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ABSTRACT
Solving a system of hundreds of chemical differential equations in
environmental simulations has a major computational complexity,
and thereby requires high performance computing resources, which
is a challenge as the spatio-temporal resolution increases. Machine
learning methods and specially deep learning can offer an approx-
imation of simulations with some factor of speed-up while using
less compute resources. In this work, we introduce a neural net-
work based approach (ICONET) to forecast trace gas concentrations
without executing the traditional compute-intensive atmospheric
simulations. ICONET is equipped with a multifeature Long Short
Term Memory (LSTM) model to forecast atmospheric chemicals
iteratively in time. We generated the training and test dataset, our
target dataset for ICONET, by execution of an atmospheric chem-
istry simulation in ICON-ART. Applying the ICONET trained model
to forecast a test dataset results in a good fit of the forecast values
to our target dataset. We discussed appropriate metrics to evaluate
the quality of models and presented the quality of the ICONET
forecasts with RMSE and KGE metrics. The variety in the nature of
trace gases limits the model’s learning and forecast skills according
to the respective trace gas. In addition to the quality of the ICONET
forecasts, we described the computational efficiency of ICONET as
its run time speed-up in comparison to the run time of the ICON-
ART simulation. The ICONET forecast showed a speed-up factor
of 3.1 over the run time of the atmospheric chemistry simulation
of ICON-ART, which is a significant achievement, especially when
considering the importance of ensemble simulation.
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1 INTRODUCTION
Computational optimization approaches are used in many research
fields to achieve the optimal solution corresponding to various cri-
teria or constraints, e.g., reducing costs and computation time, or
increasing profits [3, 14]. The ultimate objectives of optimization
are to minimize undesirable effects, to provide more useful solutions
and an enhanced efficiency and reliability, and to reduce costs [21].
Computer-based modeling and simulation are widely used tech-
niques in scientific research to analyze and understand real-world
systems, as well as to design and develop performant products [34].
However, the development and execution of large-scale and com-
plex systems’ simulations are time- and energy-consuming. Under
the perspective of energy saving, and despite the availability of
modern and powerful computing technologies, there is a need “to
address issues such as the complexity and scale of the systems that
need to be modeled today” [11]. We addressed in this work the
exploitation of optimization approaches to compute a plausible
approximation of large-scale numerical simulations that is com-
putationally less expensive than the original, and resulting in a
simulation output that is acceptable for domain scientists.

Numerical environmental simulations, especially in high spatio-
temporal resolution, consisting of large-scale dynamical systems
are compute-intensive and require high performance computing
(HPC) resources. Our approach to reduce the computational com-
plexity (after [5]) and the high demand of computing resources is
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to approximate simulations through supervised machine learning
methods focusing on neural networks.

In the field of atmospheric sciences, accurate forecasts of the
atmosphere demand large-scale simulations. Atmospheric chem-
istry modeling, for example, usually requires solving a system of
hundreds of coupled ordinary partial differential equations that de-
scribe the concentration changes of atmospheric trace gases due to
chemical reactions in the atmosphere [8, 27]. In general, the growth
of HPC resources over the last decades makes it possible to increase
the resolutions (i.e., number of grid cells) of atmospheric models,
thus resolving more and more processes directly rather than ac-
counting only for their effect with so-called parametrizations [33].
On the other hand, solving the system of chemical differential
equations for each grid cell is a major fraction of the computation
time in atmospheric chemistry models, which is a challenge as
resolution increases. The goal of this study is to investigate the fea-
sibility, opportunities but also challenges and pitfalls of replacing
the compute-intensive chemistry of a state-of-the-art atmospheric
chemistry model with a trained neural network model to forecast
the concentration of trace gases at each grid cell and to reduce
the computational complexity of the simulation. In this work, we
introduce a neural network based approach that trains a model
using the simulation dataset of twelve trace gas concentrations
and three physical input data from past simulations to forecast the
twelve trace gas concentrations in the future iteratively. This work
is a proof of concept, and a deeper study has to be done to apply it
on any operational system.

The remainder of this paper is structured as follows: Sect. 2
provides further information about the study background, Sect. 3
is a survey of related work, the proposed approach is explained in
Sect. 4. In Sect. 5, the results are presented and evaluated, Sect. 6
is about the implementation environment and the conclusions are
drawn in Sect. 7.

2 BACKGROUND
2.1 The ICON-ART Model
The study case of this work is the ICOsahedral Nonhydrostatic
modeling framework with its extension for Aerosols and Reactive
Trace gases (ICON-ART) [29, 33, 36]. It has been jointly developed
by several German institutions [35] and is a unified model for
all time and spatial scales that are relevant for the atmosphere.
Since 2015, it has been used for operational weather forecasting
at the German Weather Service (DWD) [36]. The chemistry and
photolysis rates in ICON-ART are calculated using the box model
CAABA/MECCA and CLoudJ for each grid cell [24, 27, 29], i.e., the
differential equations for the chemical reactions in ICON-ART are
solved separately in each grid cell.

In this study, we use ICON-ART version 2.1 with the 90 vertical
model levels from near ground (level 90) up to 75 km (level 1) of
the operational setup at DWD and a horizontal resolution of about
160 km, resulting in about 1.8 million grid cells [36]. In order to
replace only the atmospheric chemistry solvers of the ICON-ART
model by a neural network model, it is needed to switch off the
transport of chemical tracers, since this is a process that is not part
of the chemistry solver and should not be captured by ICONET
either. This is only true for the transport of chemical trace gases,

but all variables relevant for the meteorology are transported in the
model. Therefore, we ran the simulation without transportation of
the trace gases to preserve a closed system in the model without
neighborhood interaction for each grid cell. The time step of the
simulation is set to six minutes and the output is given at each time
step.

We applied the approach to a chemical mechanism for ozone in
the stratosphere from vertical model level 45 to 30 (16 levels) [26],
using a subset of 23 reactions for oxygen- and nitrogen-related
species [29]. From the 14 gases of these reactions, N2 and O2 are no
trace gases and available in excess, hence constant and not included
in this work. Therefore, each output data file contains the volume
mixing ratio (VMR) of twelve trace gases and three physical features
of all grid cells for one day in six minute resolution. The twelve
trace gases are N2O, N2O5, HO2, H2O, NO, NO3, HNO3, O(3P),
NO2, OH, O3, and O(1D). The physical features are temperature,
pressure, and the cosine of the solar zenith angle (cos SZA). The
simulation covers the years 2013 and 2014.

2.2 Neural Networks
Neural networks and deep learning are useful programming par-
adigms with a potential of achieving excellent performance and
promising results in many areas such as image and language pro-
cessing, speech recognition and forecasting [12, 19, 31]. Time series
are one of the main input data in forecasting domain, and are
defined as sequences of data points indexed in time order. Time
series forecasting is the method of predicting future values given
the domain knowledge and previously observed values [18]. As
our study case data are time series, we used LSTM, that is one
of the suitable and widely used neural network models for time
series data [1, 20, 32]. LSTM is a special kind of Recurrent Neural
Networks (RNNs) that is extended to learn long-term dependen-
cies [16]. RNNs are networks with loops, using the information
learned from previous inputs to generate outputs. LSTM benefits
from using additional gates and cell state to address the problem
of long-term dependencies [15]. LSTM consists of memory cells
which contain gates using the sigmoid and hyperbolic tangent
activation functions. These functions change the cell’s state and
decide which information to retain for future forecasts. In LSTM,
the model passes the last hidden state (short-term memory) and
cell state (long-term memory) to the next step of the sequence,
thus holds the information of previously seen data and uses it to
forecast the future data [16]. In this work, we use the LSTM from
the RNN module in PyTorch (version: 1.10.0+cu113) [22] wrapped
by PyTorch Lightning (version: 1.5.2) [10].

3 RELATEDWORK
Environmental simulations and forecasting models are usually
compute-intensive, in particular when considering ensemble sim-
ulations in high spatio-temporal resolution. With the growing ca-
pability of HPCs containing GPU resources, there is a potential of
benefiting from forecasting methods based on machine learning,
particularly neural network models [7, 20, 25, 28, 32]. Once such a
model is trained on an HPC system, it can be used several times for
forecasting, and consequently the overall process is faster and com-
putationally less expensive than the physical models. Additionally,
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there is a potential of forecasting at time scales and in locations
where physical models act weakly. However, this is the case when
the network is trained with the observation data.

[28] used a deep convolutional neural network to emulate phys-
ical models like general circulation model (GCM) used in weather
prediction and climate science. The network learns from the dy-
namics of GCM and forecasts the model weather for several time
steps (up to 14 days) ahead. The Root Mean Squared Error (RMSE)
of neural network forecast over the true state of GCM is decreased
compared to both the persistence and climatological forecasts. The
study shows that the neural network learns the time evolution and
dynamics of a simple GCM principally, but the studies need to be
continued for more complex models, including external forcing.

A fully connected multi-layer neural network model for the
atmosphere to forecast global weather is developed by [7]. They
showed that the model can make better forecasts than a simple
persistence model and the forecasts are competitive with forecasts
of coarse-resolution (6◦ ≈ 668 km) atmosphere models of similar
complexity, at least for short lead times. However, the forecasts
are not stable and deteriorate after a few days. According to the
study, a close collaboration is required between computer scientists
and meteorologists to include the physical knowledge and deep
understanding of the earth system into the neural network model.

For medium-range weather forecasting, defined [25] a data-
driven method that uses a deep residual convolutional neural net-
work (Resnet). They trained models to forecast geopotential, tem-
perature, and precipitation at 5.625◦ ≈ 626 km resolution up to
five days ahead. Compared to physical models, Resnet achieves
comparable scores to a physical model at comparable resolution.
They used 150 years dataset of the Coupled Model Intercomparison
Project (CMIP [9]) to pretrain the model and fine-tune it using the
ERA data. Hence, the current CMIP models run at around 100 km
resolution, it can not be used for forecasts at higher resolutions.
The goal of this work is exploring the feasibility of data-driven
approaches in weather forecast.

In order to overcome the high computational costs while at-
taining comparable quality of their results, [2] presented a fully
connected neural network. They used a dataset generated from the
global numerical atmosphere chemistry model (EMAC) to make
predictions of chemical tendencies. This work showed a proof of
concept that neural networks are able to predict atmospheric chem-
istry tendencies. However, hyperparameter tuning is required to
optimize the model and to overcome modeling problems due to
seasonal trends in the data. This is a challenge of using a neural
network model in comparison to the use of physical models.

A review and discussion of the opportunities given through deep
learning approaches in the field of weather prediction is given
in [30]. They focused on the possibility to replace numerical fore-
cast models, and presented models that are limited to short-term
forecasting of less than 24 h. In conclusion, they do see potential
in using deep learning for weather forecasts, but emphasize that a
lot of research is still necessary until deep learning methods can
replace traditional numerical models.

4 ICONET ARCHITECTURE
We developed the ICON Neural Network based approach (ICONET),
an approach containing a multifeature LSTM model that forecasts
atmospheric trace gases. The core process of ICONET is learning
a function that maps a sequence of ten past time steps to the next
(eleventh) time step. The use case of this work is the ICON-ART
chemistry simulation at a spatial resolution of about 160 km and a
temporal resolution of six minutes. However, since the chemistry
solver of ICON-ART works on a grid-cell basis, and we want to
replace it by ICONET, ICONET is applicable to every horizontal and
vertical grid cell of ICON-ART, independent of its spatio-temporal
resolution. In our experiments, we apply ICONET to a subset of
arbitrary grid cells in the stratosphere. Fig. 1 shows an overview of
the ICONET architecture containing four main steps, namely pre-
processing, training, forecasting and postprocessing. The following
describes each step of the ICONET architecture in detail.

Convert 4D data into 
2D data 

Standardize data

Create sequences
Sequence: (230,10,15)

Label: (230,15)

LSTM

Optimization over
epochs

Forecast

Hyperparameter 
tuning

Save trained model

Interpolate cos SZA to 
six minute resolution

Undo standardization

Set negative values
to zero

Input data

Output data

Figure 1: ICONET architecture showing the main steps pre-
processing (red), training (yellow), forecasting (blue), and
postprocessing (green).

4.1 Input Data and Preprocessing
We generated the input data for training, validating, and testing of
ICONET from the ICON-ART simulation output. Every output data
file contains the volume mixing ratio (VMR) of twelve trace gases
and three physical features of all grid cells for one day in six minute
resolution. To improve the manageability of data loading during the
training of ICONET, we split the output data files so that the grid cell
locations are shuffled, and the grid cells are randomly distributed
into 256 files of ∼ 94 MiB (Fig. 2). This simplified sampling of the
input data. We used two of these sub files for training and one for
validation. Due to the importance of time dependency, we keep the
temporal dimension unchanged.

All features are available in the same temporal resolution, except
for cos SZA. In order to improve the accuracy of ICONET, we
interpolate and smooth this feature to the sixminute resolution as in
the ICON-ART output. Fig. 3 shows the value range and distribution
of all features from an example grid cell located above the Indian
Ocean on 12 September 2013. In the following text, we refer to
this grid cell as an exemplary grid cell. The simulation output is
four-dimensional data (vertical model level, grid cell location, time
step, and feature), which is not suitable as LSTM input data. As the
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iconart_0365.nc

...

iconart_0001.nc
(height,cell,time,feature)

(90,20480,240,15)
27 GiB

iconart_0001_0256.nc

...

iconart_0001_0001.nc
(height,cell,time,feature)

(90,80,240,15)
94 MiB

...

...

...

iconart_0365_0256.nc

...

iconart_0365_0001.nc
(height,cell,time,feature)

(90,80,240,15)
94 MiB

Figure 2: Splitting schema for simulation output data files.

Figure 3: Input data distribution of a grid cell located above
the Indian Ocean from 12 September 2013.

vertical levels are defined based on the pressure values, we removed
this dimension from the dataset due to its high correlation with the
pressure feature. Since we only consider replacing the atmospheric
chemistry, there is no need to know the grid cell positions apart
from the pressure being an input feature. Thus, we removed the
dimension related to the position of the grid cell in the atmospheric
column. Principally, the grid cells have no interaction with each
other, hence the grid cell coordinates are not informative in this case.
Thus, we also removed this dimension from the dataset. Finally, we
have two-dimensional data (time step and feature) for each grid
cell.

An equally scaled input data is important for the learning per-
formance in machine learning algorithms [6]. Thus, we standardize
these multifeature data because the features values vary in several
magnitudes, see Fig. 3. Standardization is a scaling method where
the values are centered around the mean with a unit standard devi-
ation as follows:

𝑋 ′ =
𝑋 − 𝜇

𝜎
, (1)

where 𝑋 ′ is the standardized feature set, 𝜇 is the mean and 𝜎 is the
standard deviation of the features 𝑋 . Our last preprocessing step is
rolling, which is the process of shifting a fixed-size window over
time series to create smaller time series and extract features for
each shortened sequence. To label our data, we utilized a rolling
window of ten time steps on all one-day data sets and applied the
eleventh time step as the respective label. This results in 230 input
sequences of length ten time steps each.

4.2 Training and Validation
4.2.1 LSTM Layers. ICONET consists of a one layer LSTM model
with one input layer, 15 hidden states representing 15 chemical
and physical input features and one output layer. While training,
ICONET reads an input sequence into the LSTM model and gets
the final hidden state of the last time step in the input sequence
as an output or forecast value. This output is compared with the
labels (target) in the loss function, and the process is iterated in
some epochs to learn a plausible model.

4.2.2 Mass Conservation. One of the main goals during the devel-
opment of ICON was an improved mass conservation compared
to other meteorological models [35]. Mass conservation should be
given for every closed system in chemistry, that is in our case study
a single grid cell without transportation of the trace gases. Any re-
placement model or modification in the simulation has to conserve
quantities that are necessary in the model accuracy. In our study
case, VMR of Nitrogen (𝑁 ) in the forecast values is constant and
conserved during the simulation time, see the target line at Fig. 4.
VMR of Hydrogen (𝐻 ) and Oxygen (𝑂) is not conserved because
we do not have a closed system for 𝐻2𝑂 which influences the VMR
of 𝐻 and 𝑂 . We calculate the VMR of 𝑁 using Eq. 2.

𝐶𝑁 =
∑12
𝑔=1 𝑛𝑔 ·𝐶𝑔, (2)

where𝐶𝑁 is the VMR of 𝑁 in mol/mol, 𝑛𝑔 is the number of 𝑁 atoms
in each molecule of a trace gas and 𝐶𝑔 is the VMR of trace gas 𝑔
in mol/mol. In order to assess the quality of mass conservation
in ICONET forecast, we calculated the VMR of 𝑁 in the forecast
values generated by a trained model with a variable 𝜆 in the loss
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function (Eq. 3).
𝐿𝑜𝑠𝑠 (𝑌,𝑌 ) = 𝜆 ·MSE(𝑌,𝑌 ) + (1 − 𝜆) ·MSE(𝐶𝑁 , ˆ𝐶𝑁 ), (3)

with:
MSE(𝑌,𝑌 ) = 1

𝑛

∑𝑛
𝑖=1 (𝑌𝑖 − 𝑌𝑖 )2, (4)

where𝑌 is target,𝑌 is forecast, 𝜆 is a hyperparameter for penalizing
the deviation from mass conservation and MSE is the mean squared
error. The loss function consists of two parts, the loss of forecast
and mass conservation. We varied the 𝜆 values in the range of 0.5
to one and evaluated the test results from two aspects. First, how
stable the VMR of 𝑁 is, second, how the quality of the forecast
is. Fig. 4 shows the conservation of 𝑁 in forecast using the loss
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M
R
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f 

N

λ
λ

Target

Figure 4: Mean VMR of N for all grid cells relative to the
target values of the middle stratospheric vertical model level
on 12. September 2014.

function with 𝜆 = 0.5 is close to the target for the first 100 time
steps in comparison to the forecast using the loss function with
𝜆 = 1. However, the forecast of trace gases using the loss function
with 𝜆 = 0.5 has a greater RMSE than the loss function with 𝜆 = 1.
Processing our test results using different 𝜆 values showed that the
VMR of 𝑁 is not constant during the test day, when we use other
𝜆 values than one. Therefore, we concluded to set 𝜆 to one and,
consequently, removed the second part of the loss function.

4.2.3 Training Steps and Optimization. Following after the prepro-
cessing steps, the input data are ready for training of ICONET. In
order to load the input sequences into the training step, we use
Pytorch Lightning Dataloader with four workers (subprocesses) per
GPU and the batch size of one. While the Dataloader loads the next
sequences and labels into the training step, the multifeature LSTM
of ICONET generates an output that is the 𝑌 in the loss function
(Eq. 3). The loss is calculated between the target (𝑌 ) and the model
output (𝑌 ) with the Mean Squared Error (MSE) metric, see Eq. 4.
The loss value is minimized in several iterations of adjusting the
weights and biases of the model (training epochs).

Network structure and training configuration of neural network
models are defined as hyperparameters, that have to be set before
training. We did a greedy search over a range of values to find a
reasonable combination of the hyperparameters for a better forecast.
In the hyperparameters search, for example, we set the number of

LSTM layers between one and four. More layers perform better in
reproducing the trend of the curves than a single layer, but on the
downside they produce a high oscillation around the target, while
the metrics show no significant improvement. Additionally, the run
time of the training and forecasting steps are higher than when
using only one layer. The final hyperparameters are as following:

• Learning rate: 3 × 10−3
• Batch size: 230 (number of shortened sequences in one day)
• Sequence length: ten time steps (in total one hour)
• Number of training epochs: 3500
• Number of LSTM layers: one
• Number of LSTM hidden states: 15
• Number of input features in loss function: 15 (all features)
• 𝜆 in the loss function: one
• Input data scaling: standardization
• Interpolation and smoothing of cos SZA: yes
• Number of grid cells: 126 for training, 54 for validation
• Simulation days: one in 15 days interval in one year (in total
24 days)

We trained and validated ICONET on a subset of totally 180 ran-
domly located grid cells. We used 70% of this subset for training and
30% for validation. The temporal subset for training and validation
contains totally 24 days distributed in one year that is one in 15 days
interval. We trained the model with different number of iterations
and used early stopping to avoid overfitting. Early stopping is a
regularization strategy that determines when to stop training so
that a model generalizes well to larger or unseen datasets [23]. We
saved the trained model on epoch 3500 where the validation epoch
loss starts to converge. Fig. 5 shows the epoch loss (MSE) during
the model training on the training and validation dataset. In the
zoomed figure of Fig. 5, we show that the distance between the
training and the validation fit curves starts to increase from about
epoch 3500, which shows that the model is not learning anymore.

Figure 5: Training and validation loss per epoch.

4.3 Forecast
We used our trained model to forecast all twelve trace gases for
all grid cells of one vertical model level in the middle stratosphere
on 12. September 2014, hence one year after the training dataset
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trace gases in the exemplary grid cell on 12 September 2014. Both Y-axes are in the same min-max limit.

(test dataset). We do not forecast the three physical features, hence
they are the available input features of the atmospheric chemistry
simulation. The preprocessing of the test dataset followed the same
procedures as for the training dataset. In the forecast step, we input
all features of ten time steps to ICONET and forecast only the trace
gases for the next time step. Afterward, we use the forecast values
as input, thereby the next time step is predicted. In this work, we
use the term “forecast” for this iterative forecast.

4.4 Postprocessing
In the postprocessing step, we transform the standardized output
of the neural network back to the physical units by undoing the
standardization (Eq. 1) done in the preprocessing. Forecasts with
very small values compared to the distribution of the training data
might get transformed back to negative values. As VMR are positive
numbers, we set those negative values to zero.

5 RESULTS AND DISCUSSION
In this section, we show the results of the ICONET trained on
the output data of an atmospheric simulation of ICON-ART. For
evaluation of our results, we need an appropriate metric, which we
discuss in the following.

5.1 Metrics
Selection of an appropriate quality metric for forecasting models
is challenging, because the quality of a model can be considered
from different aspects. Here, we discuss the pros and cons of some
relevant metrics. One of the basic evaluation metrics is the absolute
difference between the forecast and target values. This metric shows
directly, howmuch the forecast values are above or below the target
and in the same unit as the calculated values. However, using the
absolute difference we could not compare the deviations of different
variables with each other. A very simple relative error metric is
measuring the absolute difference between the forecast and target
values divided by the target value. We could not use this metric, as
we have target values that are exactly zero, which causes a divided
by zero error.

ICONET is a regression model which outputs continuous vari-
ables. Therefore, we consider a metric for gauging regression mod-
els. MSE (Eq. 4) is a regression metric that measures the mean
squared difference between the forecast and target values, but it is
very sensitive to outliers. MSE weights large errors more heavily
than the small ones. Another common metric is Root Mean Squared
Error (RMSE) defined as the square root of MSE:

RMSE(Y, Ŷ) =
√︂

1
n
∑n
i=1 (Yi − Ŷi)2 . (5)

It gives less weight to larger deviations compared to MSE. RMSE is
commonly preferred to use, due to its interpretability, as it returns
the error in the same units as the target value. RMSE values can
range from zero to positive infinity, where values closer to zero
indicate a better estimation.

While RMSE is doing well in quantifying the distance of two
curves, it does not measure how well the forecast follows the trend
of the target curves. Kling-Gupta Efficiency (KGE) [13] see Eq. 6 is a
measure of the goodness-of-fit, common in hydrological modeling.
KGE values can range from negative infinity to one, and the values
closer to one indicate better fit.

KGE(Y, Ŷ) = 1 −
√︃
(r − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2, (6)

with:
r =

CovŶY
𝜎Ŷ · 𝜎Y

, 𝛼 =
𝜎Ŷ
𝜎Y

, 𝛽 =
𝜇Ŷ
𝜇Y

,

where CovŶY is the covariance between the forecast and target
values, 𝜎 is the mean and 𝜇 is the standard deviation. In other words,
𝑟 is the linear cross-correlation coefficient between the forecast and
target values, 𝛼 is a measure of variability in the data values, and
𝛽 is equal to the mean of the forecast values over the mean of the
target values.

Considering the sensitivity to outliers and other disadvantages of
the discussed metrics, we used twometrics, alone or in combination,
to evaluate the quality of our model, i.e., how close the forecast
values are to the target values. The first metric is RMSE and the
second one is KGE. We show the RMSE values in both original
and standardized scale. The RMSE of the values in original scale
are better interpretable for domain scientists. The RMSE of the
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standardized values enables us to compare different features in the
same order of magnitude.

(a) Target

(b) ICONET forecast

(c) Difference

Figure 7:N2O5 VMR for all grid cells in an arbitrary time step.
Points on (c) show the location, and their colors show the
vertical model levels (45 to 30) of the trained grid cells.

In addition to the quality metrics, the computational efficiency
(performance) of ICONET is presented as its run time speed-up in
comparison to the run time of the atmospheric chemistry simulation
of ICON-ART using the same computing resources.

5.2 Results Evaluation
After training of our model on a small subset of the stratospheric
grid cells, we can forecast all twelve trace gases for all grid cells of
any stratospheric vertical model level on any date of a year. As a
test case, we forecast all twelve trace gases for all grid cells of one
vertical model level in the middle stratosphere on 12 September
2014. In the following, we show the results of this test and its
evaluation.

Fig. 6 shows the standardized VMR of all trace gases in the
exemplary grid cell during the test day. It shows the ICON-ART
simulation output (target) on the left side and ICONET forecast on
the right side. All trace gases in the forecast show a plausible fit to
the target values. The shapes of the forecast curves are smoothed
in comparison to the target. The forecast values show a close fit
with the target values.

In order to visualize the deviation of the test results from the
target in all grid cells, we demonstrate N2O5 values as an example in
Fig. 7. The values are VMR of N2O5 at each grid cell in an arbitrary
time step of the test day. The difference map (Fig. 7c) shows a lot
of grid cells where the difference is very close to zero (smaller
than +/− 1𝑒−11) in white and the highest difference in red at polar
regions. The points on Fig. 7c show the location, and their color
shows different vertical model levels of the trained grid cells. As
the map shows, we trained a subset of randomly distributed grid
cells from different stratospheric vertical model levels.

Figure 8: RMSE distribution for all grid cells of the test case

We show and interpret the RMSE values from two perspectives.
First, the RMSE distribution of all grid cells for each trace gas during
the test day, and second, the RMSE of each grid cell (map view) for
each trace gas during the test day. From the first perspective, we
compared the quality of ICONET forecast between different trace
gases, as shown in Fig. 8. This is a RMSE distribution of all grid cells
of the test case. As the RMSE values are calculated between target
and forecast values in standardized scale, we could compare the
trace gases in this diagram. N2O5 shows the highest mean RMSE
value (0.15) and O(1D) has the lowest value (2.8𝑒−5) among the
others. The RMSE values of O(3P) are widely distributed, which
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Figure 9: RMSE between target and ICONET forecast for VMR of some exemplary trace gases of the test case.

shows the instability of themodel forecast spatio-temporally (Fig. 8).
From the second perspective, we compared the quality of ICONET
forecast over different locations of the world map. The maps in
Fig. 9 visualize the RMSE between the target and ICONET forecast
for VMR of some exemplary trace gases of the test case. The maps
show mostly higher RMSE in the polar regions. N2O5, HNO3, O3
and O(3P) show a similar spatial distribution of the RMSE values.
We conclude here, that the model behaves differently in different
spatial regions.

Figure 10: Distribution of KGE for all grid cells of the test
case. Some outliers smaller than −5000 are removed from the
diagram for better visualization of the values close to one.

Another metric that we used in our quality evaluation is KGE.
Fig. 10 shows a similar diagram as Fig. 8 but for KGE values. We

interpret the KGE results from different aspects. We compared the
KGE and RMSE results and their relation with each other. Both
metrics show a plausible forecast for OH and O(1D) (low RMSE
< 0.15 and high KGE close to one), but RMSE values for O(1D)
contain some outliers, which shows the model does not learn well
on some grid cells. Some trace gases (HO2, NO, NO3, NO2 and
O3) with high KGE values also have similar mean RMSE values
and show the model’s ability to learn well and forecast plausibly
for these trace gases. Even though the results show overall low
RMSE and plausible fit for most of the trace gases, there are two
exceptions. N2O with plausible RMSE values shows in contrast low
KGE values containing lots of outliers, which is a sign of a not
well-learned model for this trace gas. Additionally, O(3P) though a
very low RMSE (9.6𝑒−5), shows very low and highly scattered KGE
values, concluding the model’s inability in learning the trend of
this variable.

During the evaluation of ICONET, we also compare the quality
of our model with a very simple persistence model as a reference.
The persistence model forecasts the future value of a time series
under the assumption that nothing changes between the current
time and the forecast time [17]. This means that the values at time
step 𝑡 + 1 (forecast) are equal to the values at the current time step
𝑡 . As the persistence model forecasts account for the next time step
only, we generated a comparable ICONET forecast for one time
step only and without iteration. We named this forecast as ICONET
one-ts forecast. This forecast ensures a fair comparison with the
persistence model. Fig. 11 illustrates the target values together with
the forecast values of the ICONET and the persistence model. The
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Target

(a) N2O5 VMR

Target

(b) N2O VMR

Figure 11: VMR of two exemplary trace gases from ICONET
forecast and persistence model vs. target.

values are VMR of a trace gas from the exemplary grid cell on the
test day. For trace gas N2O5, Fig. 11a shows that both ICONET
forecasts are as good as or even better than the persistence model.
Fig. 11b shows that ICONET one-ts forecast has a very close results
to the persistence model for trace gas N2O, but ICONET iterative
forecast does not fit well to the other models.

In the evaluation of ICONET, in addition to the model quality,
we quantify the model performance with speed-up of ICONET
over the ICON-ART simulation run time. We ran the atmospheric
chemistry simulation of ICON-ART on one compute node without
any parallelization, for forecasting of the same test case as for
ICONET. The test of forecasting all grid cells of one vertical model
level during one day, resulted in the simulation run time of ∼ 106 s,
where the ICONET run time was ∼ 34 s. In comparison, ICONET
forecast showed 3.1x speed-up over the simulation run time.

For evaluation of the stability of ICONET over one week (1670
time steps) we ran the ICONET forecast for seven continuous days
in September 2014 and calculated the RMSE of all grid cells from
the test case for each day separately. The mean of these RMSE
values is shown in Fig. 12. The presented RMSE values are in terms
of multiples of standard deviations and not percent. The errors
lower than one standard deviation show that the method works in
general. The graph shows that the RMSE values of most trace gases
are roughly constant after the third day. This means that ICONET
forecast remains stable for 66% of tested trace gases. The RMSE

values of N2O, N2O5, NO2 and O3 trace gases increase linearly until
the third day, then the growth of values slows down toward stability.
Fig. 13 is an example of ICONET forecast during one week. It is the
forecast of the exemplary grid cell from the test case in September
2014. The diagram shows a plausible fit and stable forecast for most
trace gases.

Figure 12: Evolution of mean RMSE value of all grid cells
from the test case for all trace gases during one week.

6 IMPLEMENTATION ENVIRONMENT
We implemented ICONET in Python, mainly in PyTorch and Py-
Torch Lighting. The training and forecast are executed on super-
computer, see Acknowledgments. For ICONET training, we used
accelerator nodes containing two Intel Xeon Platinum 8368 proces-
sors, 512 GB of main memory, four NVIDIA A100-40 GPUs of 40
GB memory with Red Hat Enterprise Linux (RHEL) 8.x. operating
system. All scripts, data files and requirements of the model are
available in a GitHub repository named “iconet” [4].

7 CONCLUSIONS AND OUTLOOK
High resolution environmental simulations are compute-intensive
and require a lot of HPC resources. In order to approximate such
simulations and reduce the computational complexity, and conse-
quently the resource demand, we developed a neural network based
approach (ICONET). This multifeature LSTM model was developed
on a study case of forecasting atmospheric chemistry. The model
is applicable to simulation output dataset in any spatio-temporal
resolution. However, the dataset has to be prepared before loading
into the training step. ICONET consists of several steps namely,
preprocessing, training, forecast and postprocessing. The ICONET
one-ts forecast applied on a test case shows for some trace gases
an improvement over the persistence model. The ICONET iterative
forecast results in a plausible fit with the target, but naturally it
is not comparable with the persistence model. In addition to the
quality of the ICONET forecast, we describe the computational
efficiency of ICONET as its run time speed-up in comparison to the
run time of the ICON-ART simulation. ICONET forecast showed
a 3.1x speed-up over the run time of the ICON-ART atmospheric
chemistry simulation. This work is a proof of concept, and it has
not been tested yet in an operational system. The forecasts of the
use case shows low RMSE values and partially a plausible fit with
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Figure 13: Simulation output (left) and ICONET forecast (right) of VMR of trace gases in the exemplary grid cell in one week.

target. Considering the need of ensemble simulations, even a small
speed-up over the original simulation is a significant achievement.

In future works, we should consider that extreme modifications
in the input dataset and the study case require redoing the train-
ing steps and tuning of the hyperparameters. Additionally, there
is a potential of programmatically optimizing the preprocessing
and training of ICONET, to be able to train a larger subset of grid
cells and improve the accuracy of the forecast. This work can be a
base work and study for comparison with future studies like using
transformers or physics-informed neural networks on the same use
case. The relative mass conservation error seems reasonable on the
presented test case, but for longtime simulations, a deeper study
should be done.
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