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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• An unexplored regime of binary packing
is shown to be looser than mono-sized
one.

• Occurrence of this exceptional regime is
statistically analysed and explained.

• Transition of binary RCP state is ratio-
nalized within modified hard-sphere
scheme.
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A B S T R A C T

We present an unexplored regime, where the binary random close packing fraction ϕb
RCP is smaller than that of 

the mono-sized one ϕm
RCP. This is against previous observations and common perceptions that binary packing 

tends to be denser than mono-sized packing. We numerically confirm the critical condition for reaching this 
exceptional regime in the size ratio (Rr) and mole fraction (Xs) space, where Rr is close to 1, and the mole fraction 
of the smaller sphere Xs close to 0. Under the same loading condition, the stiffness of the packing at this 
exceptional regime is found to be significantly higher than that of the mono-sized packing. The formation and 
transition of this regime for varying Rr and Xs are theoretically modelled based on the hard-sphere fluid theory. 
This exceptional regime remains unreported in existing literature, yet significant for our fundamental under-
standing of binary packing systems.   
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1. Introduction

The random close packing (RCP) problem has attracted extensive
attention, which is of great importance not only in our exploration into 
the fundamental physics of glasses, liquids, and colloidal systems [1], 
but also in facilitating the optimisation of conveying, handling, and 
processing different types of granular materials [2]. The RCP problem 
can be dated back to Bernal and Mason’s experimental study on packings 
with identical spheres, in which the random close packing fraction for 
mono-sized packing, ϕm

RCP, was measured to be around 0.64 with an 
average coordination number, Zm

c , of about 6 [3]. Following experi-
mental and numerical studies [4–8] reported that ϕm

RCP generally ranges 
from 0.61 to 0.69. Despite great progress in both experimental and 
numerical studies [9–14], we still lack a comprehensive understanding 
of RCP, especially for binary packings, in terms of the particle-scale 
driving mechanism, collective behaviour of jamming development 
[15–17], tuneable properties including stiffness, mechanical stability 
[6], anti-crystallization [18,19], thermal and electrical conduction 
[20,21]. 

Few analytical approaches have been reported enabling satisfactory 
interpretation for the definition, formation, and characterization of 
mono-sized RCP. These models [22–25] simplify the structure evolution 
of RCP by concentrating on the contacting neighbours of an individual 
particle, while ignoring influences of non-contacting surrounding par-
ticles. Very recently, Zaccone [26] proposed a simple route based on the 
nearest-neighbour statistics towards the analytical solution for ϕm

RCP, 
with the effective boundary condition of Zm

c 12, ϕm
CP ≈ 0.74, i.e., the 

known closest packing. No extra fitting parameters are required in this 
scheme, and the predicted ϕm

RCP highly matches the measurements from 
existing experiments and simulations. Noticeably, one could relate RCP 
to another critical packing fraction, named jamming density, at which 
the packing develops a mechanically stable structure that can reversibly 
withstand external loading with particle contacts percolating across the 
whole system [27–29]. Indeed, for the simplest case of mono-sized 
frictionless spheres, the jamming density (≈0.64) is around ϕm

RCP [30]. 
However, some studies based on the finite-size analysis [31,32] suggest 
that RCP appears far from the jamming point if particles are relatively 
soft, i.e., RCP could be over-jammed. 

Regarding binary granular packings, the mixture can usually fill 
more space than mono-sized packings, with the corresponding RCP 
factor ϕb

RCP > ϕm
RCP. Theoretical solutions for both mono-sized packings 

[33] and binary mixtures [34] were developed based on equilibrium
statistical mechanics. Recent studies [10–12,19,35] focus on situations
with moderate or extremely small size ratio (small radius on large one),
i.e., Rr→0. A quantity of empirical packing models were proposed based
on the assumption that fine particles can fill the void among large par-
ticles [36–38]. However, the other near-boundary region, i.e., Rr→1, has
seldom been investigated. One could intuitively expect the asymptotic
trend to the mono-sized packing.

In this work, we remedy the unexplored region using numerical and 
theoretical approaches. We first provide numerical evidence for the 
existence of the so-called loose RCP state, which exhibits an “abnormal” 
valley in the regime transition from ϕb

RCP > ϕm
RCP to ϕb

RCP < ϕm
RCP. Then, 

the occurrence of this exceptional regime is rationalized theoretically by 
the extension of Zaccone’s scheme to the binary packing problem. 

2. Simulations of binary packing

2.1. Numerical method

Numerical simulations are performed by the in-house code, KIT-DEM 
[21,39]. Each configuration is identified by the size ratio Rr ds/dl and 
mole fraction Xs Ns/(Ns + Nl). Here di and Ni are the particle diameter 
and number, and the subscripts s and l represent the small and large 
particles, respectively. At the initial state, 5000 frictionless non-cohesive 

spherical particles are randomly packed within a periodic cubic domain 
[40]. The Hertzian contact model [41] is adopted, and the elasticity 
modulus is set large enough to guarantee the final particle-particle 
overlap is smaller than 0.1% particle radius. 

All packings are uniaxially compressed using a quasi-static protocol 
[39] until reaching the RCP. Although the precise definition of RCP is
still an open question and various criteria have been proposed [6,42,43],
we adopt Bernal’s criterion to define RCP, i.e., Zc 6 [3]. Then, the
critical packing fraction ϕRCP is defined at Zc 6. For a given configu-
ration, we carry out five realizations to examine the repeatability, and
related quantities including packing fraction and stress are calculated as
the mean values.

During the loading process, once crossing the critical point (Zc 6), 
as shown in Fig. 1(a), the packing starts jamming and its axial stress σzz 
significantly increases with strain ϵ. Under the same compression strain, 
packings with various mole fractions reach different stress levels, 
exhibiting varying packing stiffness. Here, we take characteristic stress 
σ*

zz at ϵ 5% to characterize the post-jamming stiffness. 

2.2. The unexpected valley of binary packing 

Compared with mono-sized packing (Xs 0.00), the mixture with a 
few small particles, such as Xs 0.17 shown in Fig. 1(a), leads to a stiffer 
packing; however, further increasing Xs, the packing becomes relatively 
softer. As is detailed in Fig. 1(b), from the pure large-particle packing to 
the mixture, and further to the pure small-particle packing, σ*

zz presents a 
peak-valley tendency. During compression, if a packing reaches RCP 
with a smaller normal strain, corresponding to a smaller critical packing 
fraction ϕRCP, its stress increases relatively faster, as is demonstrated by 
the stiffer strain-stress curve shown in Fig. 1(a). Therefore, over Xs, ϕRCP 

shows an inverse trend to σ*
zz. Here, for the convenience of comparing 

ϕb
RCP and ϕm

RCP( 0.6494), we introduce a relative quantity Δϕb
RCP

ϕb
RCP − ϕm

RCP
ϕm

RCP
. 

The transition from the peak (Δϕb
RCP > 0) to valley (Δϕb

RCP < 0) with 
Xs ranging from 1 to 0 are clearly demonstrated in Fig. 1(c). Between 

these two regions, there exists a zero point X0
s (Rr) at which Δϕb

RCP 0, 

and for Rr 0.85, X0
s is around 0.27. Though the lowest Δϕb

RCP 
appearing at the exceptional valley is just slightly smaller than that at 
the peak, their corresponding stresses shown in Fig. 1(b) demonstrate a 
difference of about 26% and this value is expected to be larger with 
further compressing. This suggests that the mechanical properties of the 
packing can be largely tuned by adding a small amount of small particles 
into the mono-sized packing. 

To understand how much the large and small particles contribute to 
the RCP separately, we do statistics on the coordinate number of large 
and small particles at Zc 6, as shown in Fig. 2. For a mono-sized 
packing, the coordinate number approximately follows a normal dis-
tribution. Particles most likely have around six contact pairs and form a 
tight structure. When the packing is mixed with a bit of small particles, 
most small particles are bucklers whose coordinate numbers are less 
than six, while the coordinate number distribution of large particles 
slightly shifts to the right. It suggests that the original packing struc-
tures, centred by large particles, are mostly maintained. However, some 
looser but stable packing clusters appear locally due to the added small 
particles and lead to a smaller ϕb

RCP, as shown in Fig. 2(b). Furthermore, 
we compute the local packing fraction ϕlocal of each particle using Vor-
onoi tessellation. The resulting histograms for large and small particles 
at various Xs are presented in Fig. 2(e) and (f), respectively. In com-
parison to the mono-sized packing (Xs 1 and 0), the local packing 
fraction of large particles slightly increases due to the presence of 
mingled small particles. However, for small particles, ϕlocal is signifi-
cantly smaller than the global packing fraction, indicating a higher de-
gree of non-uniformity within the packing. This observation confirms 



the emergence of looser clusters, as shown in the insert of Fig. 2(b). With 
an increasing proportion of small particles, more contacts are built 
around small particles, effectively densifying the space together with 
large particles. With more small particles added, this constructed dense 
structure breaks down and the overall packing recovers to the original 
RCP structure but is dominated solely by small particles. 

2.3. Pair correlation function 

Moreover, we provide a close insight into this transition with the 
help of the pair correlation function p(r) [44,45], which can measure the 
probability density of possible distances between centres of two particles 
( c→i and c→j) within a radial space [r, r+ dr]. The function is defined as 

p(r)
1

ρ(Ns + Nl)

∑

c→i

∑

c→j

δ
[(⃒
⃒
⃒
⃒ c→i c→j

⃒
⃒
⃒
⃒ r

)

•

(

r+ dr
⃒
⃒
⃒
⃒ c→i c→j

⃒
⃒
⃒
⃒

) ]
1

4πr2dr
, (1)  

where ρ is the number density, i.e., ρ (Ns + Nl)/V, and V is the domain 
volume. Peak values of p(r) continuously occur but become hard to 
identify as r/dl increases. Here, we focus on the range of r/dl < 3. In 
Fig. 3(a), we present a schematic diagram of a three-layer structure 
surrounding a large particle, indicating that the majority of the packing 
is comprised of large particles. Small particles only appear in the third 
layer, implying that they have a relatively small contribution to the 

packing. The distance between the central large particle and the third 
layer falls within the range of [2.56dl, 2.65dl]. Fig. 3 (b) ~ (f) demon-
strate a transition from the loose to normal RCP state. From the variation 
of p(r) with Xs, the third peak moves leftwards from 2.65dl, where large 
particles dominate the third layer, to smaller than 2.56dl, suggesting 
small particles break through the third layer into the second. In other 
words, the RCP state turns to normal (with the third peak of 2.65dl in 
p(r)) from the loose one (with the third peak of 2.56dl in p(r)) as we 
increase the number of small spheres in the mixture. Additionally, the 
second peak becomes obscure and even vanishes after the RCP state 
transition, see Fig. 3 (d) and (e), indicating s-l pairs contribute more to 
the second and third peaks in p(r) and even dominate the third layer. 
Therefore, the impact of small particles on the third layer can be 
regarded as a meso-scale indicator for the RCP state, and the critical 
position of the third peak on p(r) defines the phase boundary. 

3. Hard-sphere fluid theory for binary systems

3.1. Theoretical development

In order to gain more understanding of this regime transition, we 
further provide a theoretical prediction on the binary RCP. Here, the 
hard-sphere (HS) fluid theory is employed for estimating the partial 
radial distribution functions (RDF) in binary packing, allowing the sta-
tistical description of the local structure around a sphere. Specifically, 
three types of sphere-to-sphere interaction, including small-small, large- 

Fig. 1. (a) Non-dimensional axial stress σ̂zz normalized by the elastic modulus of particles and average coordinate number Zc vs. axial strain ϵ during loading for 

cases with a fixed Rr = 0.85 and various Xs = 0.00, 0.17, 0.41, and 0.62. (b) Characteristic stress σ̂*
zz and (c) relative random close packing fraction Δϕb

RCP vs. mole 
fraction Xs for Rr = 0.85. The cases in (a) are marked by solid spheres in (b) and (c) correspondingly. 



large, and small-large pairs, with gss(d), gll(d) and gsl(d), respectively, 
indicate the probability density within a radial distance of d. Corre-
spondingly, the contact value Zc,ij for the above three pair types (i, j for s 
or l) can be given by [26]. 

Zc,ij 4πρ
∫ dij+ε

0
g0

ijgij
(
dij
)
δ
(
r dij

)
r2dr, (2)  

where dij is the centre distance between two contacting spheres; g0
ij is a 

factor to be determined from the consistency conditions stated later. By 
weighting the contact value with mole fraction, the average coordina-
tion number Zb

c of a binary packing is 

Zb
c (Xs,Rr) Xs

(
Zc,ss + Zc,sl

)
+Xl

(
Zc,ll +Zc,ls

)
, (3)  

where the mole fraction Xl Nl/(Ns + Nl). Naturally, the binary pack-

ing reduces to mono-sized packing, i.e., Zb
c(Xs,Rr) should be consistent 

with Zm
c under the following situations, i.e., the so-called consistency 

conditions: 

Zb
c (0,Rr) Zm

c ;Z
b
c (1,Rr) Zm

c ; Zb
c (Xs, 1) Zm

c . (4) 

Moreover, substituting Eq. (2) into Eq. (3), Zb
c reads 

Zb
c 4πρg0

[

Xsd3
s g̃0

ssgss(dss)+Xld3
l g̃0

llgll(dll)+ d3
slg̃

0
slgsl(dsl)

]

, (5)  

where the factor g0
ij of Eq. (2) is expressed as g0

ij g0g̃0
ij. Here, g0 is a 

normalization constant, and as followed by Zaccone’s route [26], g0 can 
be determined by introducing the conclusion of the mono-sized close 
packing (Zm

c 12, ϕm
CP ≈ 0.74); g̃0

ij is responsible for the consistency 
condition and therefore it is a function of Xs and normalized within 

Fig. 2. Histograms of coordinate numbers for small and large particles at Xs = 0.00 (a), 0.17 (b), 0.41 (c), and 0.62 (d), which count all contacts around particles. The 
average coordinate number of small (Zs

c) and large (Zl
c) particles are highlighted. Histograms of local packing fraction ϕlocal are provided for large (e) and small (f) 

particles. The arrows indicate the direction of Xs growing. 



[0, 1]. Specifically, corresponding to the consistency conditions, the 
constraints on g̃0

ij are given respectively by. 

g̃0
ss(0) 0; g̃0

ss(1) 1; (6)  

g̃0
ll(0) 1; g̃0

ll(1) 0; (7)  

Xsg̃0
ss(Xs)+ (1 Xs)g̃0

ll(Xs)+ g̃0
sl(Xs) 1 (8) 

Under the constraints of Eqs. (6)–(8), the possible format of ̃g0
ij can be 

g̃0
ss(Xs) Xs; g̃0

ll(Xs) 1 Xs; g̃0
sl(Xs) 2Xs(1 Xs). (9) 

Regarding gij
(
dij
)
, the theory on additive HS mixtures, as an exten-

sion of the mono-component one, can provide a statistical solution, e.g., 
the BMCSL scheme [46] extended from the Carnahan-Starling equation. 
[47]. It has been proved that the estimation on gij

(
dij
)

given by the 
original BMCSL expression is remarkably accurate for the moderate re-
gion of Xs and Rr, while for regions Xs→0 or Xs→1 of interest in this 
work, deviation occurs [48,49]. Thus, we employ a modified version 
which improved the BMCSL expression to fully satisfy the nine consis-
tency conditions for binary mixtures by adding an additional term [49]. 
Moreover, in order to generate a quantitative description and better 
accommodate the theoretical framework, two adjustable indexes nl and 
ns are introduced on the additional term whilst all consistency condi-
tions in [49] are respected. The final expressions, where gBMCSL

ij
(
dij
)

is the 
contact value of the RDF from the BMCSL expression, explicitly read 

gll(dll) gBMCSL
ll (dll)+

(
Xs

4
ξ1ξ2

(1 ξ3)
2

dll dss

dsl
d2

lldss

)nl

, (10)  

gss(dss) gBMCSL
ss (dss)+

(
Xl

4
ξ1ξ2

(1 ξ3)
2

dll dss

dsl
d2

ssdll

)ns

, (11)  

gsl(dsl) gBMCSL
sl (dsl)+

(
1
4

ξ1ξ2

(1 ξ3)
2

dll dss

dsl

dlld3
ss

dsl

)

, and (12)  

ξn
π
6

ρ
∑

i
Xidn

ii. (13) 

In the original BMCSL scheme [24], both nl and ns equal 1. Alter-
native modifications based on the BMCSL scheme can be referred to 
[50,51]. However, they can not output better predictions than Eqs. (10)– 
(13). 

Substituting Eqs. (10)–(12) into Eq. (4) and setting Zb
c 6 establish 

an equation regarding ϕb
RCP, Xs and Rr, and thus we can solve ϕb

RCP on the 
Rr-Xs space. We first solve the distribution of ϕb

RCP based on the original 
expression in [49], i.e., nl 1 and ns 1, and compare our prediction 
against the reported data in [34]. As shown in Fig. 4(a), the prediction of 
our theory can capture the tendency of ϕb

RCP, i.e., an asymmetric dis-
tribution along Xs, which is also in agreement with direct observations 
from other experiments and simulations [12,19,52]. Furthermore, the 
solution quantitatively matches the reported data in the region Rr→1, 
though a noticeable deviation is observed in the moderate-Rr region 
(Rr < 0.5). The hard-sphere theory is developed based on the particle- 
scale configuration and is connected to the macroscopic equation-of- 
state (EOS). Different statistical models correspond to different EOSs. 
In the case of a binary mixture, its EOS varies across the range of Rr. 
While alternative models such as the Percus-Yevick theory [53] and 
Carnahan-Starling equation [47] may provide a good fit for the mod-
erate-Rr region, they tend to lose accuracy as Rr→1. Therefore, we 
adhere to the current scheme as its solution is sufficiently accurate for 
the region of interest in our study. 

3.2. Prediction of phase boundary 

More important, the obtained theoretical prediction can reproduce 
the transition discovered in the above numerical experiments. In Fig. 4 

(b), Δϕb
RCP with respect to Rr and Xs extracted from all simulation cases 

Fig. 3. The variation of pair correlation function p(r) of Rr = 0.85 crossing the border of the loose RCP state with increasing Xs, i.e., from (b-d) locating within the 
valley region to (e-f) locating outside, and the corresponding positions on the Rr-Xs space can be referred to the symbol in Fig. 4(b). The values of r/dl at the local 
peaks of p(r) are indicated and can be referred to the particle-particle topology in (a). 



are plotted. The valley of interest (Δϕb
RCP < 0) as highlighted by the 

black line, which contains X0
s (Rr) extracted from numerical simulations 

and solved by the HS fluid theory. A good agreement to the simulation 
results (dotted line) can be obtained when ns 0.40 and nl 0.85 (solid 
line), as shown in Fig. 4(b). Besides, the original expression in [24] with 
nl 1 and ns 1 (dashed line) is also included for comparison. To be 
safe, we also test this modified version against the original version and 
the reported data. In Fig. 4(a), solutions based on the different groups of 
nl and ns are almost the same over the most range of ϕs, except in the 
range of ϕs→0, see the insert. This suggests that modifying the addi-
tional terms in Eqs. (10) and (11) can only effectively influence the near- 
boundary range rather than the moderate Rr-Xs space. Moreover, the 
proposed expression with modified nl and ns is capable of predicting the 
loose RCP region, which is not only confirmed by our simulation results 
but also supported by the data reported in [34] on a qualitative basis, see 
the insert in the Fig. 4(a). 

In summary, the asymmetricity of packing fraction along mole 

fraction was observed from our simulation and existing data in the 
literature. The original statistical model used in the hard-sphere fluid 
theory is capable of recovering the dependence of binary packings on Rr 
and Xs, and specifically such asymmetricity is mainly from the cross- 
term gsl(dsl) in Eq. (13). Furthermore, we find that the looser binary 
packing should be owed to small particles distorting the typical compact 
structures, like trace impurities, as presented in our statistical analysis, 
which results in non-uniform structures. Our proposed model takes into 
account the contribution of small-small contacts to the non-uniformity, 
which is reflected by the indexes nl and ns introduced in gll(dll) and 
gss(dss). 

4. Conclusions

In this work, we report a regime transition of binary packings from
the loose RCP state, as compared to the mono-sized limit (i.e., 
ϕb

RCP < ϕm
RCP), to the normal one (i.e., ϕb

RCP > ϕm
RCP). The existence of the 

former regime is against our common understanding that a binary 

Fig. 4. (a) Relative packing fraction Δϕb
RCP vs. volume 

fraction of the small component, ϕs =

XsR3
r /
(
XsR3

r + Xl
)
. Open symbols are data reported in 

[34]; dash lines are theoretical predictions based on 
the Eqs. (10)–(12) with nl = 1 and ns = 1, while solid 
lines are the ones with nl = 0.40 and ns = 0.85. The 
subfigure is a zoom-in view of the near-boundary re-
gion (Xs→0). (b) The contour plot of the relative 

packing fraction Δϕb
RCP from simulations on the Rr-Xs 

space. The valley region appears in yellow. The 
dashed line represents the prediction by the original 
expression of gij

(
dij
)

in [49], with nl = 1 and ns = 1; 
the dotted line is extracted from simulation results; 
the solid line is predicted by Eqs. (10)–(12) with nl =

0.40 and ns = 0.85, selected for fitting the simulation 
data. The symbol can be referred to Fig. 3 for 
further statistical analyses of the local packing struc-
ture of spheres. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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packing should always be denser than a mono-sized one. This transition 
is confirmed through DEM simulations, and the exact phase boundary, 
ϕb

RCP ϕm
RCP, of the loose RCP state can be established. The simulation 

also provides rich statistical information for this observed transition 
with an increasing fraction of smaller particles, during which small 
particles gradually dominate the third layer and are mixed into the 
second layer. Moreover, we have developed a theoretical model for bi-
nary packings by extending the recent model for mono-sized packing 
[26]. The proposed model has been validated against the data of binary 
packing reported in [34], and can predict the regime transition on the 
size ratio and mole fraction, Rr-Xs, space and quantitatively match the 
numerical observations. The implications of this unexpected regime are 
also demonstrated through the observed stiffness differences, which 
may result in different responses to external excitations. 

In the future, this theoretical approach can be extended to poly-
disperse granular media [54,55]. Compared with the binary packing, it 
seems likely to realize much looser RCP packings by adjusting size dis-
tribution. Since mechanical and transport properties of granular mate-
rials are related to packing structures, this exceptional RCP state exhibits 
unique mechanical properties, such as more porosity and higher stiffness 
compared with mono-sized packing, potentially contributing to impor-
tant engineering practices, such as lightweight concrete design [56], 
microstructure design of battery electrodes [57], and optimized gran-
ular beds for water retention [58,59], filtration [60,61], and thermal 
energy storage [62,63]. 
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