momentum
transfer of the reaction, are irrelevant to the problem, as local-
izations smaller than 1/|q| cannot be resolved. For the same
reason scattering of neutrinos with MeV energies can be con-
sidered with the nucleus as a whole, and not on individual
nucleons (unless they are effectivley “free”, as the proton in
Hydrogen), or even quarks. Therefore, it is the localization
of the nucleus, which is relevant for defining the quantum
mechanical uncertainties for the process. See also Ref. [31].

The authors of Refs. [37,61] consider a term similar to
ξen and perform a phenomenological analysis using reactor
data to set a lower bound on a “coherence length”, finding
δ > 2.1 × 10−4 nm, which corresponds to σ = 1/(2δ) <

0.47 MeV. This value has also been adopted by [28] to study
the impact on sterile neutrino oscillations in short-baseline
experiments. This value of the decoherence parameter is of
similar order as the energy resolution of the detectors, 5–6
orders of magnitude larger than the intrinsic quantum uncer-
tainty, and therefore fully dominated by the classical averag-
ing effect [29].

5 Summary

We have used the QFT approach to neutrino oscillations to
estimate quantum decoherence effects for reactor neutrino
and Gallium source experiments. In this formalism possible
decoherence effects on the oscillation probability are fully
determined by specifying the momentum spreads (or equiv-

alently the localizations) of the external particles in neutrino
production and detection processes. The neutrino is treated
as an internal particle, which is integrated out. It is not neces-
sary to introduce the concept of neutrino wave packets, how-
ever, the results can also naturally be interpreted in terms of
neutrino wave packets [15]. Throughout our calculations we
adopt the approximation of a Gaussian shape for all functions
describing momentum and energy spread.

In Sects. 2 and 3 we have reviewed the QFT formal-
ism and derived the coherence factors in terms of external
particle localizations and velocities. We introduced the con-
cept of coherence loss due to frequent interactions with the
environment, and we find that for the cases of interest this
effect is of a similar size as the finite interaction time due to
wave packet overlap of the particles involved in the produc-
tion and detection processes. Furthermore, in our approach
we focus on experimentally observable quantities, such as
the positron energy after inverse beta decay in the detector,
which is used to reconstruct the neutrino energy. We show
that phase-space integrals over unobserved particle momenta
lead to additional decoherence effects, which correspond to
classical averaging of the amplitude squared, but nevertheless
are intrinsic to the experimental configuration and in princi-
ple unavoidable. Finally, we recover the well-known result
that quantum and classical decoherence effects are experi-
mentally indistinguishable, and phenomenologically this dis-
tinction is unphysical. Quantum decoherence can only be
observed if all classical effects leading to energy and local-
ization averaging can be suppressed down to the quantum
level, which of course is not possible in real-life neutrino
experiments.

In Sect. 4 we have performed numerical estimates of deco-
herence effects for reactor and Gallium radioactive source
experiments. First we estimated the localizations and veloc-
ities of all involved particles in the production and detection
processes. From these we calculate the effective decoherence
parameters relevant for the two types of decoherence related
to localization and energy spread, Eqs. (3.19) and (3.20),
respectively. The main results are summarized in Sect. 4.2
and Table 2. Localization decoherence is controlled by the
factor (δloc/Losc)

2. With typical values of δloc ∼ 0.2 nm, this
is many orders of magnitude smaller than any relevant oscil-
lation length Losc and therefore, localization decoherence
is completely negligible for practical purposes. The second
decoherence effect is related to the energy spread and around
the first oscillation maximum it is controlled by (σen/Eν)

2. In
the wave packet picture this term can be interpreted as deco-
herence due to wave packet separation. Both, for reactor and
Gallium experiments we find values of order σen ∼ 0.5 eV,
about 6–7 orders of magnitude smaller than typical neutrino
energies Eν , leading again to completely negligible decoher-
ence effects.
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Hence, in both cases (localization and energy spread)
quantum decoherence effects are completely unobservable
and many orders of magnitude smaller than classical aver-
aging effects due to finite neutrino source and detector sizes
as well as classical energy resolution effects. This remains
true even for the upcoming high precision JUNO reactor
experiment. If at some point data might provide evidence
for decoherence effects beyond classical averaging, standard
quantum mechanical uncertainties as discussed here cannot
be responsible and this would definitely require exotic new
physics [62–66].
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Appendix A: Decoherence integral

The integrals which lead to decoherence terms are all of the
type

I =
∫

dx h(x)eiφ(x)−g(x), (A.1)

where for our case of interest the complex phase is given
by φ = 	m2 L/(2E) and x can be either L or E . The real
function g(x) has a minimum at x = x0 and we expand g
and φ up to leading non-trivial order around that minimum:

g(x) ≈ g(x0) + 1

2
g′′(x0)(x − x0)

2, (A.2)

φ(x) ≈ φ(x0) + φ′(x0)(x − x0). (A.3)

The function h(x) is assumed to be sufficiently smooth on
scales 1/

√
g′′(x0) such that we can approximate it by h(x0)

and pull it out of the integral. Then, the integral becomes
Gaussian and we obtain

I ≈ h(x0)e
iφ(x0)−g(x0)

√
2π

g′′(x0)
exp

[
− (φ′)2

2g′′

]
x0

. (A.4)

In our applications the last exponential in this expression
leads to decoherence if the argument becomes sizeable.

Keeping quadratic terms for φ in Eq. (A.3) would lead to a
small correction to the phase φ(x0) [67], which is neglected
here, as we are interested in the situation where φ(x0) ∼ 1,
i.e., around the first (or maybe second) oscillation maximum.

Appendix B: Decay rate and scattering cross section

We depart from the amplitude Eq. (2.17) derived in Sect. 2
for a single-vertex process, considering the effective energy
spread σE from Eq. (2.23). From this result we obtain the
total transition probability as:

Pi f = |iA|2 = |M|2
∏
i, f

N 2
i N 2

f
π4

(σ 3
pσE )2

× exp

[
− (	p)2

2σ 2
p

− (	E − 	pv)2

2σ 2
E

]
. (B.1)

Now we follow Weinberg [47] and outline how to derive
decay rates or cross sections from this expression, taking into
account the wave packet localization of all external particles.
Weinberg considers a cubic box around the interaction point
in which all particles are localized. This leads to a discretiza-
tion of all momenta. Here, we adapt the argumentation to
the case when particles are localized as Gaussian wave pack-
ets, allowing for different degrees of localization for each
particle, see also [68,69].

For each particle a we can consider Va ∼ 1/σ 3
a as the vol-

ume in which the particle is confined due to its wave packet.
It turns out that a suitable definition is

Va =
(√

2π

2σa

)3

. (B.2)

The numerical factor can be motivated as follows: define
the configuration space spread δx by δxσ = 1/2. Then V =
(
√

2πδx )
3 and 1/V would be just the prefactor of a Gaussian

in configuration space with width δx .
Let us now relate the transition probability in Eq. (B.1) to

more familiar quantities. Consider first the final state parti-
cles. Pi f is the total transition probability for i → f where
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all particles are defined via the respective wave packets. Usu-
ally we are interested in a differential quantity, for a transition
into an infinitesimal phase space element for the outgoing
particles. Such a quantity can be obtained by multiplying the
probability by the differential number dN f of outgoing parti-
cles within the phase-space elementd3 p f around momentum
p f :

dPi f = Pi f
∏
f

dN f , (B.3)

with

dN f = V f
d3 p f

(2π)3 = d3 p f

(2σ f )3(2π)3/2 , (B.4)

where in the second step we have used Eq. (B.2). Hence,
each final state factor in Eq. (B.1) becomes just the usual
phase-space factor:

N 2
f dN f = 1

2Ep f

d3 p f

(2π)3 = dp̃ f , (B.5)

where we have used the definition of N from Eq. (2.11).
Next we consider the following factors from Eq. (B.1):

π4

(σ 3
pσE )2 e

−[...] = VI TI (2π)4 1

(
√

2π)4σ 3
pσE

× exp

[
− (	p)2

2σ 2
p

− (	E − 	pv)2

2σ 2
E

]

(B.6)

= VI TI (2π)4δ
(3)
G (	p)δG(	E − 	pv)

(B.7)

→ VI TI (2π)4δ(4)

⎛
⎝∑

f

p f −
∑
i

pi

⎞
⎠ ,

(B.8)

where we have defined the effective interaction volume and
interaction time in analogy to Eq. (B.2) by using the effective
momentum and energy spreads from Eqs. (2.14) and (2.23):

VI =
(√

2π

2σp

)3

, TI =
√

2π

2σE
. (B.9)

In Eq. (B.7) we have introduced the notation δG to denote a
Gaussian, which will converge to a delta function in the limit
σ → 0 and the limit in Eq. (B.8) is obtained for σp → 0.7

7 We use here δ(3)(	p)δ(	E −	pv) = δ(3)(	p)δ(	E) = δ(4)(	p).

Finally, we use Eq. (B.2) also to rewrite the initial state factors
Ni in terms of volumes and obtain

d�i f ≡ dPi f
TI

= VI

∏
i

(
1

2Ei

1

Vi

)∏
f

dp̃ f (2π)4δ
(3)
G (	p)δG(	E − 	pv)|M|2.

(B.10)

We interpret TI as the effective interaction time. Therefore,
we obtain the differential interaction rate d�i f by dividing
the differential transition probability by the interaction time.
Equation (B.10) is sometimes called Fermi’s Golden Rule.

B.1: Scattering cross section

Consider now the case of the scattering of two initial state
particles to a set of final state particles AB → f . We get
the factor VI /VAVB = VI nAnB in Eq. (B.10), with nA, nB

denoting the number density of particles A, B. Let us con-
sider particle A as “target”. Then VI nA is the number of
target particles inside the interaction volume, and the flux
of incoming B particles is vrelnB , with vrel being the rela-
tive velocity. The cross section per target particle is given
by (total interaction rate) / [(number of target particles A) ×
(flux of incoming particles B)]. Hence,

dσ = d�i f

VI nAvrelnB
= 1

2EA2EBvrel

∏
f

dp̃ f (2π)4δ
(3)
G (	p)δG (	E−	pv)|M|2,

(B.11)

which, in the limit σp, σE → 0, where the Gaussian δG
functions become true δ-functions, converges to the standard
expression for a cross section, e.g., [46].

B.2: Particle decay

Consider now the case of a single particle in the initial state,
i.e., the decay of a particle. In this case we obtain a factor
VI /Vi in Eq. (B.10). We can consider ni = 1/Vi as the den-
sity of initial state particles and VI as the effective interaction
volume, with VI ≤ Vi . Hence, VI ni is the number of initial-
state particles inside the interaction volume. Usually we are
interested in the decay rate of a single particle, denoted just
by �dec. Therefore, we obtain

d�dec ≡ d�i f

VI ni
= 1

2Ei

∏
f

dp̃ f (2π)4δ
(3)
G (	p)δG(	E − 	pv)|M|2.

(B.12)

In the limit σp → 0, where the Gaussian δG functions
become true delta-functions, this expression converges to the
standard expression for the decay rate of a particle, see e.g.,
[46].
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Let us now comment on the considerations in Sect. 2.1
related to collisions with the environment. We restore the
Lorentzian shape of the energy spread, see Eq. (2.20), and
instead of Eq. (B.10) we obtain

d�i f ≡ dPi f
TI

= VI

∏
i

(
1

2Ei

1

Vi

)∏
f

dp̃ f (2π)3δ
(3)
G (	p)|M|2 �

�2 + �2/4
,

(B.13)

where now we identify TI = 1/�. We recognise that the
energy conservation function δG(�) is now replaced by the
Lorentzian, whose width is set by the rate �. We consider
now two physically different situations:

• First we assume that the collision rate �col is much larger
than the decay rate �dec and set � = �col in Eq. (B.13).
Let us consider as simple example a massive scalar par-
ticle (mass Mi ) at rest decaying into two massless scalar
particles. The matrix element is a constant, and we can
perform the phase space integrals, apart from the energy
of one of the final state particles and obtain

d�dec

dE f
= |M|2

16π2Mi

�col

(Mi − 2E f )2 + �2
col/4

. (B.14)

We observe the collisional line broadening [48], i.e., the
width of the decay line is set by the collision rate. Inte-
grating over E f leads to the same total decay rate as for
�col → 0, namely �dec = |M|2/(16πMi ).

• Let us now assume that �dec � �col, i.e., we can neglect
collisions. Now we can set � = �dec in Eq. (B.13) and
use that the probability that the particle decays into any
final state is one:

∫
dPi f = 1. Considering again the

example of a massive scalar particle at rest decaying into
two massless scalar particles, we obtain from Eq. (B.13)
in the limit of exact momentum conservation δ

(3)
G (	p) →

δ(3)(	p):

1 = |M|2
8π2Mi

arctan(2Mi/�dec)

�dec
. (B.15)

In the limit �dec 	 Mi we can solve for �dec and
recover the standard result for the decay width �dec =
|M|2/(16πMi ).

B.3: Rate for the neutrino oscillation process

In the case of neutrino oscillations, the observable of interest
is the differential event rate at the detector dRD , depending
on the momenta of the final states in the detector, i.e.,p3,p4 in
our notation. In the case of reactor neutrino experiments these
are the positron and neutron, whose momenta are in principle
observable in the detector. We can obtain this quantity from

the transition probability Pi f = |iAαβ |2 by the following
steps:

1. As in Eq. (B.3), we multiply by the phase-space elements
of all final state particles in order to obtain a differential
transition probability,

dPi f = Pi f
∏
f

dN f = Pi f dN1dN2dN3dN4. (B.16)

2. We are interested in the event rate per single detector par-
ticle, as well as single decaying particle at the source.
Hence, we have to divide by the number of particles in
the production and detection regions,VP/VA andVD/VB ,
respectively, with the volumina defined as in Eqs. (B.2)
and (B.9).

3. The outgoing particles in the production region are not
observed. Hence we have to integrate over their phase
space dp̃1dp̃2.

4. The event rate at the detector is obtained by dividing by
the effective detection time interval TD defined as in Eq.
(B.9), in analogy to the first relation in Eq. (B.10).

5. The amplitude squared still depends on production and
detection times via T = tD− tP . While the detection time
in principle is observable in real-time neutrino detectors,
the production time typically is not observable (see com-
ments below). Hence, for a given tD , we have to sum the
contributions of all possible production times contribut-
ing to the amplitude. This is obtained by first dividing by
the effective production time interval TP defined as in Eq.
(B.9), which gives the neutrino production rate, which
then has to be integrated over all possible values of tP .
By a simple coordinate shift, this integral is transformed
into an integral over T and we obtain a time averaged
amplitude-squared:

|Aαβ |2 =
∫

dT
|Aαβ(T )|2

TP
. (B.17)

Putting everything together, we obtain for the differential
event rate at the detector

dRD = VP

VA

VD

VB
dN3dN4

∫
dN1dN2

|Aαβ |2
TD

. (B.18)

Following comments are in order:

• In reactor experiments typically only the energy of the
outgoing positron is used to reconstruct the neutrino
energy. In this case we need also to integrate over the
phase space of the outgoing neutron in the detector.

• In counting experiments, such as Gallium radioactive
source experiments, the detection reaction is not observed
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and we have to integrate in addition over the phase-space
of outgoing detector particles dN3dN4.

• Equation (B.18) corresponds to the hypothetical “event
rate” assuming a single decaying particle at production
and a single detector particle. For an actual experiment
we have to sum over the number of target particles in the
detector, as well as the total number of all decays con-
tributing to the neutrino production at the source. The
latter is a complicated calculation in case of reactor neu-
trinos, amounting to an ab initio calculation of the total
reactor flux.

• Above we assumed that the neutrino production time is
not observable. This is true for a large number of experi-
ments, such as reactor, solar, or atmospheric neutrinos. At
many accelerator experiments, neutrinos are produced by
a pulsed particle beam, which in principle provides some
time information on the production. Typically the dura-
tion of the beam spills are of order µs, which however,
in practice is much longer compared to other relevant
time scales ∼ 1/σEP , 1/σED . Therefore, for practical
purposes it is a good approximation to assume the inte-
gration in Eq. (B.17) over an infinite time interval [43].

• In the case of a so-called monitored neutrino beam, such
as proposed by ENUBET [51], in principle time infor-
mation on neutrino production can be obtained. In such
a situation the amplitude needs to be averaged over the
accuracies with which both tD and tP can be determined,
instead of an infinite time interval. In order to affect the
discussion above, the accuracy of both time measure-
ments, tD and tP , need to be comparable to the micro-
scopic time scales 1/σEP and 1/σED .

• Using the formalism discussed in this paper, one can show
[50] that in the (realistic) case, when decoherence effects
play no role, Eq. (B.18) factorizes into the decay rate
�P of the production process, the standard oscillation
probability and the detection cross section σD as

dRD = 1

4πL2

∫
dEν

d�P

dEν

Pαβ(Eν, L) dσD(Eν),

(B.19)

see also [12,44,70,71] for similar calculations.

Appendix C: Phase-space integrals

As discussed in Sect. 3.3, depending on the physical config-
uration, integrals over the momenta of unobserved external
particles either in the source or in the detector are unavoid-
able, which leads to integrals over the effective neutrino
energy at production EP or at detection ED (or both). Here
we outline the integral of Eq. (3.14) over EP ; the integration
over ED instead of EP proceeds in complete analogy.

We expand the oscillation phase around ED and keep
terms up to linear order in (EP − ED), using E0 − ED =
(σ 2

eff/σ
2
P,eff )(EP−ED). But we replace E0 → ED in the two

decoherence terms in the second line of Eq. (3.14), ignoring
higher order corrections to these terms. Then the integral is
of the form discussed in Appendix A and we obtain

∫
dEP exp

[
i
	m2L

2E0

]
× exp

[
−1

2

(ED − EP )2

σ 2
P,eff + σ 2

D,eff

]

∝ exp

[
i
	m2L

2ED

]
× exp

⎡
⎣−1

2

(
	m2L

2E2
D

)2
σ 4
D,eff

σ 2
P,eff + σ 2

D,eff

⎤
⎦ .

(C.1)

The emerging decoherence term can be combined with the
σeff -term in Eq. (3.14). Using the definition of σeff in Eq.
(3.13) we obtain:

RD(L , ED) ∝
∫

dEP |Aαβ |2 ∝ exp

[
i
	m2L

2ED

]

× exp

[
− p2

D⊥
2σ 2

pD

]
× exp

[
−1

2

(
	m2

4EDσm

)2

−1

2

(
	m2L

2ED

σD,eff

ED

)2
]

. (C.2)

We have dropped the term depending on pP⊥ in Eq. (C.2),
as the oscillation phase no longer depends on it, and therefore
the integration over pP⊥ becomes trivial. In contrast, ED –
and therefore the oscillation phase – does depend on pD⊥.
In principle, pD⊥ is observable, by reconstructing all parti-
cles involved in the detection process. However, this is often
not the case in realistic situations. For instance, in reactor
neutrino experiments, the momentum of the outgoing neu-
tron cannot be observed. Therefore, we have to integrate also
over the neutron momentum phase-space, which effectively
means integrating over pD⊥. Once again we can involve
Appendix A to derive a corresponding decoherence term.
There is no simple closed form for this term, however, its size
can be estimated to be of order v2

Dσ 2
pD/σ 2

D,eff relative to the

last term in Eq. (C.2). One can show that v2
Dσ 2

pD/σ 2
D,eff < 1.

Hence this term can at most induce corrections of order one
to the last term in Eq. (C.2). In typical cases it is actually
	 1; using the numbers from Sect. 4 we obtain for reactor
neutrinos v2

Dσ 2
pD/σ 2

D,eff ∼ 10−4.
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