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1. Introduction

Let P ⊂M be a compact submanifold of a smooth d-dimensional manifold M such
that P meets ∂M transversely. Writing I =: [0, 1], a concordance embedding of P
into M is a smooth embedding e : P × I ↪→M × I such that

(i) e−1(M × {i}) = P × {i} for i = 0, 1 and

(ii) e agrees with the inclusion on a neighbourhood of the subspace P × {0} ∪
(∂M ∩ P )× I ⊂ P × I.

The space of such embeddings, equipped with the smooth topology, is denoted by
CE(P,M). There is a stabilization map

CE(P,M) −→ CE(P × J,M × J)
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Figure 1. The stabilization map.

given by taking products with J =: [−1, 1] followed by bending the result appro-
priately to make it satisfy the boundary condition (compare fig. 1). In this work
we establish a connectivity estimate for this map based on the disjunction results
of [8]. To state it, recall that the handle dimension of the inclusion ∂M ∩ P ⊂ P
is the smallest number p such that P can be built from a closed collar on ∂M ∩ P
by attaching handles of index at most p.

Theorem A. If the handle dimension p of ∂M ∩ P ⊂ P satisfies p � d− 3, then
the stabilization map

CE(P,M) −→ CE(P × J,M × J)

is (2d− p− 5)-connected.

Remark 1.1.

(i) We prove theorem A as the case r = 0 of a stronger multirelative theorem
about a map of r-cubes of spaces of concordance embeddings (theorem 2.6).

(ii) The individual spaces in theorem A, CE(P,M) and CE(P × J,M × J), are
known to be (d− p− 3)-connected: the case P = Dp appears in [3, proposi-
tion 2.6, p. 26] and the general case follows from an induction over a handle
decomposition.

(iii) The space of concordance embeddings CE(P,M) is closely related to the more
commonly considered space E(P,M) of smooth embeddings e : P ↪→M that
agree with the inclusion on a neighbourhood of P ∩ ∂M . Indeed, restriction
to P × {1} induces a fibre sequence

E(P × I,M × I) −→ CE(P,M) −→ E(P,M)

and thus a fibre sequence ΩE(P,M)→ E(P × I,M × I)→ CE(P,M). From
this point of view, the stabilization map in theorem A can be regarded
as a second-order analogue of the map ΩE(P,M)→ E(P × I,M × I) that
sends a 1-parameter family of embeddings P ↪→M indexed by I to the single
embedding P × I ↪→M × I.

Historical remark. The statement of theorem A is far from new, but a proof has
never appeared. It was asserted in the Ph.D. thesis [6, p. 13] of Goodwillie (who
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apologizes for never having produced a proof, cannot recall exactly what kind of
proof he had in mind at that time, and acknowledges that the correct number is
2n− p− 5, not 2n− p− 4 as claimed in [6]), and then again in the thesis of Meng
[19, theorem 0.0.1], which contains a proof in the case P = ∗ (see theorem 3.4.1
loc.cit.). The general case is also referred to at other places in the literature such
as [15, p. 6] or [24, p. 210]. �

Concordance diffeomorphisms

One reason to be interested in spaces of concordance embeddings is that they
provide information about maps between spaces of concordance diffeomorphisms
(also called concordances, or pseudoisotopies), that is, diffeomorphisms of M × I
that agree with the identity on a neighbourhood of M × {0} ∪ ∂M × I. The group of
such, equipped with the smooth topology, is denoted by C(M). As for concordance
embeddings, there is a stabilization map C(M)→ C(M × J). Building on ideas
of Hatcher [12], Igusa proved that this map is approximately d

3 -connected [15,
p. 6]. This is related to theorem A as follows: for a submanifold P ⊂M as above,
restriction from M to P yields a fibre sequence

C(M\ν(P )) −→ C(M) −→ CE(P,M) (1.1)

by a variant of the parametrized isotopy extension theorem. Here ν(P ) ⊂M is
an open tubular neighbourhood of P . Theorem A thus shows that if the handle
dimension of the inclusion ∂M ∩ P ⊂ P is at most d− 3 then the stability range
for the base space of (1.1) is significantly better than the available stability ranges
for the total space and fibre. This can be used to transfer potential results about
the homotopy fibre of the stabilization map for concordance diffeomorphisms of
a specific manifold to other manifolds. In § 4 we derive several corollaries from
theorem A in this direction. Here is an example:

Corollary B. Let M be a compact d-dimensional manifold and Dd ⊂ int(M) an
embedded disc. If M is (k − 1)-connected and k-parallelizable for some 2 � k < d/2,
then the map

πi

(
C(Dd × J),C(Dd)

) −→ πi

(
C(M × J),C(M)

)
induced by extension by the identity is an isomorphism in degrees i < d + k − 4.

Here we call a manifold k-parallelizable, if the restriction of the tangent bundle
to a k-skeleton is trivializable. For k = 1, 2 this is the same as being orientable or
spin respectively.

Example. For k = 2, corollary B specializes to an isomorphism πi(C(Dd × J),
C(Dd)) ∼= πi(C(M × J),C(M)) for i < d− 2 and any 1-connected compact spin
d-manifold M with d � 5.

Rationally, the relative homotopy groups πi(C(Dd × J),C(Dd)) of the stabi-
lization map for concordance diffeomorphisms of discs have been computed by
Krannich and Randal-Williams [17, corollary B] in degrees up to approximately
3
2d. Combined with corollary B, this gives the following:
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Corollary C. For a compact (k − 1)-connected k-parallizable d-manifold M with
2 � k < d/2, there is a homomorphism

πi

(
C(M × J),C(M)

)⊗Q −→
{

Q if i = d− 3,

0 otherwise,

which is an isomorphism in degrees i < min(d + k − 4, 	 32d
 − 8) and an epimor-
phism in degrees i < min(d + k − 4, 	 32d
 − 7).

Remark 1.2. The assumptions in corollary C in particular imply that M is 1-
connected and d � 5, so it follows from the main of result of [4] that C(M)
and C(M × J) are connected. This in particular implies that all πi(C(M × J),
C(M)) are abelian groups, so the rationalization appearing in the corollary is
unambiguous.

Denoting by

φ(M)Q =: min
{
s ∈ Z

∣∣ πi

(
C(M × Jm+1), C(M × Jm)

) ⊗ Q = 0 for i � s and all m�0
}

the rational concordance stable range of M (the main limiting factor in the classical
approach to the rational homotopy type of Diff(M) through surgery and pseu-
doisotopy theory, see e.g. [24]), corollary C for k = 2 in particular implies that
φ(Md)Q = d− 4 for all 1-connected spin d-manifolds M with d > 9. For 1-connected
spin manifolds, our result confirms speculations of Igusa [15, p. 6] and Hatcher [13,
p. 4] rationally, and improves the ranges of the many results in the literature that
rely on the rational concordance stable range. It was known that φ(Md)Q = d− 4
is the best possible potential result, since work of Watanabe [21] implies the upper
bound φ(Dd)Q � d− 4 for many odd values of d. The previously best known lower
bound was φ(M)Q � min(1/3(d− 4), 1/2(d− 7)), due to Igusa [15, p. 6], which is
even a lower bound for the integral version of the concordance stable range.

2. The multirelative stability theorem and some preliminaries

Theorem A is proved as the case r = 0 of a multirelative theorem about certain
(r + 1)-cubical diagrams of spaces of embeddings; see theorem 2.6. The structure
of the proof is such that the r = 0 case requires the general case. In this section we
state this multirelative version and establish some preliminaries.

2.1. Cubical diagrams

We begin with a review of cubical diagrams, following [10]. An r-cube for r � 0
is a space-valued functor X on the poset category P(S) of subsets of a finite set
S of cardinality r, ordered by inclusion. To emphasize the particular finite set S,
we sometimes also call X an S-cube. A 0-cube is simply a space, a 1-cube is a map
between two spaces, a 2-cube is a commutative square of spaces, and so on. Since
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∅ is initial in P(S) there is a map

X(∅) −→ holim
∅ �=T⊆S

X(T ).

The cube X is called k-cartesian if this map is k-connected. Here and throughout
this section k may be an integer or ∞. For instance, a 0-cube X is k-cartesian
if the space X(∅) is (k − 1)-connected, and a 1-cube is k-cartesian if the map
X(∅)→ X(S) is k-connected. As usual, the convention is that a k-connected map
is in particular surjective on path components if k � 0, and that a k-connected space
is non-empty if k � −1. A map of S-cubes X → Y is a natural transformation. Such
a map can also be considered as an (S � {∗})-cube via

P(S � {∗}) 
 T �−→
{

X(T ) if ∗ /∈ T,

Y (T\{∗}) otherwise.

Conversely, an S-cube X determines a map of S\{∗}-cubes for each ∗ ∈ S, and
the induced S-cube of each of these is isomorphic to X. A choice of basepoint
∗ ∈ X(∅) induces compatible basepoints in X(T ) for all T ∈ P(S). Given a map
of r-cubes X → Y and a point ∗ ∈ Y (∅), we obtain an r-cube hofib∗(X → Y ) by
taking homotopy fibres.

Many standard facts about the connectivity of maps of spaces generalize to cubes
of spaces. For example, from [10, propositions 1.6, 1.8, 1.18] we have:

Lemma 2.1. For a map X → Y of r-cubes, considered as an (r + 1)-cube, we
have the following:

(i) If Y and X → Y are k-cartesian, then X is k-cartesian.

(ii) If X is k-cartesian and Y is (k + 1)-cartesian, then X → Y is k-cartesian.

(iii) X → Y is k-cartesian if and only if hofib∗(X → Y ) is k-cartesian for
all points ∗ ∈ Y (∅).

Given a further map Y → Z of r-cubes, considered as an (r + 1)-cube, we have:

(a) If X → Y and Y → Z are k-cartesian, then X → Z is k-cartesian.

(b) If X → Z is k-cartesian and Y → Z is (k + 1)-cartesian, then X → Y is
k-cartesian.

We will also encounter cubes of cubes. Just as a map of r-cubes may be considered
as an (r + 1)-cube, an S′-cube of S-cubes may be considered as an (S � S′)-cube,
using the canonical isomorphism P(S � S′) ∼= P(S)× P(S′) of posets.

Lemma 2.2. Let S and S′ be non-empty finite sets, and let X be an (S � S′)-cube.
For T ′ ⊆ S′ write XT ′ for the S-cube given by P(S) 
 T �→ X(T � T ′).

(i) If X is k-cartesian and the S-cube XT ′ is (k + |T ′| − 1)-cartesian for all T ′

such that ∅ �= T ′ ⊆ S′, then the S-cube X∅ is k-cartesian.
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(ii) If the S-cube XT ′ is ∞-cartesian for all T ′ ⊆ S′, then X is ∞-cartesian.

Proof. Part (i) is [10, proposition 1.20]. For part (ii), note that according to lemma
2.1 (ii) a map of ∞-cartesian r-cubes is always an ∞-cartesian (1 + r)-cube. To
prove the more general assertion that an s-cube of ∞-cartesian r-cubes is always
an∞-cartesian (s + r)-cube, we induct on s. An (s + 1)-cube of∞-cartesian r-cubes
is a map of s-cubes of ∞-cartesian r-cubes, therefore by the inductive hypothesis
is a map of ∞-cartesian (s + r)-cubes, and hence is indeed ∞-cartesian. �

Corollary 2.3. Let S be a finite set.

(i) The constant S-cube with value a fixed space X is ∞-cartesian if |S| � 1.

(ii) Given spaces Xs for s ∈ S, the S-cube

P(S) 
 T �→ �s∈S\T Xs

defined by the projections is ∞-cartesian as long as |S| � 2.

(iii) Given pointed spaces Ys for s ∈ S, the S-cube

P(S) 
 T �→ �s∈T Ys

defined by the inclusions is ∞-cartesian as long as |S| � 2.

Proof. When |S| = 1, part (i) is simply the assertion that the identity map X → X
is ∞-connected. The general case of part (i) then follows using lemma 2.2 (ii). For
part (ii), we pick ∗ ∈ S and view the S-cube in question as the map of (S\{∗})-cubes
�s∈S\• Xs → �s∈S\(•∪{∗}) Xs. By lemma 2.1 (iii), it suffices to show that the cubes
of homotopy fibres at all basepoints are ∞-cartesian. These are constant cubes, so
the claim follows from (i). For part (iii), one considers the map of S-cubes from
the constant cube with value �s∈SYs to the cube P(S) 
 T �→ �s∈S\T Ys given by
the canonical projection maps. By parts (i) and (ii) both are ∞-cartesian, and by
lemma 2.1 (iii) the same holds for the cube of homotopy fibres over the basepoint
provided by the basepoints in the Ys’s. This is the cube in question. �

In a key step of the proof of our main result, we will make use of the following
multirelative generalization of the Blakers–Massey theorem for strongly cocartesian
cubes. An S-cube X is said to be strongly cocartesian if for every subset T ⊆ S and
distinct elements s1 �= s2 ∈ S\T , the following square is homotopy cocartesian

In terms of this definition, [10, theorem 2.3] says:
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Theorem 2.4. Let S be a non-empty finite set. If X is a strongly cocartesian S-
cube such that the map X(∅)→ X({s}) is ks-connected for all s ∈ S, then X is
(1− |S|+ ∑

s∈S ks)-cartesian.

2.2. The stabilization map

We now give a precise definition of the stabilization map for concordance embed-
dings. As in the introduction, we fix a smooth manifold M and a compact
submanifold P ⊂M that meets ∂M transversely. To construct the stabilization
map, we replace CE(P,N) by the equivalent subspace

CE′(P,N) ⊂ CE(P,N)

consisting of those e : P × [0, 1] ↪→M × [0, 1] such that e(p, t) = ((prM ◦ e)(p, 1), t)
on a neighbourhood of P × {1}. Writing I =: [0, 1] and J =: [−1, 1], we decompose
the rectangle J × I into the two closed subspaces (see fig. 2)

D1 =: {(x, y) ∈ J × I | x2 + (y − 1)2 � 1} and

D2 =: {(x, y) ∈ J × I | x2 + (y − 1)2 � 1}.

The first of these can be parametrized by polar coordinates via

Λ : [0, 1]× [0, π] −→ D1

(r, θ) �−→ (
(1− r) cos(θ + π), (1− r) sin(θ + π) + 1

)
.

(2.1)

Writing eM =: (prM ◦ e) : P × I →M and eI =: (prI ◦ e) : P × I → I for a map e :
P × I →M × I (such as a concordance embedding), the stabilization map

σ : CE′(P,M) −→ CE(P × J,M × J)

is defined by sending e ∈ CE′(P,M) to the concordance embedding

σ(e) : P × J × I −→M × J × I

(
p, s, t

) �−→ {(
eM (p, r),Λ(eI(p, r), θ)

)
if (s, t) = Λ(r, θ) ∈ D1,(

p, s, t
)

if (s, t) ∈ D2.

(2.2)

The point of passing to the subspace CE′(P,N) is to ensure that σ(e) is smooth
at the point (p, 0, 1).

Convention 2.5. In what follows we do not distinguish between CE(P,M) and
its homotopy equivalent subspace CE′(P,M) ⊂ CE(P,M). In particular, we write
CE(P,M) for the domain of the stabilization map, even though it should strictly
speaking be CE′(P,M).
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Figure 2. The decomposition J × I = D1 ∪ D2. The red arcs indicate the parametrization
(2.1): the semicircle is parametrized by fixing r = 0 and taking θ ∈ [0, π] starting with
θ = 0 on the left, and the radial segments are parametrized by fixing θ ∈ [0, π] and taking
r ∈ [0, 1] starting with r = 0 at the semicircle. The map σ(e) is given by the identity on
D2, and by e on each radial segment in D1.

2.3. Statement of the main theorem

To state the main result, we fix a smooth d-manifold M with compact disjoint
submanifolds P,Q1, . . . , Qr ⊂M for r � 0, all transverse to ∂M . We abbrevi-
ate {1, . . . , r} by r and write MS =: M\ ∪i�∈S Qi for subsets S ⊆ r; for example,
M∅ = M\∪r

i=1Qi and Mr = M . Postcomposition with the inclusions MS ⊂MS′

for S ⊂ S′ induces inclusions CE(P,MS) ⊂ CE(P,MS′) that assemble to an r-cube
CE(P,M•). As the construction of the stabilization map from § 2.2 is natural in
inclusions of submanifolds M ⊂M ′ with P ∩ ∂M = P ∩ ∂M ′, it extends to a map
of r-cubes CE(P,M•)→ CE(P × J,M• × J) which we view as an (r + 1)-cube

sCE(P,M•) =:
(
CE(P,M•)→ CE(P × J,M•×J)

)
.

The main result of this work concerns this (r + 1)-cube. It includes theorem A
as the case r = 0. The statement involves the dimension d of M and the handle
dimensions p, qi of the inclusions ∂M ∩ P ⊂ P and ∂M ∩Qi ⊂ Qi. The numbers qi

will play a role via the quantity

Σ :=
∑r

i=1(d− qi − 2),

which we abbreviate as indicated since it will be ubiquitous in all that follows.

Theorem 2.6. If d− p � 3 and d− qi � 3 for all i, then the (r + 1)-cube

sCE(P,M•) =
(
CE(P,M•)→ CE(P × J,M•×J)

)
is (2d− p− 5 + Σ)-cartesian.

The proof occupies § 3. The remainder of this section contains more preliminaries.

2.4. Collars and tubular neighbourhoods

The following two lemmas describe the homotopy type of CE(P,M) for some
simple choices of P .
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Lemma 2.7. If P is a closed collar on P ∩ ∂M ⊂ P , then CE(P,M) is contractible.

Proof. In view of remark 1.1 (iii) it suffices to show that the spaces E(P,M) and
E(P × I,M × I) are contractible. This follows from the contractibility of the space
of collars. �

Lemma 2.8. For a closed disc-bundle π : D(P )→ P with an embedding D(P ) ↪→M
that extends the inclusion P ⊂M and satisfies D(P ) ∩ ∂M = π−1(P ∩ ∂M), the
map CE(D(P ),M)→ CE(P,M) induced by restriction to the 0-section is an
equivalence.

Proof. The homotopy fibre of the restriction map CE(D(P ),M)→ CE(P,M) over
e ∈ CE(P,M) agrees as a result of the parametrized isotopy extension theorem
with the strict fibre. The latter is, by taking derivatives, equivalent to the space of
sections over P × I fixed near P × {0} ∪ (∂M ∩ P )× I of the bundle of fibrewise
linear injections of νD(P )×I into νM×I over P × I; here νD(P )×I is the normal
bundle of P × I ⊂ D(P )× I and νM×I is the normal bundle of e(P × I) ⊂M × I.
Since P × {0} ∪ (∂M ∩ P )× I is a deformation retract of P × I, this section space
is contractible. �

2.5. Previous multiple disjunction results

A key ingredient in the proof of the multirelative stabilization result in theorem
2.6 is the following multirelative generalization of Morlet’s lemma of disjunction
from [8]. We use the notation from § 2.3.

Theorem 2.9. If d− p � 3 and d− qi � 3 for all i, then the r-cube CE(P,M•) is
(d− p− 2 + Σ)-cartesian.

Proof. We discussed this for r = 0 in remark 1.1 (ii). The case r � 1 is treated in
[8, theorem D]. There it is assumed that ∂M ∩ P = ∂P and ∂M ∩Qi = ∂Qi for all
i, but as pointed out in [5, p. 670] the general case can be reduced to this. �

For r = 0, this statement includes Hudson’s concordance-implies-isotopy theorem
for concordance embeddings [14, theorem 2.1, addendum 2.1.2].

Theorem 2.10. The space CE(P,M) is connected if d− p � 3.

Using theorem 2.9, Goodwillie and Klein proved a similar result for spaces of
ordinary embeddings [5, theorem A]. As in remark 1.1 (iii), we write E(P,M) for the
space of embeddings P ↪→M that coincide with the inclusion in a neighbourhood
of P ∩ ∂M . As with CE(P,M•), the spaces E(P,MS) for subsets S ⊆ r assemble to
an r-cube E(P,M•).

Theorem 2.11 Goodwillie–Klein. If d− p � 3 and d− qi � 3 for all i, and if r � 1,
then the r-cube E(P,M•) is (1− p + Σ)-cartesian.

The cube E(P,M•) appearing in theorem 2.11 arises by removing submanifolds
from the target, but there is also a version of this theorem that deals with remov-
ing submanifolds from the source [5, theorem C]. We will have use for a version
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that combines these two. To state it, in addition to P,Q1, . . . , Qr ⊂M , we also
fix disjoint compact codimension 0 submanifolds B1, . . . , Bk ⊂ P for k � 0, all
transverse to ∂P . We write PT for the closure of P\ ∪j∈T Bj for T ⊆ k; for exam-
ple, P∅ = P and Pk is the closure of P\∪k

j=1Bj . The spaces E(PT ,MS) assemble
into a (k + r)-cube E(P ,M•) by post- and precomposition with the inclusions.
In addition to the handle dimension qi of the inclusion ∂M ∩Qi ⊂ Qi, we write
bj for the handle dimension of the inclusion ∂Bj\(∂P ∩Bj) ⊂ Bi and abbrevi-
ate Σ′ =

∑k
j=1(d− bj − 2). The following can be deduced from theorem 2.11 by a

simple variant of the arguments from [5, p. 653–655].

Corollary 2.12. If d− p � 3, d− qi � 3 for all i, and d− bj � 3 for all j, and if
k + r � 2, then the (k + r)-cube E(P ,M•) is (3− d + Σ + Σ′)-cartesian.

Remark 2.13. In the language of the functor calculus of [11, 22, 23] (‘manifold
calculus’ or ‘embedding calculus’), the multirelative connectivity results theorems
2.9 and 2.11 can be viewed as analyticity statements for the functors

P �→ CE(P,M) and P �→ E(P,M)

defined on the poset of compact submanifolds of a fixed manifold M (or rather, in
a setting close to [11, section 2], for the analogous functors defined on the poset of
open subsets of M). For CE, this results by stabilization in an analyticity state-
ment in the sense of [10] and [9] (‘homotopy calculus’) for the functor given by
stable concordance theory (there is also a different way to prove that using [10,
theorem 4.6]). Our main result—the multirelative stability result theorem 2.6—can
be viewed as analyticity statement for the functor

P �→ hofibinc

(
CE(P,M)→ CE(P × J,M × J)

)
.

All these analyticity results have the same degree of analyticity, but differ in ‘excess’.

2.6. The delooping trick and scanning

We now explain a way to relate concordance embeddings of discs of different
dimensions, sometimes called the delooping trick. It goes back at least to [3]. For an
embedded disc Dp ⊂M with Dp ∩ ∂M = ∂Dp and p � 1, we first define a scanning
map of the form

τ : CE(Dp,M) −→ ΩCE(Dp−1,M). (2.3)

For a submanifold K ⊂ [−1, 1] we abbreviate

Dp
K =: {x ∈ Dp | x1 ∈ K} ⊂ Dp,

so in particular Dp
{0} = {0} ×Dp−1 ∼= Dp−1. To construct (2.3), we consider the

decomposition Dp = Dp
[−1,0] ∪Dp

{0}
Dp

[0,1] and the resulting commutative diagram of
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restriction maps

(2.4)

which induces a map from CE(Dp,M) to the homotopy pullback of the other terms.
The bottom-left and top-right terms are contractible by lemma 2.7, so the homo-
topy pullback is equivalent to the loop space of CE(Dp

{0},M) ∼= CE(Dp−1,M). This
defines the scanning map (2.3), up to contractible choices. More precisely, writing
Ω̃CE(Dp−1,M) for the homotopy pullback, we have (without choices) a zig-zag

CE(Dp,M) −→ Ω̃CE(Dp−1,M) �←− ΩCE(Dp−1,M) (2.5)

where the equivalence is induced by including the basepoints in the spaces
CE(Dp

[0,1],M) and CE(Dp
[−1,0],M). The map (2.3) can also be viewed as the map

on vertical homotopy fibres in (2.4), where the fibres are taken over the basepoints
given by the inclusions of Dp

[−1,0] × I and Dp
{0} × I into M × I. This map on verti-

cal homotopy fibres is equivalent (as a result of the parametrized isotopy extension
theorem) to the inclusion

CE
(
Dp

[ε,1],M\(T ∪Dp
[−1,−ε])) ⊂ CE

(
Dp

[ε,1],M\T ),

where ε ∈ (0, 1) and T is an open tubular neighbourhood of the submanifold Dp
{0} ⊂

M with (see fig. 3)

Dp
[ε,1] ∩ ∂(M\T ) = ∂Dp

[ε,1] and Dp
[−1,−ε] ∩ ∂(M\T ) = ∂Dp

[−1,−ε].

Turning to the multirelative setting of § 2.3, we note that the zig-zag (2.5) is
natural in inclusions of submanifolds M ⊂M ′ with ∂M ∩ P = ∂M ′ ∩ P , so that
up to contractible choices we have a scanning map of r-cubes

τ : CE(Dp,M•) −→ ΩCE(Dp−1,M•) (2.6)

that agrees up to equivalence with the inclusion of r-cubes

CE
(
Dp

[ε,1],M•\(T ∪Dp
[−1,−ε])) ⊂ CE

(
Dp

[ε,1],M•\T ). (2.7)

Lemma 2.14. If d− p � 3 and d− qi � 3 for all i, then map of r-cubes

τ : CE(Dp,M•) −→ ΩCE(Dp−1,M•)

is (2 · (d− p− 2) + Σ)-cartesian when considered as an (r + 1)-cube.

Proof. This (r + 1)-cube may be rewritten as CE(Dp
[ε,1], (M\T )•) with

Q1, . . . , Qr ⊂M\T as before and Qr+1 =: Dp
[−1,−ε], so it is (d− p− 2 + Σ + (d−

p− 2))-cartesian by theorem 2.9. �
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12 T. Goodwillie, M. Krannich and A. Kupers

Figure 3. The subspaces of M appearing in the delooping trick.

2.7. Concordance maps and immersions

It will be useful to compare spaces of concordance embeddings to spaces of con-
cordance maps and of concordance immersions. The space CF(P,M) of concordance
maps is the space of smooth maps ϕ : P × I →M × I such that:

(i) ϕ−1(M × {i}) = P × {i} for i = 0, 1 and

(ii) ϕ agrees with the inclusion on a neighbourhood of the subspace P × {0} ∪
(∂M ∩ P )× I ⊂M × I,

equipped with the smooth topology. The space of concordance immersions
CI(P,M) ⊂ CF(P,M) is the subspace of those maps that are immersions. Note
that we have inclusions

CE(P,M) ⊂ CI(P,M) ⊂ CF(P,M).

As we shall explain now, the homotopy types of both CI(P,M) and CF(P,M) are
significantly simpler than that of CE(P,M). We begin with CF(P,M):

Lemma 2.15. CF(P,M) is contractible.

Proof. Given (f : P × I →M × I) ∈ CF(P,M), the family of concordance maps

fs(p, t) =
(
(prM ◦ f)(p, t), (1− s) · (prI ◦ f)(p, t) + s · t) for s ∈ [0, 1]

defines a deformation retraction of CF(P,M) onto the subspace CF(P,M)I ⊂
CF(P,M) of concordance maps that are level-preserving, i.e. commute with the
projection onto I. The space CF(P,M)I further deformation-retracts onto the
basepoint by the family of paths

fs(p, t) =
(
(prM ◦ f)(p, (1− s) · t), t) for s ∈ [0, 1]. �
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Stability of concordance embeddings 13

Turning to the space CI(P,M) of concordance immersions, we assume that
the handle dimension ∂M ∩ P ⊂ P is less than d. Under this assumption, by
Smale–Hirsch theory, differentiation gives an equivalence

CI(P,M) �−→ CB(P,M),

where CB(P,M) is the space of concordance bundle maps, equipped with the
compact-open topology. A concordance bundle map is a fibrewise injective vec-
tor bundle map T (P × I)→ T (M × I) covering a concordance map f such that
for points (x, t) near P × {0} ∪ (∂M ∩ P )× I ⊂ P × I the linear map T(x,t)(P ×
I)→ T(x,t)(M × I) is the inclusion, and such that at points (x, 1) the linear
map T(x,1)(P × I)→ Tf(x,1)(M × I) takes the subspace TP × 0 into the subspace
TM × 0 and is positive in the I-direction. The space of such concordance bundle
maps can also be described as a space of sections:

Lemma 2.16. If the handle dimension of ∂M ∩ P ⊂ P is less than d, then there are
equivalences of the form

SectP∩∂M (ΩSd ×O(d) Fr(M)|P → P ) �−→ CB(P,M) �←− CI(P,M).

Here Fr(M)|P is the restriction to P of the frame bundle of TM, O(d) acts on Sd via
the one-point compactification of Rd, and SectP∩∂M (−) stands for the space of sec-
tions of the indicated bundle that agree with the standard section in a neighbourhood
of the subspace P ∩ ∂M ⊂ P .

Proof. We have already explained the right-hand equivalence. For the other, note
that the forgetful map CB(P,M)→ CF(P,M) is a fibration whose base space is
contractible by lemma 2.15, so it suffices to show that the indicated section space
is equivalent to the fibre CBinc(P,M) over the basepoint inc ∈ CF(P,M).

A bundle map that covers the inclusion is given by linear injections T(x,t)(P × I)
→ T(x,t)(M × I) for (x, t) ∈ P × I satisfying certain boundary conditions. Fix-
ing x, varying t, and using the standard trivialization of TI, this becomes a
path in the space Inj(TxP ⊕R, TxM ⊕R) of linear injections, starting at the
inclusion and ending somewhere in Inj(TxP, TxM) (viewed as a subspace of
Inj(TxP ⊕R, TxM ⊕R) via (−)⊕ idR). From this we see that CBinc(P,M) is the
space of sections, trivial near P ∩ ∂M , of a bundle on P whose fibre over x ∈ P is
Fx =: hofibinc(Inj(TxP, TxM)→ Inj(TxP ⊕R, TxM ⊕R)). The fibre sequence

Inj(TxP, TxM) −→ Inj(TxP ⊕R, TxM ⊕R) res−→ Inj(R, TxM ⊕R) ∼= STxM

gives an equivalence Fx � ΩSTxM to the loop space on the one-point compactifi-
cation of TxM . This depends continuously on x, so CBinc(P,M) is equivalent to
the space of sections, trivial near P ∩ ∂M , of a bundle whose fibre is ΩSTxM . This
bundle is ΩSd ×O(d) Fr(M)|P → P . �

Note that the equivalences in lemma 2.16 are natural in codimension 0 embed-
dings e : M ↪→M ′ with P ∩ ∂M ′ = P ∩ ∂e(M). In particular, we can conclude:
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14 T. Goodwillie, M. Krannich and A. Kupers

Lemma 2.17. Assume that the handle dimension of ∂M ∩ P ⊂ P is less than d.
For an open neighbourhood U ⊂M of P , the inclusion CI(P,U) ⊂ CI(P,M) is an
equivalence.

Remark 2.18. (i) Note that the fibre sequence at the end of the proof of lemma
2.16 in particular shows that the map Fx → CBinc({x},M) is an equivalence.

(ii) For P = ∗ ∈ int(M), lemma 2.16 gives a Diff∗(M)-equivariant equivalence
CI(∗,M) � ΩST∗M to the loop space on the one-point compactification of
T∗M . Applying this for M = Rd, we see that the equivalence of lemma 2.16
can be written as CI(P,M) � SectP∩∂M (CI(∗,Rd)×O(d) Fr(M)|P → P ).

2.7.1. The stabilization and scanning maps for concordance maps and immersions
The construction of the stabilization and scanning map in § 2.2 and 2.6 extend
to concordance maps, concordance immersions and concordance bundle maps, so
there are commutative diagrams

In all cases except for the stabilization map for concordance bundle maps, the
construction is exactly the same as for concordance embeddings. In the remain-
ing case, it is helpful to note that the concordance σ(e) ∈ CE(P × J,M × J)
for e ∈ CE(P,M) can be described as the unique continuous map P × J × I →
M × J × I that agrees with the inclusion on P ×D2 and with the composition
(idM × Λ−1) ◦ (e× id[0,π]) ◦ (idP × Λ) on M × (D1\{(0, 1)}), using that Λ restricts
to a diffeomorphism D1\{(0, 1)} ∼= [0, 1)× [0, π]. Said like this, the definition makes
equal sense for concordance bundle maps.

The sources and targets of scanning and stabilization for concordance maps are
contractible by lemma 2.15, so these maps are equivalences. The scanning map for
concordance immersions is also an equivalence, though for a different reason:

Lemma 2.19. For p < d, the scanning map τ : CI(Dp,M)→ ΩCI(Dp−1,M) is an
equivalence.

Proof. By the construction of the scanning map in § 2.6, it suffices to show that
the square induced by restriction maps
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is homotopy cartesian. Via the natural equivalences of lemma 2.16 and the standard
trivialization of TDd, this translates to the claim that the square of mapping spaces

induced by restriction is homotopy cartesian. This square agrees with the induced
square on homotopy fibres of the map of squares from

induced by restriction. This implies the claim, since both of these squares are
homotopy cartesian, given as Map(−,ΩSd) applied to a homotopy cocartesian
square. �

The stabilization map for concordance immersions is not an equivalence in
general, but we have the following connectivity estimate:

Lemma 2.20. If the handle dimension of ∂M ∩ P ⊂ P is less than d, then the
stabilization map CI(P,M)→ CI(P × J,M × J) is (2d− p− 2)-connected.

Proof. Arguing as in the proof of lemma 2.16, one sees that the stabilization map
agrees up to equivalence with a map between two section spaces relative to ∂M ∩ P
of bundles over P whose induced map between the fibres over ∗ ∈ P is the stabiliza-
tion map CBinc(∗,M)→ CBinc(∗ × J,M × J) between the spaces of concordance
bundle maps covering the inclusion. By obstruction theory, it thus suffices to show
that this map on fibres is (2d− 2)-connected.

To do so, we first replace CBinc(∗ × J,M × J) by an equivalent space in two
steps. Firstly, by the proof of lemma 2.16, the space CBinc(∗ × J,M × J) is a
section space of a bundle over J associated to the frame bundle of J , so mak-
ing use of the standard trivialization of TJ , the space CBinc(∗ × J,M × J) is
homeomorphic to Map∂(J, F0) where F0 is the fibre of the bundle over 0 ∈ J . The
latter admits a canonical equivalence to CBinc(∗ × {0},M × J) (see the first part of
remark 2.18), so we have an equivalence CBinc(∗ × J,M × J)→ Map∂(J,CBinc(∗ ×
{0},M × J)). Secondly, we replace Map∂(J,CBinc(∗ × {0},M × J)) by the
equivalent space Map±(J,CBinc(∗ × {0},M × J)) of those paths [−1, 1] = J →
CBinc(∗,M × J) that start somewhere in the subspace CB+

inc(∗ × {0},M × J) ⊂
CBinc(∗ × {0},M × J) of concordance bundle maps TI → T (M × J × I) covering
the inclusion that land in the subspace of T (M × J × I) whose tangent vec-
tor of the J-factor is nonnegative, and that end somewhere in the subspace
CB−

inc(∗ × {0},M × J) ⊂ CBinc(∗,M × J) which is defined similarly by replacing
‘nonnegative’ with ‘nonpositive’. Note that the intersection of these two subspaces
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16 T. Goodwillie, M. Krannich and A. Kupers

agrees with CBinc(∗,M) ⊂ CBinc(∗ × {0},M × J) which contains the basepoint
inc ∈ CBinc(∗ × {0},M × J). We thus have an inclusion map Map∂(J,CBinc(∗ ×
{0},M × J)) ⊂ Map±(J,CBinc(∗ × {0},M × J)), which is an equivalence since
CB+

inc(∗ × {0},M × J) and CB−
inc(∗ × {0},M × J) are both contractible. It thus

suffices to show that the composition

CBinc(∗,M) σ−→ CBinc(∗×J,M × J) �−→Map∂(J,CBinc(∗×{0},M × J))

⊂ Map±(J,CBinc(∗×{0},M × J))

is (2d− 2)-connected. We denote this composition by σ′. Tracing through the
definitions, one sees that the path σ′(f) : J = [−1, 1]→ CBinc(∗ × {0},M × J)
for f ∈ CBinc(∗,M) satisfies σ′(f)s ∈ CB+

inc(∗ × {0},M × J) for s ∈ [−1, 0] and
σ′(f)s ∈ CB−

inc(∗ × {0},M × J) for s ∈ [0, 1], so we can define a homotopy

[0, 1]× CBinc(∗,M)→ Map±(J,CBinc(∗×{0},M × J))

by sending (u, f) to the path [−1, 1] 
 s �→ ρ(f)(1−u)s ∈ CBinc(∗ × {0},M × J).
This homotopy starts at σ′ and ends at the map that sends f to the constant
path at σ′(f)0. The latter agrees with the canonical map from the top-left corner
of the commutative square

to the homotopy pullback of the remaining entries, so we need to show that this
square is (2d− 2)-cartesian. Using the canonical trivialization of TI, one sees
that the space CBinc(∗ × {0},M × J) is the loop space ΩInj(R, T(∗,0)(M × J)⊕R)
which is equivalent to ΩS(T(∗,0)(M × J)⊕R) � ΩSd+1. This equivalence (or rather
the proof of it) gives an equivalence of squares from the previous square to the square
obtained by looping once the cocartesian square

where Sd+1
± ⊂ Sd+1 are the left and right hemispheres. By Freudenthal’s suspension

theorem, this square is (2d− 1)-cartesian, so looping it indeed results in a (2d−
2)-cartesian square. �

3. The proof of the multirelative stability theorem

It is time to turn to the proof of the main result, theorem 2.6. Most of the work goes
into the case when P is a point (see § 3.1). The case when P is a p-disc Dp with
∂Dp = Dp ∩ ∂M then follows by induction on p using multirelative disjunction and
the delooping trick (see § 3.3). The general case follows by induction over a handle
decomposition (§ 3.4).

https://doi.org/10.1017/prm.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.17


Stability of concordance embeddings 17

3.1. The case of a point

When P is a point ∗ ∈ int(M), the asserted conclusion of theorem 2.6 is that the
stability (r + 1)-cube

sCE(∗,M•) =
(
CE(∗,M•)

σ−→ CE(∗×J,M•×J)
)

(3.1)

is (2d− 5 + Σ)-cartesian if d � 3 and d− qi � 3 for all i. The proof of this, carried
out in this subsection, is organized as follows:

1○ First we explain that it suffices to show that the composition

ρ = (τ ◦ σ) : CE(∗,M•) −→ ΩCE(∗×{0},M•×J)

is (2d− 4 + Σ)-cartesian, where τ is the scanning map from § 2.6.

2○ Next we reduce to proving the analogous statement for the analogous map

ρ : CE(∗,M•) −→ ΩCE(∗×{0},M•×J)

where CE denotes the homotopy fibre of the forgetful map from concordance
embeddings to concordance immersions.

3○ For the next step we consider the subspace CEA(∗,M) ⊂ CF(∗,M) consisting
of those concordance maps that are embeddings on a fixed submanifold A of
I; similarly, we define CIA(∗,M) and CEA(∗,M). Using these, we argue that
it suffices to prove that the analogous map

ρ : CEA(∗,M•) −→ ΩCEA(∗×{0},M•×J)

is (2d− 1 + Σ)-cartesian when A is the complement of three open intervals
in int(I). We argue further that for this purpose CEA(∗,−) may be replaced
by CE{t1,t2}(∗,−) where {t1, t2} ⊂ int(I) is a two-element subset.

4○ We finish the proof by showing that the map of r-cubes

ρ : CE{t1,t2}(∗,M•) −→ ΩCE{t1,t2}(∗×{0},M•×J)

is (2d− 1 + Σ)-cartesian.

Step 1○: Scanning The 1-disc D1 = ∗ × J ⊂M × J satisfies D1 ∩ ∂(M × J) =
∂D1, so § 2.6 gives a scanning map

τ : CE(∗×J,M × J) −→ ΩCE(∗×{0},M × J).

In that section, this map was only defined up to contractible choices, but it will
now be beneficial to fix a particular model. To do so, note that if e is a con-
cordance embedding of ∗ × J into M × J then for each s ∈ int(J), the restriction
es =: e|∗×{s}×I is a concordance embedding of ∗ × {s} into M × J , which agrees
with the inclusion for s in a neighbourhood of ∂J . To adjust es to make it a concor-
dance embedding τ(e)s of ∗ × {0} into M × J (instead of ∗ × {s}), we fix once and
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for all a smooth family of diffeomorphisms hs : J → J for s ∈ int(J) that satisfies
h0 = idJ and hs(s) = 0 for all s. Using this family of diffeomorphisms, we define

τ(e)s =:

{
(idM × hs × idI) ◦ es ◦ (id∗×h−1

s × idI) for s ∈ int(J),
inc∗×{0}×I for s ∈ ∂J .

The resulting map J 
 s �→ τ(e)s ∈ CE(∗ × {0},M × J) defines a loop τ(e) ∈
ΩCE(∗ × {0},M × J) = Map∂(J,CE(∗ × {0},M × J)). This construction depends
continuously on e, so it defines a map τ as desired.

Lemma 3.1. This map is homotopic to the map considered in § 2.6 for p = 1.

Proof. Going through the construction in § 2.6, we see it suffices to show that the
map τ defined above can be obtained in the following way: fix deformation retrac-
tions of CE(∗ × [−1, 0],M × J) and CE(∗ × [0, 1],M × J) onto the inclusion, and
map e ∈ CE(∗ × J,M × J) to the loop in CE(∗ × {0},M × J) based at the inclusion
obtained by concatenating the two paths from the restriction of e to a concordance
embedding of ∗ × {0} ⊂ ∗ × J to the inclusion, resulting from restricting the two
deformation retractions to ∗ × {0}.

To show that τ is of this form, we consider for a concordance embedding e ∈
CE(∗ × J,M × J) and s ∈ [−1, 0] the family of concordance embeddings of ∗ ×
[−1, 0] into M × J × I given by{

(idM × hs × idI) ◦ e ◦ (id∗×h−1
s × idI) for s ∈ (−1, 0],

inc∗×[−1,0]×I for s = −1.

Varying s ∈ [−1, 0], this defines a deformation retraction of CE(∗ × [−1, 0],M × J)
onto the inclusion (for continuity at s = −1, use that h−1

s maps [−1, 0] into an
arbitrary small neighbourhood of −1 as s approaches −1). When we restrict it to a
family of concordance embeddings of ∗ × {0} into M × J , it visibly agrees with the
family τ(e)s for s ∈ [−1, 0]. Replacing [−1, 0] by [0, 1] defines a similar deformation
retraction of CE(∗ × [0, 1],M × J). Using these two deformation retractions in the
above discussion, the claim follows. �

The construction of τ above is natural in inclusions of codimension 0 submanifolds
M ⊂M ′ with P ∩ ∂M = P ∩ ∂M ′ and hence extends to a map of r-cubes

τ : CE(∗×J,M•×J) −→ ΩCE(∗×{0},M•×J).

This agrees with the scanning map considered in § 2.6 up to homotopy of r-cubes,
so it is (2d− 4 + Σ)-cartesian as an (r + 1)-cube by an application of lemma 2.14.
Thus, to show that the stabilization (r + 1)-cube (3.1) is (2d− 5 + Σ)-cartesian, it
suffices by lemma 2.1 (v) to show that the composition

CE(∗,M•)
σ−→ CE(∗×J,M•×J) τ−→ ΩCE(∗×{0},M•×J)

is (2d− 5 + Σ)-cartesian. In fact, we will find that it is (2d− 4 + Σ)-cartesian.
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Step 2○: Fibre over immersions Recall from § 2.7 that σ and τ extend to maps

CF(∗,M) σ−→ CF(∗×J,M × J) τ−→ ΩCF(∗×{0},M × J) (3.2)

between the spaces of concordance maps, which in turn restrict to analogous maps
between the spaces of concordance immersions. For immersions, τ is an equivalence
by lemma 2.19 and σ is (2d− 2)-connected by lemma 2.20. Multirelatively,

CI(∗,M•)
σ−→ CI(∗×J,M•×J) τ−→ ΩCI(∗×{0},M•×J),

each of the three r-cubes involved is constant as a result of lemma 2.17, so for
r > 0 they are ∞-cartesian by corollary 2.3 (i) which implies that the composed
map (τ ◦ σ) of r-cubes is ∞-cartesian for r > 0. For r = 0 the composed map is
(2d− 2)-cartesian, as noted above, and therefore in both cases the composed map
of r-cubes is (2d− 2 + Σ)-cartesian.

Because of this, to show that (τ ◦ σ) is (2d− 4 + Σ)-cartesian for concordance
embeddings, it suffices by lemma 2.1 (i) and (iii) to show that the composition of
maps of r-cubes

CE(∗,M•)
σ−→ CE(∗×J,M•×J) τ−→ ΩCE(∗×{0},M•×J) (3.3)

is (2d− 4 + Σ)-cartesian as an (r + 1)-cube. Here

CE(∗,M) =: hofibinc(CE(∗,M)→ CI(∗,M)).

In this reduction, we implicitly used that CI(∗,M∅) is connected (as a result of
remark 2.18 (ii); remember that d � 3) which ensures that it suffices to consider
fibres over the inclusion.

Step 3○: Partial embeddings and partial immersions To prove that the composition
(3.3) is (2d− 4 + Σ)-cartesian, we consider further subspaces of the space CF(∗,M)
of concordance maps. Namely, for a compact submanifold A ⊂ I (which may be 0-
or 1-dimensional), we consider the subspaces

CEA(∗,M) ⊂ CIA(∗,M) ⊂ CF(∗,M) (3.4)

consisting of those concordance maps ∗ × I →M × I whose restriction to ∗ ×A is
an embedding (this defines CEA(∗,M)) or an immersion (this defines CIA(∗,M));
see fig. 4 for an example. Analogous to the definition of CE(∗,M), we write

CEA(∗,M) =: hofibinc(CEA(∗,M)→ CIA(∗,M)).

Lemma 3.2. The composition (3.2) preserves the subspaces (3.4) in that we have

(τ ◦ σ)
(
CEA(∗,M)

) ⊂ ΩCEA(∗×{0},M × J) and

(τ ◦ σ)
(
CIA(∗,M)

) ⊂ ΩCIA(∗×{0},M × J)

for any compact submanifold A ⊂ I.
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Figure 4. An element e of CEA(∗, M). The compact submanifold A ⊂ I is indicated in
thick red.

Figure 5. The restriction of prJ×I ◦ σ(f) to the indicated interval changes the radial
coordinate (in [0, 1]) but not the angle (in [0, π]). In particular, the compositions with
pr[0,π] ◦ Λ′−1 ◦ prJ×I of σ(f) and σ(inc) agree.

Proof. Going through the definition, we see that for f ∈ CF(∗,M) the value at
0 ∈ J = [−1, 1] of the loop (τ ◦ σ)(f) : J → CF(∗ × {0},M × J) agrees with the
composition ∗ × I →M × I = M × {0} × I ⊂M × J × I of f with the inclusion,
so it is an embedding (or immersion) on ∗ ×A if this holds for f . At any s �= 0
the value turns out to be an embedding on all of ∗ × I. To show this, since τ
restricts to a map between spaces of concordance embeddings, it suffices to prove
that for any concordance map f : ∗ × I →M × I, the restriction of σ(f) : ∗ × J ×
I →M × J × I along ∗ × {s} ⊂ ∗ × J is an embedding for all s �= 0.

By the construction of the stabilization map in § 2.2 (and using the nota-
tion from that section), we have σ(f)−1(M ×Di) ⊂ ∗ ×Di for i = 1, 2, and
near ∗ ×D2 the map σ(f) is the inclusion. Hence it suffices to prove that
the map g =: (prJ×I ◦ σ(f)|({s}×I)∩D1) : ({s} × I) ∩D1 → J × I, is an embed-
ding. Noting that the restriction of the parametrization Λ from (2.1) to a
map Λ′ : [0, 1)× [0, π]→ D1\{(0, 1)} is a diffeomorphism and im(g) ⊂ im(Λ′), it
suffices to prove that the composition (pr[0,π] ◦ Λ′−1 ◦ g) is an embedding. Trac-
ing through the definition and identifying ({s} × I) ∩D1 with [1−√1− s2, 1]
via π2 : J × I → I, one sees that this composition is given by the formula
[1−√1− s2, 1] 
 t �→ arctan(−(1− t)/s) ∈ [0, π] which is indeed an embedding.
See fig. 5 for an illustration.

�
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As a result of lemma 3.2, we have induced maps

CEA(∗, M) −→ ΩCEA(∗×{0}, M × J) and CIA(∗, M) −→ ΩCIA(∗×{0}, M × J)

and thus also a map CEA(∗,M)→ ΩCEA(∗ × {0},M × J) on homotopy fibres
over the inclusion. We denote all of these by ρ. Note that they are natural in
inclusions of submanifolds A′ ⊂ A and M ⊂M ′ with ∂M ∩ P = ∂M ′ ∩ P . In par-
ticular, choosing three disjoint closed intervals B1, B2, B3 ⊂ int(I) in the order
B1 < B2 < B3, and writing AT =: closure(I\ ∪i∈S Bi), for T ⊆ 3 = {1, 2, 3}, the
maps ρ : CEAT (∗,MS)→ ΩCEAT (∗ × {0},MS × J) assemble to a map

ρ : CEA (∗,M•) −→ ΩCEA (∗×{0},M•×J). (3.5)

of (3 + r)-cubes. This map induces a commutative square of r-cubes

(3.6)

whose top map is the composition (3.3) from step 2○ (note that A∅ = I), which
we wish to prove to be (2d− 4 + Σ)-cartesian. It will follow from the next lemma
(applied to M and M × J) that the left vertical map is (2d− 4 + Σ)-cartesian and
the right vertical map is (2d− 3 + Σ)-cartesian, so using lemma 2.1 (iv) and (v) it
will be enough to show that the bottom map is (2d− 4 + Σ)-cartesian.

Lemma 3.3. The (3 + r)-cube CEA (∗,M•) is (2d− 4 + Σ)-cartesian.

Proof. We will show that CEA (∗,M•) is (2d− 4 + Σ)-cartesian and that
CIA (∗,M•) is∞-cartesian, which will imply the claim by combining lemma 2.1 (ii)
and (iii). We begin with CEA (∗,M•). Adopting the notation from § 2.5, we have a
map of (3 + r)-cubes CEA (∗,M•)→ E(A ,M• × I) by restriction. The (3 + r)-cube
E(A ,M• × I) is (2d− 4 + Σ)-cartesian by corollary 2.12 (note that d + 1− 1 � 3
since d + 1 � 4) and we will show next that the (3 + r)-cubes of homotopy fibres
over all basepoints are ∞-cartesian, so the claim will follow by lemma 2.1 (i) and
(iii). These (3 + r)-cubes of homotopy fibres have the form

3× r ⊇ T × S �−→ �i∈T Map∂(Bi,MS × I)

where the boundary conditions in the mapping spaces Map∂(Bi,MS × I) depend on
the basepoint in E(I,M∅ × I) one takes homotopy fibres over. Combining lemma
2.2 (ii) and corollary 2.3 (iii), we see that these (3 + r)-cubes are ∞-cartesian.

The claim that CIA (∗,M•) is ∞-cartesian can be proved similarly: we have
a restriction map CIA (∗,M•)→ I(A ,M• × I) whose target is the analogue of
E(A ,M• × I) for immersions. The (3 + r)-cubes of homotopy fibres are of the same
form as previously and thus ∞-cartesian, so it suffices to show that I(A ,M• × I)
is∞-cartesian. To see this, we consider the restriction map I(A ,M•)→ I(A3,M•).
The target (3 + r)-cube is constant in some directions, so it is∞-cartesian, and the
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(3 + r)-cubes of homotopy fibres are all of the form treated in corollary 2.3 (ii), so
they are also ∞-cartesian. �

We are left to show that the bottom map in the diagram (3.6) of r-cubes is
(2d− 4 + Σ)-cartesian when considered as an (r + 1)-cube; in fact we will find that
it is (2d− 3 + Σ)-cartesian. The proof of this relies on the following lemma:

Lemma 3.4. Let A ⊂ I be a compact 1-dimensional submanifold that contains ∂I
and has k + 2 path components for some k � 0. Choose points {t1, . . . , tk} ⊂ A, one
in each path component of A in the interior of I. Then the composition

CEA(∗,M) −→ CEA(∗,M) ⊂−→ CE{t1,...,tk}(∗,M)

is an equivalence. In particular, CEA(∗,M) is contractible for k � 1.

Proof. Using that the forgetful map E([0, 1], N)→ I([0, 1], N) is an equivalence for
any manifold N , one sees that the commutative square of inclusions

is homotopy cartesian. Taking vertical homotopy fibres over the inclusion and using
that the space CI{t1,...,tk}(∗,M) = CF(∗,M) is contractible by lemma 2.15, this
implies the claim. The addendum follows by noting that for k � 1, we have the
identity CE{t1,...,tk}(∗,M) = CF(∗,M). �

Choosing a point t1 ∈ int(I) between B1 and B2 and a point t2 ∈ int(I) between
B2 and B3 (so in particular t1 < t2), we obtain equivalences of the form

holim
∅ �=T⊆3

CEAT (∗,M) �←− Ω2CEA3(∗,M) �−→ Ω2CE{t1,t2}(∗,M),

where the left equivalence uses that the inclusion of the basepoint into CEAT (∗,M)
is an equivalence whenever ∅ �= S � 3, by lemma 3.4, and the right equivalence
uses that the canonical map CEA3(∗,M)→ CE{t1,t2}(∗,M) is an equivalence, by
the same lemma. Replacing M by M × J , there are the analogous equivalences

holim
∅ �=T⊆3

CEAT (∗×{0},M × J) �←−Ω2CEA3(∗×{0},M × J)

�−→ Ω2CE{t1,t2}(∗×{0},M × J).
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All these equivalences are natural in M and compatible with ρ, so we may extend
diagram (3.6), obtaining a commutative diagram

(3.7)

where the vertical �-signs indicate a zig-zag of equivalences compatible with the
horizontal maps. Therefore, to show that the bottom map of r-cubes in (3.6) is
(2d− 3 + Σ)-cartesian (and thus also the top row), it suffices to show that the map

ρ : CE{t1,t2}(∗,M•) −→ ΩCE{t1,t2}(∗×{0},M•×J) (3.8)

is (2d− 1 + Σ)-cartesian as an (r + 1)-cube.

Step 4○: Applying the Blakers–Massey theorem We now finish the proof by showing
that (3.8) is (2d− 1 + Σ)-cartesian. We first make two alterations to the map of
r-cubes (3.8): enlarging its target by an equivalence and performing a homotopy.
Some of the ideas involved are similar to those in the proof of lemma 2.20.

The enlargement of the target is done by considering the two subspaces

C+(∗,M)⊂CE{t1,t2}(∗×{0},M×J) and C−(∗,M)⊂CE{t1,t2}(∗×{0},M×J)

where C+(∗,M) ⊂ CE{t1,t2}(∗ × {0},M × J) consists of those concordance maps
f : ∗ × {0} × I →M × J × I for which f(∗, 0, t1) is not directly to the right of
f(∗, 0, t2), where (x1, s1, r1) in M × J × I is said to be directly to the right of
(x2, s2, r2) if x1 = x2, r1 = r2, and s1 > s2. The space C−(∗,M) is defined similarly,
replacing right by left. In terms of these subspaces, we define

Ω±CE{t1,t2}(∗×{0},M × J)

as the space of paths in CE{t1,t2}(∗ × {0},M × J) that start in C+(∗,M) and end
in C−(∗,M), i.e. the homotopy limit of the zig-zag

C+(∗,M) ⊂−→ CE{t1,t2}(∗×{0},M × J) ⊃←− C−(∗,M).

Including the basepoint into C+(∗,M) and C−(∗,M) induces an inclusion

ΩCE{t1,t2}(∗×{0},M × J) ⊂−→ Ω±CE{t1,t2}(∗×{0},M × J) (3.9)

which is an equivalence as a result of the following lemma.

Lemma 3.5. C+(∗,M) and C−(∗,M) are contractible. In particular, the inclusion
(3.9) is an equivalence.
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Proof. It suffices to prove that CF(∗ × {0},M × J) deformation-retracts onto the
subspace C+(∗,M) (respectively C−(∗,M)), since CF(∗ × {0},M × J) is con-
tractible by lemma 2.15. To see this one deforms f ∈ CF(∗ × {0},M × J) in such
a way that f(t1) moves directly to the left (respectively right) while f(t2) moves
directly to the right (respectively left). We leave it to the reader to provide an
explicit formula. �

Note that the equivalence (3.9) is natural in M , so we may replace the map of
cubes (3.8) by the composition

ρ± : CE{t1,t2}(∗,M•)
ρ−→ΩCE{t1,t2}(∗×{0},M•×J)

⊂−→ Ω±CE{t1,t2}(∗×{0},M•×J).

The proof will be completed by showing that the map ρ± of r-cubes is (2d− 1 + Σ)-
cartesian as an (r + 1)-cube. To do so, we first note that the subspaces C+(∗,M)
and C−(∗,M) of CE{t1,t2}(∗ × {0},M × J) are open, and that their union is the
entire space. Note also that their intersection is equivalent to CE{t1,t2}(∗,M), since
viewing a map f : ∗ × {0} × I →M × J × I as a pair of a map ∗ × I →M × I
and a map I → J induces a homeomorphism from C+(∗,M) ∩ C−(∗,M) to the
product of CE{t1,t2}(∗,M) with the contractible space of smooth maps I → J that
take a neighbourhood of 0 to 0. Identifying the subspace CE{t1,t2}(∗ × {0},M ×
{0}) ⊂ CE{t1,t2}(∗ × {0},M × J) with CE{t1,t2}(∗,M) we thus have a homotopy
cocartesian square

(3.10)

Lemma 3.6. For f ∈ CE{t1,t2}(∗,M), the loop

ρ(f) : J −→ CE{t1,t2}(∗×{0},M × J)

satisfies ρ(f)s ∈ C+(∗,M) for s ∈ [−1, 0] ⊂ J and ρ(f)s ∈ C−(∗,M) for s ∈ [0, 1]

Proof. Since ρ(f)0 agrees with the composition of f with the inclusion M × I =
M × {0} × I ⊂M × J × I, its composition with prM,I is injective on {t1, t2}, so
ρ(f)0 ∈ C+(∗,M) ∩ C−(∗,M). We may thus assume s �= 0. Going through the
definition, we see that ρ(f)s is obtained from σ(f)s = σ(f)|∗×{s}×I : ∗ × {s} × I →
∗× J ×M by postcomposition with the diffeomorphism idM × hs × idI from step
1○. The latter preserves the property that the value at t1 is not directly to the left
(respectively right) of the value at t2, so it suffices to prove that σ(f)s ∈ C+(∗,M)
for s < 0 and σ(f)s ∈ C−(∗,M) for s > 0. The proof in the two cases are analogous.
We will explain the former, so fix s < 0.

We write σ(f)(∗, s, t1) = (x1, s1, r1) and σ(f)(∗, s, t2) = (x2, s2, r2), and encour-
age the reader to (a) recall the construction of ρ in § 2.2, including the decomposition
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Figure 6. As σ(f) preserves the radial segments indicated in light red, for s < 0, if
σ(f)(∗, s, t1) has the same I-coordinate (depicted vertically) as σ(f)(∗, s, t2) then it has
smaller J-coordinate (depicted horizontally).

D1 ∪D2 = J × I, and to (b) look at fig. 6. Intersecting the decomposition D1 ∪
D2 = J × I with {s} × I gives a decomposition I = ({s} × I ∩D1) ∪ ({s} × I ∩
D2). The map σ(f)s preserves this decomposition and agrees with the inclusion
on ({s} × I ∩D2), so it follows that if t1 and t2 do not both lie in ({s} × I ∩D1),
then σ(f)(∗, s, t1) is neither directly to the right nor the left of σ(f)(∗, s, t2). Oth-
erwise, since (prJ,I ◦ σ(f))|∗×D1 preserves the radial segments Λ([0, 1]× {θ}) ⊂ D1

for θ ∈ [0, π] where Λ is as in (2.1), we have points (prJ,I ◦ σ(f))(∗, s, t1) and
(prJ,I ◦ σ)(f)(∗, s, t2) must lie on different radial segments, where the latter is closer
to Λ([0, 1]× {π/2}) = [−1, 0]× {1} ⊂ J × I. Then the only way to have r1 = r2 is
if s1 < s2, so σ(f)(∗, s, t1) is not directly to the right of σ(f)(∗, s, t2).

�

In view of lemma 3.6, we have a homotopy

[0, 1]× CE{t1,t2}(∗,M) −→ Ω±CE{t1,t2}(∗×{0},M × J).

that sends (u, f) to [−1, 1] 
 s �→ ρ(f)(1−u)s ∈ CE{t1,t2}(∗ × {0},M × J) for 0 �
u � 1. It starts at ρ± and ends at the map taking f to the constant path at ρ(f)0.
The latter is the map induced by the commutative square (3.10) by mapping the
upper left corner to the homotopy limit of the others. Since the homotopy is natural
in M , this reduces the claim that ρ± is (2d− 1 + Σ)-cartesian to showing that the
square of r-cubes

(3.11)

is (2d− 1 + Σ)-cartesian when considered as an (r + 2)-cube. We intend to do so
by means of the multirelative Blakers–Massey theorem 2.4. However, the (r + 2)-
cube (3.11) is not strongly cocartesian, so we will replace it—in two steps—by an
(r + 2)-cube that is.
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First, we consider the configuration space Conf(2,M × J × I) of ordered pairs
(p1, p2) of distinct points in the interior of M × J × I and the fibration

CE{t1,t2}(∗×{0},M × J) −→ Conf(2,M × J × I)

given by evaluation at t1 and t2. The sets C+(∗,M) and C−(∗,M) are the preimages
of open sets Conf+(2,M × J × I) and Conf−(2,M × J × I), defined respectively
by requiring p1 to be not directly to the right and not directly to the left of p2. This
is natural in M , and thus implies that we have an ∞-cartesian map from (3.11) to
the square of r-cubes

(3.12)

so it suffices to prove that this (r + 2)-cube is (2d− 1 + Σ)-cartesian, using lemma
2.1 (i). That the map from the square (3.11) to the square (3.12) is indeed ∞-
cartesian follows from an application of lemma 2.1 (iii) and corollary 2.3 (i), after
noting that all fibres are equivalent.

Second, we view Conf(2,MS × J × I) as a bundle over the interior of MS × J × I
by mapping the pair (p1, p2) to p1, with subbundles given by the open subsets
Conf+(2,MS × J × I) and Conf−(2,MS × J × I) as well as Conf+(2,MS × J ×
I) ∩ Conf−(2,MS × J × I). Replacing all of these by their fibres over the point
∗ × {0} × {t1}, we obtain a square of r-cubes

(3.13)

mapping to (3.12) by an ∞-cartesian map, so it suffices to show that (3.13) is
(2d− 1 + Σ)-cartesian by lemma 2.1 (iii). That the map from (3.13) to (3.12) is
indeed ∞-cartesian follows as for the map from (3.11) to (3.12); this time using
that all base spaces are the same.

To see that it is, we use the multirelative Blakers–Massey theorem 2.4. The
(r + 2)-cube (3.13) is strongly cocartesian because it is made by cutting out
(r + 2) pairwise disjoint submanifolds from int(M × J × I)\(∗ × {0} × t1) that are
closed as subspaces. Two of these, ∗ × (−1, 0)× {t1} and ∗ × (0, 1)× {t1}, are 1-
dimensional, so the inclusions of their complements are d-connected by general
position. The other r inclusions are up to equivalence of the form N\R ↪→ N for a
submanifold R with handle dimension qi + 2 relative to R ∩ ∂N (set N = (M∅ ×
J × I)\(∗ × J × {t1}) and R = Qi × J × I), so they are (d− qi − 1)-connected,
again by general position. Theorem 2.4 thus gives the degree of cartesianness of
the (r + 2)-cube (3.13) as

(1− (r + 2) + d + d +
∑r

i=1(d− qj − 1)) = (2d− 1 +
∑r

i=1(d− qj − 2))

as desired.
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3.2. Digression

We pause the proof of theorem 2.6 for a moment to comment on aspects of the
proof of the case of a point from the previous subsection. None of them are necessary
for the proof, so this subsection may be skipped on first reading.

3.2.1. The space CE{t1,t2}(∗,M) The final two steps in the proof of the case of a
point featured the space CE{t1,t2}(∗,M) of concordance maps I →M × I that are
injective on {t1, t2}. Although it is not necessary for the proofs, it is worth pointing
out the homotopy type of this space:

Lemma 3.7. There is an equivalence

CE{t1,t2}(∗,M) � ST∗M ∧ Ω∗(M)+

where Ω∗(M) is the space of loops in M based at ∗ ∈M, the subscript + adds an
disjoint base point, and ST∗M ∼= Sd is the one-point compactification of the tangent
space at ∗ ∈M .

Proof. It suffices to produce an equivalence between CE{t1,t2}(∗,M) and the homo-
topy fibre at ∗ ∈M of the canonical retraction ST∗M ∨M →M . To do so, we first
recall that CE{t1,t2}(∗,M) for t1 < t2 in the interior of I is the space of smooth
maps f : I →M × I with f(t) = (∗, t) in a neighbourhood of 0, f(1) ∈M × 1, and
f(t1) �= f(t2). We now perform a sequence of alterations to CE{t1,t2}(∗,M) without
affecting its homotopy type. Firstly, we may replace ‘smooth’ by ‘continuous’ in the
definition. Secondly, we consider the restriction map

CE{t1,t2}(∗,M) −→ CE{t1,t2}(∗,M)t2 ,

where CE{t1,t2}(∗,M)t2 is the space of maps f : [0, t2]→M × [0, 1) such that
f(t) = (∗, t) for all t in a neighbourhood of 0 and such that f(t1) �= f(t2). This
is a fibration whose fibres are contractible, therefore an equivalence. Thirdly, we
use the restriction map

CE{t1,t2}(∗,M)t2 −→ CE{t1,t2}(∗,M)t1 ,

where CE{t1,t2}(∗,M)t1 is the space of maps f : [0, t1]→M × [0, 1) such that f(t) =
(∗, t) for all t in a neighbourhood of 0. This is a fibration with contractible base, so its
fibre over the map t �→ (∗, t) is equivalent to CE{t1,t2}(∗,M)t2 . This fibre agrees with
the space of all paths in M × [0, 1) starting at (∗, t1) and not ending at (∗, t1). This
is the homotopy fibre at (∗, t1) of the inclusion (M × [0, 1))\{(∗, t1)} ⊂M × [0, 1)
which is equivalent to the homotopy fibre at ∗ of ST∗M ∨M →M . �

3.2.2. A variation of step 4○ There is an alternative way to carry out the final
step 4○ in the proof of theorem 2.6 for a point. It is based on the observation
that the equivalence produced in the proof of lemma 3.7 is natural in codimension
0 embeddings of M , so it extends to an equivalence of cubes CE{t1,t2}(∗,M•) �
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ST∗M ∧ Ω∗(M•)+. Up to this equivalence, the final square (3.7) in step 3○ may
thus be written as

(3.14)

In these terms, the task in step 5○ was to show that the lower horizontal map in
the square is (2d− 3 + Σ)-cartesian. The description of the bottom entries of this
square suggests the following strategy: first prove that the bottom map is homo-
topic as maps of cubes to the map obtained by twice looping the loop-suspension
map X → ΩΣX with X = ΣdΩ(M•)+ and then show that the bottom map is suf-
ficiently cartesian by a multirelative version of Freudenthal’s suspension theorem.
This strategy can indeed be implemented: to achieve the first step, one uses lemma
3.6 and the homotopy that it provides, and for the second step one uses that if X• is
a strongly cocartesian r-cube of based spaces and if ki is the connectivity of the map
X∅ → X{i}, then the loop-suspension map of cubes ΣdΩ(X•)+ → ΩΣΣdΩ(X•)+ is
(2d− 1 +

∑r
i=1(ki − 1))-cartesian. This can be shown by an application of a more

flexible version of the multirelative Blakers–Massey theorem [10, theorem 2.5].

3.2.3. CE versus CE The main reason we used CE(∗,M) instead of CE(∗,M)
in step 3○ is the fact that the space CEAS (∗,M) is contractible for ∅ �= S � 3,
which allowed for a simple description of holim∅ �=S⊆3CEAS (∗,M), namely as
Ω2CE{t1,t2}(∗,M) which is by lemma 3.7 equivalent to Ω2(Sd ∧ Ω(M)+). The
corresponding homotopy limit of CEAS (∗,M) can be seen to be equivalent to
the homotopy fibre of the inclusion ST∗M → ST∗M ∧ Ω(M)+. This leads to a
commutative diagram

(3.15)

whose bottom row can, via the indicated equivalences, be identified with the
evident homotopy fibre sequence relating the three spaces involved. In partic-
ular, since the inclusion ST∗M → ST∗M ∧ Ω(M)+ has a left inverse, the map
Ωhofib(ST∗M → ST∗M ∧ Ω(M)+)→ ΩST∗M is nullhomotopic, so the same holds
for the map CE(∗,M)→ CI(∗,M).

The fact that this map is nullhomotopic actually holds more generally: the
map CE(P,M)→ CI(P,M) is nullhomotopic whenever the handle dimension of
∂M ∩ P ⊂ P is less than d, that is, whenever Smale–Hirsch theory applies. One
proof of this fact goes by mapping CE(P,M) and CI(P,M) compatibly to spaces
of sections relative to P ∩ ∂M of bundles over P whose fibre over ∗ ∈ P are
the spaces CE(∗,M) and CI(∗,M) respectively. By the discussion in § 2.7 the
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map from CI(P,M) to the section space with fibres CI(∗,M) is an equivalence,
so to provide the claimed nullhomotopy, it suffices to produce a nullhomotopy
of CE(∗,M)→ CI(∗,M) that varies continuously with ∗ ∈ P . The nullhomotopy
discussed below (3.15) has this property. When Smale–Hirsch theory does not
apply, e.g. for concordance diffeomorphisms, this argument still shows that the
map from CE(P,M) to the section space over P with fibre CI(∗,M) � ΩST∗M

is nullhomotopic.

Remark 3.8. This has an application to the map Diff∂(Dd)→ ΩdSO(d) induced
by taking derivatives. Namely, writing Dd ∼= Dd−1 × I, this map fits into a
commutative square

whose bottom map is nullhomotopic by the discussion above, so we obtain a lift of
the top map to a map of the form Diff∂(Dd−1 × I)→ ΩdSO(d− 1).

3.2.4. Relation to ‘calculus I’ There is some overlap between the arguments in §
3.1 above and those in the final section of [7]. It is worth clarifying the situation.

In section 3 of loc.cit. Goodwillie in effect proved the P = ∗ case of the stability
theorem theorem A, by giving a description of the homotopy type of CE(∗,M) and
CE(∗ × J,M × J) in a range up to 2d− 5 (and more generally of CE(∗ ×Dp,M ×
Dp)). Let us recall how that went. The key in [7, section 3] was a map

CE(∗,M) −→ Ω2Q(ΣdΩ(M)), (3.16)

which was shown to be (2d− 5)-connected (see p. 19 and lemma 3.16 loc.cit.).
Note that the target receives a (2d− 4)-connected map from Ω(hofib(Sd → Sd ∧
Ω(M)+)), so in this range, the map (3.16) has the same form as the middle vertical
map in (3.15). Similarly, there are maps

CE(Dp,M) −→ Ω2Q(Σd−pΩ(M)) (3.17)

which are shown to be at least (2d− 2p− 5)-connected for p � d− 3 by induction
on p, using the delooping trick (see the proof of lemma 3.19 loc.cit.). Moreover,
these maps are compatible with stabilization in the evident sense, so in particular
this implies (a) that we have a (2d− 5)-connected map

hocolimp CE(Dp,M ×Dp) −→ Ω2Q(ΣdΩ(M))

and (b) that the map CE(∗,M)→ CE(∗ × J,M × J) is (2d− 6)-connected.
In [7] these ideas were used to compute the first derivative of the stable concor-

dance diffeomorphism functor in the ‘homotopy calculus’ sense. The map (3.16), or
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the idea behind it, led to another map

C(M) −→ Ω2Q(ΛM/M), (3.18)

where ΛM/M is the (homotopy) cofibre of the inclusion M → ΛM = Map(S1,M)
of M into the free loop space of M as the constant loops (see p. 24 of loc.cit.). It
is also compatible with stabilization, so that it gives a map

hocolimp C(M ×Dp) −→ Ω2Q(ΛM/M)

which eventually leads to a computation of the aforementioned first derivative.

Remark 3.9. (i) In [7] the maps (3.16) and (3.18) were defined using a certain
‘cobordism’ model for the targets (see p. 19–20 and p. 23–24 loc.cit.), whereas
we constructed the related vertical maps in (3.15) by cutting holes in I.

(ii) There was an oversight in [7]: the compatibility of (3.17) and (3.18) with sta-
bilization was never explained. Goodwillie would like to repair that oversight
by pointing out that the definition of these maps using the ‘cobordism’ model
is rather obviously compatible with stabilization. In fact, if a family of concor-
dance embeddings of P in M , parametrized by the simplex Δk, satisfies the
transversality condition ‘hypothesis 3.18’ of loc.cit. then the resulting family
of concordance embeddings of P × J in M × J satisfies the same condition,
and the resulting k-simplex in the cobordism space is essentially unchanged.

(iii) Although the cobordism approach was convenient for establishing compat-
ibility with stabilization (bypassing the need for the homotopy constructed
above using lemma 3.6) and was also adequate for establishing the absolute
(2d− 5)-connectedness of stabilization in the point case, it may be difficult to
use it to obtain the multirelative statement. In our proof, this multirelative
statement for P = ∗ is needed even for the absolute statement for P = Dp.

3.3. The case of a disc

Returning to the proof of theorem 2.6, we now give the argument in the case
when P is a p-disc Dp ⊂M with Dp ∩ ∂M = ∂Dp, using the case p = 0 from § 3.1.
The assertion is that the stability (r + 1)-cube

sCE(Dp,M•) =
(
CE(Dp,M•)

σ−→ CE(Dp × J,M•×J)
)

is (2d− p− 5 + Σ)-cartesian if d− p � 3 and d− qi � 3 for all i. The proof is by
double induction, using the induction hypothesis

(Hp,k) For an embedded disc Dp ⊂M with Dp ∩M = ∂Dp, the cube sCE(Dp,M•)
is (k + d− p− 3 + Σ)-cartesian.

The goal is to prove (Hp,d−2) for d− p � 3. From the case of a point consid-
ered in the previous subsection, we have (H0,d−2) for d � 3. Using lemma 2.1
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(ii), we also have (Hp,0) for d− p � 3, since both of the r-cubes CE(Dp,M•) and
CE(Dp × J,M• × J) are (d− p− 2 + Σ)-cartesian by theorem 2.9. The induction
will be completed by showing that the statement (Hp,k) follows from (Hp,k−1) and
(Hp−1,k) if d− p � 3. To do so, note that the scanning map from § 2.6 is compatible
with stabilization, so that we have a scanning map of (k + 1)-cubes

sCE(Dp,M•)
τ−→ ΩsCE(Dp−1,M•). (3.19)

By (Hp−1,k) the cube sCE(Dp−1,M•) is (k + d− (p− 1)− 3 + Σ)-cartesian, so
the target of this map is (k + d− p− 3 + Σ)-cartesian. To show (Hp,k), i.e. that
the source of (3.19) is also (k + d− p− 3 + Σ)-cartesian, it suffices by lemma 2.1
(i) to show that the entire (k + 2)-cube (3.19) is (k + d− p− 3 + Σ)-cartesian. To
this end, note that our identification of the scanning map with (2.7) is compatible
with stabilization: the cube (3.19) is equivalent to the inclusion

sCE
(
Dp

[ε,1], (M\T )•\Dp
[−1,−ε])

⊂−→ sCE
(
Dp

[ε,1], (M\T ))

of (r + 1)-cubes. Statement (Hp,k−1) shows that this (r + 2)-cube is (k − 1 + d−
p− 3 + Σ + (d− p− 2))-cartesian. (Here one sets Qr+1 : Dp

[−1,−ε].) Therefore (3.19)
is (k − 1 + d− p− 3 + Σ + (d− p− 2))-cartesian, so in particular (k + d− p− 3 +
Σ)-cartesian, since d− p− 3 � 0.

3.4. The general case

Finally, we establish the general case of theorem 2.6: that the stability (k + 1)-
cube sCE(P,M•) is (2d− p− 5 + Σ)-cartesian if d− p � 3 and d− qi � 3 for all i.
Recall that p was defined as the handle dimension of the inclusion ∂M ∩ P ⊂ P , so
there exists a handle decomposition of P relative to a closed collar on ∂M ∩ P with
handles of index at most d− 3. The proof will be an induction over the number of
handles k of such a decomposition.

If k = 0, then P is a closed collar on P ∩ ∂M , so sCE(P,M\Q•) is objectwise
contractible by lemma 2.7 and thus in particular ∞-cartesian by corollary 2.3 (i).
To go from k − 1 to k, suppose that P = P ′ ∪H where H = Di ×Ddim(P )−i is
a handle of index i � p disjoint from ∂M ∩ P , and assume that the claim holds
for P ′. The base of the restriction map sCE(P,M\Q•)→ sCE(P ′,M\Q•) satisfies
the cartesianness bound of the claim by the induction hypothesis, so using lemma
2.1 (i) and (iii) it suffices that the (k + 1)-cubes of homotopy fibres over all base-
points satisfy the cartesianness bound of the claim. In fact, since the CE(P ′,M∅)
is connected by theorem 2.10, it suffices to take homotopy fibres of the inclusion.
As a result of the parameterized isotopy extension theorem, this (k + 1)-cube of
homotopy fibres over the inclusion is equivalent to sCE(H,M ′

•) where M ′ ⊂M is
the complement of an open tubular neighbourhood of P ′ disjoint from the Qi’s
and is so that H ∩ ∂M ′ = (∂Di)×Ddim(P )−i. Now note that H is a closed disc
bundle as in lemma 2.8, so the restriction map sCE(H,M ′

•)→ sCE(Di,M ′
•) along

Di × {0} ⊂ Di ×Ddim(P )−i = H is a objectwise equivalence. But sCE(Di,M ′
•) sat-

isfies the cartesianness bound of the claim by the case treated in the previous
subsection, so the proof is complete.
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4. Applications to concordance diffeomorphisms and homeomorphisms

In this section we explain some applications of theorem A to spaces of concordance
diffeomorphisms (see § 4.1) and of concordance homeomorphisms (see § 4.2).

4.1. Smooth concordances

Recall from the introduction that C(M) for a compact smooth d-manifold is the
topological group of diffeomorphisms of M × I →M × I that agree with identity
on a neighbourhood of M × {0} ∪ ∂M × I, equipped with the smooth topology.
Note that C(M) = CE(M,M) since M is compact. We begin with an invariance
result for C(M × J)/C(M) with respect to attaching certain handles.

Theorem 4.1. Let M and N be compact d-manifolds such that N is obtained from
M by attaching finitely many handles of index � k. If k � 3 then the map

C(M × J)/C(M) −→ C(N × J)/C(N)

is (d + k − 5)-connected.

Proof. The map in consideration is the induced map on vertical homotopy fibres of

so we may equivalently show that the map on horizontal homotopy fibres has the
claimed connectivity. By induction over the number of handles, it suffices to prove
the case N = M ∪H where H is a single k-handle with k � 3. In this case, as a
result of the parametrized isotopy extension theorem together with lemma 2.8 and
theorem 2.10, the map on horizontal homotopy fibres agrees up to equivalence with
CE(Dd−k,M ∪H)→ CE(Dd−k × J, (M ∪H)× J) where Dd−k ⊂ H is a cocore of
the k-handle. The latter map is (d + k − 5)-connected by theorem A, so the claim
follows. �

Corollary 4.2. Let M ↪→ N be a k-connected embedding between compact d-
manifolds. If

(i) the inclusion ∂M ⊂M induces an equivalence of fundamental groupoids and

(ii) 2 � k � d− 4,

then the map

C(M × J)/C(M) −→ C(N × J)/C(N)

is (d + k − 4)-connected.

Proof. We may assume without loss of generality that e lands in the interior of N ,
so that the complement gives a bordism W =: N\int(M) : ∂M � ∂N . By theorem
4.1, it suffices to show that W can be built from a closed collar on ∂M by attaching
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handles of index > k. This follows from handle trading (see e.g. [20, theorem 3])
using that (i) and (ii) imply that the inclusion ∂M ⊂W is k-connected. �

The next result involves the notion of a tangential k-type which we briefly recall.
Two d-manifolds M and N are said to have the same tangential k-type for some
k � 0 if there exists a space B and factorizations M → B → BO and N → B → BO
of the classifier of the respective stable tangent bundles such that the maps M → B
and N → B are k-connected. A codimension 0 embedding M ↪→ N is an equivalence
on tangential k-types if there exists a space B and a factorization N → B → BO
such that the map N → B and the composition M ↪→ N → B are k-connected.

Example 4.3. (i) Two spin d-manifolds have the same tangential 2-types if their
fundamental groupoids are equivalent. An embedding between such mani-
folds is an equivalence on tangential 2-types if it induces an equivalence on
fundamental groupoids.

(ii) Any k-connected codimension 0 embedding between manifolds is an equiva-
lence on tangential k-types.

Theorem 4.4. Let M and N be d-manifolds and k an integer with 2 � k < d/2.

(i) If M and N have the same tangential k-type, then there exists an equivalence

τ�d+k−5

(
C(M × J)/C(M)

) � τ�d+k−5

(
C(N × J)/C(N)

)
between the indicated Postnikov truncations.

(ii) Assume in addition k < (d− 1)/2. For any codimension 0 embedding M ↪→ N
that is an equivalence on tangential k-types, the induced map

(C(M × J)/C(M)) −→ (C(N × J)/C(N))

is an equivalence on Postnikov (d+k-5)-truncations.

Proofs of theorem 4.4 and corollary B. Theorem 4.4 is a direct consequence of [16,
theorem 5.7] applied to τ�k+d−5(C(−× J)/C(−)), considered as a functor from the
category of compact d-manifolds and isotopy classes of codimension zero embed-
dings to the homotopy category of spaces. The assumption of the theorem is satisfied
by theorem 4.1.

Corollary B almost follows from the case M = Dd of theorem 4.4 (ii) except
that we do not require the additional assumption k < (d− 1)/2. That this is not
necessary in the case M = Dd follows from the second part of [16, theorem 5.7] �

4.2. Topological concordances

We write CTop(M) for the topological group of topological concordances by which
we mean the space of homeomorphisms of M × I that are the identity in a neigh-
bourhood of M × {0} ∪ ∂M × I, equipped with the compact-open topology. The
definition of the stabilization map makes equal sense for topological concordances.
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Proposition 4.5. Let M be a compact smooth d-manifold with d � 5. If

BC(Dd) −→ BC(Dd × J)

is k-connected for some k � 0, then the square

is k-cartesian. The same implication holds rationally or p-locally for any prime p.

Proof. As explained in [2, p. 453–458], it follows from smoothing theory that there
is a map of homotopy fibre sequences

(4.1)

where the right terms are the space of sections, fixed on the boundary, of the
indicated bundles where Fd =: hofib(Top(d)/O(d)→ Top(d + 1)/O(d + 1)) is the
homotopy fibre of the map induced by taking products with the real line. The
rightmost vertical map is induced by the stabilization map Fd → ΩFd+1 [2, p. 450],
so its homotopy fibre is given by a similar space of sections Sect∂(Gd ×O(d) Fr(M)→
M) of a bundle over M whose fibre is the space Gd =: hofib(Fd → ΩFd+1).

For M = Dd the middle terms in (4.1) are contractible by the Alexander trick,
so since C(Dd)→ C(Dd × J) is (k − 1)-connected by assumption it follows that
the section space ΩSect∂(Gd ×O(d) Fr(Dd)→ Dd) � Ωd+1Gd is (k − 2)-connected.
Moreover, as Fd is (d + 1)-connected for d � 5 by [18, Essay V.5.2], the space Gd is
d-connected and thus in fact (d + k − 1)-connected. For a general M , this implies
that the right map in (4.1) is k-connected by obstruction theory, so the left square
is (k − 1)-cartesian and the claim follows.

The rational (or p-local) addendum follows by the same argument: the case
of a disc shows that Gd is d-connected and rationally (or p-locally) (d + k −
1)-connected, so the claim follows again from obstruction theory. �

Corollary 4.6. For a smoothable 1-connected compact spin manifold M of
dimension d � 6,

BCTop(M) −→ BCTop(M × J)

is rationally min(d− 4, 	 32d
 − 9)-connected.

Proof. This follows from proposition 4.5 since the two maps BC(Dd)→ BC(Dd+1)
and BC(M)→ BC(M × J) are rationally min(d− 3, 	 32d
 − 8)-connected as a
result of corollary C for k = 2. �
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Remark 4.7. As the forgetful map CPL(M)→ CTop(M) from the PL-version of the
space of concordance homeomorphisms is an equivalence for all PL-manifolds M of
dimension � 5 [1, theorem 6.2], the results of this section also apply to CPL(M).
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