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A B S T R A C T

Since the discovery of the Higgs boson in 2012 [1], particle physics has entered an
era of precision. With the upcoming increase in luminosity of the Large Hadron Col-
lider (LHC) [2], we will gain access to deep and detailed insights into the behaviour of
fundamental particles. On the theoretical side, the description of partonic cross sections
with next-to-next-to-leading order (NNLO) accuracy in Quantum Chromodynamics (QCD)
is becoming a standard.

Despite the astonishing agreement between the experiments and theoretical predic-
tions [3], it is clear that the Standard Model (SM) of particle physics is incomplete. One
way to search for New Physics is to push the accuracy of the theoretical predictions and
experimental measurements further. In this thesis, we study three problems related to
precision description of Higgs boson and top quark production at the LHC.

In the first part, we investigate the interference contribution between two Higgs pro-
duction mechanisms in the pp→ H + jetc process. This process can be used to study the
Yukawa coupling of the charm quark [4]. The interference studied in this thesis requires
a helicity flip on the charm-quark line, forcing us to treat the charm quarks as massive.
This requirement leads to unconventional QCD phenomena, such as the importance of
soft quarks and unusual collinear factorisation.

In the second part, we calculate the so-called non-factorisable corrections to t-channel
single top production. These corrections arise from the crosstalk between the two
fermion lines present in this process. Until now, the non-factorisable contributions to
single top production have been neglected because they do not appear at next-to-leading
order (NLO) and they are colour-suppressed compared to the factorisable ones [5, 6].
However, recent studies indicate that the factorisable corrections are relatively small at
NNLO and that the non-factorisable ones can be dynamically enhanced [7]. We compute
the non-factorisable corrections and discuss their numerical impact on t-channel single
top production at the LHC and the Future Circular Collider (FCC) [8, 9].

In the third part, we consider the same type of corrections to Higgs production in
weak boson fusion (WBF). Contrary to the case of t-channel single top production, an
exact computation of these corrections is currently impossible. Following Ref. [7], we
construct an expansion of the double-virtual contribution around the forward limit of
the tagging jets. It turns out that the expression of the double-virtual contribution at the
next-to-leading order in the eikonal approximation can be expressed in a quite compact
form.
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1 I N T R O D U C T I O N

Particle physics aims to describe the elementary building blocks of matter and their
interactions. Everything in Nature, from stellar objects to living beings, is built out of a
rather small set of elementary particles. These particles interact through fundamental
forces, such as the strong force (which is responsible for binding quarks to form protons
and neutrons), the weak force (which allows for the neutron decay), the electromagnetic
force (which keeps electrons around nuclei), and the gravitational force. Except for
gravity, the Standard Model (SM) of particle physics combines all these forces in a unified
framework where fundamental matter is represented by fermion fields subject to local
gauge symmetries.

In 1929, H. Weyl successfully described electrodynamics as a gauge theory. The con-
servation of the electric charge, described by a global U(1) symmetry, was promoted to
a local symmetry, giving rise to the photon as an electrically neutral gauge boson [10].
In 1954, the first formulation of a non-Abelian gauge theory by C. Yang and R. Mills,
in the context of the isospin symmetry, was a crucial step towards developing the SM

as it generalised Weyl’s formalism to charged gauge boson [11]. However, gauging the
isospin symmetry led to unacceptable phenomenology, and the idea was shelved for
about 15 years.

In 1964, M. Gell-Mann and G. Zweig independently proposed the idea of quarks to
explain the multitude of observed mesons and baryons [12, 13]. They suggested the
existence of three quarks: the up, the down, and the strange. The observation of the
baryon ∆++ later necessitated the introduction of a color charge [14], giving rise to the
theory of strong interactions, Quantum Chromodynamics (QCD).

At the time, the quark model faced skepticism from the physics community. How-
ever, in 1969, R. Feynman developed the parton model to explain properties of protons
observed in deep inelastic scattering experiments at SLAC [15]. In the early 1970s, S.
Glashow, J. Iliopoulos, and L. Maiani postulated the existence of a fourth quark to
construct a model of weak interactions [16]. In 1973, M. Kobayashi and T. Maskawa
predicted the existence of an additional pair of quarks to explain CP violation [17]. The
same year, H. Fritzsch, M. Gell-Mann, and H. Leutwyler understood that QCD can be
described as a non-Abelian gauge theory [18].

1



2 introduction

This mathematical framework was used to formulate the SM of particle physics as a
SU(3)c ⊗ SU(2)⊗U(1) non-Abelian gauge theory, supplemented with the idea of the
spontaneous electroweak (EW) symmetry breaking [19–23]. The three Goldstone bosons
produced by this mechanism provide the longitudinal polarisations of the weak gauge
bosons Z and W±. The single degree of freedom that remains out of a complex SU(2)
scalar doublet is the celebrated Higgs boson, which was discovered in 2012 at the Large
Hadron Collider (LHC) [1]. The discovery of the Higgs boson validated the theoretical
construction first introduced by P. W. Higgs, F. Englert, and R. Brout in 1964 [24, 25] and
completed the verification of the SM of particle physics.

Figure 1.1: Production cross sections of different Standard Model particles at the LHC. Figure
from the ATLAS Standard Model physics group [3].

Exploration of particle physics has now entered an era of precision. On the exper-
imental side, the LHC luminosity will be increased in the coming years, leading to a
high-luminosity phase [2]. On the theoretical side, description of partonic cross section
with next-to-next-to-leading order (NNLO) accuracy is rapidly becoming a standard
practice. For certain processes, predictions have been extended to include next-to-next-to-
next-to-leading order (N3LO) QCD corrections [26, 27]. Mixed QCD-EW corrections [28] are
also known for some important processes. The current effort of the theory community is
focused on the reduction of the theoretical uncertainties and on establishing perturbative



introduction 3

QCD and collinear factorisation as a trustworthy and reliable framework to describe hard
hadron collisions.

Fig. 1.1 shows a comparison of various theoretical predictions and experimental mea-
surements for cross sections of many different LHC processes. The overall agreement
between theory and experiment is quite remarkable, proving that the SM of particle
physics provides excellent description of Nature.

Despite this agreement, it has been long understood that the SM cannot be the complete
theory of Nature. Indeed, the SM cannot account for the matter-anti-matter asymmetry
and lacks a candidate for dark matter. Additionally, it does not provide a dynamic
explanation of EW symmetry breaking. Therefore, it is crucial to search for physics
beyond the Standard Model (BSM) in many different ways. Increasing the precision of
LHC processes is one way to achieve this goal since the collision energy of the collider is
fixed.

structure of the thesis In this thesis, we improve theoretical predictions for
some LHC processes used to study propreties of the Higgs boson and the top quark. The
thesis is divided into three parts.

In the first part, we investigate QCD radiative corrections to the interference between
two mechanisms of Higgs boson production in association with a charm-quark jet. This
process can be used to study the Yukawa coupling of the charm quark [4]. The interfer-
ence that we study in this thesis requires a helicity flip on the charm-quark line, forcing
us to consider charm quarks as massive. Since the charm quark appears as an initial
state parton in the calculation, the need to account for its mass leads to unconventional
phenomena from the point of view of perturbative calculations, such as the importance
of soft quarks, unusual collinear factorisation and the need to redefine PDFs.

In the second part, we calculate the so-called non-factorisable contributions to the
NNLO QCD corrections to the t-channel single top production. These corrections result
from the crosstalk between the two fermion lines that appear in this process which are
connected solely by a W boson at Born level. Until now, the non-factorisable corrections
to single top production have been neglected because they are colour-suppressed com-
pared to the factorisable ones [5, 6, 29–31]. However, recent studies indicate that the
factorisable corrections are relatively small at NNLO [6] and that the non-factorisable
corrections can be dynamically enhanced [7]. Therefore, it is interesting to explicitly
compute them.

In the final part, we focus on the second most important Higgs boson production
channel at the LHC: the weak boson fusion (WBF). Similar to the t-channel single top
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production, most of the existing studies of Higgs boson production in WBF systematically
ignored non-factorisable corrections [32–34]. However, it has been shown that non-
factorisable corrections are in fact enhanced for this process [7]. The main challenge lies
in the accurate description of the double-virtual, non-factorisable contribution. Since an
exact evaluation of the two-loop, non-factorisable amplitude is currently out of reach,
we consider a different approach and extend the work of Ref. [7] by computing the
sub-leading corrections to the double-virtual contribution in the forward limit.



Part I

H I G G S P R O D U C T I O N I N A S S O C I AT I O N W I T H A
C H A R M - Q UA R K J E T A N D T H E D E T E R M I N AT I O N O F

C H A R M Y U K AWA C O U P L I N G AT L H C

In the SM, the strength of the Higgs boson interaction with a SM particle
grows with the particle’s mass. For this reason, couplings of the Higgs boson
to fermions of the second and the third generations and to EW gauge bosons
have been accurately measured at the LHC. The results of such measurements
are found to be consistent with the SM. However, measuring the Yukawa
couplings of light fermions, such as the electron, up, down, and strange
quarks, is considered unfeasible.

The charm quark is a borderline case between light and heavy fermions,
and many suggestions of how to measure charm Yukawa coupling were
put forward. Measuring the production rate of a Higgs boson in association
with a charm-quark jet is a promising way to determine the charm Yukawa
coupling [4]. Two mechanisms mediate Higgs production in this process:
direct interaction of the Higgs boson with the charm quark and the gluon
fusion. The interference of these two mechanisms vanishes for a massless
charm quark. Nevertheless, since the charm quark is massive, it is important
to estimate this interference reliably. We explain how to do this in what
follows.

This part of the thesis is based on Ref. [35].





2 I N T R O D U C T I O N

It is expected that O(107) Higgs bosons per year will be produced during the high-
luminosity phase of the Large Hadron Collider (HL-LHC), providing an opportunity to
study in great detail the properties of the only elementary scalar particle known so
far. One of these properties is the Higgs boson couplings to SM fermions through the
Yukawa interactions. These couplings are proportional to masses of fermions that the
Higgs boson interacts with. The Yukawa coupling of a fermion f reads

y f =
√

2
m f

v
, (2.1)

where m f is the fermion mass and v = 246.22 GeV is the vacuum expectation value of
the Higgs field (VEV).

(a) Status of the measurements of different
Yukawa couplings. Figure from Ref. [36]

(b) Status of the muon Yukawa coupling measure-
ments. The measurement is split into different
event categories. Figure from Ref. [37]

Figure 2.1: Experimental results related to the Yukawa couplings of the second and third genera-
tion of fermions and to the massive gauge bosons of the SM.

The couplings of the Higgs boson to fermions of the second and third generations
and to EW gauge bosons of the SM have been measured at the LHC with relatively high
precision [37–42]. Fig. 2.1a summarises these measurements; the linear dependence of
the couplings’ strengths on particles’ masses is clearly visible. Interestingly, despite its
relatively small mass, the muon Yukawa coupling can be measured at the LHC, as the

7
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decay H → µ+µ− provides a sufficiently clear signature. In Fig. 2.1b, various measure-
ments of the muon Yukawa coupling are shown. The averaged value is compatible with
the SM prediction at the level of 50%.

Because the Yukawa couplings of the lightest particles of the SM, such as the electron,
up, down, and strange quarks, are very small, measuring them is probably impossible.
However, the charm quark with the mass mc = 1.3 GeV, is a borderline case, and its
Yukawa coupling could potentially be measured at the HL-LHC if it is somewhat larger
than what is expected in the SM [43]. Prospects for measuring the charm Yukawa cou-
pling using the current and future HL-LHC data were recently reviewed in Ref. [44]. We
note that, although the charm quark is 12 times heavier than the muon, the measurement
of the charm Yukawa is made difficult because the charm quark is a strongly-interacting
particle.

Different ways were suggested to measure the Yukawa coupling of the charm quark.
One approach is to extract it from Higgs decays, either inclusive H → c̄c or exclusive
H → J/ψ + γ, as described in Refs. [45–47]. The exclusive decay profits from clear Higgs
decay signatures, such as the presence of an energetic photon, but it is expected to occur
only about O(10) times over the lifetime of the HL-LHC. On the other hand, the inclusive
decay of the Higgs H → cc̄ occurs much more often, but it suffers from a large QCD

background.

The charm Yukawa coupling can also be measured by studying the production of a
Higgs boson in association with a charm-quark jet, p + p→ H + jetc [4]. Focusing only
on the clean H → γγ decay channel, the authors of Ref. [4] estimate that this process
could lead to O(1000) events during the lifetime of the HL-LHC, where the low efficiency
of the charm-quark jet tagging has already been accounted for.

c

c

h

g

(a) Higgs production through Yukawa interac-
tion with the charm-quark line.

c c

g h

(b) Higgs production through the Higgs effective
field theory (HEFT) vertex ggH.

Figure 2.2: Higgs boson production mechanisms for the leading order partonic process cg→ cH.

At leading order (LO), the partonic process cg → cH provides the dominant contri-
bution to p + p → H + jetc ; the relevant diagrams are shown in Fig. 2.2. In Fig. 2.2a,
the Higgs boson is produced through the Yukawa interaction with the charm quark. In
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Fig. 2.2b, the Higgs boson directly couples to two gluons. The amplitude of the cg→ cH
process is the sum of two amplitudes which describe the two possible production
mechanisms. We write

M =MYuk +MggH . (2.2)

The partonic cross section is obtained by integrating the amplitude squared over the
phase-space of the final-state particles. We obtain

σ̂Hc = σ̂Yuk + σ̂ggH + σ̂Int , (2.3)

where we display the cross sections due to ggH and Yukawa couplings, and the interfer-
ence contribution.

To estimate these cross sections, we consider proton-proton collisions at 13 TeV. We
choose the NNPDF31_lo_as_0118 parton distribution functions and require the transverse
momentum of the charm jet to exceed 20 GeV. We find that the LO cross sections evaluate
to

σ̂LO
ggh = 176.6+47.6

−36.5 fb , σ̂LO
Yuk = 21.22+1.47

−1.67 fb , (2.4)

where the uncertainties are provided by a variation of the factorisation scale µF by a
factor two. It follows that the Higgs production through the Yukawa interaction is eight
time smaller than through the ggH interaction. Naively, the interference contribution
can be estimated as

σ̂LO
Int ∼

√
σ̂LO

ggh σ̂LO
Yuk = 61.2 fb , (2.5)

which is three times larger than σ̂LO
Yuk. However, the calculation of the interference contri-

bution is subtle and, as we will discuss now, the interference is significantly smaller.

To compute the physical cross section σHc, we consider the charm quark as an initial-
state parton. Consequently, it has to be treated as massless in perturbative QCD calcu-
lations [48–51]. It is easy to see that for mc = 0, the interference vanishes, as the Higgs
production through Yukawa coupling flips the helicity of the charm quark, while the
strong interaction conserves it. Since in reality the charm quark is fairly massive, it is
essential to estimate the actual size of the interference contribution to the partonic cross
section.

The simplest way to address this problem is to start with a massive charm quark, and
then take the mc → 0 limit, keeping the leading non-vanishing term. This procedure
is almost trivial at leading order. We account for the interference with a simple mass
insertion on the charm-quark line, while taking mc → 0 limit everywhere else. Using the
same numerical setup as before, we find that the LO interference evaluates to

σ̂LO
Int = − 2.21+0.29

−0.31 fb . (2.6)
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Comparing Eqs. (2.5)-(2.6), we see that the interference is smaller than σ̂LO
Yuk, but it is

clearly not negligible. The difference between Eq. (2.6) and the estimate in Eq. (2.5) can
be understood because the mass insertion provides a suppression of the order mc/p⊥
which for p⊥ ∼ 20 GeV is about 1/20.

An interesting question is what happens to the interference if higher order QCD cor-
rections are computed. One may argue that the charm-quark mass acts as a regulator
of the collinear divergences and that the resulting large logarithms, ln(mH/mc) = 4.5,
should cancel out once virtual and real-emission contributions are considered. However,
the presence of the helicity flip on the fermion line leads to unconventional infrared (IR)
structure of the amplitude. Therefore, we expect that the perturbative expansion might
be affected by single and even double logarithms whose resummation remains an open
problem. As the result, we want to compute the next-to-leading order (NLO) QCD cor-
rections to the interference, to extract terms that contain logarithms of the charm-quark
mass, and to take mc → 0 limit everywhere else. As we explain below, doing this in
practice is quite non-trivial.

It is possible to question the validity of this approach at higher orders in the perturba-
tive expansion. Indeed, it is known that working with massive partons in the initial state
can be problematic starting at NNLO as it leads to cross sections that are not infrared
finite [52–63]. Fortunately, such offending factorisation-violating terms, described for
instance in Ref. [64], are absent in the pp→ H + jetc process as it results from a collision
of a massive quark with a massless gluon. Even if such factorisation-violating effects
were present, they would be power-suppressed. Indeed, according to [64], such divergent
contributions first affect terms that are suppressed by four powers of the initial state
parton mass α2

s m4
c /s2 dσint

LO . In our approach, such terms are disregarded as we would
only consider terms scaling like αn

s dσint
LO , possibly accompanied by few logarithms of

mc.

In the upcoming chapter, we first explain how we deal with massive partons in
the initial state. Then, we discuss in detail the origin of the unconventional collinear
divergences in the presence of a helicity flip. We also explain how the mc → 0 divergences
of the different contributing partonic channels are treated, and how the logarithms of the
charm-quark mass are extracted. Next, we present the calculation of some unconventional
subtraction terms. Finally, we discuss the computation of the virtual amplitude and
provide numerical results for the interference at NLO QCD.



3 M AT C H I N G PA RT O N D I S T R I B U T I O N
F U N C T I O N S

In this chapter, we explain how to deal with massive partons in the initial state in
perturbative QCD. We remind the reader that it is customary to consider initial state
pratons as massless in standard applications of perturbative QCD and collinear factori-
sation [49–51]. Divergences related to collinear emissions off initial state partons are
absorbed into parton distribution functions (PDFs), typically defined in the modified
minimal subtraction (MS) scheme. A short overview of the standard treatment of IR

divergences can be found in Appendix A.

However, dimensional regularisation is not the only way to regulate the initial state
collinear singularities. In principle, the PDFs could be defined in a scheme where a
quark mass acts as a regulator. In this “mass-regulated” scheme for parton distribution
function (PDF), poles in the dimensional regulator are replaced by logarithms of the
charm-quark mass.

Since short-distance quantities, such as properly defined hadronic cross sections,
cannot depend on the choice of a collinear regulator, a relation between PDFs defined in
different schemes can be derived. For example, the physical cross section for a particular
proton-proton collision can be written as

σpp→X = ∑
ij

∫
dx1 dx2 f i

MS(x1, µ) f j
MS

(x2, µ) dσ̂MS
ij→X(x1, x2, µ)

= ∑
ij

∫
dx1 dx2 f i

mc
(x1) f j

mc(x2) dσ̂mc
ij→X(x1, x2) .

(3.1)

In Eq. (3.1), µ is the factorisation scale and we introduced the partonic cross sections and
PDFs in both the MS and in the mass-regulated schemes. We assume that there exists a
set of matching coefficients Ô that relate the PDFs in the two schemes

f i
mc
(x) = (Ôij(µ, mc)⊗ f j

MS
(µ))(x) . (3.2)

In Eq. (3.2), the symbol ⊗ stands for the convolution

( f ⊗ g) (z) =
∫

dx1 dx2 f (x1) g(x2) δ(z− x1 x2) . (3.3)

We can expand the matching coefficients Ôij in the strong coupling constant

Ôij(z) = δ(1− z)δij +

(
αs(µ)

2π

)
Gij(z) +O(α2

s ) , (3.4)

11
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where the leading order (LO) coefficients have been set to δ(1− z)δij.

Since the matching coefficients Ôij are process-independent, we will consider various
simple processes to determine them. First, we will determine Ôcc and Ôc̄c̄ by considering
the annihilation of a charm-quark pair into an on-shell Higgs boson at NLO QCD. Next,
we will determine the off-diagonal coefficients Ôcg and Ôgc by considering the partonic
process c + g→ c + H.

3.1 charm-quark pair annihilation to a higgs boson

In this section, we compute the matching coefficients Ôcc and Ô c̄c̄ by considering the
annihilation of a charm quark and an charm antiquark to an on-shell Higgs boson.
We compare the partonic cross section obtained by considering massless charm-quarks
with the one obtained by considering massive charm quarks at NLO QCD. The matching
coefficients are then determined using Eq. (3.1).

c

c̄

H

g

(a) Real emission from c

c

c̄

H

g

(b) Real emission from c̄

c

c̄

H

(c) Virtual correction

Figure 3.1: NLO QCD contribution to charm-quark pair annihilation to a Higgs boson.

3.1.1 NLO QCD corrections within MS scheme

Calculations with massless incoming partons are well documented in the literature.
Nevertheless, to introduce notations, it is instructive to derive the NLO QCD cross section
for the annihilation of a cc̄ pair into a Higgs boson in the nested soft-collinear subtraction
scheme. In our discussion, we follow Ref. [65].

The partonic cross section for the process c + c̄ → H can be expanded in the strong
coupling

dσ̂cc̄ = dσ̂LO
cc̄ + dσ̂NLO

cc̄ +O(α2
s ) . (3.5)
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As mentioned earlier, the NLO partonic cross section is split into the real-emission and
the virtual cross sections (see Fig. 3.1), and the term related to collinear renormalisation
of PDFs. We write

dσ̂NLO
cc̄ = dσ̂V + dσ̂R + δσ̂PDF , (3.6)

where

δσ̂PDF =
αs(µ)

2π

1
ε

(
P̂(0)

qq ⊗ dσ̂LO + dσ̂LO ⊗ P̂(0)
qq

)
, (3.7)

and P̂(0)
qq stands for the Altarelli-Parisi splitting function

P̂(0)
qq = CF

[
1 + z2

1− z

]
+

. (3.8)

Each individual piece in Eq. (3.6) is divergent, but their sum is finite. We would like to
extract these divergences such that the cancellation of the 1/ε poles is manifest. We start
by calculating the real corrections.

The real-emission contribution corresponds to the emission of a gluon off the initial
state quarks, see Fig. 3.1a and Fig. 3.1b. The partonic process reads

c(p1) + c̄(p2)→ H + g(p3) . (3.9)

The real-emission cross section can be obtained from the following integral

2s · dσ̂R =
1

4N2
c

∫
[ dg3]FLM

(
1c, 2c, 3g

)
, (3.10)

where s is the partonic centre-of-mass energy squared and Nc = 3 is the number of
colours. The phase-space measure reads

[ dg3] =
dd−1 p3

(2π)d−12E3
θ(Emax − E3) , (3.11)

where we constrain the maximal energy of the gluon to be Emax for reasons that will be
explained later. The parameter Emax is arbitrary but it should be larger than the largest
energy that the gluon can have in the process c + c̄→ H + g.

The last object introduced in Eq. (3.10) is

FLM
(
1c, 2c, 3g

)
= dLipsH |M(1c, 2c̄, 3g, H)|2 , (3.12)

where dLipsH is the phase space defined in Appendix A and M(1c, 2c̄, 3g, H) is the
amplitude of the partonic process defined in Eq. (3.9).
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If the emitted gluon energy vanishes or the emitted gluon is collinear to one of
the emitters, the real-emission cross section diverges. To isolate such singularities, we
introduce two operators. The first one is the soft operator defined as

S3X ≡
1

E2
3

lim
E3→0

E2
3X . (3.13)

where X stands for any object that depends on the kinematic of the process, and the
limit extracts the leading singularity of X . When this operator acts on FLM(1c, 2c̄, 3g), it
forces the energy of the emitted gluon to be zero not only in the amplitude, but also
in the phase space which contains the energy-momentum conserving delta function.
The introduction of Emax constrains the integral over the gluon energy in the soft limit.
Similarly, the collinear operators are defined as

CijX ≡
1

ρij
lim

ρij→0
ρijX , (3.14)

where

ρij = 1−~ni ·~nj . (3.15)

In Eq. (3.15), ~ni,j are the unit vectors in the directions of the momenta of the particles i
and j.

We can use the two operators to extract the 1/ε pole from the real-emission cross
section. We write

2s · dσ̂R
cc̄ ≡ 〈FLM

(
1c, 2c̄, 3g

)
〉

= 〈(1− S3)FLM
(
1c, 2c̄, 3g

)
〉+ 〈S3FLM

(
1c, 2c̄, 3g

)
〉 ,

(3.16)

where we use the notation 〈. . . 〉 to denote the integration over the momenta of the final
state particles. In Eq. (3.16), the first term remains regular as E3 → 0 and the second
term can be integrated over E3 for arbitrary FLM. We also need to subtract the collinear
divergences. We write

2s · dσ̂R
cc̄ = 〈ÔNLOFLM(1c, 2c̄, 3g)〉+ 〈(C31 + C32)(1− S3)FLM

(
1c, 2c̄, 3g

)
〉

+ 〈S3FLM
(
1c, 2c, 3g

)
〉 ,

(3.17)

where we have defined the fully regulated NLO cross section

〈ÔNLOFLM(1c, 2c̄, 3g)〉 = 〈(1− C31 − C32)(1− S3)FLM(1c, 2c̄, 3g)〉 . (3.18)

This term is free of divergences and can be computed in four dimensions. The subtraction
terms in Eq. (3.17) are analytically integrated in d = 4− 2ε dimensions and provide soft
and collinear 1/ε poles.
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We consider the sum of the two subtraction terms in Eq. (3.17), and rewrite them as
follows

〈(1− C31 − C32)S3FLM
(
1c, 2c̄, 3g

)
〉+ 〈(C31 + C32)FLM

(
1c, 2c̄, 3g

)
〉 . (3.19)

In the soft limit, the real-emission amplitude factorises into an eikonal function and the
Born amplitude. We find

S3FLM
(
1c, 2c̄, 3g

)
= ḡ2

s
2CF

E2
3

ρ12

ρ13ρ23
FLM(1c, 2c̄) , (3.20)

where ḡs is the bare strong coupling constant and

FLM(1c, 2c̄) = 2s · dσ̂LO =
1

4N2
c

∫
dLipsH |M(1c, 2c̄, H)|2Fkin(1c, 2c̄, H) . (3.21)

The dependence on the momentum p3 only appears in the eikonal factor. We use the
fact that, in the partonic centre-of-mass frame, the c and c̄ momenta are back-to-back.
Then, ρ12 = 2 and ρ13 = 2− ρ23. The eikonal function in Eq. (3.20) simplifies to

ρ12

ρ13ρ23
=

1
ρ13

+
1

ρ23
. (3.22)

In the collinear limits, the same eikonal function becomes

C13
ρ12

ρ13ρ23
=

1
ρ13

, C23
ρ12

ρ13ρ23
=

1
ρ23

. (3.23)

The consequence of Eqs. (3.22)-(3.23) is that the first term in Eq. (3.19) vanishes. We focus
now on the second term which provides the integrated subtraction terms.

In the collinear limit ρ13 → 0, we define E3 = (1− z)E1 where (1− z) parametrises the
fraction of energy taken by the gluon from the incoming charm quark with energy E1.
In this limit, the real-emission amplitude factorises and the real-emission cross section
becomes

C13FLM(1c, 2c̄, 3g) = ḡ2
s
(1− z)Pqq(z)

E2
3ρ31

FLM(z · 1c, 2c̄)

z
, (3.24)

where the splitting function reads

Pqq(z) = CF

[
1 + z2

1− z
− ε(1− z)

]
= P(0)

qq (z) + εP(ε)
qq (z) . (3.25)

We emphasise that Pqq(z) is divergent in the limit z→ 1. This is expected as this limit
corresponds to the emission of a soft gluon. We note that we need to consider the O(ε)
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part of the splitting function since the integration of 1/ρ13 over the gluon emission angle
produces a pole in ε. Specifically, we find1

〈C13FLM(1c, 2c̄, 3g)〉 = −
[αs]

ε

Γ(1− ε)2

Γ(1− 2ε)
(2E1)

−2ε

×
∫ 1

0

dz
(1− z)2ε

Pqq(z)〈
FLM(z · 1c, 2c̄)

z
〉 .

(3.26)

Note that we have renormalised the strong coupling constant ḡ2
s = (4π)µ2ε Sε αs(µ),

where Sε = eεγE /(4π)ε, and defined

[αs] =
αs(µ)

2π

µ2εeγE

Γ(1− ε)
. (3.27)

The integral in Eq. (3.26) still diverges in the soft z→ 1 limit. To extract this divergence,
we isolate the singular part of the splitting function and write

Pqq(z) =
2CF

1− z
+ Preg

qq (z) , (3.28)

where Preg
qq (z) is regular at z = 1. Then, for an arbitrary function G(z) which is regular

at z = 1, we can write∫ 1

0

dz
(1− z)2ε

Pqq(z)G(z) =
∫ 1

0
dz
[

2CF

(1− z)1+2ε
+ (1− z)−2εPreg

qq (z)
]

G(z)

= −CF

ε
G(1) +

∫ 1

0
dz

[
2CF

(1− z)1+2ε
(G(z)− G(1)) +

Preg
qq (z)

(1− z)2ε
G(z)

]
,

(3.29)

In Eq. (3.29), the soft divergence has been extracted and the integral over z has been
regulated. After some manipulations, we find that the integrated collinear subtraction
term in Eq. (3.26) becomes

〈C13FLM(1c, 2c̄, 3g)〉 = [αs]s−ε Γ(1− ε)2

Γ(1− 2ε)

[ (
CF

ε2 +
3CF

2ε
+

7
2

)
〈FLM(1c, 2c)〉

−
∫ 1

0
dz
(

P̂(0)
qq (z) + εP(ε)

qq,R(z)
)
〈FLM(z · 1c, 2c̄)

z
〉
]

.
(3.30)

In Eq. (3.30), we have introduced

P̂(ε)
qq,R(z) = −CF

[
ln(1− z)

1− z
2(1 + z2)

]
+

− (1− z)CF . (3.31)

1 We have set the lower integration boundary to 0 in Eq. (3.26) since otherwise the incoming partons would
not have enough energy to produce the Higgs boson.
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It is easy to obtain the result for the second collinear region, defined by ~n3 ·~n2 → 1, by
exchanging p1 ↔ p2. We define FLM(1c, 2c̄; z) = FLM(1c · z, 2c̄)/z + FLM(1c, 2c̄ · z)/z and
find that the real-emission contribution to the partonic cross section reads

2s · dσ̂R
cc̄ = [αs]s−εCF

Γ(1− ε)2

Γ(1− 2ε)

(
2
ε2 +

3
ε
+ 7
)
〈FLM(1c, 2c)〉

− [αs]s−ε

ε

Γ(1− ε)2

Γ(1− 2ε)

∫ 1

0
dz
(

P̂(0)
qq (z) + εP̂(ε)

qq,R(z)
)
〈FLM(1c, 2c̄; z)〉

+ ÔNLOFLM(1c, 2c̄, 3g) .

(3.32)

It is clear that the ε-pole in the second line of Eq. (3.32) and the one from the PDF renormal-
isation in Eq. (3.7) cancel each other. The double and the single ε-poles in the first line in
Eq. (3.32) will cancel with the ones from the virtual contribution, which we calculate now.

The virtual correction to the cross section is given by

2s · dσ̂V =
1

4N2
c

∫
dLips 2Re

{
M(0)∗(1c, 2c̄)M(1)(1c, 2c̄)

}
, (3.33)

where M(0) is the Born amplitude and M(1) is the one-loop amplitude shown in Fig. 3.1c.
The IR structure of the renormalised one-loop amplitude is universal and follows from
kinematics and colour charges of the external partons in a given process. Using Catani’s
operator [66], we split the cross section into two terms

2s · dσ̂V =− 2[αs] cos(επ)CF

(
1
ε2 +

3
2ε

)
s−ε〈FLM(1c, 2c̄)〉+ 〈Ffin

LV(1c, 2c̄)〉 , (3.34)

where 〈Ffin
LV(1,2c̄)〉 is finite as ε→ 0 and is the only process-dependent part of the virtual

cross section. Since cos(επ) = 1+O(ε2), it is clear that the poles in Eq. (3.34) cancel with
the ones in the first line of Eq. (3.32). To finalise this calculation, we need to determine
the finite part 〈Ffin

LV(1c, 2c̄)〉.

To obtain the one-loop correction to cc̄ → H amplitude, we need to compute the
diagram in Fig. 3.1c. After a standard calculation, we find

M(1) = −[αs]CF (−s− iε)−ε

{
1
ε2 +

3
2ε

+ 1− 3
2

ln
(

µ2

−s

)
+O(ε)

}
M(0) , (3.35)

where the Born amplitude M(0) reads M(0) = yc/
√

2δijv(p2)u(p1). Both the strong
and the Yukawa coupling have been renormalised in MS scheme. We use Eq. (3.35) to
determine the virtual contributions in Eq. (3.33). By comparing Eqs. (3.33)-(3.34), for the
partonic process c + c̄→ H, the process-dependent part of the virtual amplitude reads

〈Ffin
LV(1,2c̄)〉 = −

( αs

2π

)
CF

[
2− 3 ln

(
µ2

s

)]
. (3.36)
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Finally, by combining the results in Eq. (3.7), Eq. (3.32), and Eq. (3.34), the NLO QCD

correction to the Higgs boson production cross section in the collision of two massless
charm quarks reads

2s · dσ̂NLO
cc̄ =CF

αs(µ)

2π

[
5 +

2π2

3
+ 3 ln

(
µ2

m2
H

)]
〈FLM(1c, 2c̄)〉

+ 〈ÔNLOFLM(1c, 2c̄, 3g)〉

+ CF
αs(µ)

2π

∫ 1

0
dz P(ε)

qq (z)FLM(1c, 2c̄, z) ,

(3.37)

where we set s = m2
H in the elastic part.

3.1.2 NLO QCD corrections with massive charm quarks

We continue with the case of the massive incoming charm quarks. As mentioned at
the beginning of this chapter, the charm-quark mass regulates the initial state collinear
singularities. Poles in the dimensional regulator will only come from virtual corrections
and soft gluon emissions.

Our goal is to extract all terms that become singular as mc → 0, and set mc → 0
in the remaining ones. As a consequence, we need to keep the collinear operator in
the subtraction since logarithms of mc will be generated in this kinematical limit. The
real-emission contribution to the partonic cross section is given by the formula already
derived for the massless quarks

2s · dσR =
∫
[ dg3]FLM

(
1c, 2c̄, 3g

)
= 〈FLM

(
1c, 2c̄, 3g

)
〉

= 〈S3FLM
(
1c, 2c̄, 3g

)
〉+ 〈(C31 + C32)(1− S3)FLM

(
1c, 2c̄, 3g

)
〉

+ 〈(1− C31 − C32)(1− S3)FLM
(
1c, 2c̄, 3g

)
〉 .

(3.38)

The last term in Eq. (3.38) corresponds to 〈ÔNLOFLM(1c, 2c̄, 3g)〉 in Eq. (3.37). It is free
of soft and collinear singularities and, therefore, does not depend on the choice of the
regulator.

We need to determine the two integrated subtraction terms in Eq. (3.38). The real-
emission amplitude 1c + 2c̄ → 3g + H factorises in the soft and collinear limits. In the soft
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limit, where the energy of the emitted gluon goes to zero, the real-emission amplitude
can be written as the product of eikonal functions and the Born amplitude [49]

S3FLM(1c, 2c̄, 3g) = CF ḡ 2
s

{
2p1 · p2

(p1 · p3)(p2 · p3)
− m2

c
(p1 · p3)2 −

m2
c

(p2 · p3)2

}
× FLM(1c, 2c̄) .

(3.39)

The dependence on the gluon momentum p3 only appears in the soft function. To obtain
the soft integrated subtraction term 〈S3FLM(1c, 2c̄, 3g)〉, we integrate the soft function
over the gluon phase space

〈S3FLM(1c, 2c̄, 3g)〉 = CF ḡ 2
s 〈FLM(1c, 2c̄)〉

∫
[ dg3]

×
{

2p1 · p2

(p1 · p3)(p2 · p3)
− m2

c
(p1 · p3)2 −

m2
c

(p2 · p3)(p2 · p3)

}
.

(3.40)

The phase space measure of the emitted gluon is given in Eq. (3.11). We use the fact that
we work in the partonic centre-of-mass frame to define E ≡ E1 = E2. We write the phase
space measure explicitly

〈S3FLM(1c, 2c̄, 3g)〉

= CF
αs(µ)

2π
〈FLM(1c, 2c̄)〉

∫ 1

−1
d(cos θ)(sin2 θ)−ε

∫ Emax

0

dE3

E1+2ε
3

×
{

m2
H

E2(1− β cos θ)(1 + β cos θ)
− m2

c
E2(1− β cos θ)2 −

m2
c

E2(1 + β cos θ)2

}
,

(3.41)

where the integration over the solid angle in (d− 2)-dimensions has been performed and
the strong coupling constant has been renormalised. The factor β =

√
1−m2

c /E2 is the
velocity of the incoming quarks. The integration over the energy of the emitted gluon is
straightforward and provides a pole in the dimensional regulator. To simplify Eq. (3.41),
we define cos θ = x and rewrite it as

〈S3FLM(1c, 2c̄, 3g)〉 = CF
αs(µ)

2π
〈FLM(1c, 2c̄)〉

E−2ε
max

(−2ε)

∫ 1

−1
dx (1− x2)−ε

×
{

4
(1− βx)(1 + βx)

− m2
c

E2
1(1− βx)2

− m2
c

E2
2(1 + βx)2

}
.

(3.42)

The integration over the polar angle remains to be done. One can use partial fractioning
to rewrite the first term as the sum of two simple denominator

1
1− βx

1
1 + βx

=
1
2

(
1

1− βx
+

1
1 + βx

)
. (3.43)

The soft limit can therefore be expressed as

〈S3FLM(1c, 2c̄, 3g)〉 = CF
αs(µ)

2π

E−2ε
max
−2ε

〈FLM(1c, 2c̄)〉
[

4I1m − 2I2m

]
, (3.44)
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where

I1m =
∫ 1

−1
dx

(1− x2)−ε

1− βx
, (3.45)

I2m =
m2

c

E2
1

∫ 1

−1
dx

(1− x2)−ε

(1− βx)2 . (3.46)

These integrals need to be computed in the limit mc/
√

s� 1. We find

I1m =
2−2εΓ (1− ε)2

(−ε)Γ (1− 2ε)

{
1− Γ (1 + ε) Γ (1− 2ε)

Γ (1− ε)

(
m2

4E2
1

)−ε
}
+O

(
m2

c
s

)
, (3.47)

I2m = 2
(

m2
c

E2

)−ε

Γ (1− ε) Γ (1 + ε) +O
(

m2
c

s

)
. (3.48)

The integrated soft subtraction term in Eq. (3.44) simplifies to

〈S3FLM(1c, 2c̄, 3g)〉 = CF
αs(µ)

2π

2E−2ε
max
ε

[
1− ln

(
s

m2
c

)]
〈FLM(1c, 2c̄)〉 . (3.49)

The last term in Eq. (3.38) is obtained by considering the collinear limits where ρ13 and
ρ23 goes to zero. Since the scalar product p1 · p3 scales as m2

c in these limits, the divergent
terms in the limit mc → 0 can be obtained by a series expansion around mc = 0 of the
real-emission amplitude. The integrated collinear subtraction term reads

〈C31FLM(1c, 2c̄, 3g)〉 = CF ḡ2
s

∫
[ dg3]

{
1

p1 · p3

(
s2 + m4

H
m2

H(s−m2
H)
− ε

s−m2
H

m2
H

)

− m2
c

(p1 · p3)2

}
〈FLM(z · 1̃c, 2c̄)〉+O(m0

c) ,

(3.50)

where we took the massless limit in the Born amplitude which implies that p̃2
1 = 0.

To write Eq. (3.50), we introduced the standard parametrisation in the collinear limit
p3 = (1− z) p̃1 with z ∈ [0, 1]. It leads to E3 = (1− z)E1 and s = m2

H/z. The integral
reads

〈C31FLM(1c, 2c̄, 3g)〉 = CF ḡ2
s

∫ dΩ(d−2)
4

2(2π)d−1

∫ 1

−1
d(cos) sin−2ε θ E−4ε

1

×
∫ 1

0
dz (1− z)1−2ε

[
1

E2
1(1− z)(1− β cos θ)

(
1 + z2

1− z
− ε(1− z)

)

− z m2
c

E2
1(1− z)2

1
(1− β cos θ)2

]
〈FLM(z · 1̃c, 2c̄)

z
〉 .

(3.51)
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The angular integrals have already been calculated when computing the integrated soft
subtraction term. Therefore, we find

〈C31FLM(1c, 2c̄, 3g)〉 =
αs(µ)

2π
CFE−2ε

1

∫ 1

0
dz (1− z)−2ε

×
[(

1 + z2

1− z
− ε(1− z)

)
I1m −

z
1− z

I2m

]
〈FLM(z · 1̃c, 2c̄)

z
〉 .

(3.52)

This integral is singular at z = 1, corresponding to the limit where the emitted gluon
is soft. We must regulate this integral by subtracting the integrated soft-collinear term
〈C31S3FLM(1c, 2c̄, 3g)〉. It is important to emphasise again that, in this limit, the integration
over the gluon phase space decouples. The integrated soft-collinear subtraction term
reads

〈C31S3FLM(1c, 2c̄, 3g)〉

=
αs(µ)

2π
CFE−2ε

1 〈FLM(1c, 2c̄)〉
∫ 1

zmin

dz
2I1m − I2m

(1− z)1+2ε

=
αs(µ)

2π
CFE−2ε

1 〈FLM(1c, 2c̄)〉 (2I1m − I2m)

{
− 1

2ε

(
Emax

E1

)−2ε
}

,

(3.53)

where in the second line we use zmin = 1− Emax
E . Combining collinear and soft-collinear

limits in Eqs. (3.52)-(3.53), we obtain

〈C31(1− S3)FLM(1c, 2c̄, 3g)〉 =
αs(µ)

2π
CFE−2ε

1

×
{

I1m

∫ 1

0
dz PNLO

qq (z)〈FLM(z · 1̃c, 2̃c̄)〉 − I2m

∫ 1

0
dz P(m)

qq 〈FLM(z · 1̃c, 2c̄)〉
}

.
(3.54)

In Eq. (3.54), two splitting functions are defined

PNLO
qq (z) = (1− z)−2ε

(
1 + z2

1− z
− ε(1− z)

)
+

1
ε

δ(1− z)
(

Emax

E1

)−2ε

(3.55)

P(m)
qq (z) = (1− z)−2ε z

1− z
+

1
2ε

δ(1− z)
(

Emax

E1

)−2ε

. (3.56)

The expression for the second collinear subtraction term 〈C32(1− S3)FLM(1c, 2c̄, 3g)〉 is
analogous. We find

〈C31(1− S3)FLM(1c, 2c̄, 3g)〉 =
αs(µ)

2π
CFE−2ε

1

×
{

I1m

∫ 1

0
dz PNLO

qq (z)〈FLM(1̃c, z · 2̃c̄)〉 − I2m

∫ 1

0
dz P(m)

qq 〈FLM(1c, z · 2c̄)〉
}

.
(3.57)
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We have calculated all the integrated subtraction terms needed in Eq. (3.38) for the
computation of c + c̄ → H + g cross section at NLO QCD. The final results for the
real-emission contribution to the cross section reads

2s · dσ̂NLO
R =

αs(µ)

2π
CF

∫ 1

0
dz
{

P(0)
qq (z) ln

(
µ2

m2
c

)
+ Pfin

qq (z)
}
〈FLM(1c, 2c̄; z)〉

+
αs(µ)

2π
CF

{
− 2Lc

ε
− L2

c + 1− 2π2

3
− 3Lc + 2Lc ln

(
m2

H
µ2

)}
〈FLM (1c, 2c̄)〉 ,

(3.58)

where FLM(1c, 2c̄; z) ≡ 1
z [FLM(z · 1c, 2c̄) + FLM(1c, z · 2c̄)]. For convenience, we defined

Lc = ln(m2
H/m2

c)− 1. In writing Eq. (3.58), we also used

P̂(0)
qq (z) = CF

[
1 + z2

1− z

]
+

, (3.59)

Pfin
qq (z) = P̂(0)

qq (z)
(

ln
(

m2
H

µ2

)
− 1
)
+ CF(1− z) . (3.60)

The remaining ε-pole in Eq. (3.58) cancels with the one from the virtual contribution.
The calculation is analogous to the one performed for the massless charm quark in the
previous section. After renormalisation of the strong coupling and the charm Yukawa
coupling, we find in the mc → 0 limit

2s · dσ̂NLO
V =

αs(µ)

2π
CF

{
2Lc

ε
+ 4+8

π2

6
+ L2

c + 2Lc ln
(

µ2

m2
H

)

+ 3Lc + 3 ln
(

µ2

m2
H

)}
〈FLM (1c, 2c̄)〉 .

(3.61)

Combining Eq. (3.58) and Eq. (3.61), we obtain the formula for the NLO QCD corrections
to the annihilation cross section of two massive charm quarks into a Higgs boson in the
limit mc/

√
s� 1. It reads

2s · dσ̂NLO
cc̄ = 〈ÔNLOFLM

(
1c, 2c̄, 3g

)
〉

+
αs(µ)

2π
CF

{
5 +

2π2

3
+ 3 ln

(
µ2

m2
H

)}
〈FLM (1c, 2c̄)〉

+
αs(µ)

2π

∫ 1

0
dz

(
P̂(0)

qq (z) ln
(

µ2

m2
c

)
+ Pfin

qq (z)

)
〈FLM (1c, 2c̄; z)〉 .

(3.62)

3.1.3 PDF matching

We have obtained the partonic cross sections for the Higgs production in cc̄ annihilation
in the MS scheme and in the massive charm-quark scheme. We use Eq. (3.1) to find a



3.2 off-diagonal coefficients 23

relation between them. Since there is no difference between c and c̄, we can set Gc̄c̄ = Gcc

At order O(αs), we find∫
dx1 dx2 f c

MS(x1, µ) f c̄
MS(x2, µ) dσ̂MS,NLO

cc̄→H

=
∫

dx1 dx2

(
Gcc ⊗ f c

MS

)
(x1, µ) f c̄

MS(x2, µ) dσ̂MS,NLO
cc̄→H

+
∫

dx1 dx2 f c
MS(x1, µ)

(
Gcc ⊗ f c̄

MS

)
(x2, µ) dσ̂MS,NLO

cc̄→H .

(3.63)

The differences between the two partonic cross sections in Eq. (3.37) and in Eq. (3.62) is
absorbed by the coefficient Gcc. We find

Gcc(µ, z) = − ln
(

µ2

m2
c

)
P̂(0)

qq (z) + CF

[
1 + z2

1− z
(1 + 2 ln(1− z))

]
+

. (3.64)

Note that any other process with charm quarks in the initial state can also be considered
to determine the matching coefficient since PDFs are universal, process-independent
objects.

To check our calculations, we studied the charm-quark pair annihilation to the weak
boson Z. The singular structure of this process is similar to cc̄→ H. The real-emission
contribution for a massive and a massless charm quark is given by the result from
Eq. (3.32) and Eq. (3.58). The virtual contribution are different from cc̄→ H and need to
be calculated. For a massless charm quark, we compute Ffin

LV(1c, 2c̄) and, for a massive
charm quark, we can use the expression of the form factor from Ref. [67]. Combining
everything, we find the same matching coefficient Gcc̄ in Eq. (3.64), confirming its uni-
versality.

3.2 off-diagonal coefficients

Collinear emissions can change the identity of a hard parton. This leads to the fact
that matching coefficients have off-diagonal elements that we now determine. For our
purpose, we need to calculate the off-diagonal coefficients Gcg and Ggc.

We consider the process

c(p1) + g(p2)→ c(p3) + H(pH) , (3.65)

and compute its cross section in the MS scheme and in the mass-regulated scheme for
each of the Higgs boson production mechanisms, see Fig. 3.2.
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c

g

H

c

(a) Charm quark + Higgs production through
Yukawa coupling.

c

g

H

(b) Charm quark + Higgs production through
HEFT vertex.

Figure 3.2: The two mechanisms behind the production of the Higgs boson in association with a
charm-quark jet. These processes can be used to determine the off-diagonal coefficients
Gcg and Ggc.

3.2.1 Yukawa-like Higgs production

To compute the first off-diagonal coefficient Ggc(z), we study the process cg → cH
shown in Fig. 3.2a.

massless charm quark For a massless charm quark, there is a collinear singularity
as ρ23 → 0, where ρij is defined in Eq. (3.15). This singularity is regularised dimensionally.
It leads to a 1/ε pole which is canceled against the PDF renormalisation term δσ̂PDF in
Eq. (3.7).
We write the cross section as

2s · dσ̂gc = 〈FLM(1c, 2g, 3c)〉
= 〈(1− C32)FLM(1c, 2g, 3c, H)〉+ 〈C32FLM(1c, 2g, 3c, H)〉 .

(3.66)

The collinear limit ρ32 → 0 of the H + c production cross section (see Fig. 3.2a) is written
using the Altarelli-Parisi splitting functions. It reads

C32FLM(1c, 2g, 3c) = ḡ2
s

P(0)
qg (z) + εP(ε)

qg (z)
p2 · p3

FLM(1c, z · 2c̄)

z
, (3.67)

where

P(0)
qg = TF[1− 2z(1− z)] , P(ε)

qg = TF[−2z(1− z)] . (3.68)

In Eq. (3.67), we introduced a parameter z defined through an equation E3 = E2(1− z).
Rewriting the phase space and integrating over ρ32, we find

〈C32FLM(1c, 2g, 3c)〉 = −
αs(µ)

2π

(
µ2

E2
2

)ε ∫ 1

0

dz
(1− z)2ε

×
[

P(0)
qg (z) + εP(ε)

qg (z)
] (1

ε
− 2 ln(2)

)
〈FLM(1c, z · 2c̄)

z
〉 .

(3.69)
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It is evident that the 1/ε pole cancels against the collinear renormalisation term shown
in Eq. (3.7). Finally, the real-emission contribution to the gc→ Hc process through the
Yukawa interaction for a massless charm quark reads

dσ̂cH + δσ̂PDF = −αs(µ)

2π

1
2s

∫ 1

0

dz
(1− z)2ε

[
P(ε)

qg (z)

+ P(0)
qg (z)

(
ln
(

µ2

E2
2

)
− 2 ln(1− z)− 2 ln(2)

)]
〈FLM(1c, z · 2c̄)

z
〉 .

(3.70)

massive charm quark The cross section for a massive charm quark is written as a
sum of a regularised part and a subtraction term in the same way as in Eq. (3.66). We
focus on the integrated collinear term. The collinear limit of FLM reads

C32FLM(1c, 2g; 3c) = ḡ2
s

[
P(0)

qg (z)
p2 · p3

+ TF
m2

c z
(p2 · p3)2

]
FLM(1c, z · 2c̄)

z
, (3.71)

where we do not need to consider P(ε)
qg as in Eq. (3.67) since the mc regulates the collinear

limit and the integration over z is not divergent.

The mc → 0 limit can be taken everywhere except in the two propagators in Eq. (3.71).
This is justified by the absence of soft divergence. We can use the results from Eqs. (3.47)-
(3.48) to perform the angular integration of the propagators in Eq. (3.71). We find that
the integrated subtraction term, in the limit mc �

√
s, reads

〈C32FLM(1c, 2g, 3c, H)〉 = αs(µ)

2π

∫ 1

0
dz
{

2P(0)
qg (z) [Lc + ln(1− z)]

+ 2TF z(1− z)
}
〈FLM(1c, z · 2c̄)

z
〉 ,

(3.72)

where we have defined Lc = ln
(

2E2
mc

)
.

pdf matching We compare the results from Eq. (3.70) and Eq. (3.72) and use Eq. (3.1)
to determine the off-diagonal matching coefficient. We find

Gcg(z, µ) = P(0)
qg (z) ln

(
m2

c
µ2

)
. (3.73)

We note that this result agrees with the one recently derived in the context of the electron
structure function in Quantum Electrodynamics (QED) in Ref. [68].
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3.2.2 Higgs production in gluon fusion

To compute the second off-diagonal coefficient Ggc(z), we study the cg → Hc process
shown in Fig. 3.2b.

massless charm quark In the massless case, the collinear limit ρ13 → 0, where ρij
is defined in Eq. (3.15), is singular. We write

dσ̂cg = 〈FLM(1c, 2g, 3c)〉
= 〈(1− C31)FLM(1c, 2g, 3c, H)〉+ 〈C31FLM(1c, 2g, 3c, H)〉 .

(3.74)

The collinear subtraction term reads

〈C31FLM(1c, 2g, 3c)〉 = ḡ2
s

[
P(0)

gq (z) + εP(ε)
gq

p1 · p3

]
〈FLM(z · 1g, 2g)

z
〉 . (3.75)

We keep the O(ε) part of the splitting function as the integral over charm emission angle
will lead to a 1

ε pole. In Eq. (3.75), we introduced the splitting functions

P(0)
gq (z) = CF

[
1 + (1− z)2

z

]
, P(ε)

gq (z) = −CFz . (3.76)

We perform the integration over the angle of the emitted particle, renormalise the strong
coupling constant, and find that the integrated collinear subtraction term in Eq. (3.75)
becomes

〈C31FLM(1c, 2g, 3c)〉 =
αs(µ)

2π

(
µ2

E2
1

)ε ∫ 1

0
dz
(

P(0)
gq (z) + εP(ε)

gq (z)
) 1
(1− z)2ε

×
(
−1

ε
+ 2 ln(2)

)
〈FLM(z · 1g, 2g)

z
〉 .

(3.77)

Comparing this result with the one from the PDF renormalisation term in Eq. (3.7), we
observe that in their sum the 1/ε cancels. We find

dσ̂cg + δσ̂PDF =
αs(µ)

2π

1
2s

∫ 1

0
dz

{
P(ε)

gq (z)

− 2P(0)
gq (z)

(
ln
(

µ

2E1

)
− ln(1− z)

)}
〈FLM(z · 1g, 2g)

z
〉 .

(3.78)

massive charm quark We consider the subtraction as in the massless case, see
Eq. (3.74), and focus on the collinear subtraction term. The collinear limit reads

C31FLM(1c, 2g, 3c) = ḡ2
s

[
P(0)

gq

p1 · p3 −m2
c
− CF

m2
c z

(p1 · p3 −m2
c)

2

]
FLM(z · 1g, 2g)

z
. (3.79)
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We can safely consider the mc → 0 limit everywhere except in the two propagators in
Eq. (3.79) since there is no soft singularity as E3 → 0. We compute the two integrals over
the solid angle of the emitted particle in the limit mc �

√
s. We find that the integrated

collinear subtraction term with a massive charm quark reads

〈C31FLM(1c, 2g, 3c)〉 =
αs(µ)

2π

∫ 1

0
dz

{
− 2CF

(
1− z

z

)

+ 2P(0)
gq (z)

(
ln
(

2E1

mc

)
+ ln(1− z)− ln(z)

)}
〈FLM(z · 1g, 2g)

z
〉 .

(3.80)

pdf matching We compare Eq. (3.78) and Eq. (3.80) and use Eq. (3.1) to determine
the second off-diagonal coefficient. We find

Ggc(z, µ) = P(0)
gq (z)

(
1 + ln

(
m2

c
µ2

)
+ 2 ln (z)

)
. (3.81)

We note that this results agrees with the one derived for the Γ[1]
γ/e matching coefficient in

the context of electron structure function, see Eq.(4.189) of Ref. [68].

In the next chapter, we discuss the collinear limit of the interference in the presence of
a helicity flip and the importance of quasi-soft quark singularities.





4
U N C O N V E N T I O N A L C O L L I N E A R
S T R U C T U R E A N D Q UA S I - S O F T Q UA R K
S I N G U L A R I T Y

As already mentioned in the Introduction, the structure of the cg → cHg amplitude
in the soft and collinear limits is affected by requiring the helicity flip of the charm
quark. In this chapter, we investigate this issue in detail. We first elucidate the origin of
unconventional terms in the collinear limits and then discuss the logarithmic sensitivity
of the amplitude to the emission of quasi-soft quarks.

4.1 unconventional collinear structure

Collinear singularities occur when an incoming or an outgoing massless parton emits
a gluon or a quark. If the emission angle is so small that the emitted particles cannot
be distinguished from the emitters, the amplitude becomes singular. In this limit, the
amplitude factorises into a lower-order amplitude and the Altarelli-Parisi splitting func-
tions [69–71]. If the emitter is massive, the collinear singularities are naturally regulated
by the emitter’s mass and, once integrated over the emission angle, turn into logarithms
of the emitter’s mass. In the rest of this chapter, we will refer to such terms as quasi-
singular.

The helicity flip on the fermion line affects the conventional factorisation and leads to
additional quasi-singular terms. To understand this phenomenon, we start by calculating
the squared matrix elements for the case of a collinear gluon emission, without requiring
a helicity flip. By doing so, we expect to recover a familiar structure predicted by the
collinear factorisation of the amplitude. To understand the effect of the helicity flip, we
consider the collinear limit of the interference between the two production mechanisms
of the Higgs boson in cg collisions and identify new quasi-singular terms.

We consider the process

c(p1) + g(p2)→ c(p3) + g(p4) + H , (4.1)

where the Higgs boson is produced either through Yukawa interaction with the charm
quark or in the gluon fusion. We are considering the matrix element squared of both
production mechanisms. Since the squared matrix element either conserves the helicity
of the charm quark or requires to flip it twice in Hc̄c vertex, there is no need for an
additional helicity flip in this case. We consider the squared matrix element in the

29
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collinear limit p1 · p4 ∼ m2
c . In this limit, the amplitude can be decomposed into two

parts

M =M−1 +M0 , (4.2)

whereM−1 is quasi-singular andM0 is non-singular or integrable in the collinear limit.

H
4g

3c

1c

2g

(a) Quasi-singular part of the amplitude.

H

4g

3c

1c

2g

(b) Finite part of the amplitude.

Figure 4.1: In the collinear limit ρ14 → 0, the amplitude can be split into a quasi-singular part
M−1 illustrated on the left pane and into a finite partM0 shown on the right pane.

The quasi-singular part of the amplitude reads

M−1 ≡ gsM̂⊗ iq
/p1 − /p4 + mc

−2p1 · p4
ta4
iqi1 /ε 4u1 , (4.3)

where M̂⊗ describes the part of the diagram in Fig. 4.1a without the charm-quark
propagator and the spinor of the incoming charm quark u1. We note that in Eq. (4.3) the
sum over repeated colour index iq is assumed.

We decompose the massive charm-quark momentum p1 into two light-like momenta

p1 = α p̃1 + βp2 , (4.4)

where p̃2
1 = p2

2 = 0. We also choose 2p̃1 · p2 = s = (p1 + p2)2. These conditions fix α and
β. We find

p2
1 = m2

c = αβs , s = (α p̃1 + (1 + β)p2)
2 = sα(1 + β) , (4.5)

so that

α = 1− m2
c

s
, β =

m2
c

s−m2
c

. (4.6)

The Sudakov decomposition of the final state gluon momentum reads

p4 = (1− z) p̃1 + yp2 + p4,⊥ . (4.7)
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Using p2
4 = 0, we obtain

y = −
p2

4,⊥
(1− z)s

. (4.8)

The quasi-singular propagator in Eq. (4.3) can be written as

2p1 · p4 =
s−m2

c
s(1− z)

[
(1− z)2m2

c s
s−m2

c
− p2

4,⊥

]
≈ 1

1− z
[
(1− z)2m2

c − p2
4,⊥
]

, (4.9)

where we kept only the leading terms in m2
c /s. Using this result, the quasi-singular part

of the amplitude becomes

M−1 = gsM̂⊗ iq
/p1 − /p4 + mc

−2p1 · p4
ta4
iqi1 /ε 4u1

= gsM̂⊗ iq

(
/p1 − /p4 + mc

)
ta4
iqi1 /ε 4u1

1− z
p2

4,⊥ − (1− z)2m2
c

.
(4.10)

The logarithmic dependence of |M−1|2 on mc appears after the integration of the quasi-
singular propagator over the gluon phase space∫

[ dp4]

p1 · p4
∼
∫ d2~p4,⊥

~p 2
4,⊥ + m2

c(1− z)2
∼ ln

(
m2

c
)

, (4.11)

where ~p 2
4,⊥ = −p 2

4,⊥. We note that the z = 1 limit corresponds to the case where the
emitted gluon is soft, leading to a singularity that needs to be studied separately. Apart
from this phase-space region, it follows from Eq. (4.11) that mc protects the singular
point p4,⊥ = 0 and that for the purpose of extracting the quasi-singular ln(mc) terms,
p4,⊥ ∼ mc.

For the rest of this calculation, we keep in mind that only those terms in the amplitude
squared that scale as p−2

4,⊥ ∼ m−2
c will generate logarithms of mc once integrated over

the gluon phase space. Less singular terms are integrable in the mc → 0 limit and can,
therefore, be discarded when discussing the quasi-collinear limit.

We will now show that the amplitudeM−1 scales as m−1
c so that |M−1|2 ∼ p−2

4,⊥ ∼ m−2
c .

To this end, we note that the spinor chain in Eq. (4.10) can be simplified using the Dirac
algebra(

/p1 − /p4 + mc
)

/ε 4u1 = 2p1 · ε4u1 − /p4/ε 4u1 =
(
2p1 · ε4 − /p4/ε 4

)
u1 , (4.12)

where we used the Dirac equation /p1u1 = mcu1. We need to further rewrite Eq. (4.12)
to make its mc and p4,⊥ ∼ mc scaling manifest. To do that, we use the proximity of p1
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and p4 in the collinear limit and compare the two scalar products p1 · ε4 and p4 · ε4. They
read

p1 · ε4 = α p̃1 · ε4(1− z) + βp2 · ε4 , (4.13)

p4 · ε4 = p̃1 · ε4(1− z) + yp2 · ε4 + p4,⊥ · ε4 = 0 , (4.14)

where the second scalar product vanishes for physical gluon polarisations. These two
equations can be simplified by choosing p2 as the reference vector for ε4. 1 We find

p1 · ε4 = −α
p4,⊥ · ε4

1− z
. (4.15)

It follows that

/p4/ε 4u1 = −/ε 4/p4u1 = −/ε 4

[
/̃p1(1− z) + y/p2 + /p4,⊥

]
u1

= −/ε 4

[
(1− z)

α

[
/p1 − β/p2

]
+ y/p2 + /p4,⊥

]
u1 .

(4.16)

From Eqs. (4.6)-(4.8), we find that y ∼ ~p 2
4,⊥/s ∼ m2

c /s and β ∼ m2
c /s. These two terms

lead to an overall scaling p0
4,⊥ ∼ m0

c of the quasi-singular amplitude and therefore do not
affect the quasi-collinear limit. For the same reason, we can replace α with 1 in Eq. (4.16).
Finally, we use the Dirac equation /p1 = mcu1 and write Eq. (4.16) as

/p4/ε 4u1 = −/ε 4

[
(1− z)mc + /p4,⊥

]
u1 . (4.17)

We use the results from Eqs. (4.12)-(4.17) and find the following quasi-singular part of
the amplitude

M−1 = g2
sM̂⊗ iq ta4

iqi1

1− z
p2

4,⊥ −m2
c(1− z)2

[
− 2p4,⊥ · ε4

1− z

+ /ε 4

(
(1− z)mc + /p4,⊥

) ]
u1 .

(4.18)

It follows thatM−1 ∼ p−1
4,⊥ ∼ m−1

c since both terms in the square brackets in Eq. (4.18)
scale as p4,⊥ ∼ mc.

We would like to find the expression for the quasi-singular contribution of the squared
matrix element. Since the finite part of the amplitude scales as p0

4,⊥ ∼ m0
c , the interference

betweenM0 andM−1 can be discarded since it scales as p−1
4,⊥ and, therefore, is integrable

1 We remind the reader that a reference vector rµ can be arbitrary chosen such that r · ε4 = 0 as a gauge
fixing condition. Together with ε4 · p4 = 0 which forces that the longitudinal component to be zero, these
conditions ensure that the gluon has only two physical polarisations.
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in the mc → 0 limit. The only relevant contribution comes from the squared quasi-
singular part∣∣∣M−1

∣∣∣2 = g2
s CF

(1− z)2[
p2

4,⊥ −m2
c(1− z)2

]2 Tr
{
Ô M̂†

⊗ iq
M̂⊗ iq

}
, (4.19)

where the sum over gluon’s polarisations is implicit. In Eq. (4.19), we have defined the
operator

Ô =

[−2p4,⊥ · ε4

1− z
+ /ε 4

(
(1− z)mc + /p4,⊥

)]
(/p1 + mc)

×
[−2p4,⊥ · ε∗4

1− z
+
(
(1− z)mc + /p4,⊥

)
/ε ∗4

]
.

(4.20)

We already pointed out that both square brackets in Eq. (4.20) scale as p4,⊥ ∼ mc. It leads
to Ô ∼ m2

c , resulting in an overall scaling |M−1|2 ∼ m−2
c in Eq. (4.19). The mass in the

polarisation sum /p1 + mc can be dropped, as it leads to |M−1|2 ∼ m−1
c and, hence, is

not relevant for the quasi-singular limit. We note that /p1/p4,⊥/ε 4 = /p4,⊥/ε 4/p1 +O(m2
c) and

write

Ô =

[−2p4,⊥ · ε4

1− z
+ /ε 4

(
(1− z)mc + /p4,⊥

)]
×
[−2p4,⊥ · ε∗4

1− z
+
(
−(1− z)mc + /p4,⊥

)
/ε ∗4

]
/p1 +O

(
m−1

c

)
.

(4.21)

To proceed further, it is convenient to define the operator Ô = Ôµν
1 ε4,µε∗4,ν /p1. It reads

Ôµν
1 =

pµ
4,⊥pν

4,⊥
(1− z)2 + ηµν

[
−(1− z)2m2

c + p2
4,⊥
]
− 2p4,⊥ · ε4

1− z
[2p4,⊥ · ε∗4]

=

(
1

(1− z)2 −
1

1− z

)
4pµ

4,⊥pν
4,⊥ + ηµ,ν

[
−(1− z)2m2

c + p2
4,⊥
]

.
(4.22)

Until now, we did not account for the sum over gluon’s polarisations. In the axial gauge,
the sum reads

∑
pol.

ε4,µε∗4,ν = −ηµ,ν +
p2µ p4ν + p2ν p4µ

p2 · p4
, (4.23)

where we remind the reader that we have chosen pµ
2 as the reference vector for ε4. We

use this result and the fact that p2 · p4,⊥ = 0 to simplify Ôµν
1 . We find

∑
pol.
Ôµν

1 ε4,µε∗4,ν = −2p2
4,⊥

1 + z2

(1− z)2 + 2m2
c(1− z)2 . (4.24)
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The matrix element squared in Eq. (4.19) becomes∣∣∣M−1
∣∣∣2 =g2

s CF
(1− z)2[

p2
4,⊥ −m2

c(1− z)2
]2

{
−2p2

4,⊥
1 + z2

(1− z)2 + 2m2
c(1− z)2

}

× Tr
{

/p1 M̂†
⊗ iq
M̂⊗ iq

}
.

(4.25)

To recover a familiar structure, we restore the scalar product p1 · p4 using Eq. (4.9). To
do this, we start by rewriting the term in curly brackets in Eq. (4.25) as follows{

−2p2
4,⊥

1 + z2

(1− z)2 + 2m2
c(1− z)2

}
= −2

{[
p2

4,⊥ −m2
c(1− z)2] 1 + z2

(1− z)2 + 2z m2
c

}
.

(4.26)

The quasi-singular contribution becomes

∣∣∣M−1
∣∣∣2 =− 2 g2

s CF

 (1− z)2

p2
4,⊥ −m2

c(1− z)2

1 + z2

(1− z)2 +
2z m2

c(1− z)2[
p2

4,⊥ −m2
c(1− z)2

]2


× Tr

{
/p1 M̂†

⊗ iq
M̂⊗ iq

}
.

(4.27)

It is now easy to use Eq. (4.9) to write

∣∣∣M−1
∣∣∣2 = g2

s CF

[
1

p1 · p4

1 + z2

1− z
− m2

c z
(p1 · p4)2

]Tr
{

z /p1 M̂†
⊗ iq
M̂⊗ iq

}
z

 , (4.28)

This equation can be written in term of the Born amplitudeM0 summed over polarisation
of the external particles. It reads

∣∣∣M−1
∣∣∣2 = g2

s CF

[
1

p1 · p4

1 + z2

1− z
− m2

c z
(p1 · p4)2

]( |M0(z · 1c, 2g, 3c)|2
z

)
. (4.29)

This result corresponds to the familiar collinear factorisation formula for a massive quark
emitter [69].

As the next step, we would like to study the collinear limit of the interference where
helicity flip must occur. We again consider the process in Eq. (4.1). The amplitude is
constructed from the sum of diagrams where the Higgs boson directly couples to the
charm-quark line,Myc , and from the sum of diagrams where the Higgs boson interacts
with two gluons,Mggh. We are interested in the interference

Int
{
|M|2

}
≡MycM†

ggh +M†
yc
Mggh . (4.30)
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(a) AmplitudeMyc with Yukawa interaction.

H

4g

3c
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2g

(b) AmplitudeMggh with effective vertex.

Figure 4.2: The amplitude M is the sum of the Yukawa-like amplitude Myc and the effective
ggH amplitudeMggh.

Proceeding as before, we consider the collinear limit of the emission of the gluon
with momentum p4 off the incoming charm-quark with momentum p1. We split the
amplitudes into the quasi-singular and integrable parts

Myc =M−1
yc

+M0
yc

, Mggh =M−1
ggh +M0

ggh . (4.31)

At the amplitude level, the treatment ofMyc andMggh is the same. Following earlier
discussion, we isolate the charm-quark propagator in the quasi-singular part of both
amplitudes and find

M−1
a = gsM̂a,⊗,iq ta4

iq i1

(
2p1 · ε4 − /p4 · /ε 4

) 1− z
p2

4,⊥ − (1− z)2m2
c

u1 . (4.32)

The index a distinguishes the two mechanisms of Higgs boson production. We use
Eq. (4.15) to express the quasi-singular part of the amplitudes as

M−1
a = gsM̂a,⊗ iq ta4

iq i1

[−2p4,⊥ · ε4

1− z

+ ε̂4 (m(1− z) + p̂4,⊥ + κ p̂2)

]
u1

1− z
p2

4,⊥ − (1− z)2m2
c

,
(4.33)

where we used a quantity κ defined as

κ =
−m2

c(1− z)
s

−
p2

4,⊥
(1− z)s

. (4.34)

The interference between the two Higgs boson production mechanisms in cg collisions
reads

Int
{
|M|2

}
=
(
M−1,†

ggh M−1
yc

+ h.c.
)
+
(
M0,†

gghM−1
yc

+M0,†
yc
M−1

ggh + h.c.
)

+
(
M0,†

yc
M0

ggh + h.c.
)

.
(4.35)
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The finite terms in the second line of Eq. (4.35) can de discarded. For the discussion of
the quasi-collinear limit, first, we will calculate the mixed contributions in the second
term in Eq. (4.35) and, then, the interference of the quasi-singular parts.

The power-counting argument that we used in the first part of this section has to be
adapted. We remind the reader that the interference in Eq. (4.35) requires a helicity flip.
In this case, logarithms of mc are provided by terms in the amplitude squared which
scales as mc p−2

⊥ before phase-space integration, where it has to be understood that mc

stands for the mass insertion and the helicity flip, and p−2
⊥ stands for the required scaling

as discussed earlier.

We begin the analysis of Eq. (4.35) with the mixed terms. One of them reads

M0,†
gghM−1

yc
=gs CFTr

{
(/p1 + mc)M0,†

gghM̂−1
yc,⊗ iq

[
−2p4,⊥ · ε4

1− z

+ /ε 4
(
mc(1− z) + /p4,⊥ + κ/p2

)]} 1− z
p2

4,⊥ − (1− z)2m2
c

.

(4.36)

Going back to Eq. (4.10), we note that terms in square brackets in Eq. (4.36) were
originally two Dirac matrices, (/p1 − /p4 + mc)/ε 4 . Then, to produce a helicity flip, we
either have to consider terms with a single Dirac matrix in the square brackets or we will
need a helicity flip to come from another part of (/p1 + mc)M0,†

gghM̂−1
yc,⊗. However, the

latter cannot happen since the expression in the square brackets scales as mc, resulting
in a overall scaling mc p−1

⊥ of the mixed terms. Thus, the only relevant contribution for
the quasi-collinear limit in Eq. (4.36) arises if we take /p1 from (/p1 + mc) and /ε 4mc(1− z)
from the square brackets. We find

M0,†
gghM−1

yc
= gs CF

(1− z)2mc

p2
4,⊥ − (1− z)2m2

c
Tr
{

/p1M
0,†
gghM̂−1

yc,⊗ iq
/ε 4

}∣∣∣
mc=0

+O
(

mc p−1
⊥
)

.

(4.37)

Analogously,

M0,†
yc
M−1

ggh = gs CF
(1− z)2mc

p2
4,⊥ − (1− z)2m2

c
Tr
{

/p1M0,†
yc
M̂−1

ggh,⊗ iq
/ε 4

}∣∣∣
mc=0

+O(mc p−1
⊥ ) .

(4.38)

We use Eq. (4.9) to rewrite the sum of Eqs. (4.37)-(4.38) and we find

M0,†
gghM−1

yc
+M0,†

yc
M−1

ggh = gs CF
(1− z)mc

2p1 · p4
Tr
{

/p1A0,†,i1(1̃c, 2g, 3̃c, (1− z)1̃c)

×A−1,iq(z · 1̃c, 2g, 3̃c)/ε 4

}
+O

(
mc p−1

⊥
)

,
(4.39)
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where both amplitudes A−1,iq and A0,†,i1 are computed in the mc → 0 limit. To emphasise
this point, we mark the arguments of the amplitudes with tilde which means that the
corresponding momenta are light-like, i. e. p̃2

i = 0, for i = 1, 3. To understand the
meaning of the amplitudes A−1 and A0, we note that they can be used to write down
the Born amplitude and the finite part of the real-emission amplitude as

M0(1̃c, 2g, 3̃c) = Aiq(1̃c, 2c, 3̃c)u( p̃1) , (4.40)

M0(1̃c, 2g, 3̃c, 4g) = A0
iq
(1̃c, 2c, 3̃c, 4g)u( p̃1) , (4.41)

where iq stands for the colour index of the incoming charm quark.

The next term to consider in Eq. (4.35) is the product of the two quasi-singular parts

Ising ≡M−1,†
ggh M−1

yc
= g2

s CF
(1− z)2[

p2
4,⊥ −m2

c(1− z)2
]2 Tr

{[−2p4,⊥ · ε4

1− z

+ /ε 4

(
mc(1− z) + /p4,⊥ + κ/p2

) ]
(/p1 + mc)

[−2p4,⊥ · ε∗4
1− z

+
(

mc(1− z) + /p4,⊥ + κ/p2

)
/ε ∗4
]
M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}
.

(4.42)

To compute Ising, we split it into three terms. We define these three terms by the
power of mc(1− z) that appears once the square brackets are multiplied. We collect
O
(
(mc(1− z))2

)
contributions in the first term

I(2)sing = g2
s CF

(1− z)4m2
c[

p2
4,⊥ −m2

c(1− z)2
]2 Tr

{(
/ε 4(/p1 + mc)/ε ∗4

)
M̂−1,† iq

ggh,⊗ M̂−1
yc,⊗ iq

}
. (4.43)

We need an even number of Dirac matrices to have a non-vanishing trace. If we consider
term with /ε 4/p1/ε 4, the mass insertion should come from the product M̂−1,† iq

ggh,⊗ M̂−1
yc,⊗ iq

,
whereas if we consider the term with mc/ε 4/ε 4, the product of the amplitudes can be
computed in mc → 0 limit. Both cases need to be considered as they lead to an overall
scaling I(2)sing ∼ mc p−2

⊥ . Then, accounting for the sum over the gluon’s polarisations and

using Eqs. (4.24)-(4.43), I(2)sing becomes

I(2)sing = g2
s CF

2(1− z)4m2
c[

p2
4,⊥ −m2

c(1− z)2
]2 Tr

{(
/p1 −mc

)
M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}
. (4.44)
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The second part in Eq. (4.42) is made of terms accompanied by one power of mc(1− z).
We collect them and find

I(1)sing = g2
s CF

(1− z)3mc[
p2

4,⊥ −m2
c(1− z)2

]2 Tr

{[−2p4,⊥ · ε4

1− z
(2mc/ε ∗4 + 2ε∗4 · p1)

+ 2p1 · (p4,⊥ + κp2)/ε 4/ε ∗4 + 2mc/ε 4(/p4,⊥ + κ/p2)/ε
∗
4

]
M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}
.

(4.45)

In Eq. (4.45), we only need to consider terms in the square brackets that scale as m2
c since

the factor in front of the trace scales as mc p−4
⊥ . In addition, similar to the computation of

I(2)sing, we need an even number of Dirac matrices in the trace. We find that the relevant
terms in Eq. (4.45) can be written as

I(1)sing = g2
s CF

−(1− z)3mc[
p2

4,⊥ −m2
c(1− z)2

]2

[
4p2

4,⊥
(1− z)2 + 2κs

]
Tr
{
M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}

+O
(

mc p−1
⊥
)

.

(4.46)

The last term in Eq. (4.42) is the one without mc(1− z) terms in the square brackets. It
reads

I(0)sing =g2
s CF

(1− z)2[
p2

4,⊥ −m2
c(1− z)2

]2 Tr

{[−2p4,⊥ · ε4

1− z
+ /ε 4

(
/p4,⊥ + κ/p2

) ]

× (/p1 + mc)
[−2p4,⊥ · ε4

1− z
+
(

/p4,⊥ + κ/p2

)
/ε 4

]
M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}
.

(4.47)

In this case, either we take mc from (/p1 +mc) and consider the rest in the mc → 0 limit, or
we keep the momentum /p1 in (/p1 + mc) and, then, the helicity flip has to be provided by
the interference of the quasi-singular parts of the amplitudes M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq
. In both

cases, κ terms can be discarded. We use the fact that the commutator [/p1, /ε 4] = O(mc)

and the polarisation sum in Eq. (4.23) to write Eq. (4.47) as

I(0)sing = g2
s CF

(1− z)2[
p2

4,⊥ −m2(1− z)2
]2

[
−2p2

4,⊥
1 + z2

(1− z)2

]

× Tr

{
(/p1 + mc)M̂−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}
.

(4.48)
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The three terms I(i)sing, i = 1, 2, 3, in Eq. (4.48), Eq. (4.46) and Eq. (4.44) can be combined.
We use Eq. (4.9) to restore the scalar product p1 · p4 and find

Ising =g2
s CF

(
1

p1 · p4

1 + z2

1− z
− CFm2

c z
(p1 · p4)2

)
Tr

{
z/p1M

−1,†
ggh,⊗M̂−1

yc,⊗
z

}

− g2
s CF

mc(1− z)
z(p1 · p4)

Tr
{
M−1,†

ggh,⊗ iq
M̂−1

yc,⊗ iq

}
.

(4.49)

Together, the mixed term in Eq. (4.39), its hermitian conjugate, and the double-singular
term in Eq. (4.49) provide the complete quasi-singular structure of the interference in
the quasi-collinear limit ρ14 → 0. We find

lim
p1·p4→0

Int
{
M2(1c, 2g; 3c, 4g)

}
= g2

s

[(
Pqq(z)
(p1 · p4)

− CFm2
c z

(p1 · p4)2

)
Int

{
|M0(z · 1c, 2g; 3c)|2

z

}

− CFmc(1− z)
z(p1 · p4)

Int
{

Tr
[
Âic(z · 1̃c, 2g; 3̃c)Âic,†(z · 1̃c, 2g; 3̃c)

] }]

+ gsCF
(1− z)mc

2(p1 · p4)
Int
{

Tr
[

p̂1Aic(z · 1̃c, 2g; 3̃c)

× Âic,†
0 (1̃c, 2g; 3̃c, (1− z)1̃g)ε̂4 + h.c.

]}
.

(4.50)

The different terms that appear in Eq. (4.50) can be understood as follows. The first
term is the result of the standard collinear factorisation identical to the case where no
helicity flip is required, cf. Eq. (4.29). In this case, the helicity flip occurs in the hard
matrix element squared |M0(z · 1c, 2g; 3c)|2. The second and the third terms are new
contributions. The second term in Eq. (4.50) has an explicit factor of mc as this terms
originates from the helicity flip on the external charm-quark line. The massless limit is
taken in the amputated Born amplitude Âic(z · 1̃c, 2g; 3̃c). The third term originates from
the interference between the finite part and the quasi-singular part of the amplitude.
Such terms are not singular in the case of conventional collinear limits. We note that this
term is proportional to the strong coupling constant gs in the first power since another
gs is implicit in the finite part of the real-emission amplitude Âic

0 (1̃c, 2g; 3̃c, (1− z)1̃g).

The determination of the NLO QCD corrections to the interference of the two production
mechanisms of the Higgs boson in association with a charm-quark jet will require the
analysis of several quasi-collinear limits. We proceed in the following way. From the exact
amplitude, we extract the different quasi-collinear limits using the scaling arguments
that allow us to derive the results presented in this chapter. After the scaling of each
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term of the interference in the considered quasi-collinear limit has been identified, we
expand the expression in mc. The quasi-collinear limit of the interference, accounting for
the mass insertion, corresponds to the terms that scales as mc p−2

⊥ ∼ mcm−2
c .

4.2 quasi-soft quark singularity

Collinear emission is not the only mechanism to produce mc ln(mc) terms. Indeed, we
observe that quasi-soft quark limit contributes. It means that the real-emission amplitude
displays a logarithmic sensitivity on mc as the energy of the emitted quark goes to zero.
The origin of this quasi-singularity can be understood in the following way. We consider
the emission of a gluon from an outgoing massive charm quark

p3

p4

p3 + p4

∼ ū(p3)
ε̂∗4( p̂3 + p̂4 + mc)

2p3 · p4
A(1c, 2g; 4c) , (4.51)

where the spinor of the outgoing charm quark and its propagator are written explicitly.
In the case where the energy of the charm quark tends to mc → 0, the propagator scales
as E−1

3 . For massless charm quarks, we have that

ū(p3) ∼
√

E3 , (4.52)

which, as the result, does not lead to any divergences once integrated over the emitted-
quark phase space. However, if the helicity flip occurs on the external charm-quark line,
the interference term will scale as

Int|A|2 ∼ Tr
[
( p̂3 + mc)AgghA∗yuk

]
∼ mc

E2
3

, (4.53)

which leads to ln(mc) once integrated over the phase space. Similar to the quasi-collinear
limit, the structure of quasi-soft quark singularities in the different contributing channels
is found by the direct inspection of the interference, by keeping only terms that scale as
mc p−2

⊥ ∼ mcm−2
c . We note that quasi-soft quark singularities have been studied at the

level of the helicity amplitudes in Ref. [72]. We report here only main results related to
the quasi-soft quark singularity obtained in that reference. Analogously to soft gluon
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factorisation in the soft quark limit, the amplitude factorises into a lower order amplitude
and a vector current. It can be illustrated for cg collisions as

lim
E3→0

3c1c

h2g

4g

=

4c1c

h2g

×
4c 4g

3c

lim
E3→0
M(1c, 2g; 3c, 4g) = Aici1(1̃c, 2g; 4λq

c )× igst
a4
i3ic

ū3ε̂4uλq
4

2p3 · p4
.

(4.54)

We recall that the summation over repeated indices is assumed. For the same process, a
quasi-soft quark can be emitted from both incoming legs, as shown in Fig. 4.3. Once the
three contributions are combined, the real-emission amplitude,M =MYuk +Mggh, in
the quasi-soft quark limit is found to be

S3M(1λ1
c , 2λ2

g ; 3λ3
c , 4λ4

g ) = igst
a5
i3ic

f34(λ3, λ4, λq)

2p3 · p4
Mici1(1λ1

c , 2λ2
g ; 4λq

c ) ,

+ igsta2
i3ic̄

f32(λ3, λ2, λq̄)

2p2 · p3
Mic̄i1(1λ1

c , 2−λq̄
c̄ ; 4λ4

g ) ,

+ igst
ag
i3i1

f31(λ3, λg, λ1)

2m2
c − 2p1 · p3

Mggh(1
−λg
g , 2λ2

g ; 4λ4
g ) ,

(4.55)

where we define the currents

f34(λ3, λ4, λq) = ū(p3, λ3)γµu(p4, λq)ε
µ∗(p4, λ4) ,

f32(λ3, λ4, λq̄) = ū(p3, λ3)γµv(p2,−λq̄)ε
µ(p2, λ2) ,

f31(λ3, λg, λ1) = ū(p3, λ3)γµu(p1, λ1)ε
µ(p1, λg) .

(4.56)

The result in Eq. (4.55) is interesting. It assumes a form which is similar to the standard
soft-gluon factorisation. Each possible emission comes with a quasi-singular propagator
and an eikonal current denoted in this case by the functions f3i , i = 1, 2, 3. The main
difference is that the real-emission amplitude does not only factorises into the Born
amplitude of the cg→ cH process, but also in amplitudes of different processes, such as
cc̄→ gH, for the second line of Eq. (4.55), and gg→ gH, for the third line. We emphasise
that in the third line of Eq. (4.55), only the direct coupling of the Higgs boson to two
gluons contributes at this order.

We square the amplitude in Eq. (4.55) and keep only terms that provide interfer-
ence contributions between the two Higgs boson production mechanisms. A detailed
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4g
1c

h
2g 3c

4g

1c

3c

h
2g

Figure 4.3: Quasi soft-quark contributions are also provided by emissions off initial state partons.
Similar to Eq. (4.54), in the quasi soft-quark limit, these two amplitudes factorise into
lower-order amplitudes and vector currents.

derivation can be found in Ref. [72]. We report the final form of the interference in the
quasi-soft quark limit in the cg partonic channel

S3 Int ∑
hel
|M(1c, 2g; 3c, 4g)|2 = 2mc g4

s gYuk gggh Nc CF

×
[
(2CF − CA)p2 · p4

p2 · p3 p3 · p4

(
s3 + u3

s + u

)
+

CA p1 · p4

(p1 · p3 −m2
c) p3 · p4

(
u3 + m6

h
s t u

)

+
CA p1 · p2

(p1 · p3 −m2
c) p3 · p2

(
s3 + m6

h
s t u

)]
.

(4.57)

The limit is similar to the soft function that one would have obtained in the case of
a soft gluon emission. We observe the colour factors and the eikonal functions that
clearly indicate where the soft quark has been emitted and absorbed. We emphasise
that, in this case, the charm-quark mass is present in the propagators that appear in
these new eikonal functions, which will require special attention when we will compute
the integrated subtraction term. We note that this result has been compared to the one
obtained by direct expansion of the exact cg→ cgH amplitude and the agreement has
been found.

In the next chapter, we present the different contributing partonic channels, and
explain how one can extract the leading logarithms of the real-emission amplitude using
the nested soft-collinear subtraction scheme.
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C O R R E C T I O N S

In this chapter, we compute the real-emission, interference contributions to the process
pp→ H + jetc. The chapter is organised as follows. First, we present an overview of the
different partonic channels contributing to H + jetc production. Then, we consider one of
these partonic channels in detail to understand how the logarithms of the charm-quark
mass can be extracted from the real-emission corrections. Finally, we provide numerical
checks that show the correctness of our approach.

5.1 real-emission amplitudes

The real-emission contribution to the interference of both Higgs boson production mech-
anisms which contribute to the process pp→ H + jetc is described by several diagrams.
We show some of them in Fig. 5.1. Each diagram corresponds to one of the relevant
partonic channels. We note that we explicitly calculate the interference in the cg-channel

Hc

g

(a) cg channel

q

c

H

(b) cq channel

g

c̄

c

H

g

(c) gg channel

c

c H

(d) cc channel

c

c H

(e) cc̄ channel

Figure 5.1: Examples of diagrams contributing to the NLO QCD corrections of the process pp→
H + jetc. They are sorted by the pair of partons in the initial state. Both Higgs boson
production type have to be included.

and we obtain results for all the other channels by crossing symmetry. There are eight
diagrams where the Higgs boson is emitted off the charm-quark line and eight where
the Higgs boson couples to two gluons. We compute the interference between the two

43
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production mechanisms using FORM [73–76]. To check the calculation, the interference in
the cg channel is compared to the interference obtained with MadGraph5_aMC@NLO [77]
for resolved kinematics.

As mentioned in the Introduction, it is not straightforward to take the limit of the
massless charm quark once helicity flip is required. We have seen in Chapter 4 that
the presence of the helicity flip affects the conventional collinear factorisation of the
amplitude and generates quasi-soft quark singularity. For a numerical implementation,
we would like to subtract all quasi-singular terms from the cross section and take the
mc → 0 limit where possible. We explain how this can be done by considering a specific
example in the next section.

5.2 extraction of the logarithms of the charm-quark mass

To extract logarithms of the charm-quark mass from the real-emission contribution, we
use the nested soft-collinear subtraction scheme [65]. This scheme has already been intro-
duced in Chapter 3 in the context of the PDF matching. In this section, we focus on the
gg partonic channel. We identify the quasi-singular regions, determine the subtraction
terms, and extract the logarithms of mc.

We consider the following partonic channel

g(p1) + g(p2) −→ H(pH) + c(p3) + c̄(p4) . (5.1)

The process in Eq. (5.1) is symmetric under the exchange of p3 and p4. For this reason,
we only need to consider the case where the anti-quark 4c̄ becomes unresolved. The
emitted quark can be quasi-soft and can develop mass singularities in the collinear limit.
We isolate them by writing

〈FLM(1g, 2g; 3c, 4c̄)〉 =
3

∑
i=1
〈(1− C4i)(1− S4)ω

(i)FLM(1g, 2g; 3c, 4c̄)〉

+ 〈C4i(1− S4)ω
(i)FLM(1g, 2g; 3c, 4c̄)〉

+ 〈S4FLM(1g, 2g; 3c, 4c̄)〉 .

(5.2)

In Eq. (5.2), we have introduced the partition of unity

1 =
3

∑
i=1

ω
(i)
123 , (5.3)

where

ω(i) =
1

ρ4i
·
[

1
ρ41

+
1

ρ42
+

1
ρ43

]−1

. (5.4)
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Partitions localise collinear singularities. Indeed, it is easy to see that the product of ω(i)

and the matrix element squared only develop mass singularities if ρ4i → 0. For instance,
if the emitted anti-quark 4c̄ is quasi-collinear to the incoming gluon 1g, then ρ14 → 0 and
the partitions become ω(1) = 1 and ω(j) = 0 for j = 2, 3.

The first term on the right-hand side of Eq. (5.2) represents the fully-regulated term,
which can be safely integrated with Vegas [78] in the mc → 0 limit. The second and the
third terms are sources of large logarithms that need to be extracted. We begin with
the soft subtraction term and, then, we compute the soft-regulated collinear subtraction
term.

5.2.1 Quasi-soft quark subtraction term

The third term on the right-hand side of Eq. (5.2) is the soft subtraction term

〈S4FLM(1g, 2g; 3c, 4c̄)〉 . (5.5)

From the discussion in Chapter 4, we know the form of the interference in the soft limit

S4Int
{
|M(1g, 2g; 3c, 4c̄)|2

}
=

(2C f − CA)(p1·p2)

(p1·p4)(p2·p4)
F12(p1, p2, p3)

+
CA(p1·p3)

(p1·p4)(m2
c + p3·p4)

F13(p1, p2, p3)

+
CA(p2·p3)

(p2·p4)(m2
c + p3·p4)

F23(p1, p2, p3) ,

(5.6)

where the functions of the Born momentum F12, F13 and F23 are determined by direct
inspection of the real-emission amplitude of the process in Eq. (5.1). Similar to the case of
a soft-gluon emission, the integration over the phase space of the soft particle decouples.
We obtain

〈S4FLM(1g, 2g; 3c, 4c̄)〉 = (2C f − CA)〈F12(p1, p2, p3)
∫

[ dp4](p1·p2)

(p1·p4)(p2·p4)
〉

+ CA〈F13(p1, p2, p3)
∫

[ dp4](p1·p3)

(p1·p4)(m2
c + p3·p4)

〉

+ CA〈F23(p1, p2, p3)
∫

[ dp4](p2·p3)

(p2·p4)(m2
c + p3·p4)

〉 .

(5.7)

The soft-quark eikonal functions need to be integrated over the quark phase space. The
fact that the emitted particle is massive makes such integrals unconventional and their
calculation is presented in Chapter 6.
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5.2.2 Integrated collinear subtraction terms

The second term in Eq. (5.2) corresponds to soft-regulated, quasi-collinear subtraction
terms. We focus on the limit where the two outgoing quarks become quasi-collinear. It
reads

〈C43(1− S4)FLM(1g, 2g; 3c, 4c̄)〉 . (5.8)

We split the calculation into the collinear and the soft-collinear subtraction terms

〈C43(1− S4)FLM(1g, 2g; 3c, 4c̄)〉 =〈C43FLM(1g, 2g; 3c, 4c̄)〉
− 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 .

(5.9)

We start with the collinear subtraction term. We write explicitly the Lorentz-invariant
phase space and find

〈C43FLM(1g, 2g; 3c, 4c̄)〉 =
2

∑
i=1

∫
[ dpH ][ dp3][ dp4](2π)4δ (p12 − pH − p3 − p̄4)

× 1
(p3 + p4)2

pi ·p3

pi · p̄4
Ci(1g, 2g, 3c, 4̄c̄) ,

(5.10)

where the functions C1 and C2 are determined by the direct inspection of the interference.
In the energy-momentum conserving delta function, the momentum of the parton 4̄c̄

is p̄4 which corresponds to the quasi-collinear limit of the momentum of the emitted
collinear anti-quark

C43 p4 = (E4, β4~n3) ≡ p̄4 , (5.11)

where we defined the velocity of the outgoing anti-quark β4 =
√

1−m2
c /E2

4. As expected,
we see that the collinear subtraction term is quasi-singular in the limit where the
outgoing charm-quark is quasi-soft. Therefore, we regulate the functions C1 and C2 by
their expressions at E4 → 0

Ci(1g, 2g, 3c, 4̄c̄) =
[
Ci(1g, 2g, 3c, 4̄c̄)− Ci,soft(1c, 2g, 3c)

]
+ Ci,soft(1c, 2g, 3c) , (5.12)

where Ci,soft(1c, 2g, 3c) = S4Ci(1g, 2g, 3c, 4̄c̄). We refer to terms in square brackets in
Eq. (5.12) as regulated and to the last term in Eq. (5.12) as soft. The regulated term is now,
by construction, free of soft divergences and can be safely computed in the mc → 0 limit;
the mass dependence should only be retained in the propagator (p3 + p4)

−2. We would
like to modify the phase-space integral to account for the fact that the two outgoing
charm quarks are quasi-collinear. In what follows, we emphasise that the mc → 0 limit
has been considered by introducing the light-like counterparts of the charm outgoing
momenta p̃3,4. We define

p34 = p̃3 + p̃4 , (5.13)
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such that

p̃3 = zp34 , p̃4 = (1− z)p34 . (5.14)

where p34 = E34(1,~n3) and, thus, p2
34 = 0. The Jacobian is given by

J(z, p34) =
∂(E3, E4)

∂(E34, z)
=

∣∣∣∣∣ z 1− z

E34 −E34

∣∣∣∣∣ = E34 . (5.15)

Therefore, the Lorentz-invariant phase space becomes

[ dp̃3][ dp̃4] =
1
2
[ dp34]E2

34z(1− z) dz
dΩ(3)

4
(2π)3

. (5.16)

Note that the phase space is considered in four dimensions since all the singularities are
regulated by the charm quark mass. We can perform the integral over the solid angle of
4c̄ in the regulated term to make the logarithm of the charm-quark mass explicit

∫ dΩ(3)
4

(2π)

1
p3 · p4 + m2

c
=
∫ 1

−1

d(cos θ)

m2
c + E3E4(1− β3β4 cos θ)

=
2

z(1− z)E2
34

[
ln
(

2E34

mc

)
+ ln(1− z) + ln(z)

]
+O(mc) .

(5.17)

Inserting this result into the regulated term, we find

〈C43FLM(1g,2g; 3c, 4c̄)〉reg =
1

(2π)2

2

∑
i=1

∫
[ dpH ][ dp34](2π)4δ (p12 − pH − p34)

×
∫ 1

0

z dz
1− z

[
Ci(1g, 2g, zp34, (1− z)p34)− Ci,soft(1c, 2g, zp34)

]
×
[

ln(2E34/mc) + ln(1− z) + ln(z)
]

.

(5.18)

where we emphasise again that all four momenta in this subtraction term are light-like.

We are left with the soft term that we defined earlier in Eq. (5.12). It displays logarith-
mic sensitivity to mc in the limit E4 → 0 and, for this reason, the massless limit cannot
be taken there. We write

〈C43FLM(1g, 2g; 3c, 4c̄)〉soft =
2

∑
i=1

∫
[ dpH ][ dp3][ dp4]

× (2π)4δ (p12 − pH − p3 − p̄4)
1

(p3 + p4)2
pi ·p3

pi · p̄4
Ci,soft(1c, 2g, 3c) .

(5.19)
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This term can be regulated by a soft-collinear subtraction term. It is obtained from
Eq. (5.6) by applying the collinear limit ρ34 → 0. In this limit, only the last two eikonal
functions survive. We find

〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 =
2

∑
i=1

∫
[ dpH ][ dp3][ dp4](2π)4δ (p12 − pH − p3)

× 2CAFi3(p1, p2, p3)

(p3 + p4)2
pi ·p3

pi · p̄4
.

(5.20)

We emphasise that in the quasi-soft limit, the momentum p4 is removed from the energy-
momentum conserving delta function. It is interesting to note that the function Ci,soft is
proportional to the soft limit of the function Fi

Ci,soft = 2CAFi3(1c, 2g, 3c) . (5.21)

Therefore, the integrals in Eq. (5.19) and Eq. (5.20) can naturally be combined

〈C43FLM(1g, 2g; 3c, 4c̄)〉soft − 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉

=
2

∑
i=1

∫
[ dpH ][ dp3][ dp4](2π)4

[
δ (p12 − pH − p3 − p̄4)− δ (p12 − pH − p3)

]
× 2CAFi3(p1, p2, p3)

(p3 + p4)2
pi ·p3

pi · p̄4
.

(5.22)

This term is regulated since, in the soft limit, where the energy of the emitted anti-quark
4c̄ becomes very small (E4 → 0), the difference between the two Dirac delta functions
cancels out. However, to further understand how to treat the difference of two delta
functions, we need to investigate integration over the energy.

Integrating over the solid angle of the quark 4c̄ in Eq. (5.22) is straightforward as it only
appears in the unexpanded propagator (p3 + p4)

−2. We use Eq. (5.17) to compute that
integral. On the other hand, integration over energy fraction is non-trivial. To perform
it, we split the energy of the soft contribution to the collinear subtraction term into two
parts and write

〈C43FLM(1g, 2g; 3c, 4c̄)〉soft ≡ 〈Clow
43 〉soft + 〈Chigh

43 〉soft , (5.23)

where

〈Clow
43 〉soft =

2

∑
i=1

∫
[ dpH ][ dp3][ dp4]

2CAFi3(p1, p2, p3)

(p3 + p4)2
pi ·p3

pi · p̄4

× (2π)4δ (p12 − pH − p3 − p̄4) θ(E4 − σ) ,

(5.24)

〈Chigh
43 〉soft =

2

∑
i=1

∫
[ dpH ][ dp3][ dp4]

2CAFi3(p1, p2, p3)

(p3 + p4)2
pi ·p3

pi · p̄4

× (2π)4δ (p12 − pH − p3 − p̄4) θ(σ− E4) .

(5.25)
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In Eqs. (5.24)-(5.25), we introduced a parameter σ such that mc � σ � E3. In the
high energy region, the charm-quark mass can be neglected since E4 > σ. We use the
parametrisation introduced in Eq. (5.14) and find

〈Chigh
43 〉soft =

2

∑
i=1

∫
[ dpH ][ dp34]δ(p12 − pH − p34)

× Ic34(E34, σ) 2CA Fi3(p1, p2, zp34) ,

(5.26)

where we defined

Ic34(E34, σ) =
1

(2π)2

∫ 1−σ/E34

0

dz z
1− z

[
ln
(

2E34

mc

)
+ ln(z) + ln(1− z)

]
. (5.27)

On the other hand, in the low energy region, we can use the fact that E4 � E3 and
remove p4 from the energy-momentum conserving delta function. The integral in this
region reads

〈Clow
43 〉soft =

2

∑
i=1

∫
[ dpH ][ dp3][ dp4]δ(p12 − pH − p3)θ(σ− E4)

× 2CAFi3(p1, p2, p3)

(p3 + p4)2
pi ·p3

pi · p̄4
.

(5.28)

This piece is identical to the soft-collinear subtraction term shown in Eq. (5.20) in the
region E4 < σ, and, therefore, they cancel out. We still need to compute the soft-collinear
subtraction term at high energies, i. e.

〈Chigh
43 〉soft =

2

∑
i=1

∫
[ dpH ][ dp3][ dp4](2π)4δ (p12 − pH − p3)

× 2CAFi3(p1, p2, p3)

(p3 + p4)2
pi ·p3

pi · p̄4
θ(E4 − σ) .

(5.29)

Writing explicitly the phase space of the parton 4c̄ and introducing the variable 1− z =

E4/E3, we find

〈Chigh
43 〉soft =

2

∑
i=1

∫
[ dpH ][ dp3]δ(p12 − pH − p3)Is4(E3, Emax, σ)

× 2CAFi3(p1, p2, p3) ,

(5.30)

where, by analogy to Eq. (5.26), we defined

Is4(E3, Emax, σ) =
1

(2π)2

∫ Emax/E3

σ/E3

dz
1− z

[
ln
(

2E3

mc

)
+ ln

(
1− z
2− z

)]
. (5.31)
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We rename p3 → p34 in Eq. (5.30) and use it to write Eq. (5.22) as

〈C43FLM(1g, 2g; 3c, 4c̄)〉soft − 〈C43S4FLM(1g, 2g; 3c, 4c̄)〉 =
2

∑
i=1

∫
[ dpH ][ dp34]

×(2π)4δ (p12−pH−p34) 2CAFi3(p1, p2, p3)
[

Ic34(E34, σ)− Is4(E34, Emax, σ)
]

.

(5.32)

The difference between the two integrals in Eq. (5.32) can be explicitly calculated. We
find

Ic34(E34, σ)−Is4(E34, Emax, σ) =
1

(2π)2

[
2− π2

6
− 1

2
ln2
(

Emax

E34

)

− ln
(

2E34

mc

)
− ln

(
2E34

mc

)
ln
(

Emax

E34

)
− Li2

(
−Emax

E34

)]
.

(5.33)

This concludes the study of the collinear sector with θ34 = 0 for the gg partonic channel.
The collinear subtraction term is composed of the regulated collinear subtraction term
given in Eq. (5.18) and the difference between the high-energy region of the soft-collinear
subtraction term and the collinear one, see Eq. (5.32). We have successfully extracted the
logarithms of the charm-quark mass and took mc → 0 limit after that.

The gg → cc̄H partonic channel also requires the study of the collinear region C41

and C42. The extraction of the logarithms of mc is done in full analogy to the above
discussion. The only difference comes from the parametrisation of the quasi-collinear
singularity, which is similar to what has been done in Chapter 3. We note that if one
chooses Emax = E1,2, the term analogous to the one in Eq. (5.32) vanishes.

5.3 numerical check

The validity of the results derived in the previous section can be proved numerically. As
we already mentioned, the cross section of gg→ cc̄H process is finite in four dimensions
if mc is finite. On the other hand, we have just computed the same cross section by
extracting all ln(mc) enhanced terms and taking the mc → 0 limit where possible. There-
fore, we can compare the interference computed for a small mass mc and the results in
Eqs. (5.18)-(5.32). If mc is sufficiently small, the two results should agree.

The result of such a comparison is presented in Fig. 5.2. We use σreal to denote the
interference obtained from the interference for finite mc and σrec to denote the one
resulting from the application of the subtraction scheme. In the upper pane, we show
the value of the cross section in femtobarn. In the lower pane, we display the relative
difference of σrec and σreal. It is clear that the two results converge to each other as the
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Figure 5.2: Numerical validation of the extraction of the ln(mc) terms for the interference of
gg → cc̄H with mc 6= 0. Denoted with green squares, the cross sections σreal is
obtained by keeping the mass of the charm finite. In blue dot, the reconstructed cross
section σrec is build from the sum of the regulated term where the massless limit has
been considered and the sum of the subtraction terms as defined in Eq. (5.2).

charm-quark mass mc approaches zero.

The calculation of the real-emission amplitude and the extraction of the logarithms of
mc using the nested soft-collinear subtraction scheme has been demonstrated for one
partonic channel. An important ingredient of this and related calculations in other chan-
nels is the integration of the soft-quark eikonal functions over the soft-quark momentum,
cf.Eq. (5.7). In the next chapter, we explain how such eikonal functions can be computed.





6 I N T E G R AT E D E I K O N A L F U N C T I O N S

In this chapter, we explain how to compute the eikonal functions that we encountered
in the calculation of the real-emission contribution. These functions originate from
soft-quark singularities. They are somewhat unconventional since the emitters and the
emitted unresolved particle can be massive. We present in detail the calculation of two of
the integrated eikonal functions, required to compute the subtraction terms, and provide
analytical results for all other integrated eikonal functions.

6.1 integrated quasi-soft quark eikonal functions

We have seen in Chapter 4 that the quasi-soft quark limit of the interference resembles
the soft limit of gluon-emission amplitudes. Nevertheless, the eikonal functions required
to describe the quasi-soft quark limit are different since, in addition to the emitters,
the soft particle is massive. In this section, we explain how to compute the following
integrated eikonal function

I(mA,mB)
AB =

∫ d3~p
(2π)3E~p

θ(Emax − E~p)
pA · pB

(pA · p)(pB · p)
, (6.1)

where p2 = m2, p2
A = m2

A and p2
B = m2

B. We consider this integral in the limit where
Emax � m and m ∼ mA ∼ mB. We note that this integral appeared in the discussion of
the real-emission contribution in gg-channel, cf. Eq. (5.7). For this channel, we will need
both I(0,0)

AB and I(m,0)
AB . The latter is slightly more difficult to compute because, in addition

to the massive emitted particle, one of the emitters is massive as well. We provide here a
short overview of the calculation. A detailed derivation is given in Appendix B. We start
by calculating I(0,0)

AB and use this result to compute I(m,0)
AB .

We start the calculation of I(0,0)
AB by combining the denominators in Eq. (6.1) using

Feynman parameterisation and integrating over the emission angle of the unresolved
particle. After the integration over the Feynman parameter is performed, we are left with
the integral over the energy of the emitted quark. The integral I(0,0)

AB defined in Eq. (6.1)
can be written as

I(0,0)
AB =

1
16π2

∫ βmax

0
dβ β

∂

∂β

[
ln2

(√
1− β2c2 + βs√
1− β2c2 − βs

)]
, (6.2)
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where β =
√

1−m2/E2 is the velocity of the emitted quark, s = sin (θAB/2), θAB is the
angle between the three momenta of the emitters A and B, and c = cos (θAB/2).

We integrate by parts in Eq. (6.2) and expand the logarithm in the integrand in m/Emax.
The integral in Eq. (6.2) becomes

I(0,0)
AB =

1
16π2

{
ln2
(

4s2E2
max

m2

)
− Iβ

}
, (6.3)

where

Iβ =
∫ 1

0
dβ ln2

(√
1− β2c2 + βs√
1− β2c2 − βs

)
. (6.4)

This integral is calculated in the following way. We differentiate Iβ with respect to s and
write the result as

∂Iβ

∂s
= − 4

c2

∫ 1−δ

0
dβ

∂

∂β

[√
1− β2c2

]
ln

(√
1− β2c2 + βs√
1− β2c2 − βs

)
, (6.5)

where, for technical reasons, we introduced the small parameter δ. We integrate by parts
in Eq. (6.5) and find

∂Iβ

∂s
≈ − 4

c2

{
s ln

(
2s2

δ

)
− 2s

∫ 1−δ

0

dβ

1− β2

}
= −4s

c2 ln
(
s2) , (6.6)

where, in the first step, we approximated the argument of the logarithm in the limit
δ� 1. It is now possible to calculate the integral in Eq. (6.4) by solving the differential
equation in Eq. (6.6). We choose s = 0 as the boundary condition since it follows from
Eq. (6.4) that Iβ(s = 0) = 0. We find that the integral in Eq. (6.3) takes the following
simple form

I(0,0)
AB =

1
16π2

{
ln2
(

4s2E2
max

m2

)
− π2

3
+ 2Li2

(
c2)} . (6.7)

We switch now to the computation of the integral I(m,0)
AB . As before, we introduce a

Feynman parameter and integrate over the azimuthal angle. The difference is that this
time we integrate over β first. We find

I(m,0)
AB =

s2

4π2

∫ 1

0

dy
1− η2

y

{
ln
(

1 + βmax

1− βmax

)
− 1

ηy
ln
(

1 + βmaxηy

1− βmaxηy

)}
, (6.8)

where βmax =
√

1−m2/E2
max and ηy reads

η2
y = 1− 4y(1− y)s2 − ξ2

Ay(y + (1− y) cos θAB) , (6.9)
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and ξA = m
EA

. In Eq. (6.8), the massless limit βmax → 1 cannot be taken because ln(1−
βmax) diverges in this limit. We isolate this singularity by rewriting Eq. (6.8) as follows

I(m,0)
AB =I(0) + I(m)

y , (6.10)

where

I(0) = − s2

4π2

∫ 1

0
dy

[
1

(1 + ηy)ηy
ln
(

1 + ηy

1− ηy

)
+

2
1− η2

y
ln
(

1 + ηy

2

)]
(6.11)

I(m)
y =

s2

4π2

∫ 1

0
dy

1
1− η2

y
ln

(
1− β2

maxη2
y

1− β2
max

)
. (6.12)

The integral I(m)
y in Eq. (6.10) is the only contribution to I(m,0)

AB where βmax cannot be set
to 1. On the other hand, to calculate the integral I(0) in Eq. (6.10), we can safely consider
the massless limit. As the result, we can use the result we have derived for I(0,0)

AB in
Eq. (6.7) to deduce I(0). Indeed, in the case of I(0,0)

AB , we could have performed the same
manipulations up to Eq. (6.10) and would have found

I(0,0)
AB =I(0) + I(0)y , (6.13)

where the only difference with Eq. (6.10) is the expression of ηy in I(0)y since m = 0. It
reads

I(0)y =
s2

4π2

∫ 1

0
dy

1
1− η2

y
ln

(
1− β2

maxη̄2
y

1− β2
max

)
, (6.14)

where

η̄2
y = η2

y

∣∣∣
m=0

= 1− 4y(1− y)s2 . (6.15)

If we compute I(0)y , we can easily deduce an expression for I(0) by comparing Eqs. (6.7)-
(6.13).

We focus on I(0)y and restore the mass dependence of the argument of the logarithm

I(0)y =
1

16π2

∫ 1

0
dy

1
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
. (6.16)

In Eq. (6.16), we introduced ξ2 = m2/E2
max. To compute I(0)y , we use the fact that ξ is a

small parameter that can be neglected except when y ∼ 0 or y ∼ 1. We introduce a small
parameter ξ � Λ� 1 to split the integration intervals into three parts. We write

I(0)y =
3

∑
j=1

Ij , (6.17)



56 integrated eikonal functions

where

I1 =
1

16π2

∫ Λ

0
dy

1
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
, (6.18)

I2 =
1

16π2

∫ 1−Λ

Λ
dy

1
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
, (6.19)

I3 =
1

16π2

∫ 1

1−Λ
dy

1
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
. (6.20)

For each of these three integrals, we can simplify the integrands using the relations
between Λ, y, and 1. For instance, in Eq. (6.18), we use the fact that y ∼ Λ � 1 and
construct the expansion of the integrand at small y. The sum of the integrals in Eq. (6.18),
Eq. (6.19), and Eq. (6.20) does not depend on the auxiliary parameter Λ. We find

I(0)y =
1

16π2 ln2
(

4s2E2
max

m2

)
. (6.21)

Using this result of I(0)y in Eq. (6.21) and by comparing Eqs. (6.7)-(6.13), we can deduce
the expression for I(0). We find

I(0) =
1

16π2

[
2Li2

(
c2)− π2

3

]
. (6.22)

To finish the computation of I(m,0)
AB in Eq. (6.10), we simply have to compute I(m)

y in

Eq. (6.12). After expansion of the argument of the logarithm in the integrand of I(m)
y , we

find that I(m,0)
AB in Eq. (6.10) becomes

I(m,0)
AB =I(0) +

s2

4π2

∫ 1

0

dy
y

ln
(

ξ2+4y(1−y)s2+ξ2
Ay(1−y) cos θAB

ξ2

)
4s2(1− y) + ξ2

A(y + (1− y) cos θAB)
. (6.23)

Similar to Eq. (6.17), I(m)
y is calculated by introducing an auxiliary parameter ξ � Λ� 1

which split the integration intervals into three parts, [0, 1] = [0, Λ]∪ [Λ, 1−Λ]∪ [1−Λ, 1].
Once the three parts are combined, the dependence on Λ cancels as expected and we
find the desired result

I(m,0)
AB =

1
16π2

[
2Li2

(
c2)− π2

3
+ Li2

(
−E2

max

E2
A

)
+ ln2

(
4s2E2

max
m2

)]
. (6.24)

In the next subsection, we provide results for all other integrated eikonal functions
required to study the interference of pp→ jetc + H at NLO QCD.



6.1 integrated quasi-soft quark eikonal functions 57

6.1.1 One massive and one massless emitters

In gg channel, we need the following eikonal function∫
[ dp4](pa ·p3)

(pa ·p4)(m2
c + p3·p4)

=
1

(2π)2

[
ln2
(

2sE
mc

)
− π2

12

+ Li2

(
− E

E3

)
+

1
2

Li2
(
c2) ] ,

(6.25)

where we defined s = sin(θa/2) and c = cos(θa/2) and θa is the angle between the
momenta pa and p3, a = 1, 2. To simplify our expressions, we recall that we set Emax =

E1 = E2 and that E1 = E2 = E because we work in the partonic centre-of-mass frame.

6.1.2 Two massive emitters

The partonic channels cc and cc̄ lead to eikonal functions where both emitters as well as
the emitted particle are massive. In cc channel, the charm-quark can be emitted by one of
the two incoming partons with momenta p1 = E1(1, β~n1) and p2 = E2(1, β~n2). Since we
work in the partonic centre-of-mass frame, we have E1 = E2 ≡ E and ~n1 = −~n2, i. e.the
emitters are back-to-back. To simplify the result further, we set Emax = E. The integrated
eikonal function in this case is given by∫

[ dp4](p1·p2)

(m2
c − p1·p4)(m2

c − p2·p4)
=

1
(2π)2

[
ln2
(

2E
mc

)
+

π2

4

]
. (6.26)

In cc̄ channel, the quasi-soft anti-quark can be emitted either by the incoming charm
anti-quark 2c̄ or by the outgoing charm quark 3c. The outgoing momentum is defined as
p3 = E3(1, β~n3), and the angle between the two emitters can be expressed as cos(θ23) =

~n2 ·~n3. With Emax = E, we find the following result for the eikonal function∫
[ dp4](p2·p3)

(m2
c − p2·p4)(m2

c + p3·p4)
=

1
(2π)2

[
− ln2

(
2sE
mc

)
− π2

12

− 1
2

Li2
(
c2)− Li2

(
− E

E3

) ]
,

(6.27)

where we defined s = sin(θ23/2) and c = cos(θ23/2).
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R E N O R M A L I S AT I O N

In this chapter, we provide an overview of the computation of the one-loop correc-
tions to the interference of pp → jetc + H in the mc → 0 limit. Then, we discuss the
ultraviolet (UV) renormalisation, as well as the definition of the finite part of the one-loop
amplitude.

The one-loop contribution to any cross section is provided by the interference of the
Born and the one-loop amplitudes. For our purpose, we need to select amplitudes that
descibes different production mechanisms. We write

Int
{
A(0)†A(1) + h.c

}
= A(0)†

ggHA
(1)
Yuk +A

(0)†
YukA

(1)
ggH + h.c. , (7.1)

where we denote Born amplitudes for each production mechanism with the superscript
(0) and one-loop amplitudes with the superscript (1).

1c 3c

H2g

(a) gggH effective vertex

1c 3c

2g H

(b) Ghost loop

1c

2g

H

3c

(c) Box diagram

1c 3c

2g H
qf

(d) Light-quark loop

1c

2g

3c

H

(e) s channel

1c 3c

2g H

(f) Box diagram

Figure 7.1: Examples of diagrams contributing to the virtual corrections to the interference
between the two Higgs boson production mechanisms that occurs in cg collisions.

We generate the one-loop diagrams using QGRAF [79]. Some examples are shown in
Fig. 7.1. We perform the Dirac algebra with FORM [74]. We keep the mass of the charm-
quark finite. The tensor integrals are reduced to scalar integrals using the Passarino-
Veltman reduction [80]. We use PackageX [81] to express every scalar tadpole, bubble,
triangle and box integral through logarithms and dilogarithms. The mc → 0 limit is

59
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considered in each integral separately. We keep the leading order term in mc and iden-
tify the logarithms of mc. We use these integral expansions to determine the one-loop
amplitudes. We build their interference, keep one charm-quark mass insertion, and take
the mc → 0 limit whenever possible.

The one-loop amplitude is divergent in four dimensions. As explained in Appendix A,
one-loop amplitudes display UV poles that can be removed through renormalisation. We
closely follow the renormalisation procedure described in Ref. [82], where the strong
coupling constant and the charm-Yukawa coupling are renormalised in the MS scheme,
while the charm-quark mass and the wave functions of the charm-quark, the light-quark,
and the gluon are renormalised in the on-shell scheme.

In addition, the effective coupling CggH
1 is expanded to O(αs). It reads [83]

CggH
1 = CggH

1,LO

[
1 +

αs(µ)

2π

(
11
2
− 1

3
ln
(

µ2

m2
t

))
+O(α2

s )

]
. (7.2)

where CggH
1,LO is the leading-order coupling. The result of Eq. (7.2) is the finite result for

the matching coefficient of the ggH effective vertex, obtained from a two-loop calculation.

In contrast to UV poles, the IR poles of the amplitude cannot be removed. They cancel
out with the ones of the real-emission contribution, as discussed in Chapter 5. As we
mentioned in Chapter 3, the structure of the IR poles of renormalised one-loop amplitude
with massive partons is known [66, 84]. Below we describe this result using the notations
from Ref. [85].

Amplitudes can be conveniently expressed as vectors in colour space. IR poles of any
amplitudes are described using the following equation

|A〉 = Z|F〉 , (7.3)

where Z is an operator in colour space and F is finite in four dimensions. These three
objects are expanded in the strong coupling constant. For instance, the Z-operator reads

Z = 1 +
∞

∑
n=1

( αs

4π

)n
Z(n) . (7.4)

Using this result, we can write Eq. (7.3) as

|A〉 = |A(0)〉+ αs

4π
|A(1)〉+O(α2

s )

= |A(0)〉+ αs

4π

(
Z(1)|A(0)〉+ |F (1)〉

)
+O(α2

s ) .
(7.5)

In Eq. (7.5), |A(0)〉 is the Born amplitude. The second term corresponds to the one-loop
amplitude |A(1)〉 and |F (1)〉 denotes its finite part

|F (1)〉 = |A(1)〉 − Z(1)|A(0)〉 . (7.6)
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In Eq. (7.6), 1/ε poles present in the one-loop amplitude A(1) and in the operator Z
cancel out, resulting in the finite part F (1).

The operator Z follows the renormalisation group equation (RGE). It reads

µ
d

dµ
Z = −ΓZ , (7.7)

where Γ is the anomalous dimension operator. Using the colour-charge operator T, it
can be expressed as [86–90]

Γ({pi}, mc, µ) = ∑
(i,j)

T i · T j

2
γcusp(αs)Lij + ∑

(I,j)
T I · T jγcusp(αs)L(m)

I j

− ∑
(I,J)

T I · T J

2
γcusp(νI J , αs) + ∑

i
γi(αs) + ∑

I
γI (αs)

+ ∑
(I,J,K)

i f abcTa
I Tb

J Tc
KFI (νI J , νJK, νKI)

+ ∑
(I,J)

∑
k

i f abcTa
I Tb

J Tc
k f2

(
νI J , ln

(−σJkvJ · pk

−σIkvI · pk

))
,

(7.8)

where indices i, j, . . . label the massless partons, indices I, J, . . . label the massive ones,
and pairs of index (i, j) refer to i 6= j. In Eq. (7.8), we used

Lij = ln
(

µ2

−sij

)
, L(m)

I j = ln
(

mcµ

−sI j

)
. (7.9)

The variable sij stands for the scalar product of four momenta pi and pj

sij = 2σij pi · pj + i0 , (7.10)

where σij = 1 if the both partons are incoming or outgoing and σij = −1 otherwise. The
renormalisation group equation (RGE) in Eq. (7.7) is solved to write the Z-operator as
[87, 91]

Z = 1 +
αs

4π

(
Γ(0)′

4ε2 +
Γ(0)

2ε

)
+O(α2

s ) , (7.11)

where the prime denotes the derivative with respect to the logarithm of the renormalisa-
tion scale

Γ′(αs, µ) = µ
∂

∂µ
Γ(αs, µ) . (7.12)
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Next, we provide explicit expressions for all quantities that are relevant for computing
the one-loop corrections to the process cg→ cH. The cusp anomalous dimension for the
massless partons γcusp reads [87, 91]

γcusp = 4
( αs

4π

)
+O(α2

s ) . (7.13)

The anomalous dimensions in Eq. (7.8) are given by

γg,i =
αs

4π

(
−β0)+O(α2

s ) ,

γq,i =
αs

4π

(
−3C f

)
+O(α2

s ) ,

γq,I =
αs

4π

(
−2C f

)
+O(α2

s ) .

(7.14)

The cusp anomalous dimension for massive partons reads

γcusp(νI J , αs) = γcusp
1

νI J

[
1
2

ln
(

1 + νI J

1− νI J

)
− iπ

]
+O(α2

s ) , (7.15)

where the relative velocity of two massive partons is given by

νI J =

√
1−

m2
I m2

J

pI · pJ
. (7.16)

For the process cg → cH, we have two incoming partons, 1c and 2g, and an outgoing
one, 3c. We consider the charm quark to be massive. We expand the cusp anomalous
dimension related to two massive charm quarks in the final state in small mc and find

γcusp(νI J , αs) = 4
[
− ln

(
m2

c
2p1 · p3

)
− iπ

]
. (7.17)

Finally, the products of colour-charge operators that appear in Eq. (7.8) are expressed in
terms of Casimir invariants. They read

2T1 · T2 = −CA , 2T2 · T3 = −CA , 2T1 · T3 = CA − 2C f . (7.18)

The pole of the renormalised one-loop interference contribution is given by

Int
{
A(0)†A(1) + h.c.

}
= 2Re

{
Z(1)(ε, µ, 1c, 2g, 3c)

}
Int
{
A(0)†A(0)

}
+F ren

Int,V , (7.19)

where F ren
Int,V is the finite part of the one-loop contribution to the interference. The pole

structure is given by the factor Z(1). In the mc → 0 limit, it reads

Z(1)(ε, µ, 1c, 2g, 3c) =
αs(µ)

2π

{
− CA

2ε2 +
1
4ε

[
− β0 − 2CA ln

(
µ mc

2p2·p3

)
− 4C f + (CA − 2C f )

(
ln
(

m2
c

2p1·p3

)
+ iπ

)
− 2CA ln

(
µ mc

2p1·p2

) ]}
.

(7.20)



virtual amplitude and renormalisation 63

Using the crossing symmetry, this result can be compared to the one in Ref. [82] where
the Z-operator corresponding to the H → b + b̄ + g one-loop amplitude have been
computed.

After subtraction of the Catani’s operator calculated for Higgs boson production in
association with a charm-quark jet in Eq. (7.20), we can compute the finite remainder of
the one-loop contribution to the interference defined in Eq. (7.19). We find that

F ren
Int,V = −CggH

1
g3

s
16π2 CF Nc mc yc

√
2

s2

t u

{
A ln2

(
µ2

m2
c

)
+ B ln

(
µ2

m2
c

)
+ C

}
, (7.21)

where the coefficient of the leading logarithm reads

A = 3CA

(
1− m2

H
s

)(
1 +

t
s

)(
1 +

u
s

)
+ 2CF

[
1− 2t3

s3 +
u3

s3 +
8tu
s2 +

6u2

s2 +
6u
s

]
.

(7.22)

The coefficients B and C are complicated and we do not report them.

The origin of single- and double-logarithmic functions in Eq. (7.21) are not explained
by Sudakov enhancement [92]. Non-Sudakov logarithms have, for instance, been studied
in the case of Higgs boson production in gluon fusion in Ref. [93]. Nevertheless, the
necessity of a helicity flip in cg→ cH interference provides additional sources of loga-
rithms. A better understanding of the origin of these logarithms is important as they
can give large numerical contributions. We note that ln2(mc) terms in the interference at
NLO QCD have been computed in Ref. [72] using diagrammatic analysis.

Calculations of one-loop corrections to the interference contribution to Higgs boson
production in association with a charm-quark jet has been presented. Once these correc-
tions are combined with the real contributions, a finite partonic cross section is obtained.
It can be integrated in four dimensions using a Vegas integrator [78]. In the next chapter,
the result of such calculations are presented.





8 N U M E R I C A L S E T U P A N D R E S U LT S

In this chapter, we discuss the numerical setup that we use to evaluate the pp→ H + jetc
cross section. Then, we present results for the NLO QCD corrections to the interference
contribution.

We consider proton-proton collisions with a centre-of-mass energy of 13 TeV. The
mass of the Higgs boson is set to mH = 125 GeV, and the on-shell mass of the charm
quark to mc = 1.3 GeV. The Yukawa coupling, which, as discussed in Chapter 7, is
renormalised in the MS scheme, is determined using the MS charm-quark mass evaluated
at the mass of the Higgs, mMS

c (mH) = 0.81 GeV . We use RunDec [94] to determine the
running of the charm-quark mass. The NNPDF31_lo_as_0118 and NNPDF31_nlo_as_0118

PDFs [95, 96] are used to evaluate LO and NLO cross sections, respectively. Values of the
strong coupling constant are obtained from NNPDF routines.

To select events with at least one charm-quark jet in the final state, we use the anti-k⊥
algorithm with ∆R = 0.4 [97]. We require that the charm jet satisfies the following
constrains on the transverse momentum pt,j and the pseudorapidity ηj

pt,j > 20 GeV , |ηj| < 2.5 . (8.1)

We remind the reader that the interference displays quasi-soft quark singularities. As
the result, the jet algorithm shows a logarithmic sensitivity to mc as the charm quark
becomes quasi-soft. For a detailed explanation of this phenomenon, we refer the reader
to Chapter 4. To circumvent this problem, we require that at least 75% of the momentum
of the charm-tagged jet is carried by a charm quark or anti-quark.

We set the renormalisation scale µR and the factorisation scale µF to the same value
µ = µR = µF = mH. The resulting uncertainty is obtained by varying the scale µ by a
factor two. The LO cross sections evaluate to

σLO
ggh = 176.6+47.6

−36.5 fb , σLO
Yuk = 21.22+1.47

−1.67 fb , σLO
Int = − 2.21+0.29

−0.31 fb . (8.2)

It appears that, at LO, the interference is about O(10%) of the squared Yukawa cross
section. In Fig. 8.1, we show the dependence of σLO

ggh, σLO
Yuk and σLO

Int on the minimal value
of the charm-tagged jet transverse momentum. We observe that σLO

ggh is large compared

to σLO
Yuk and σLO

Int for any value of pt,jetc
. However, the ratio σInt

LO/σYuk
LO remains constant
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Figure 8.1: Relative size of the LO cross sections σLO
ggh, σLO

Yuk and σLO
Int . On the left panel, the

dependence of the three cross sections on the charm-tagged jet transverse momentum
cut is presented. We denote with blue square σLO

Int , with green triangle σLO
Yuk and with

orange circle σLO
ggh. On the right panel, we show the ratio in percent of the interference

to the squared Yukawa contribution.

around O(10%) for all values of pt,jc , see Fig. 8.1b.

The interference between the two Higgs production mechanisms in pp→ cH at NLO

QCD is found to be

σNLO
Int = −1.024(5)+0.224

−0.144 fb . (8.3)

We observe that the LO interference receives a large NLO QCD correction of −50%, which
pushes σLO

Int outside of the LO uncertainty obtained using the scale variation by a factor
two. This emphasises the role of the logarithms of the charm-quark mass in the higher-
order corrections, since those cannot be probed by the scale variation. To understand their
role better, we split the NLO QCD corrections into the contribution of the five partonic
channels and the one of the PDF matching described in Chapter 3. For each of these
channels, we separate log-enhanced contributions from constant terms. We write the
interference as

σNLO
Int = A ln2

(
mH

mc

)
+ B ln

(
mH

mc

)
+ C (8.4)

The individual contributions are collected in Table 8.1.

The cq partonic channel is free of logarithmic terms as there is no singular limit
that involves the charm quark. We note that, in the cg and gg partonic channels, the
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∆σNLO [ fb ] cg cq gg cc cc̄ PDF sum

const −1.63 0.13 2.33 0.01 −0.01 0.11 0.94

L 2.23 − −6.33 −0.04 0.01 1.66 −2.47

L2 −0.06 − 2.66 0.01 −0.08 − 2.52

total 0.54 0.13 −1.34 −0.02 −0.08 1.76 1.00

Table 8.1: Contributions of the single and quadratic charm-quark mass logarithm L = ln (mH/mc)
in femtobarns (fb). The interference at NLO QCD is split into the different partonic
channels as well as the contribution from the PDF matching. We observe a strong
cancellation of the simple and the quadratic logarithms.

contributions of single and quadratic logarithms does not have a clear pattern. In the
cg channel, the single logarithms cancel the constant contribution, resulting in a small
contribution to the total corrections. In gg channel, large corrections due to single
logarithms are cancelled by quadratic logarithms and constant contributions. Overall,
we observe a strong cancellation between single- and double-logarithmic terms.
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Figure 8.2: Distribution of the Higgs boson transverse momentum (left panel) and rapidity (right
panel). In both plots, the LO interference is drawn with a blue dashed line and the
NLO interference with a solid red line.

In Fig. 8.2, we present the interference contributions to the transverse momentum
and rapidity distributions of the Higgs boson at LO and NLO QCD. On the left pane of
Fig. 8.2a, the Higgs boson transverse momentum distribution is significantly impacted
by the NLO QCD corrections. The peak of the distribution around 25 GeV is smeared at
NLO. We emphasise that the absolute value of the distributions is plotted in Eq. (8.2),
which leads to discontinuities at 20 GeV and around 150 GeV. In lower panel of Fig. 8.2a,
the ratio of the NLO to the LO distribution is shown.
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In Fig. 8.2b, we show Higgs boson rapidity distribution. We observed that for
|yH | < 2.5, the leading order distribution is decreased by 50%. For larger rapidities, the
NLO distribution decreases faster than the LO one.

Overall, the NLO QCD corrections appear to be large but still reasonable because of a
significant cancellation of the simple and the quadratic logarithms of the charm-quark
mass. Nevertheless, since corrections are large, it is interesting to understand how to
systematically resum them.



9 C O N C L U S I O N

Measurement of the Yukawa couplings of quarks and leptons is essential for testing
properties of the Higgs boson. While couplings of fermions of the third and the second
generations of the SM have been measured with reasonable accuracy, those of the lightest
particles remain out of reach. In this part of the thesis, we studied one of the most
promising ways for measuring the charm Yukawa coupling Ref. [4], namely, the Higgs
production in association with a charm jet.

The interference between production of the Higgs boson caused by its interaction with
the charm quark and its production in the gluon fusion requires an additional helicity
flip to provide non-vanishing contribution. We decided to work with a finite charm-
quark mass, to keep one mass insertion on the fermion line, and to carefully consider
the massless limit. Although this procedure is simple at LO, it becomes non-trivial at
NLO since it requires a delicate treatment of the infrared singularities. First, the presence
of massive partons in the initial states requires a redefinition of the parton distribution
function (PDF) that was presented in Chapter 3. Then, we showed in Chapter 4 that
the necessity of a helicity flip on the fermion line leads to unconventional infrared soft
and collinear limits of the interference. In Chapter 5, we extracted the logarithms of
the charm-quark mass in the real-emission corrections using the nested soft-collinear
subtraction scheme Ref. [65]. In Chapter 6, we provided detailed calculations of some
eikonal functions resulting from quasi-soft quark singularity. The virtual contribution
was discussed in Chapter 7. Finally, numerical results were presented in Chapter 8.

We find that the NLO QCD corrections to the interference are large as they reduce its
value by 50%. However, they probably do not impact prospects for the extraction of the
charm Yukawa coupling from pp→ H + jetc because the interference is still only about
10% of the Yukawa-dependent contribution to the cross section.
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Part II

N O N - FA C T O R I S A B L E C O R R E C T I O N S T O T- C H A N N E L
S I N G L E T O P P R O D U C T I O N

We calculate the non-factorisable contribution to the t-channel single top
production. This peculiar contribution, which first appears at NNLO QCD,
describes QCD interactions between fermion lines connected at leading order
by an exchange of an electroweak boson. Our calculation formally completes
the NNLO QCD description of this process.

This part of the thesis follows the discussion in Refs. [98–102].





10 I N T R O D U C T I O N

Physics of top quarks provides many opportunities to extend our understanding of
fundamental interactions. Being the heaviest particle of the SM, top quarks have the
largest coupling to the Higgs boson. Therefore, studying top quarks may help to explore
the mechanism of EW spontaneous symmetry breaking.

Top quarks have an exceptionally short lifetime. In fact, they decay almost instantly
after they are produced in hadron collisions, before hadronisation takes place. As the
result, top quarks, in many instances, behave as free quarks. Therefore, the possibility to
study top quarks is highly appreciated in high-energy physics, as it provides a unique
opportunity to test current theory of hadron collisions in a relatively simple and con-
trolled environment.

At the LHC, top quarks are mainly produced in pairs via strong interactions, and
theoretical predictions for this process are quite advanced. The NLO QCD [103] and NLO

EW corrections [104] to top quark pair production were first calculated in 1987 and 2005,
respectively. Recent calculations have included several improvements such as NNLO QCD

corrections that account for top-quark decay in the narrow width approximation [105],
threshold resummation [106], and soft-gluon resummation through the next-to-leading
logarithmic order (NLL) [107].

u d

b t

W

(a) t channel

b W

g t

(b) Associated production

W ∗

q

q′

b

t

(c) s channel

Figure 10.1: Single-top quark are produced through different channels. We sort them by im-
portance at the LHC where on the left, the t-channel represents 70% of the total
production and on the right, the s-channel represents only 5%.

Although the cross section for the single top production is smaller than the cross
section for top-quark pair production, it is still significant at the LHC. Unlike top-quark
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pair production, single top production occurs through electroweak interactions, which
provide a direct sensitivity to the CKM matrix element Vtb [108–111] and allow us to
probe the tWb anomalous coupling [112, 113]. Additionally, single top production is
an important process for studying the top quark width [114] and, probably, its mass [115].

At the LHC, single top quarks can be produced in several ways, see Fig. 10.1. The least
frequent, which only contributes about 5% to the total production cross section, is the
s-channel, see Fig. 10.1c. More frequently, single top quarks are produced in association
with W bosons, see Fig. 10.1b. The t-channel process shown in Fig. 10.1a is the dominant
one as it accounts for 70% of the single top production at the LHC.

The QCD corrections to the t-channel single top production have been calculated with
an impressive precision. The NLO QCD corrections [116–120] and the NNLO QCD correc-
tions that include top-quarks decay in the narrow width approximation [5, 6, 29–31]
are known. However, the NNLO QCD corrections are incomplete since these computa-
tions were performed in the factorisation approximation, which systematically neglects
diagrams where the two fermion lines interact with each other by gluon exchanges.
The difference between factorisable and non-factorisable contributions is illustrated in
Fig. 10.2. The non-factorisable contributions were neglected in early calculations as they
vanish at NLO and are colour suppressed at NNLO by a factor N2

c − 1 ∼ O(10) compared
to their factorisable counterparts.

Since non-factorisable corrections first appear at NNLO, it is challenging to estimate
their importance. However, one can argue that, because NNLO QCD corrections in the fac-
torisable approximation are relatively small, non-factorisable corrections may be relevant.
In addition, non-factorisable corrections might be enhanced by a factor π2 originating
from the Glauber phase [121]. This effect has been recently discussed in the case of
non-factorisable corrections to Higgs production in WBF [7]. If such an enhancement
exists also in the case of the single top production, it would largely compensate for the
colour suppression.

Determining the non-factorisable corrections is a major challenge, especially when it
comes to evaluating the two-loop, non-factorisable contributions. Partial reduction of the
two-loop, non-factorisable amplitude to master integrals has been performed [122], as
well as complete reduction with a fixed numerical relation between mt and mW [123].
Moreover, the master integrals are not known analytically, although some progress has
been made recently in this direction [124, 125].

In this part of the thesis, we calculate the non-factorisable corrections to the t-channel
single top production. We organise the discussion as follows. First, we demonstrate
that non-Abelian contributions do not contribute to non-factorisable corrections, and
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q q′

b t

W

u d

b t

W

Figure 10.2: Diagrams contributing to the t-channel single top production. On the left panel, a
gluon emitted by a fermion line is absorbed by the same fermion line. On the right
panel, we show a diagram contributing to non-factorisable corrections since the two
fermion lines are strongly interacting.

we explicitly prove the cancellation of the 1/ε poles by considering double-virtual, real-
virtual and real-real contributions. We then discuss the evaluation of the finite part of the
double-virtual contribution. We perform an analytic reduction of the loop amplitudes,
retaining the exact dependence on the W boson and the top-quark mass. To evaluate the
master integrals, we use the auxiliary mass flow method [126, 127]. This semi-numerical
technique has recently been used to compute the two-loop helicity amplitudes for weak
boson pair production in gluon fusion [128, 129]. Next, we discuss the computation
of the double real-emission and real-virtual contributions. Finally, we present some
numerical results for non-factorisable corrections for the LHC and the Future Circular
Collider (FCC) [8, 9].





11 C O L O U R S T R U C T U R E A N D
I N F R A R E D P O L E C A N C E L L AT I O N

We mentioned in the Introduction that non-factorisable corrections are effectively Abelian.
In this chapter, we explain the reason for that by studying the colour structure of the
different amplitudes required to compute the t-channel single top production at NNLO

QCD. We elucidate the simple form of the IR singularities in each of the three relevant
partonic processes, namely the elastic process, the single-gluon emission, and the double-
gluon emission. Finally, we demonstrate the cancellation of the 1/ε poles in the NNLO

cross section.

11.1 colour structure

The colour structure of the non-factorisable corrections is simple. In fact, we can consider
the non-factorisable QCD corrections as Abelian, which means that, for the purpose of
computing non-factorisable corrections, self-interaction of gluons can be ignored. In this
section, we will make this property explicit.

11.1.1 Elastic process

We start with the elastic process

1q + 2b → 3q′ + 4t , (11.1)

where p2
i = 0, i = 1, 2, 3 and p2

4 = m2
t . It is convenient to work in the colour space

to extract the colour structure of different amplitudes [130].1 For instance, the Born
amplitudeM0 can be projected on the colour vector |c〉. The result reads

〈c|M0(1q, 2b, 3q′ , 4t)〉 = δc3c1 δc4c2 A0(1q, 2b, 3q′ , 4t) , (11.2)

where A0 is the colour-stripped Born amplitude and ci, i = 1 . . . 4 are colour labels
of partons in Eq. (11.1). Eq. (11.2) demonstrates an obvious fact that in the single
top production process there is no colour exchange between the two quark lines at
leading order in QCD. Similarly, the one-loop amplitude can be decomposed into two
contributions

〈c|M1(1q, 2b, 3q′ , 4t)〉 =
αs

2π

(
δc3c1 δc4c2 A1(1q, 2b, 3q′ , 4t)

+ ta
c3c1

ta
c4c2

B1(1q, 2b, 3q′ , 4t)
)

.
(11.3)

1 We use the same formalism to describe the structure of the one-loop contribution in Chapter 7.
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The first term in Eq. (11.3) describes processes where a virtual gluon is emitted and
absorbed by the same fermion line. The second term describes contributions where the
virtual gluon couples to both fermion lines. It is this contribution to the amplitude that
is relevant for the non-factorisable corrections.

The IR structure of any one-loop amplitude can be described using Catani’s operator
I1 [66, 84]. The colour-stripped amplitude B1 can be written as

B1(1q, 2b, 3q′ , 4t) = I1(ε) A0(1q, 2b, 3q′ , 4t) + B1,fin(1q, 2b, 3q′ , 4t) , (11.4)

where B1,fin is finite in four dimensions and I1(ε) reads

I1(ε) ≡ I1(1q, 2b, 3q′ , 4t; ε) =
1
ε

[
ln
(

p1 · p4 p2 · p3

p1 · p2 p3 · p4

)
+ 2πi

]
. (11.5)

We provide additional details about the determination of this operator I1 in Chapter 13.
From Eq. (11.5) it follows that I1(ε) diverges as 1/ε at one-loop, whereas typically one-
loop amplitudes exhibits 1/ε2 infrared singularities. This fact is a consequence of the
absence of collinear divergences in non-factorisable contributions.

Similarly, the two-loop amplitude can also be split into several parts, according to
their colour structures. We write it as

〈c|M2(1q, 2b, 3q′ , 4t)〉

=
( αs

2π

)2
(

... +
1
2
{ta, tb}c3c1

1
2
{ta, tb}c4c2 B2(1q, 2b, 3q′ , 4t)

)
,

(11.6)

where, analogously, B2 is defined as the colour-stripped, two-loop amplitude which is
part of the non-factorisable corrections and which is symmetric under the exchange of
the two gluons. The dots in Eq. (11.6) stand for the rest of the two-loop amplitude which
describes factorisable contributions as well as those that cannot interfere with the Born
amplitude, as in Fig. 11.1. The IR pole structure of B2 can be written using the same
operator I1

B2(1q, 2b, 3q′ , 4t) =−
I2
1 (ε)

2
A0(1q, 2b, 3q′ , 4t) + I1(ε) B1(1q, 2b, 3q′ , 4t)

+ B2,fin(1q, 2b, 3q′ , 4t) ,
(11.7)

where B2,fin is finite in four dimensions.

The double-virtual non-factorisable contribution is constructed by squaring the one-
loop amplitude B1, defined in Eq. (11.4), and by computing the interference of the
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Figure 11.1: Diagrams with triple-gluon vertex vanishes because of colour conservation once

projected on the Born amplitude.

two-loop amplitude B2, given in Eq. (11.7), with the colour-stripped Born amplitude A0.
We find

|M1(1q, 2b, 3q′ , 4t)|2nf + 2Re
[
M∗

0(1q, 2b, 3q′ , 4t)M2(1q, 2b, 3q′ , 4t)
]

nf

=
N2 − 1

4

( αs

2π

)2 [
− Re

[
I2
1 (ε)

]
|A0(1q, 2b, 3q′ , 4t)|2 + |B1(1q, 2b, 3q′ , 4t)|2

+ 2Re
[
I1(ε) A∗0(1q, 2b, 3q′ , 4t) B1(1q, 2b, 3q′ , 4t)

]
+ 2Re

[
A∗0(1q, 2b, 3q′ , 4t) B2,fin(1q, 2b, 3q′ , 4t)

] ]
,

(11.8)

where we have used Tr(tatb)Tr(tatb) = T2
Fδabδab = (N2

c − 1)/4. The amplitude B1 in
Eq. (11.7) still contains implicit poles in ε. We use Eq. (11.4) to rewrite the double-virtual
non-factorisable amplitude as

|M1(1q, 2b, 3q′ , 4t)|2nf + 2Re
[
M∗

0(1q, 2b, 3q′ , 4t)M2(1q, 2b, 3q′ , 4t)
]

nf

=
N2 − 1

4

( αs

2π

)2
[

2 (Re [I1(ε)])
2 |A0(1q, 2b, 3q′ , 4t)|2 + |B1,fin(1q, 2b, 3q′ , 4t)|2

+ 4Re [I1(ε)] Re
[
A∗0(1q, 2b, 3q′ , 4t) B1,fin(1q, 2b, 3q′ , 4t)

]
+ 2Re

[
A∗0(1q, 2b, 3q′ , 4t) B2,fin(1q, 2b, 3q′ , 4t)

] ]
.

(11.9)

11.1.2 Single-real emission contributions

We perform a similar analysis for the case of a single-real emission process

1q + 2b → 3q′ + 4t + 5g . (11.10)

Again, we decompose the tree-level amplitude into two terms

〈c|M0(1q, 2b, 3q′ , 4t; 5g)〉 = gs,b

[
tc5
c3c1

δc4c2 AL
0 (1q, 2b, 3q′ , 4t; 5g)

+ tc5
c4c2

δc3c1 AH
0 (1q, 2b, 3q′ , 4t; 5g)

]
,

(11.11)
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where we introduce the colour-stripped amplitude AL
0 (AH

0 ) to describe contributions
where the gluon is emitted from the light-quark or the heavy-quark line. The real-
emission amplitude exhibits a soft singularity when the emitted gluon energy goes to
zero. It factorises in that limit

S5 AL
0 (1q, 2b, 3q′ , 4t; 5g) = J(3, 1; 5, ε5) A0(1q, 2b, 3q′ , 4t) ,

S5 AH
0 (1q, 2b, 3q′ , 4t; 5g) = J(4, 2; 5, ε5) A0(1q, 2b, 3q′ , 4t) ,

(11.12)

In Eq. (11.12), we use the soft operator S5, already defined in Eq. (3.13) and introduce

J(i, j; k, εk) = εk,µ Jµ(i, j; k) , (11.13)

with

Jµ(i, j; k) =
pµ

i
pi · pk

−
pµ

j

pj · pk
. (11.14)

Similarly, we decompose the one-loop five-point amplitude using the colour-space
formalism. The result reads

〈c|M1(1q, 2b, 3q′ , 4t; 5g)〉 = gs,b

( αs

2π

) [
tc5
c3c1

δc4c2 AL
1 (5g) + tc5

c4c2
δc3c1 AH

1 (5g)

+
1
2
{ta, tc5}c3c1

ta
c4c2

BsL
1 (5g) +

1
2
[ta, tc5 ]c3c1

ta
c4c2

BaL
1 (5g)

+
1
2
{ta, tc5}c4c2

ta
c3c1

BsH
1 (5g) +

1
2
[ta, tc5 ]c4c2

ta
c3c1

BaH
1 (5g)

]
,

(11.15)

where we have extended the notation for the amplitudes introduced in Eq. (11.3) to
this case. Here, we distinguish between contributions where the gluon 5g is emitted
from the light-fermion or the heavy-fermion line. Additionally, we use indices s and a
to differentiate between the colour-symmetric and colour-antisymmetric contributions
for cases where one of the gluons interacts with the two fermion lines. For example,
the colour-stripped amplitudes BsH

1 and BsL
1 do not receive contributions from diagrams

with triple gluon vertices.

At NNLO, the real-virtual contribution has to be considered. It is build from the
interference of the tree-level and the one-loop five-point amplitudes

2Re
[
M∗

0(1q, 2b, 3q′ , 4t; 5g)M1(1q, 2b, 3q′ , 4t; 5g)
]

nf

= g2
s,b

N2 − 1
4

( αs

2π

) (
AL∗

0 (5g) BsH
1 (5g) + AH∗

0 (5g) BsL
1 (5g) + c.c.

)
,

(11.16)

To derive Eq. (11.16), we omitted all factorisable and colour-antisymmetric contributions,
and performed the colour algebra where relevant.
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u d

b t

g

W W

Figure 11.2: Example of diagram interference that contribute to non-factorisable, real-virtual
corrections to the single-top t-channel production.

Analogously to the elastic process, the pole structure of the one-loop amplitude can
be extracted using Catani’s operator defined in Eq. (11.5). We can write

BsL(H)
1 (1q, 2b, 3q′ , 4t; 5g) = I1(ε) AL(H)

0 (1q, 2b, 3q′ , 4t; 5g)

+ BsL(H)
1,fin (1q, 2b, 3q′ , 4t; 5g) ,

(11.17)

where BsL(H)
1,fin is the finite part of the one-loop five-point amplitude. In addition to

the explicit poles which originates from the integration over the loop momentum, the
amplitude becomes singular when the emitted gluon becomes soft. These singularities
factorise so that the amplitude can be written as a product of an eikonal factor and the
one-loop four-point amplitude

S5 BsL
1 (1q, 2b, 3q′ , 4t; 5g) = J(3, 1; 5, ε5) B1(1q, 2b, 3q′ , 4t) ,

S5 BsH
1 (1q, 2b, 3q′ , 4t; 5g) = J(4, 2; 5, ε5) B1(1q, 2b, 3q′ , 4t) .

(11.18)

To summarise, in the soft limit, the real-virtual non-factoriasble contribution can be
simply written as

S5

{
2Re

[
M∗

0(1q, 2b, 3q′ , 4t; 5g)M1(1q, 2b, 3q′ , 4t; 5g)
]

nf

}
= −g2

s,b
N2 − 1

2

( αs

2π

)
Eiknf(1q, 2b, 3q′ , 4t; 5g)

× 2Re
[
A∗0(1q, 2b, 3q′ , 4t) B1(1q, 2b, 3q′ , 4t)

]
.

(11.19)

In Eq. (11.19), we have defined the soft function Eiknf as the sum of the four eikonal
factors that describe gluon emission off the external legs. It reads

Eiknf(1q, 2b, 3q′ , 4t; 5g) = Jµ(3, 1; 5)Jµ(4, 2; 5) = ∑
i∈[1,3]
j∈[2,4]

λij pi · pj

(pi · p5)(pj · p5)
, (11.20)

where λij = 1 if both partons with momentum pi and pj are in initial (final) state
and λ = −1 otherwise. Once integrated over the gluon phase space, the soft function
produces a 1/ε pole related to a soft gluon emission.
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11.1.3 Double-real emission amplitudes

The last process we need to study is the single top production with two additional
gluons. We assign the following momenta to the particles of the process

1q + 2b → 3q′ + 4t + 5g + 6g . (11.21)

The tree-level amplitude is projected on the colour vector 〈c|. We obtain

〈c|M0(1q, 2b, 3q′ , 4t; 5g, 6g)〉 =

g2
s,b

[
1
2
{tc5 , tc6}c3c1 δc4c2 AsL

0 (5g, 6g) +
1
2
[tc5 , tc6 ]c3c1 δc4c2 AaL

0 (5g, 6g)

+
1
2
{tc5 , tc6}c4c2 δc3c1 AsH

0 (5g, 6g) +
1
2
[tc5 , tc6 ]c4c2 δc3c1 AaH

0 (5g, 6g)

+ tc5
c3c1

tc6
c4c2

B5L,6H
0 (5g, 6g) + tc6

c3c1
tc5
c4c2

B6L,5H
0 (5g, 6g)

]
,

(11.22)

where the first two lines contain contributions to the amplitude where both gluons are
emitted from the light- or the heavy-fermion line. Similar to the real-virtual case, we
split each contribution into colour-symmetric and colour-antisymmetric terms. The third
line consists of contributions where gluons are emitted from different lines.

u d

b t

g

g
W W

Figure 11.3: Example of diagram interference that contribute to non-factorisable, double real-
emission corrections to the t-channel single top production.

The non-factorisable contributions to the double-real amplitude squared is constructed
out of interferences where a gluon emitted from the light fermion line is absorbed by
the heavy fermion line, and vice-versa. This requirement leads to a simple form of the
non-factorisable, double-real contribution

∣∣M0(1q, 2b, 3q′ , 4t; 5g, 6g)
∣∣2
nf = g4

s,b
N2 − 1

4
×
(

AsL
0 (5g, 6g) AsH∗

0 (5g, 6g) + B5L,6H
0 (5g, 6g) B6L,5H∗

0 (5g, 6g) + c.c.
)

,
(11.23)

where the colour algebra has been performed and the colour-antisymmetric part of the
amplitude was discarded. Analogously to the case of single-real emission, both gluons
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can be soft. In the limit where the gluon 6g becomes soft, the different amplitudes in
Eq. (11.23) factorise

S6 B5L,6H
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(4, 2; 6, ε6) AL

0 (1q, 2b, 3q′ , 4t; 5g) ,

S6 B6L,5H
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(3, 1; 6, ε6) AH

0 (1q, 2b, 3q′ , 4t; 5g) ,

S6 AsL
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(3, 1; 6, ε6) AL

0 (1q, 2b, 3q′ , 4t; 5g) ,

S6 AsH
0 (1q, 2b, 3q′ , 4t; 5g, 6g) = J(4, 2; 6, ε6) AH

0 (1q, 2b, 3q′ , 4t; 5g) ,

(11.24)

where J is defined in Eq. (11.13). Using these results, we write the corresponding limit
of the double-real emission contribution as follows

S6
∣∣M0(1q, 2b, 3q′ ,4t; 5g, 6g)

∣∣2
nf = −g4

s,b
N2 − 1

2
Eiknf(1q, 2b, 3q′ , 4t; 6g)

×
[

AL
0 (1q, 2b, 3q′ , 4t; 5g) AH∗

0 (1q, 2b, 3q′ , 4t; 5g) + c.c.
]

.
(11.25)

If the gluon 5g also becomes soft, the double real-emission contribution factorises in the
following way

S5S6
∣∣M0(1q, 2b, 3q′ , 4t; 5g,6g)

∣∣2
nf = g4

s,b (N2 − 1) |A0(1q, 2b, 3q′ , 4t)|2

× Eiknf(1q, 2b, 3q′ , 4t; 5g) Eiknf(1q, 2b, 3q′ , 4t; 6g) .
(11.26)

11.2 construction of the subtraction terms

In the previous section, we have demonstrated that the non-Abelian contribution to the
single-top non-factorisable corrections vanishes due to colour conservation. The relevant
amplitudes have been discussed, and the factorisation in the limit where gluons are soft
has been made explicit.

In this section, we construct subtraction terms using the nested soft-collinear sub-
traction scheme [65] to regularise the soft gluon divergences. This scheme has been
introduced in Chapter 3, where the definition of the different operators and objects used
in the section can be found. Similar to the previous section, we consider double-real and
real-virtual contributions separately.

11.2.1 Double-real cross section

We start with the double-real cross section. Using notations introduced in Chapter 3, we
write it as

2s · σnf
RR =

1
2!

∫
[ dp5] [ dp6] Fnf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
≡
〈

Fnf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

) 〉
,

(11.27)
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where the factor 1/2! is the symmetry factor due the fact that the two emitted gluons
are identical. Furthermore, we have defined the following integral over the Born phase
space of the non-factorisable double real-emission amplitude

Fnf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
=N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

6

∑
i=3

pi

)
×
∣∣M0

(
1q, 2b, 3q′ , 4t; 5g, 6g

) ∣∣2
nf .

(11.28)

In Eq. (11.28), N = 1/(4N2
c ) stands for colour and spin average of initial partons. We

note that, although we write formulas for the total cross section, the exact same reasoning
would apply to any infrared-safe observable, which implies that the extension of our
result to differential cross sections is straightforward. The double-real cross section
suffers from soft divergences when one of the two gluons becomes soft. It can be
regularised by introducing two subtraction terms

〈Fnf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
〉 =〈S5S6 Fnf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
〉

+ 2 〈S6 (1− S5) Fnf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
〉

+ 〈(1− S5) (1− S6) Fnf
LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
〉 ,

(11.29)

where we use the soft operators S5 and S6, defined in Eq. (3.13). In Eq. (11.29), we use
the fact that the two gluons are undistinguishable and write S5(1− S6) = S6(1− S5). It
is convenient to define the integral of the eikonal factor over the related soft gluon phase
space

ḡ2
s

∫
[ dpk]Eiknf(1q, 2b, 3q′ , 4t; kg) ≡

αs

2π

(
2Emax

µ

)−2ε

Knf(1q, 2b, 3q′ , 4t; ε) , (11.30)

where ḡs is the bare strong coupling constant and αs is the coupling constant renormalised
in the MS scheme. The analytic calculation of Knf(ε) ≡ Knf(1q, 2b, 3q′ , 4t; ε) is described in
Chapter 12. The integrated subtraction terms can be expressed as

2s · σRR =
( αs

2π

)2 N2 − 1
2N2

(
2Emax

µ

)−4ε

〈K2
nf(ε) FLM(1q, 2b, 3q′ , 4t)〉

−
( αs

2π

) N2 − 1
2

(
2Emax

µ

)−2ε

〈Knf(ε) (I − S5) F̃nf
LM(1q, 2b, 3q, 4t; 5g)〉

+ 〈(I − S5)(I − S6) Fnf
LM(1q, 2b, 3q′ , 4t; 5g, 6g)〉 .

(11.31)

where we defined

FLM
(
1q, 2b, 3q′ , 4t

)
= N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 − p3 − p4

)
×
∣∣M0

(
1q, 2b, 3q′ , 4t

) ∣∣2 ,
(11.32)
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F̃nf
LM(1q, 2b, 3q, 4t; 5g) = N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

5

∑
i=3

pi

)
× g2

s,b

(
AL∗

0 (1q, 2b, 3q, 4t; 5g) AH
0 (1q, 2b, 3q, 4t; 5g) + c.c.

)
.

(11.33)

Infrared poles related to soft gluon emission are made explicit by the introduction the
integrated soft function Knf(ε).

11.2.2 Real-virtual cross section

Analogously to Eq. (11.28), we introduce the following quantity to describe the real-
virtual contribution

Fnf
LV
(
1q, 2b, 3q′ , 4t; 5g

)
= N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

5

∑
i=3

pi

)
× 2Re

[
M∗

0(1q, 2b, 3q′ , 4t; 5g)M1(1q, 2b, 3q′ , 4t; 5g)
]

nf
.

(11.34)

The emitted gluon can be soft. We regularise Fnf
LV by subtracting the leading soft contri-

bution, E5 → 0. We write

2s · σRV =
∫

[ dp5] Fnf
LV
(
1q, 2b, 3q′ , 4t; 5g

)
= 〈S5Fnf

LV(1q, 2b, 3q′ , 4t; 5g)〉+ 〈(I − S5)Fnf
LV(1q, 2b, 3q′ , 4t; 5g)〉 . (11.35)

We use the factorisation of the real-virtual amplitude given in Eq. (11.18) and the
definition of the finite part of the four-point one-loop amplitude in Eq. (11.4) to write
the integrated soft subtraction term as

〈S5 Fnf
LV (1q, 2b, 3q′ , 4t; 5g)〉 =

−
( αs

2π

)2 N2 − 1
N2

(
2Emax

µ

)−2ε

〈Knf(ε)Re [I1(ε)] FLM(1q, 2b, 3q′ , 4t)〉

−
( αs

2π

)2 N2 − 1
2

(
2Emax

µ

)−2ε

〈Knf(ε) F̃nf
LV, fin(1q, 2b, 3q′ , 4t)〉 .

(11.36)

In writing Eq. (11.36), we have defined the finite quantity

F̃nf
LV,fin(1q, 2b, 3q′ , 4t) = N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 − p3 − p4

)
× 2Re

[
A∗0(1q, 2b, 3q′ , 4t)B1,fin(1q, 2b, 3q′ , 4t)

]
.

(11.37)
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The regulated term in Eq. (11.35) displays a 1/ε pole from the loop momentum integra-
tion. We make it explicit using the Catani’s operator

〈(I − S5)Fnf
LV(1q, 2b, 3q′ , 4t; 5g)〉 =( αs

2π

) N2 − 1
2
〈Re [I1(ε)] (I − S5) F̃nf

LM(1q, 2b, 3q′ , 4t; 5g)〉

+
( αs

2π

) N2 − 1
4
〈(I − S5) F̃nf

LV, fin(1q, 2b, 3q′ , 4t; 5g)〉 ,

(11.38)

where, analogously to Eq. (11.37), we introduced the following finite quantity

F̃nf
LV, fin(1q, 2b, 3q′ , 4t;5g) = N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 −

5

∑
i=3

pi

)
× ḡ2

s

(
AL∗

0 (1q, 2b, 3q′ , 4t; 5g)BsH
1,fin(1q, 2b, 3q′ , 4t; 5g)

+ AH∗
0 (1q, 2b, 3q′ , 4t; 5g)BsL

1,fin(1q, 2b, 3q′ , 4t; 5g) + c.c.
)

.

(11.39)

11.2.3 Double-virtual cross section

In the previous sections, we made explicit the IR poles related to unresolved emissions
of soft gluons. In the case of the double-virtual correction, the poles are explicit thanks
to the Catani’s formula. We use the result from Eq. (11.26) and write the cross section as

2s · σVV = 〈Fnf
LVV(1q, 2b, 3q′ , 4t)〉

= N
∫

dLips34 (2π)d δ(d)
(

p1 + p2 − p3 − p4

){∣∣M1(1q, 2b, 3q′ , 4t)
∣∣2
nf

+ 2Re
[
M∗

0(1q, 2b, 3q′ , 4t)M2((1q, 2b, 3q′ , 4t)
]

nf

}
=
( αs

2π

)2 N2 − 1
4

[
2

N2

〈(
Re [I1(ε)]

)2 FLM(1q, 2b, 3q′ , 4t)
〉

+ 2 〈Re [I1(ε)] F̃nf
LV,fin(1q, 2b, 3q′ , 4t)〉+ 〈F̃nf

VV,fin(1q, 2b, 3q′ , 4t)〉
]

,

(11.40)

where we introduced the finite-contribution

F̃nf
VV,fin(1q, 2b, 3q′ , 4t) = N

∫
dLips34 (2π)d δ(d)

(
p1 + p2 − p3 − p4

)
×
{ ∣∣B1,fin(1q, 2b, 3q′ , 4t)

∣∣2 + 2Re
[

A∗0(1q, 2b, 3q′ , 4t)B2,fin(1q, 2b, 3q′ , 4t)
]}

.
(11.41)
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11.3 pole cancellation

The non-factorisable corrections to t-channel single top production cross section is the
sum of double-virtual, real-virtual and double-real contributions

σnf = σ
(2g)
nf + σ

(1g)
nf + σ

(0g)
nf . (11.42)

The double-real resolved contribution consists of the regulated term

2s · σ(2g)
nf = 〈(I − S5)(I − S6)Fnf

LM
(
1q, 2b, 3q′ , 4t; 5g, 6g

)
〉 , (11.43)

and can be numerically computed in four dimensions. The single-resolved and the elastic
contributions σ

(1g)
nf and σ

(0g)
nf contain terms that are separately divergent, but whose

sum is finite. To present these two contributions, it is convenient to define the following
quantity

W(1q, 2b, 3q′ , 4t) =

(
2Emax

µ

)−2ε

Knf(1q, 2b, 3q′ , 4t; ε)− Re [I1(1q, 2b, 3q′ , 4t; ε)] . (11.44)

We note that W is free of singularities. Indeed, we will show in Chapter 12 that the
divergent structure of Knf reads

Knf(1q, 2b, 3q′ , 4t; ε) =
1
ε

ln
(

p1 · p4 p2 · p3

p1 · p2 p3 · p4

)
+O(ε0) . (11.45)

Using Eq. (11.5) for I1(ε), we find

Knf(1q, 2b, 3q′ , 4t; ε)− Re
[
I1(1q, 2b, 3q′ , 4t; ε)

]
= O(ε0) . (11.46)

We write the single-resolved contribution, which is the sum of the second term in
Eq. (11.31) and the regulated term in Eq. (11.38), in the following way

2s · σ(1g)
nf = −

( αs

2π

) N2 − 1
2
〈W(1q, 2b, 3q′ , 4t)(I − S5)F̃nf

LM(1q, 2b, 3q′ , 4t; 5g)〉

+
( αs

2π

) N2 − 1
4
〈(I − S5)F̃nf

LV,fin(1q, 2b, 3q′ , 4t; 5g)〉 .
(11.47)

We emphasise that this expression is finite in four dimensions. Similarly, the elastic
contribution, build from the sum of the first term in Eq. (11.31), the expression in
Eq. (11.36), and the two-loop contribution in Eq. (11.40) can be expressed as

2s · σ(0g)
nf =

( αs

2π

)2 N2 − 1
2N2 〈W

2(1q, 2b, 3q′ , 4t) FLM(1q, 2b, 3q′ , 4t)〉

−
( αs

2π

)2 N2 − 1
2
〈W(1q, 2b, 3q′ , 4t) F̃nf

LV,fin(1q, 2b, 3q′ , 4t)〉

+
( αs

2π

)2 N2 − 1
4
〈F̃nf

VV,fin(1q, 2b, 3q′ , 4t)〉 .

(11.48)
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The pole cancellation of the non-factorisable NNLO QCD correction to t-channel single top
production cross section, build from the sum of Eq. (11.43), Eq. (11.47), and Eq. (11.48),
is explicit. We also note that the only amplitude that needs to be known through order
O(ε) is the one-loop amplitude B1, since it is needed to define the finite part of the
amplitude B2 in Eq. (11.7).



12 I N T E G R AT E D E I K O N A L
F U N C T I O N S

In Chapter 11, we have explained how to regulate the NNLO QCD cross section for non-
factorisable corrections to t-channel single top production. In this chapter, we focus on
the integrated soft subtraction terms. We present in detail the integration of the eikonal
factor for one massive and one massless particle, with an arbitrary angle between their
3-momentum. Then, we give the results for the back-to-back configuration, and for two
massless particles. Finally, we present a compact formula for the function Knf introduced
in the previous Chapter.

Our goal is to calculate the integrated soft function Knf defined in Eq. (11.30). We
focus on the integration of one of the eikonal factors. For two arbitrary emitters with
momentum pi and pj, we have

ḡ2
s

∫
[ dp5]

pi · pj

(pi · p5)
(

pj · p5
) =

αs

2π

(2Emax

µ

)−2ε eε γE Γ(1− ε)

Γ(1− 2ε)

(
− 1

2ε

)
×
∫

d(cos θ)
dφ

π

(
sin θ sin φ

)−2ε p̂i · p̂j

p̂i · p̂5 p̂j · p̂5

=
αs

2π

(2Emax

µ

)−2ε eε γE Γ(1− ε)

Γ(1− 2ε)

(
− 1

2ε

)
IΩ ,

(12.1)

where we define normalised 4-momenta p̂i = pi/Ei. The integration over the solid angle
of the emitted gluon is tedious. We describe the calculation of IΩ for the case of a massive
and a massless emitter in the next section.

12.1 one massive emitter , one massless – arbitrary angle

We need to compute this integral

IΩ = (1− β~n1 ·~n4)
∫ dΩ5

(1−~n1 ·~n5)(1− β~n4 ·~n5)
, (12.2)

where dΩ5 = d(cos θ) dφ/π
(

sin θ sin φ
)−2ε. We emphasise that the integration over

the −2ε-dimensional solid angle has already been performed in Eq. (12.1). This eikonal
factor originates from the emission of a soft gluon from one massive and one massless
emitter, with momenta p4 = E4(1, β~n4) and p1 = E1(1,~n1), respectively. The velocity of
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the massive particle reads β =
√

1−m2
t /E4. The integral diverges in the collinear limit

ρ15 → 0. We would like to extract the pole in ε. We write

I =
∫ dΩ5

1−~n1 ·~n5

{
1

1− β~n4 ·~n5
− 1

1− β~n4 ·~n1

}
+

1
1− β~n1 ·~n4

∫ dΩ(d)
5

1−~n1 ·~n5

≡ Ireg + I(ε) .

(12.3)

As in Ref. [131], we split the integral in two: one part which is regulated in the collinear
limit ρ15 and one which is divergent. The computation of the latter is simple, since

I(ε) =
∫ dΩ5

1−~n1 ·~n5
= −1

ε
. (12.4)

On the other hand, computation of the regulated part Ireg is more subtle. We note that
this integral is required to O(ε) because of the soft pole in Eq. (12.1) and, therefore, we
cannot set ε→ 0 in Ireg.

12.1.1 Regulated integral

To calculate the regulated term, we first derive a useful expression for the polar angle
integration and then, we integrate over the azimuthal angle.

We choose the z-axis along ~n4. Then, the dependence on the polar angle φ in Eq. (12.3)
only comes from the massless propagator. We need the following integral

Iφ =
∫ π

0

dφ

π

[
sin2(φ)

]−ε

[1− cos θ1 cos θ] + [− sin θ1 sin θ] cos φ
, (12.5)

where θ1 is the angle between n1 and n4. After some manipulations, we find that Eq. (12.5)
can be written as

Iφ =
22ε

| cos θ − cos θ1|
Γ (1− 2ε)

Γ2(1− ε)

×
2

∑
j=1

(1− z2
j )
−2εθ

(
1− z2

j

)
2F1

(
−ε,−2ε; 1− ε; z2

j

)
,

(12.6)

where

z1 =
(1− cos θ)(1 + cos θ1)

sin θ1 sin θ
, z2 =

(1− cos θ1)(1 + cos θ)

sin θ1 sin θ
. (12.7)

The simple form of the integral in four dimensions can be obtained from the d-
dimensional result in Eq. (12.6). We recall that

I(d=4)
φ =

∫ dφ

π

1
1−~n5 ·~n1

=
2

| cos θ − cos θ1|
. (12.8)
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We can now consider the integration over the azimuthal angle θ of the regulated integral.
The regulated term in Eq. (12.3) reads

Ireg =
∫ 1

−1
d(cos θ) sin−2ε(θ)

{
1

1− β cos θ
− 1

1− β cos θ1

}
Iφ(θ) (12.9)

We perform the following change of variables

cos θ = 1− 2x , cos θ1 = 1− 2y , (12.10)

and find that the regulated integral can be expressed as

Ireg = 22ε Γ(1− 2ε)

Γ2(1− ε)

∫ 1

0
dx x−ε(1− x)−ε

×
{

1
(1− β) + 2β x

− 1
(1− β) + 2β y

}

×
[

θ(y− x)
[(1− x)y]2ε

(y− x)1+2ε 2F1

(
−ε,−2ε; 1− ε;

x
1− x

1− y
y

)
+ (x ↔ y)

]
.

(12.11)

It is evident that the divergence at x = y in the square bracket is regulated by the terms
in curly brackets. We treat the two regions separately. In the first region where y > x, we
rescale the integration variable x = ηy, while in the second region, we choose η = 1−x

1−y .
We find the following expression for the regulated integral

Ireg = 22ε Γ(1− 2ε)

Γ2(1− ε)

∫ 1

0
dη

{
1

(1− β) + 2β y η
− 1

(1− β) + 2β y

}

×
[

(1− yη)ε

(1− η)1+2ε(yη)ε 2F1

(
−ε,−2ε; 1− ε;

η(1− y)
1− yη

)
+ (y↔ (1− y))

]
.

(12.12)

Since this expression is free of divergences, it can be expanded in ε and analytically
integrated order-by-order using the Maple package HyperInt [132]. The result of the
integration is expressed in terms of multiple polylogarithm (MPL) 1 that can be simplified
using the Mathematica package PolyLogTools [133].

12.1.2 Results

Using the result from the previous section, we find that the integrated eikonal function
IΩ for one massive and one massless emitters reads

IΩ = −1
ε
+ I (0) + εI (1) + ε2I (2) +O(ε3) , (12.13)

1 Multiple polylogarithm (MPL) are discussed in Appendix C.
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where

I (0) = 2 ln
(

E4 ρ14

mt

)
,

I (1) = − 2
[

1
4

ln2
(1− β

1 + β

)
+ ln

( ρ14

1 + β

)
ln
( ρ14

1− β

)
+ Li2

(
1− ρ14

1 + β

)
+ Li2

(
1− ρ14

1− β

) ]
.

(12.14)

This result agree with the one found in Ref. [131]. For our purpose, the integrated
eikonal factor is needed up to O(ε). It is in principle possible to get it to any order in
the dimensional regulator ε by expanding further the integrand Eq. (12.12).

12.2 integrated soft function

Using the results in Eq. (12.13), the integrated eikonal for massless partons, see, for
instance, [65] and the definition of Knf in Eq. (11.30), we find the following result for the
function Knf

Knf(1q, 2b, 3q′ , 4t; ε) =
1
ε

ln
(

p1 · p4 p2 · p3

p1 · p2 p3 · p4

)
− 1

2
ln2
(ρ23

2

)
+

1
2

ln2
(ρ12

2

)
− ln

(
ρ14

1− β

)
ln
(

ρ14

1 + β

)
+ ln

(
ρ34

1− β

)
ln
(

ρ34

1 + β

)
+ Li2

(
1− ρ12

2

)
− Li2

(
1− ρ23

2

)
− Li2

(
1− ρ14

1− β

)
− Li2

(
1− ρ14

1 + β

)
+ Li2

(
1− ρ34

1− β

)
+ Li2

(
1− ρ34

1 + β

)
+O(ε) .

(12.15)

where β =
√

1−m2
t /E2

4 and ρij = 1−~ni ·~nj.



13 T H E D O U B L E - V I RT UA L
C O N T R I B U T I O N

In this chapter, we focus on the calculation of the finite remainder of the double-virtual
contributions to t-channel single top production. As discussed in Chapter 11, the finite
remainder of the double-virtual contribution is defined by the subtraction of the IR poles
using Catani’s operator [66, 84], see Eqs. (11.5)-(11.7). In what follows, we first justify
the form of the Catani’s operator in our problem. Then, we discuss the computation of
the amplitudes required to evaluate the double-virtual contribution. We focus on the
computation of the two-loop amplitude, since the calculation of the one-loop amplitude
squared is analogous.

13.1 divergences of the loop amplitudes

The IR structure of one- and two-loop amplitudes is known [66, 84]. To account for
colour correlations between the different external partons, it is convenient to write an
amplitude as a vector in the colour space. In this section, we use the the notations of
Ref. [85], already introduced in Chapter 7. We provide a definition of the finite part of
the non-factorisable contribution to the double-virtual corrections.

The starting point is the same as in Chapter 7. We write

|A〉 = Z|F〉 , (13.1)

where |A〉 is an amplitude considered to be a vector in the colour space, Z is an operator
that contains IR poles, and |F〉 stands for the finite part of the amplitude. The Z-operator
is determined from the anomalous dimension operator Γ, defined in Eq. (7.8). For our
purpose, we want to select the part of Γ that contributes to non-factorisable corrections.
For that, we consider each term in Eq. (7.13) and decide if it can contribute to the
non-factorisable corrections.

We begin by selecting terms that contain colour correlations between the light- and
the heavy-fermion lines, which means that we allow T i · T j with i(j) ∈ {1, 3} and
j(i) ∈ {2, 4}. In addition, the anomalous dimensions of the different partons do not
contribute as they are related to collinear singularities. The cusp anomalous dimension
from Eq. (7.13) needs to be expanded to NNLO. The result reads [87, 91]

γcusp = 4
( αs

4π

)
+

[(
268

9
− 4π2

3

)
CA −

80
9

TFn f

] ( αs

4π

)2
+O(α3

s ) . (13.2)
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It is clear that the NNLO of γcusp does not contribute to non-factorisable corrections since
the presence of CA reflects the non-Abelian nature of QCD and n f TF requires internal
fermions loops. Taking into account all these constains, we find that the anomalous
dimension operator takes a simple form. It reads

Γnf({pi}, mt, µ) =
( αs

4π

)
Γ0,nf({pi}, mt, µ) , (13.3)

where

Γ0,nf = 4
[

T1 · T2 ln
(

µ2

−s− iε

)
+ T2 · T3 ln

(
µ2

−u− iε

)
+ T1 · T4 ln

(
µ mt

m2
t − u− iε

)
+ T3 · T4 ln

(
µ mt

m2
t − s− iε

) ]
.

(13.4)

The operator Z introduced in Eq. (7.11) is expanded to NNLO. It becomes [87, 91]

Znf = 1 +
( αs

4π

)
Z(1) +

( αs

4π

)2
Z(2) +O(α3

s )

= 1 +
( αs

4π

) Γ0,nf

2ε
+
( αs

4π

)2 Γ0,nf
2

8ε2 +O(α3
s ) .

(13.5)

We note that the reduced degree of divergence (1/ε instead of 1/ε2) of the operator Z is
related to the fact that Γ′0,nf = 0.

The operator Znf can be used to determine the pole structure of the one- and two-loop
amplitudes. We use Eq. (13.1) and expand it in αs. We find

|A〉 = |A(0)〉+ αs

4π
|A(1)〉+

( αs

4π

)2
|A(2)〉+O(α3

s )

= |A(0)〉+ αs

4π

(
Z(1)|A(0)〉+F (1)

)
+
( αs

4π

)2 ([
Z(2) − Z(1)Z(1)

]
|A(0)〉+ Z(1)|A(1)〉+F (2)

)
+O(α3

s ) .

(13.6)

At the first order in the strong coupling in Eq. (13.6), we find

|A(1)〉 = Γ0,nf

2ε
|A(0)〉+ |F (1)〉 . (13.7)

We use the properties of the colour charge operator

〈e|Ta
i |d〉 = Ta

eidi ∏
j 6=i

δejdj , Ta
eidi

=

ta
eidi

final state quark

−ta
diei

initial state quark ,
(13.8)
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the colour decomposition of the one-loop amplitude in Eq. (11.3), and the Born amplitude
in Eq. (11.2), and write the finite part of the non-factorisable one-loop amplitude as1

B1,fin(1q, 2b, 3q′ , 4t) = B1(1q, 2b, 3q′ , 4t)

− 1
ε

[
ln
(

p1 · p4 p2 · p3

p1 · p2 p3 · p4

)
+ 2πi

]
A0(1q, 2b, 3q′ , 4t) .

(13.9)

The result in Eq. (13.9) justifies the form of the Catani’s operator I1 used in Eq. (11.5).

For the evaluation of the double-virtual finite contribution, we need the two-loop
amplitude projected on the Born amplitude and the one-loop squared amplitude. We
use the result of the expansion in Eq. (13.6) and the expression of Z in Eq. (13.5) to write

〈A(0)|A(2)
nf 〉 = −

1
8ε2 〈A

(0)|Γ2
0,nf|A(0)〉+ 1

2ε
〈A(0)|Γ0,nf|A(1)

nf 〉+〈A(0)|F (2)
nf 〉,

〈A(1)
nf |A

(1)
nf 〉 =

1
4ε2 〈A

(0)||Γ0,nf|2|A(0)〉+ 1
2ε
〈A(1)

nf |Γ0,nf|A(0)〉

+
1
2ε
〈A(0)|Γ†

0,nf|A
(1)
nf 〉+ 〈F

(1)
nf |F

(1)
nf 〉.

(13.10)

The expressions in Eq. (13.10) can be easily evaluated using the definition of the colour
charge operator in Eq. (13.8). Using the standard normalisation of the Gell-Mann matrices

Tr
(

tatb
)
=

1
2

δab , (13.11)

we find that the colour algebra reduced to the following expression

〈A(0)|(T i · T j)(Tk · Tm)|A(0)〉 = (−1)ni
N2

c − 1
4

, (13.12)

where each pair of colour charge operators is restricted to non-factorisable interactions
as explained earlier and ni stands for the number of partons among {i, j, k, m} that are
in the initial state. For example, we find that the leading pole of the non-factorisable,
two-loop amplitude in the Eq. (13.10) reads

〈A(0)|Γ2
0,nf|A(0)〉 = 4(N2

c − 1)〈A(0)|A(0)〉 (ε I1)
2 . (13.13)

Using the colour decomposition of the two-loop amplitude in Eq. (11.6), we easily find
that the non-factorisable, two-loop amplitude in Eq. (13.10) reads[

M∗
0(1q, 2b, 3q′ , 4t)M2(1q, 2b, 3q′ , 4t)

]
nf

=
N2 − 1

4

( αs

2π

)2 [
− I2

1 (ε)

2
|A0(1q, 2b, 3q′ , 4t)|2

+ I1(ε) A∗0(1q, 2b, 3q′ , 4t) B1(1q, 2b, 3q′ , 4t)

+ A∗0(1q, 2b, 3q′ , 4t) B2,fin(1q, 2b, 3q′ , 4t)
]

,

(13.14)

1 We emphasise that the amplitudes and the operators introduced in Chapter 11 are expanded in αs/(2π),
whereas, in this section, we work with an αs/(4π) expansion.
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which confirms Eq. (11.7) used in Chapter 11. The IR poles of the double-virtual contribu-
tion in Eq. (11.8) are easily found from the real part of the non-factorisable two-loop am-
plitude in Eq. (13.14) and the non-factorisable one-loop amplitude squared in Eq. (13.9).

We have explained the origin of the formula for the infrared 1/ε poles of the one-loop
and the two-loop amplitudes used in Chapter 11. It allows us to write explicitly the
poles of the double-virtual contribution, see Eq. (11.9). This is an useful result, since it
provides an important cross-check on the evaluation of the amplitude.

13.2 tensor decomposition

In this section, we discuss how to calculate the non-factorisable two-loop amplitude for
the double-virtual contribution to t-channel single top production. We use a standard
method which consists of projecting the amplitude on a basis of tensor structures to
define Lorentz-invariant form factors [123, 128, 129]. Then, we discuss how these tensor
structures can be evaluated using spinor helicity formalism.

The double-virtual contribution is made of the one-loop amplitude squared and the
two-loop amplitude interfered with the Born amplitude. We focus on the latter. We
extract the colour factor of the non-factorisable two-loop amplitude and write

∑
colour

A(0)∗A(2)
nf =

1
4
(N2

c − 1) A(0)∗A(2)
nf . (13.15)

The colour-stripped amplitude A(2)
nf is composed of two fermion lines interacting by

the exchange of two gluons and one W boson. Weak interactions treat the left- and the
right-handed fermions differently. For instance, the interaction vertex of the W boson
with two quarks comes with a left-handed projector. It reads

W −
µ

uα, i

dβ, j

= −iδij
gW√

2
γµPL (VCKM)αβ , (13.16)

where PL = (1− γ5)/2 is the left-handed projector, uα and dβ are up and down type
fermions respectively, gW = e/ cos θW is the weak coupling constant, cos θW = 0.876 . . . ,
and VCKM is the Cabibbo–Kobayashi–Maskawa (CKM) matrix.

The treatment of γ5 in d dimensions is a known problem and many schemes exists to
deal with it [21, 134, 135]. However, in the case of non-factorisable corrections, absence
of closed fermion loops allows us to use the anti-commuting γ5 or, in other words, to
consider incoming fermions to be left-handed and drop PL in the W-boson interaction
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vertex. It is then clear that the calculation can be performed by only accounting for the
vector current part of the vertex in Eq. (13.16), keeping in mind that only left-handed
incoming quarks contribute to the final result.

To define form factors, we need to choose a set of tensor structures that is sufficient to
write the Born, the one-loop and the two-loop amplitudes that contribute to t-channel
single top production. We consider the following set of tensor structures2

S1 = ut(p4) u(p2)× u(p3) /p4 u(p1) ,

S2 = ut(p4) /p1 u(p2)× u(p3) /p4 u(p1) ,

S3 = ut(p4) γµ1 u(p2)× u(p3) γµ1 u(p1) ,

S4 = ut(p4) γµ1 /p1 u(p2)× u(p3) γµ1 u(p1) ,

S5 = ut(p4) γµ1 γµ2 u(p2)× u(p3) γµ1 γµ2 /p4 u(p1) ,

S6 = ut(p4) γµ1 γµ2 /p1 u(p2)× u(p3) γµ1 γµ2 /p4 u(p1) ,

S7 = ut(p4) γµ1 γµ2 γµ3 u(p2)× u(p3) γµ1 γµ2 γµ3 u(p1) ,

S8 = ut(p4) γµ1 γµ2 γµ3 /p1 u(p2)× u(p3) γµ1 γµ2 γµ3 u(p1) ,

S9 = ut(p4) γµ1 γµ2 γµ3 γµ4 u(p2)× u(p3) γµ1 γµ2 γµ3 γµ4 /p4 u(p1) ,

S10 = ut(p4) γµ1 γµ2 γµ3 γµ4 /p1 u(p2)× u(p3) γµ1 γµ2 γµ3 γµ4 /p4 u(p1) ,

S11 = ut(p4) γµ1 γµ2 γµ3 γµ4 γµ5 u(p2)× u(p3) γµ1 γµ2 γµ3 γµ4 γµ5 u(p1) .

(13.17)

They form a complete set of structures and allow us to compute the double-virtual, non-
factorisable correction to t-channel single top production. The vector-current contribution
to the colour-stripped Born amplitude is found to be

A(0)(~λ) =
S3(~λ)

4(t−m2
W)

, (13.18)

where ~λ denotes the polarisation states of the external particles. Restoring the colour
factors, the vector-current contribution to Born amplitude squared reads

∑
~λ,colours

|A(0)(~λ)|2 = N2
c

4 s (s−m2
t )

(t−m2
W)2

. (13.19)

The one-loop amplitude is expressed in terms of the first seven tensors in Eq. (13.17). At
two loops, we aim to write the colour-stripped amplitude as

A(2)
nf = ~f · ~S , (13.20)

2 We note that these eleven tensor structures differ slightly from the ones in Ref. [123], because we are only
considering the vector part of the W boson, which is equivalent to setting γ5 = 0 in the calculation, as
explained earlier.



98 the double-virtual contribution

where ~S stands for the vector of all eleven tensor structures and ~f are the form factors. To
determine these form factors, we construct the following eleven quantities

Qi = ∑
~λ

S†
i (~λ) A(2)

nf (
~λ), i = 1, . . . , 11 , (13.21)

where we sum over polarisations of external state particles and use

∑
λ

u(pi)⊗ u(pi) = /pi, i = 1, 2, 3, ∑
λ

ut(p4)⊗ ut(p4) = /p4 + mt . (13.22)

We define the matrix

Cij = ∑
~λ

S†
i (~λ) Sj(~λ) , (13.23)

and write the Qi in the following way

Qi = ∑
~λ

S†
i (~λ) A(2)

nf (
~λ) = ∑

j
f j ∑

~λ

S†
i (~λ) Sj(~λ) = ∑

j
Cij f j . (13.24)

It follows from Eq. (13.24) that the vector ~Q is obtained by acting on the vector ~f with
the matrix C.

~Q = Ĉ ~f . (13.25)

Therefore, the form factors are determined using the inverse matrix Ĉ−1 and the vector
~Q. They read

~f = Ĉ−1 ~Q . (13.26)

We would like to extract the dependence on ε of the tensor structures in Eq. (13.17)
and express them as 4-dimensional objects. The ε dependence is provided only by the
Lorentz indices since the external momenta and the spinors are four-dimensional. The
d-dimensional space can be thought of in terms of two distinct spaces.3 We split the
metric

ηµν = η̂µν + η̃µν , (13.27)

such that

η̂
µ
µ = η̂µνηνµ = 4, η̃

µ
µ = η̃µνηνµ = −2ε, η̃µση̂σν = 0 . (13.28)

From this construction, it is clear that one needs at least two terms with a −2ε-part
to provide any ε-term. The consequence of Eq. (13.28) is that each tensor structure in

3 This idea has been first introduced by G. ’t Hooft and M. Veltman in Ref. [21].
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Eq. (13.17) can be written as a sum of 4-dimensional structures with explicit ε dependence.
We find

S1,..,4 = S (4)1,..,4 ,

S5,6 = S (4)5,6 − 2εS (4)1,2 ,

S7,8 = S (4)7,8 − 6εS (4)3,4 ,

S9,10 = S (4)9,10 − 12εS (4)5,6 +
(
12ε2 + 4ε

)
S (4)1,2 ,

S11 = S (4)11 − 20εS (4)7 +
(
60ε2 + 20ε

)
S (4)3 ,

(13.29)

where S(4)
i are four-dimensional spinor structure. The spinor structures in Eq. (13.29)

can be computed using spinors with fixed helicities4. We select only the left-handed
incoming partons to restore the correct structure of the V − A current.

In the next section, we will discuss the evaluation of the quantities Qi.

13.3 form factors and master integrals

In the previous section, we have decomposed the two-loop amplitude into tensor struc-
tures and form factors. In this section, we explain how to express these form factors
through a set of master integrals. Then, we describe the evaluation of master integrals
using a semi-numerical approach called the auxiliary mass flow method [126, 127].

The form factors defined in the previous section in Eq. (13.24) contain many two-loop
Feynman integrals. We classify them into integral families using REDUZE 2 [137]. We find
that there are eighteen integral families, which can be mapped onto nine by crossing
symmetry, p1 ↔ −p3. They are shown in Fig. 13.1.

An integral family is defined by propagators that integrals in the family depend upon.
Any scalar products of loop momenta with external momenta can be expressed as a
linear combination of the propagators that define the topology. For 2 → 2 scattering
at two-loop, we need to include nine propagators into each family. As the result, in
addition to seven propagators that naturally come from the double-box loop integrals,
we need two additional ones. Then, in each topology, two-loop integrals are written as

I(a1, . . . , a9) =
∫ ( 2

∏
n=1

eεγE
ddkn

iπd/2

)
1

Da1
1 Da2

2 · · ·Da9
9

, (13.30)

where Di, i = 1 . . . 9, are propagators defining the integral family. In Table 13.1, these
propagators are shown for each integral family.

4 For a review of this formalism, we refer the reader to Ref. [136].
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(a) planar no. 1 (b) planar no. 2 (c) planar no. 3

(d) non-planar no. 1 (e) non-planar no. 2 (f) non-planar no. 3

(g) non-planar no. 4 (h) non-planar no. 5 (i) non-planar no. 6

Figure 13.1: The nine integral families that form the two-loop amplitude projections Qi. Dashed
lines stand for massless external legs or propagators. Massive legs or propagators
are represented with solid line and the colour indicates to which particle it refers;
blue corresponds to the top quark and pink to the W boson.

In each integral family, we perform an analytic reduction of Feynman integrals to
master integrals using KIRA [138], a computer program which implements Laporta’s
reduction algorithm [139]. Each integral which contributes to the two-loop amplitude
can be expressed as a linear combination of these master integrals. The reduction is
performed in four days on twenty cores for the most difficult integral families. In total,
we find that there are 428 master integrals, whose evaluation is discussed in the next
section.

13.4 numerical evaluation of the master integrals

In this section, we discuss the calculation of the 428 master integrals required to com-
pute the two-loop amplitude for the non-factorisable corrections to t-channel single top
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Name Definition

planar

1

k2
1, (k1 − p1)

2, (k1 + p2)2, (k2 + p3)2, (k1 + k2 − p1 + p3)2,
(k2 − p1 − p2 + p3)2, k2

2 −m2
W , k1 · p3, k2 · p2

2

k2
1, k2

2, (k1 − p1)
2, (k1 + p2)2, (k2 + p3)2,

(k2− p1− p2 + p3)2−m2
t , (k1 + k2− p1 + p3)2−m2

W , k1 · p3, k2 ·
p2

3

k2
2, (k1 − p1)

2, (k2 + p3)2, (k1 + k2 − p1 + p3)2, (k1 + p2)2 −m2
t ,

(k2 − p1 − p2 + p3)2 −m2
t , k2

1 −m2
W , k1 · p3, k2 · p2

non-planar

1

k2
2, (k2 − p1)

2, (k1 + p3)2, (k1 − k2 + p3)2, (k1 − k2 − p2 + p3)2,
(k1 − p1 − p2 + p3)2, k2

1 −m2
W , k2 · p2, k2 · p3

2

k2
1, k2

2, (k1 − p1)
2, (k1 + p2)2, (k2 + p3)2,

(k1 − k2 + p2 − p3)2, (k1 − k2 − p1)
2 −m2

W , k2 · p1, k2 · p2

3

k2
1, k2

2, (k1 + p3)2, (k1 − k2 + p3)2, (k1 − k2 − p2 + p3)2,
(k1 − p1 − p2 + p3)2 −m2

t , (k2 − p1)
2 −m2

W , k2 · p2, k2 · p3

4

k2
1, k2

2, (k1 − p1)
2, (k1 + p2)2, (k1 − k2 − p1)

2,
(k1 − k2 + p2 − p3)2 −m2

t , (k2 + p3)2 −m2
W , k2 · p1, k2 · p2

5

k2
2, (k1 − p1)

2, (k2 + p3)2, (k1 − k2 − p1)
2, (k1 + p2)2 −m2

t ,
(k1 − k2 + p2 − p3)2 −m2

t , k2
1 −m2

W , k2 · p1, k2 · p2

6

k2
1, k2

2, (k2 − p1)
2, (k1 + p3)2, (k1 − k2 − p2 + p3)2 −m2

t ,
(k1 − p1 − p2 + p3)2 −m2

t , (k1 − k2 + p3)2 −m2
W , k2 · p2, k2 · p3

Table 13.1: Definitions of the integral families. The propagators are defined by the loop momenta
k1 and k2 and the external momenta p1, p2, and p3 as defined in Eq. (11.1). Three of
them are planar and six are non-planar. The nine integral families that contribute
to the Qi but which are not defined here can be obtained by the crossing symmetry
p1 ↔ −p3.

production.

Since the analytic calculation of master integral is currently not possible,5 we decided
to evaluate the master integrals using the auxiliary mass flow method [126, 127]. We
adapt the procedure to our process as follows. We consider the mass of the W boson,
which only appears internally in one propagator, as a free complex parameter.6 We write

m2
W → m2

W(1 + x) , (13.31)

5 The analytic computation of the master integrals of the two-loop, non-factorisable amplitude for the
t-channel single top production has been the subject of two recent papers [124, 125]. Nevertheless, both
studies report incomplete results.

6 The auxiliary mass flow method as originally presented in Ref. [126, 127] introduces an auxiliary mass to
every propagators, massless or massive.
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where Im x < 0 to respect the Feynman prescription in the propagator. We generate
differential equations for master integrals with respect to x using integration-by-parts
(IBP) relations and find

∂x I = M(x, ε)I . (13.32)

To solve these equations, we need boundary conditions. To find them, we compute
integrals at x = −i∞. At this point, the mass of the W boson is very large in comparison
to s, t and m2

t , simplifying the analytic computation of the master integrals. Once the
boundary conditions are available, it becomes possible, for any phase-space point, to
solve the differential equation in Eq. (13.32) iteratively to reach the point x = 0 which
corresponds to the physical value of the W boson mass. We will now explain this proce-
dure in detail.

The value x = −i∞, chosen to determine boundary conditions to solve the differential
equation in Eq. (13.32), is a singular point. Therefore, we expect the following form for
the solution to the differential equation around y = 1/x = 0

I =
M

∑
j

εj
N

∑
k

∑
l

cjkl yk lnl y +O(εM+1) +O(yN+1) , (13.33)

where the value of M is fixed by the desired order of the ε-expansion of the different
master integrals and by the singularity structure of the matrix M. This Ansatz can
be used to move away from the singular point y = 0. The size of the first step is not
completely arbitrary. Indeed, it cannot be larger than the distance to the closest singular-
ity of the differential equations in Eq. (13.32) in the y complex plane. In addition, the
numerical precision attained in this first step depends on the value of y and the order of
the expansion N and, therefore, it is preferable to keep it small.

Once we have moved away from the boundary, we move through a grid of regular
points. At each of such points, the master integrals can be expanded in Taylor series.
From the regular point x0, we consider the following Ansatz

I =
M

∑
j

εj
N

∑
k=0

cjk(x− x0)
k +O(εM+1) +O((x− x0)

N+1) . (13.34)

We approach the point x = 0, step-by-step, by numerically solving the differential
equation, determining coefficients of the Taylor expansion and matching them to each
other. As mentionned earlier, the maximal size of the step we can perform is determined
by the closest singularity in the complex plane. We illustrate this principle in Fig. 13.2.
From the first regular point (blue), we can move closer to the physical value (green) with
a step size smaller than the distance from x0 to the closest singularity, denoted with a
dashed half-circle. After this step, we have are at the second blue point. Since the closest
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Figure 13.2: Illustration of the auxiliary mass flow method. We start at the irregular point in
orange where x = −i∞, move in the complex plane to regular points, denoted
in blue. The step size is determined by how far is the closest singularity of the
differential equation.

singularity is further away than the physical point, one additional step is enough to
conclude the evaluation.

In practice, we will choose only a fraction 1/n, n ∈ N of the maximal allowed step size.
The error on the final results due to the truncation of the Taylor series scales as (1/n)N+1.
Increasing n or N will give more accurate results at the price of a larger number of steps
or more coefficients to determine when solving the differential equation, respectively.

Figure 13.3: Example of integrals required at the boundary m2
W → −i∞ that are difficult to

calculate analytically . Dashed lines stand for massless legs and propagators, whereas
solid lines stand for massive legs or propagators. We denote in blue the lines that
corresponds to mt.

As we already mentioned, integrals at the boundary y = 0 are simpler to calculate.
Nevertheless, a few of these integrals are still difficult to compute analytically. We
illustrate some of them in Fig. 13.3. For those integrals, we proceed in an analogous way
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to the what has been done for mW and consider the internal top-quark mass mt to be a
free complex parameter. We write

m2
t → m2(1 + w) , (13.35)

where Im w < 0. We derive differential equations by differentiating the master integrals
with respect to w. The steps are then analogous to what has been described for the W
boson mass. There is, however, one difference in this case. Since we have shifted only the
internal top-quark mass, the internal and the external top-quark masses are different. As
the result, solutions to the differential equations display unphysical branches in the limit
w→ 0. These branches should be discarded. We proceed in the following way. For the
last step, the Ansatz for the master integrals is analogous to Eq. (13.33). We write it as

I =
M

∑
j

εj
N

∑
k

∑
l

cjklwk+lε +O(εM+1) +O(wN+1) . (13.36)

Then, the physical result for w = 0 corresponds to the branch k = 0 and l = 0.

(a) I1 (b) I2
(c) I3 (d) I4

(e) I5 (f) I6

(g) I7
(h) I8 (i) I9

(j) I10 (k) I11 (l) I12

(m) I13

(n) I14 (o) I15 (p) I16 (q) I17

Figure 13.4: Integrals that are required as boundary conditions to evaluate the 428 master in-
tegrals. Dashed lines stand for massless legs or propagators, whereas solid line
represents massive legs or propagators with mass mt.

In summary, we perform the numerical evaluation of the master integrals in two
steps, as illustrated in Fig. 13.5a. First, we solve the differential equations to move away
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m2
W

m2
t

(a) Differential equations are first solved for mt
and, then, for mW .

=m2
W

s

θ

(b) Once we are at the physical mass of the W
boson, we can move in the phase space using
differential equations with respect to s and t.

Figure 13.5: Description of the displacement in the parameter space.

from the boundary m2 = −i∞ to get to its physical value and, then, use this result as a
boundary condition to solve the differential equations in Eq. (13.32) to go to the physical
value of the W mass. We find that we only need a small set of integrals at the boundary
where m2 = −i∞ and m2

W = −i∞, shown in Fig. 13.4. Most of the integrals needed are
available in the literature [140–144]. Few of them were not available to sufficiently high
order in ε and two of them, I16 and I17, were not found. An overview of the calculation
of these two integrals is given in Appendix C.

For phenomenology, we need to evaluate the two-loop amplitude at several phase-
space points, parametrised by the Mandelstam variables (s, t). In Refs. [128, 129], the
evaluation of the master integrals at each phase-space point was done in the following
way: the integrals at the boundary m2

W → −i∞ are evaluated at a specific phase-space
points and then, we solve the differential equations to go to the physical value of the
W boson as described in the previous section. We consider an alternative approach by
generating differential equations for the master integrals with respect to the Mandelstam
variables s and t. We use these equations to move from a physical point to other points
in the phase space. This is illustrated in Fig. 13.5b. We note that a similar approach has
already been used in Refs. [145–147].

13.5 numerical results

The 428 master integrals can be evaluated to 20 digits precision within half an hour on a
single core for one kinematic point. The evaluation of the master integrals is checked in
two ways. First, we compare the results from the auxiliary mass flow method with the
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evaluations obtained with pySecDec [148, 149] at a physical phase-space point7. A good
agreement is found for the majority of the master integrals. Nevertheless, we were not
able to produce a meaningful result for few of them, such as non-planar, double-box inte-
grals. Then, the second numerical check that we can perform is a self-consistency check.
The evaluation of the master integrals at some phase-space point (s1, t1) obtained from
the direct integration of the boundary mW → −i∞ is compared to the value obtained
from the phase-space point (s2, t2) which is then transported to (s1, t1) using differential
equations in s and t, as described in Fig. 13.5b. This procedure has been successfully ap-
plied to all master integrals for several phase-space points with an agreement of 20 digits.

The two-loop amplitude is evaluated at all phase-space points and its poles are
compared to the prediction from Eq. (13.10). In Table 13.2, we present the agreement
between the evaluation of the two-loop amplitude to the pole prediction for a typical
phase-space point. The agreement is of 14 digits at O(ε−2) and of 13 digits at O(ε−1). It
is reasonable to assume that we lose one digit per ε order and, therefore, we expect 12
correct digits for the finite part of the amplitude. In Table 13.3, we provide additional
evaluations of the two-loop amplitude.

ε−2 ε−1

〈A(0)|A(2)
nf 〉 −229.0940408654660− 8.978163333241640i −301.1802988944764− 264.1773596529505i

IR poles −229.0940408654665− 8.978163333241973i −301.1802988944791− 264.1773596529535i

Table 13.2: Comparison of the two-loop amplitude evaluation and the pole prediction at a typical
phase space point s ≈ 104337 GeV2 and t ≈ −5179.68 GeV2.

〈A(0)|A(2)
nf 〉(s, t) ε−2 ε−1 ε0

(104337.30,−5179.6797) −229.09404− 8.9781633i −301.18030− 264.17736i 380.61217 + 307.59053i

(51824.679,−16060.887) −8.2985887− 4.8234599i −7.2779624− 22.421862i 42.503179 + 59.484685i

(2728123.9,−69809.245) −5061.2720− 83.997993i 34392.588− 1255.7061i −1507.7598 + 18782.966i

Table 13.3: Evaluations of the two-loop amplitude at three different phase-space points.

The non-factorisable, double-virtual contribution to the cross section for t-channel
single top production in proton-proton collision can be written as

dσVV,ub
pp→d+t = ∑

i,j=u,b
i 6=j

∫
dx1 dx2 fi(x1, µR) dσ̂VV

ij→d+t(x1, x2, µR) f j(x2, µR) , (13.37)

7 We chose s = (500 GeV)2 and t = − (100 GeV)2
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where we set the flavour of the light quarks to be q = u and q′ = d. We use the PDF

NNPDF31_lo_as_0118 [95, 96], set the factorisation scale to µF = mt, the masses of the top
quark and the W boson to mt = 173 GeV and mW = 80.379 GeV, and the Fermi constant
to GF = 1.16637× 10−5 GeV−2.

We build the partonic cross section from the finite part of the amplitude defined from
the subtraction of Catani’s operator in Eq. (13.10). It reads

σ̂VV
ij→d+t =

1
8N2

c s

∫
[ dp3][ dp4]〈F|F〉 (2π)4δ(4) (p1 + p2 − p3 − p4) , (13.38)

where the finite amplitude squared reads

〈F|F〉 = 〈A(0)|A(0)〉+
( αs

4π

)2 [
〈F (1)

nf |F
(1)
nf 〉+ 2Re

{
〈A(0)|F (2)

nf 〉
}]

. (13.39)

To evaluate the non-factorisable corrections, we need to generate a set of phase space
points that describes well the kinematics of t-channel single top production. We assume
that the double-virtual and the Born contributions are not radically different and train
the Vegas integrator on the latter. Then, we extract ten lists of 10, 000 phase-space points
from the grid that has been adapted to the Born contribution. For each phase-space
points, we evaluate the 428 master integrals as described in the previous section. Using
these sets of points, we can estimate the double-virtual cross section.

Interestingly, the evaluation of the double-virtual contribution can provide insights
into the actual magnitude of the non-factorisable corrections. Indeed, it appears that, in
non-factorisable corrections, real-emission corrections are suppressed compared to the
double-virtual ones. This can be justified in the following way: we consider an expansion
of the cross section in the top-quark transverse momentum

σ = σ0 +
pt,top√

s
σ1 +O

(
p2

t,top/s
)

, (13.40)

where σ0 corresponds to the contribution where pt,top = 0, or equivalently, for massless
partons, pµ

1 = pµ
3 and pµ

2 = pµ
4 . Then, we consider the real-emission amplitude where

a gluon is emitted off the light-quark line. To contribute to σ0, the gluon has to be soft.
However, in this case, the real-emission amplitude vanishes since

S5AL
0 (1q, 2b, 3q′ , 4t; 5g) = (

pµ
3

p3 · p5
− pµ

1
p3 · p5

)A0(1q, 2b, 3q′ , 4t) = O(mt) , (13.41)

where we use the notation introduced in Chapter 11 and Eqs. (11.12)-(11.14). Therefore,
the real-emission corrections do not contribute to σ0. The same argument holds for any
amplitudes which are part of real-emission contributions. As the result, the double-virtual
contribution is expected to be dominant in non-factorisable corrections. In addition, we
note that σ0 is free of IR poles since they are provided by the emission of soft gluon.
Nevertheless, the top quark is massive, and, thus, we expect a milder suppression of the
real-emission contributions in the case of t-channel single-top production.





14 C A L C U L AT I O N O F T H E
R E A L - E M I S S I O N A M P L I T U D E S

In this chapter, we discuss the calculation of the real-emission amplitudes that contribute
to non-factorisable corrections to t-channel single top production. First, we explain how
the tree-level amplitudes are obtained. Then, we elaborate on the one-loop five-point
amplitude and the efforts made to improve its numerical stability.

14.1 tree-level amplitudes

The real-emission, tree-level amplitudes are generated with QGRAF [79] and the Dirac
algebra is performed with FORM [73–76]. At NNLO, we need single- and double-real
emission amplitudes.1 The double-real emission amplitude corresponds to the process

q(p1) + b(p2)→ q′(p3) + t(p4) + g(p5) + g(p6) . (14.1)

The single top production is characterised by the presence of the W boson vertex,
described in Eq. (13.16). Similar to the treatment of the double-virtual contribution
in Sec. 13.2, we use the anticommutating γ5 to force the initial state partons to be
left-handed. We use spinor helicity formalism [150] to write

PL u(pi) = uL(pi) = |i] , for light-like pi , (14.2)

where, for the considered process, i = 1, 2, 3. Spinors that describe massive partons can
also be written as spinors with fixed helicities by decomposing their momentum into
two light-like momenta. For instance,

pµ
4 = p[ µ

4 +
m2

t
2n · p4

nµ , (14.3)

where we introduced the light-like momentum p[ µ
4 and the reference vector nµ which is

arbitrary. The spinors that describe left- and the right-handed top quarks can be written
as

ūL(p4) = 〈4[|+
mt

[n4[]
[n| and ūR(p4) = [4[|+ mt

〈n4[〉 〈n| . (14.4)

1 The single-real emission amplitude contributes once interfered with the one-loop five-point amplitude.

109



110 calculation of the real-emission amplitudes

We use this representation for the massive sponors to write the Born amplitude as

A0(1L
q , 2L

b , 3L
q′ , 4L

t ) =
g2

W
t−m2

W
〈34[〉[21] ,

A0(1L
q , 2L

b , 3L
q′ , 4R

t ) =
g2

W
t−m2

W

mt

〈n4[〉 〈3n〉[21] ,
(14.5)

where t = (p1− p3)2. It is clear that if we chose nµ = pµ
3 , right-handed top quarks do not

contribute to the Born amplitude. This choice also simplifies the expression for single-
and double-real emission amplitudes.

Single- and double-real emission amplitudes can be numerically evaluated using
the spinor helicity formalism. The non-factorisable, real-emission contribution is then
obtained by interfering the diagrams where gluons are emitted off the light-fermion line
with the ones where gluons are emitted off the heavy-fermion line, and vice-versa, as
illustrated in Fig. 11.3. To check our results, we compare the evaluation of the double-real
emission cross section to MadGraph5_aMC@NLO [77] for resolved kinematics.

14.2 one-loop five-point amplitude

In this section, we described the calculation of the one-loop five-point amplitude
M1(1q, 2b, 3q′ , 4t, 5g), introduced in Eq. (11.16). This amplitude is needed up to finite
order in ε.

As discussed in Chapter 11, we discard colour-antisymmetric contributions. We gen-
erate the diagrams using QGRAF [79] and perform the Dirac algebra with FORM [73–76].
We use the same notation as in Chapter 11 and split the 24 diagrams that contribute
to the real-emission, one-loop amplitude into two categories: one where the gluon is
emitted from the light-fermion line (BsL

1 ), and the other where the gluon is emitted by
the heavy-fermion line (BsH

1 ), see Fig. 14.1 for examples. We first discuss the treatment of
the spinor chains and, then, the calculation of the one-loop tensor integrals.

As already explained in Chapter 13, we take care of γ5 in this case by selecting left-
handed incoming partons. We work in the spinor helicity formalism and we split the
metric into four-dimensional and −2ε-dimension parts, see Eq. (13.28). The ε dependence
is extracted and we are left with 4-dimensional helicity spinor chains which can be
evaluated at any phase-space points. We find that there are two spinor structures per
helicity configuration. For instance, if both the emitted gluon and the top-quark are
left-handed, we find that the amplitude depends on the following two helicity spinor
chains

〈4[5g〉2〈1q3q′〉[4[1q][1q2b], 〈4[5g〉〈3q′5g〉[1q2b] . (14.6)
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q q′

b t

g

W

(a) BsL
1

q q′

b t

g

W

(b) BsH
1

Figure 14.1: Two of the one-loop five-point diagrams required to compute the real-virtual contri-
bution to t-channel single top production. We split them into BsL

1 where the gluon is
emitted from the light-fermion line and BsH

1 where the gluon is emitted from the
heavy-fermion line.

Since both the top quark and the gluon have two physical polarisations, there are four
different helicity configurations in total, leading to eight spinor structures.2

Among the 24 diagrams, eight lead to tensor pentagon integrals. We write the five-
point amplitude as

BsX
1 =∑

i

3

∑
r=0

cX
5,i,r(ε) I5,i[kµ1 · · · kµr ] + ∑

i

2

∑
r=0

cX
4,i,r(ε) I4,i[kµ1 · · · kµr ] , (14.7)

where we split the contribution of the tensor box integrals and of the tensor pentagon
integrals. In Eq. (14.7), the integrals are defined as

In,i[kµ1 · · · kµr ] =
∫ ddk

(2π)d

∏r
j=1 kµj

∏n
l=1 Di,l

, (14.8)

where i stands for the topology, Di,l = (k− qi,l)
2 −m2

i,l , and qi,l = ∑l
a=1 pa with pa being

the external momenta. The masses mi,l are either zero, mt, or mW .

To reduce the tensor pentagon integrals, it is convenient to work with the van Neerven-
Vermaseren (vNV) basis [152]. A short overview of this concept can be found in Ref. [153].
The vNV basis {vµ

i }, whose construction is based on the Schouten identity, are defined
such that vi · pj = δij, where pi are the external momenta. In four dimensions, the basis
vectors read

vµ
i =

δ
p1 ...µ...p4
p1 p2 p3 p4

∆(p1 . . . p4)
, (14.9)

where

∆(p1 . . . p4) = δ
p1...p4
p1 ...p4 ≡ det|δµ

ν |
4

∏
i,j=1

piµ pν
j , (14.10)

2 This is the expected number for a five-point amplitude with four helicity configurations [151].
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is the Gram determinant. In the definition of the vector vµ
i in Eq. (14.9), the Lorentz index

µ is at the ith place in the upper indices. Note that in both Eq. (14.9) and Eq. (14.10), we
simplify notations by replacing an index of a tensor which is contracted with an external
momenta by the momenta itself.

The vectors of the vNV basis can be used to rewrite the loop momentum in the tensor
loop integrals defined in Eq. (14.8). The most difficult tensor integrals that we need to
reduce are rank 3, pentagon integrals. These integrals are free of rational terms and,
therefore, it is sufficient to consider the contribution from the physical space of the loop
momentum [153, 154]. Since the physical space is four-dimensional, we can use the basis
defined in Eq. (14.9). The loop momentum in this basis reads

kµ =
4

∑
i=1

(k · qi) vµ
i , (14.11)

In this basis, the loop momentum is expressed with the propagators of the tensor integral
I5,i in Eq. (14.8). It reads

kµ =
1
2
(D5,1 − D5,5)v

µ
1 +

1
2
(D5,2 − D5,1)v

µ
2 +

1
2
(D5,3 − D5,2)v

µ
3

+
1
2
(D5,4 − D5,3)v

µ
4 + Vµ ,

(14.12)

where Vµ depends on the seven scales of this calculation. When one of the loop momen-
tum in the numerator of the rank r, tensor integral I5,i is expressed in the vNV basis, the
first four terms in Eq. (14.12) leads to rank r− 1, box integrals, on which we can use the
standard Passarino-Veltman reduction [80]. The last term in Eq. (14.12) leads to a rank
r− 1, pentagon integrals, on which we repeat the procedure.

At this point, we are left with only scalar pentagon, box, triangle and bubble integrals.
Scalar pentagon integrals can be expressed as a sum of scalar box integrals in four
dimensions [155]. The one-loop five-point amplitude defined in Eq. (14.7) becomes

BsX
1 =∑

i
ĉX

4,i(ε) I4,i + ∑
i

ĉX
3,i(ε) I3,i + ∑

i
ĉX

2,i(ε) I2,i +O(ε) . (14.13)

We find a minimal set of 109 master integrals.

We would like to chose a convenient basis of master integrals that simplifies the one-
loop five-point amplitude. We know from Chapter 11 that non-factorisable contributions
are free of collinear singularities and, therefore, display a mild degree of divergence,
starting at 1/ε2. Thus, we know that the degree of divergence of the one-loop five-point
amplitude is at most 1/ε, since another pole 1/ε will be provided by the integration over
the emitted-gluon phase space. We would like to make this property explicit by choosing
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a basis of finite box integrals. We follow the reasoning of Ref. [156]. As an example, we
consider the following scalar box integral

I4,1 =
∫ ddk

(2π)d
1

k2(k− p1)2(k− p1 − p2)2(k− p1 − p2 + p5)2 . (14.14)

This integral is IR divergent if the loop momentum becomes soft, k→ 0, or if, for instance,
the loop momentum k is collinear to p1. We introduce a numerator to make I4,1 finite
and define

F4,1 =
∫ ddk

(2π)d

Tr
(
(−/p1)(/k − /p1)(/k − /p1 − /p2)(/p5)

)
k2(k− p1)2(k− p1 − p2)2(k− p1 − p2 + p5)2 = O(ε0) . (14.15)

The trace that we introduced in Eq. (14.15) can be computed. We find

Tr
(
(−/p1)(/k − /p1)(/k − /p1 − /p2)(/p5)

)
= −s12 (s12 + s15 − s34)

+ (s12 + s15 − s34) k2 − (s12 − s34) (k− p1)
2

+ (s12 + s15) (k− p1 − p2)
2 − s12 (k− p1 − p2 + p5)

2 ,

(14.16)

where we recognise the different propagators of the scalar box integral I4,1. As the result,
the finite box integral F4,1 is expressed as a linear combination of triangle scalar integrals
and the initial box integral I4,1.

We apply this procedure to all divergent box integrals such that BsX
1 becomes

BsX
1 =∑

i
c̄X

4,i F4,i + ∑
i

c̄X
3,i I3,i + ∑

i
ĉX

2,i(ε) I2,i +O(ε) . (14.17)

Since the scalar box integrals F4,i are finite, we are able to set ε→ 0 in the coefficients c̄X
4,i.

This reduces drastically their complexity. In addition, we observe that the coefficients c̄X
3,i

become ε-independent. We emphasise that the poles of the amplitude are only provided
by the triangle integrals. Indeed, since non-factorisable amplitudes are free of UV diver-
gences at NNLO, the sum over the bubble integrals is finite.

The change of basis that we have just described makes the amplitudes BsL
1 and BsH

1
more concise. Nevertheless, we need to go further to ensure the numerical stability of
the amplitudes in the whole phase-space, especially the region where the emitted gluon
is soft. In addition to the two masses, there is five scales that need to be chosen. To avoid
large cancellations during the numerical evaluation, we choose the following variables

s12, s23, δ1 = s34 − s12, δ2 = s45 −m2
t , δ3 = s15 . (14.18)

These variables are convenient since, in the limit where the gluon goes soft, the variables
δ1, δ2, and δ3 vanish.
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Similar to the tree-level amplitudes, the one-loop amplitudes BsL
1 and BsH

1 can be
numerically evaluated within the helicity spinor formalism. The one-loop scalar integrals
are evaluated using QCDLoop [157, 158].

This ends the computation of the real-emission amplitudes. Once combined with
the double-virtual corrections computed in Chapter 13, we have the complete non-
factorisable corrections to t-channel single top production. In the next chapter, we present
numerical results that are relevant for the LHC and the Future Circular Collider (FCC).
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We consider proton-proton collisions at 13 TeV. The t-channel single top production
cross section is written as

dσpp→X+t = ∑
i,j

∫
dx1 dx2 fi(x1, µF) f j(x2, µF) dσ̂ij→X+t (x1, x2, µR) , (15.1)

where i and j stand for the parton types. We set the CKM matrix to be the identity matrix.
As the result, only j(i) = b and i(j) = u, c, d̄, s̄ contribute. The vacuum expectation
value of the Higgs field is set to v = 246.2 GeV. The masses of the process evaluate to
mt = 173.0 GeV and mW = 80.379 GeV. We use the CT14_lo PDFs for the LO cross section
and CT14_nnlo PDFs [159] for the non-factorisable corrections and we set the factorisation
scale to µF = mt. The running of the strong coupling constant is performed by a routine
from NNPDF [96, 159]. It gives, for example, αs(mt) = 0.108. We find that the t-channel
single top production cross section evaluates to

σpp→X+t

1 pb
= 117.96 + 0.26

(
αs(µR)

0.108

)2

, (15.2)

where the first term corresponds to the LO cross-section and the second to the non-
factorisable contributions. However, in writing Eq. (15.2), we have emphasised that there
is no clear choice for the renormalisation scale of the non-factorisable contribution.1

Indeed, since these kind of corrections first occur at NNLO, we do not have any indication
from lower orders. The proximity of the quark scattering occuring in the t-channel to the
deep-inelastic scattering (DIS) could indicate that the renormalisation scale should be
close to the typical transverse momentum value of the process, which corresponds to
µR = 40 GeV. For this choice of scale, the non-factorisable corrections are enhanced and
reach O(0.35%).

We find that the real-emission contribution reduces the double-virtual contribution by
O(24%). As we argued in Eq. (13.40), the virtual contribution is indeed dominant in the
non-factorisable corrections. As expected, the suppression is also milder than it would

1 The renormalisation scale only appears in the running of the strong coupling constant, since non-factorisable
contribution is free of UV divergences at NNLO QCD.

115



116 results

be for a massless top quark. 2

µR = mt µR = 40 GeV

pt,cut
⊥ σLO (pb) σnf

NNLO (pb) δNNLO [%] σnf
NNLO (pb) δNNLO [%]

0 GeV 118.01 0.26−0.04
+0.06 0.22−0.04

+0.05 0.40 0.34

20 GeV 115.09 0.26−0.04
+0.06 0.23−0.04

+0.05 0.41 0.36

40 GeV 109.56 0.27−0.05
+0.06 0.25−0.04

+0.06 0.43 0.39

60 GeV 104.63 0.28−0.05
+0.06 0.26−0.04

+0.06 0.43 0.41

Table 15.1: Dependence of the non-factorisable corrections on a cut on the transverse momentum
of the top quark for 13 TeV proton-proton collisions. The factorisation scale is set to
µF = mt. Each row corresponds to a value of the cut given in the first column. In the
second column, we report the LO cross section. In the third and fifth columns, we
present the non-factorisable contributions in picobarn at µR = mt and µR = 40 GeV,
respectively. We refer the reader to the main text for further information.
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Figure 15.1: Distribution of the top-quark transverse momentum. We report the LO distribution
evaluated at µF = mt with a blue solid line. Non-factorisable corrections are plotted
with a red dashed line for µ = mt and the scale variation is indicated by the lighter
red bands. In green dotted line, we show the corrections at µ = 40 GeV.

In Table 15.1, we plot the dependence of the non-factorisable corrections on a cut on the
transverse momentum of the top quark. Each row of the Table 15.1 corresponds to a value
of the cut. The third and fourth columns correspond to the non-factorisable corrections

2 Indeed, we argued that, for mt = 0, the real-emission contributions are suppressed by a factor O(p2
t,top/s).

The typical partonic energy is about
√

s = 300 GeV. The suppression for mt = 0 would be p2
t,top/s ≈ 2%.
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Figure 15.2: Distribution of the top-quark rapidity. We report the LO distribution evaluated at
µ f = mt with a blue solid line. Non-factorisable corrections are plotted with a red
dashed line for µ = mt and the scale variation is indicated by the lighter red bands.
In green dotted line, we show the corrections at µ = 40 GeV.

at µR = mt with, to the right of the central value, the corrections using µR = 2mt and
µR = mt/2, respectively. In the third column, we show the non-factorisable contribution
in picobarns and, in the fourth column, we give the corrections relative to the Born
cross section in percent. The last two columns show the same quantities for µR = 40 GeV.

µR = mt µR = 40 GeV

pt,cut
⊥ σLO (pb) σnf

NNLO (pb) δNNLO [%] σnf
NNLO (pb) δNNLO [%]

0 GeV 2367.02 3.79−0.63
0.84 0.16−0.03

0.04 5.95 0.25

20 GeV 2317.03 3.89−0.64
0.86 0.17−0.03

0.04 6.11 0.26

40 GeV 2216.61 4.14−0.69
0.92 0.19−0.03

0.04 6.50 0.29

60 GeV 2121.88 4.28−0.71
0.95 0.20−0.03

0.04 6.71 0.32

Table 15.2: Dependence of the non-factorisable corrections on a cut on the transverse momentum
of the top quark for 100 TeV proton-proton collisions. The factorisation scale is set to
µF = mt. Each lines corresponds to a value of the cut, given in the first column. The
second column reports the LO cross section. In the third and fifth columns, we present
non-factorisable contributions in picobarn at µR = mt and µR = 40 GeV, respectively.
We refer the reader to the main text for additional informations.

We observe that, from pt,cut
⊥ = 0 to pt,cut

⊥ = 60 GeV, the LO cross section decreases by
O(11%), while the non-factorisable corrections increase by O(8%). These values can
be compared with the factorisable corrections given in Table 7 of Ref. [6] for a similar
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Figure 15.3: Distribution of the leading-jet transverse momentum. We report the LO distribution
evaluated at µF = mt with a blue solid line. Non-factorisable corrections are plotted
with a red dashed line for µ = mt and the scale variation is indicated by the lighter
red bands. In green dotted line, we show the corrections at µ = 40 GeV.

choice of PDFs and scales.3 We note that NNLO factorisable corrections decrease the NLO

cross section by a factor O(0.7%). As a consequence, the non-factorisable corrections,
although smaller, are quite comparable to the factorisable corrections. At most, the
non-factorisable corrections reach O(0.4%) for pt,cut

⊥ = 60 GeV and µR = 40 GeV.

For the computation of the observable distributions, we set µ = µF = µR = mt and
vary this value by a factor two. We emphasise again that this choice is not thought to be
optimal, but it allows a comparison with studies of the factorisable corrections found in
the literature. For this reason, we also include results for µ = 40 GeV.

In Fig. 15.1, we show the distribution of the transverse momentum of the top quark.
From pt

⊥ = 0 to pt
⊥ = 50 GeV, the corrections are small and negative.4. Then, the

corrections increase linearly, reaching O(2%) at 200 GeV. We note that the factorisable
corrections to the same distribution, shown in Fig. 11 from Ref. [6], have a similar shape,
but are larger by a factor 3− 10. We also note that the factorisable corrections vanish
around 30 GeV, while the non-factorisable ones vanish around 50 GeV. This means that
the non-factorisable corrections are, in fact, dominant in a region close to the peak of the
distribution.

3 We note that the collider energy is fixed to 14 GeV in Ref. [6], but this difference does not invalidate the
comparison.

4 We note that we observe the same behaviour for the double-virtual contribution.
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Figure 15.4: Distribution of the sum of transverse momenta H. We report the LO distribution
evaluated at µF = mt with a blue solid line. Non-factorisable corrections are plotted
with a red dashed line for µ = mt and the scale variation is indicated by the lighter
red bands. In green dotted line, we show the corrections at µ = 40 GeV.

The distribution of the top-quark rapidity is shown in Fig. 15.2a. The non-factorisable
corrections are almost constant for |yt| ≤ 2.5, changing the LO distribution by O(0.25%).
They then rapidly decrease and change sign at |yt| = 3. It is interesting to note that
factorisable corrections to the top-quark rapidity vanish around |yt| ∼ 1.2. Again, one
concludes that non-factorisable corrections are dominant in some parts of the phase
space.

We will now consider observables related to jets. We use the kT-algorithm [160] with
pjet
⊥ > 30 GeV and ∆R = 0.4. We also define the following quantity

H = pt
⊥ +

njet

∑
i=1

p jet,i
⊥ , (15.3)

where njet stands for the number of jets in the event.

The distribution of the leading-jet transverse momentum is shown in Fig. 15.3a. The
non-factorisable corrections are negative up to pjet

⊥ = 50 GeV where they vanish. The
corrections reach O(1.2%) at pjet

⊥ = 140 GeV. The corrections to the sum of the transverse
momenta H, defined in Eq. (15.3), present a similar behaviour. In Fig. 15.5a, we see that
the corrections to the leading jet rapidity are constant up to |yjet| = 2, and change sign
at |yjet| = 3.5.
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Figure 15.5: Distribution of the leading-jet rapidity. We report the LO distribution evaluated at
µF = mt with a blue solid line. The non-factorisable corrections are plotted with a
red dashed line for µ = mt and the scale variation is indicated by the lighter red
bands. In green dotted line, we show the distribution at µ = 40 GeV.

The same results have been computed for the Future Circular Collider (FCC) [8, 9],
where protons will collide with a centre-of-mass energy of 100 TeV. We keep the same
setting as before, and find

σpp→X+t

1 pb
= 2367.0 + 3.8

(
αs(µR)

0.108

)2

. (15.4)

At the FCC, the non-factorisable corrections amount to O(0.16%) of the LO cross section,
for µR = mt. These corrections increase to O(0.25%) for µR = 40 GeV. In Table 15.2,
which is the counterpart of Table 15.1, we show the dependence of the non-factorisable
corrections to the value of the cut imposed on the transverse momentum of the top quark.
We observe the same behaviour as in Table 15.1, but amplified, since the LO cross section
decrease by O(10%) when we impose pt,cut

⊥ = 60 GeV, whereas the non-factorisable
corrections grow by O(25%). The corrections stay larger for µR = 40 GeV, and reach
O(0.3%) for moderate pt,cut

⊥ values. It would be desirable to compare these values with
the factorisable corrections, as it is difficult to predict the effect of such an increase of
the centre-of-mass collision energy on them.

For each distribution presented earlier, we provide its 100 TeV counterpart. In Fig. 15.1b,
we see that the non-factorisable corrections to the top-quark transverse momentum dis-
play as similar behaviour to the one observed in Fig. 15.1a. The corrections are shifted as
they vanish around pt

⊥ = 70 GeV. The same observation is made for the distribution of
the transverse momentum of the leading jet and to the sum of the transverse momenta
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H. Indeed, both of them are shifted as they vanish at pjet
⊥ = 70 GeV and ptop

⊥ = 140 GeV,
respectively. The corrections to the rapidity of the top quark, in Fig. 15.2b, and to the
rapidity of the leading jet, in Fig. 15.5b, are almost flat over the whole range of rapidity
displayed, which goes up to ytop,jet = 4. These corrections amount to 0.2% and 0.35%,
respectively.

We observe some common features at 100 GeV. First, the corrections depend less on
the choice of renormalisation scale, since the lighter red band is nearly undistinguishable
and the µ = 40 GeV distribution is close to the µ = mt one. In addition, distributions
related to transverse momenta present interesting features. At the tail of the distribu-
tions, the 100 GeV corrections are systematically smaller than at 13 GeV. On the other
hand, in small transverse momentum region, the corrections have the same relative
importance. This could be explained by the fact that the real-emission corrections are
suppressed when the collision energy is increased, whereas the leading terms of the
virtual contribution stay unaffected.





16 C O N C L U S I O N

We have calculated the non-factorisable corrections to t-channel single top production
at the LHC and the FCC [8, 9]. This contribution, which first appears at NNLO, has been
neglected in previous studies because it is colour-suppressed compared to the factoris-
able corrections. Nevertheless, it appears that the factorisable corrections to t-channel
single top production are relatively small. Therefore, non-factorisable corrections could
be comparable.

In Chapter 11, we made explicit the absence of non-Abelian interactions in non-
factorisable corrections and demonstrated the IR pole cancellation using the nested
soft-collinear subtraction scheme [65]. The pole structure shows a mild degree of di-
vergence, as the non-factorisable contribution does not exhibit collinear singularities.
In Chapter 12, we calculated the subtraction term related to soft-gluon emissions. It
turns out that the integrated soft function can be written in a relatively compact form. In
Chapter 13, we focused on the double-virtual contribution. We used a standard approach
to calculate the two-loop amplitude [123, 128, 129]. We projected the amplitude onto
a minimal set of tensor structures to define form factors, which are reduced to master
integrals via an analytic reduction. We then used the auxiliary mass flow method [126,
127] to evaluate the master integrals over the phase space. We have shown that this
approach is sufficiently reliable to give results relevant for phenomenology. Then, in
Chapter 14, we explained how the double-real and real-virtual contributions were de-
termined. The calculation turned out to be non-trivial due to the presence of several
scales and high-rank tensor integrals. We also explained how we ensured the numerical
stability of the amplitudes, especially in the limit where emitted gluons are soft. Finally,
we presented numerical results relevant for the LHC and the FCC.

We find that non-factorisable corrections amount to O(0.4%) of the inclusive cross-
section and can reach O(2) percents for some distributions at the LHC. We conclude
that the non-factorisable corrections are certainly small, but in fact quite comparable to
the factorisable corrections. The importance of the virtual effects in the non-factorisable
corrections has been emphasised. In addition, we observed that such effects are not
suppressed when the collision energy is increased. It would be desirable to compare the
magnitude of the non-factorisable corrections with the factorisable ones at the FCC.

123





Part III

N O N - FA C T O R I S A B L E D O U B L E - V I RT UA L C O N T R I B U T I O N
T O H I G G S P R O D U C T I O N I N W B F – B E Y O N D T H E E I K O N A L

A P P R O X I M AT I O N

The non-factorisable, double-virtual contribution to Higgs boson production
in weak boson fusion (WBF) at LHC has been computed in the eikonal approx-
imation in Ref. [7]. We extend this calculation to the next-to-leading order
in the forward limit of the tagging jets. It turns out these contributions are
sizeable as they decrease earlier estimates of the non-factorisable corrections
by O(20%).

This part of the thesis is based on Ref. [161]
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Studying the production of the Higgs boson at the LHC is essential for gaining a better
understanding of the properties of the only scalar particle predicted by the SM. Given
the large number of events involving the Higgs boson that will be observed during
the HL-LHC [2], we can expect significant improvements in the accuracy of our current
measurements. However, in order to take full advantage of these experimental advances,
theoretical predictions also need to be refined. Fortunately, recent years have seen major
developments related to the Higgs sector [162], with the aim of potentially uncovering
physics beyond the Standard Model (BSM).

The WBF is one of the major Higgs production channels at the LHC. It has been studied
by ATLAS [163, 164] and CMS [165, 166] collaborations. The measured cross section
agrees with the SM prediction with 20% accuracy, as shown in the second line of Fig. 17.1.

Figure 17.1: Cross sections of the main Higgs production channels at the LHC. The Higgs boson
production channels are sorted by importance; the gluon fusion, shown on the first
line, is the dominant one. The grey bands indicate the theoretical uncertainties,
whereas the black intervals stand for the total experimental ones. Figure from
Ref. [164].

Corrections to Higgs boson production in WBF are understood to an advanced level.
Fully differential cross sections are known including NLO QCD [167, 168], NNLO QCD [32,

127
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33], and mixed EW-QCD corrections [169]. The total cross section is known up to N3LO

QCD corrections [34]. However, all these studies have been carried out in the so called
structure function approximation [170], where non-factorisable corrections are neglected.

As discussed in Part II, non-factorisable corrections first appear at NNLO QCD. They
are gauge invariant by themselves and colour-suppressed compared to their factorisable
counterpart. Nevertheless, it has been demonstrated by studying the double-virtual
contribution to Higgs boson production in WBF in the eikonal approximation [7] that, for
this process, these corrections are enhanced by a factor π2, originating from the exchange
of Glauber gluons. The authors of this paper show that the double-virtual contribution
changes the Born cross-section by O(1%)1.

The double-virtual contributions is known to be dominant in non-factorisable cor-
rections, see Eq. (13.40). It is therefore essential to get a better understanding of this
contribution. However, the exact evaluation of the five-point, two-loop amplitude is
currently impossible. We cannot apply the technique that we used in the case of t-channel
single top production in Part II because i) the reduction of the two-loop amplitude to
master integrals is difficult, ii) the number of master integrals would be substantially
larger, and iii) we would need to evaluate the master integrals for a considerable amount
of phase-space points. We take a different approach and follow Ref. [7] by working
around the forward limit of the tagging jets.

In this part of the thesis, we want to go beyond the eikonal approximation by including
next-to-leading order terms in the eikonal expansion. First, we investigate how to extend
the calculation done in Ref. [7] by working on t-channel massless single top production,
whose physics is close to the WBF one. We derive the sub-eikonal contributions from
the exact amplitude and present two techniques for approximating the loop integrals to
reproduce this result. Finally, we compute the double-virtual contribution to the Higgs
production in WBF including next-to-leading terms in the eikonal approximation using
the expansion by regions [172–174].

1 Later, the results of this paper were extended to the double-Higgs production [171].



18 M A S S L E S S S I N G L E T O P
P R O D U C T I O N – A T O Y M O D E L

In this chapter, we explore the physics of t-channel massless single top production,
which closely relates to Higgs production in weak boson fusion (WBF). More precisely,
we investigate how to compute the non-factorisable, double-virtual corrections in the
forward limit, where the transverse momentum of the process is much smaller than
the collision energy in the partonic centre-of-mass frame. We focus on the one-loop
amplitude, with the intention of extending the calculation to the two-loop amplitude in
a subsequent stage.

We start our analysis by computing the leading and the next-to-leading contributions
from the exact one-loop amplitude. Then, we consider different methods to calculate
the one-loop amplitude in the forward limit. The eikonal term is readily obtained by
following the approach of Ref. [7], but computing the next-to-eikonal terms is more
challenging. We will consider two approaches. The first one involves resolving differential
equations, while the second one is based on the expansion by regions technique [172–
175].

18.1 one-loop amplitude in the forward limit

We consider t-channel massless single top production

u(p1) + b(p2)→ d(p3) + t(p4) , (18.1)

where, to be closer to the physics of Higgs boson production in WBF, we consider all
external partons to be massless, p2

i = 0, i = 1 . . . 4. We consider the non-factorisable
correction to the one-loop amplitude.1 Two of the four contributing diagrams are shown
in Fig. 18.1. The other two diagrams are obtained by the crossing-symmetry p1 ↔ −p3.

For the rest of this chapter, we consider that the partons with momenta p1 and p2 are
incoming, whereas the ones with momenta p3 and p4 are outgoing. The Mandelstam
variables read

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p2 − p3)
2 , (18.2)

such that s + t + u = 0.

1 The non-factorisable, one-loop amplitude starts contributing at NNLO QCD, see Chapter 11.
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u d

b t

W

(a) Planar

u d

b t

W

(b) Crossed

Figure 18.1: Example of planar (left) and crossed (right) diagrams contributing to the one-loop
amplitude for the process described in Eq. (18.1).

The determination of the one-loop amplitude for the process described in Eq. (18.1)
is straightforward. We generate the diagrams using QGRAF [79] and perform the Dirac
algebra with FORM [73, 76]. We use spinor helicity formalism since only left-handed
partons contribute to the process. The different spinor structures can be simplified to the
Born one. To reduce the one-loop tensor integrals to scalar integrals, we use Passarino-
Veltman reduction [80]. Then, we use PackageX [81] to express every scalar tadpole,
bubble, triangle and box integrals in terms of logarithmic and dilogarithmic functions.

We focus on the forward limiit of the tagging jets where they are only slightly scattering.
In this configuration, we can assume that

s� t ∼ m2
W . (18.3)

We write the one-loop, non-factorisable amplitude as

M(1) = tA
i3i1 tA

i4i2A(1) , (18.4)

and expand the colour-stripped one-loop amplitude A(1) including next-to-leading terms
in the eikonal expansion. We find

A(1) =
αs(µ)

π

{
− 1

ε

(
iπ +

t
s

)
+ iπ ln

(
(t−m2

W)2

µ2m2
W

)
− iπ

m2
W
s

+
m2

W − t
s

[
2π2

3
+ ln2

(
s

m2
W − t

)
+ 2Li2

(
t

m2
W − t

)]
+

2m2
W

s
+

t
s

ln
(

s
µ2

)
+

m2
W
s

ln
(

s
m2

W

)

+
t2 + 2t m2

W −m4
W

s t
ln
(

1− t
m2

W

)
+O

(
t2

s2

)}
A(0) ,

(18.5)

where the strong coupling has been renormalised in the MS scheme. In Eq. (18.5), we
have defined the colour-stripped Born amplitude as

A(0) = −g2
W

1
2
[12]〈34〉
t−m2

W
, (18.6)
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where gW = e/ cos θW is the weak coupling constant and cos θW = 0.876 . . . . We note that
the pole in ε in Eq. (18.5) corresponds to what we expect from the Catani’s operator [66,
84]. Indeed, from Eq. (13.9), we find

A(1) =
αs(µ)

π

1
ε

(
iπ +

t
s
+O

(
t2

s2

))
A(0) +O

(
ε0) . (18.7)

The finite part of A(1) in Eq. (18.5) presents interesting features. First, the leading-order
term consists of a single logarithm. We observe that, as for the case of Higgs boson
production in WBF [7], the one-loop amplitude is purely imaginary in the eikonal approx-
imation. Then, the other terms in Eq. (18.5) correspond to the next-to-leading order in the
eikonal approximation, suppressed by a factor t/s ∼ mW/s. With the exception of one
term, all of them are purely real. Since the one-loop amplitude contributes once squared,
such real terms start contributing only at order O

(
p4

t /s2), which is strongly suppressed.2

Eventually, we want to determine the sub-eikonal contribution to Higgs boson produc-
tion in WBF. To mimic the two weak boson propagators, characteristic of this process,
we consider the amplitude of the massless t-channel single top production with a dot
on the W boson propagator. This is close to a configuration where both weak bosons
have a small transverse momentum and where the Higgs boson is not very energetic.
The one-loop amplitude is easily obtained by deriving A(1) with respect to m2

W . We find

Ȧ(1) =
α̃s(µ)

π

[
− 1

ε

(
iπ +

t
s

)
+ iπ

(
ln
(
(t−m2

W)2

µ2m2
W

)
−
(

1 +
t

m2
W

))

+
2m2

W
s
− t

s

(
1 + iπ +

t
m2

W
+ ln

(
µ2

m2
W

))
+ 2

m2
W
s

ln
(

s
m2

W

)

+
m4

W − 2m2
W t + 3t2

s t
ln
(

1− t
m2

W

)
+O

(
t2

s2

)]
Ȧ(0) ,

(18.8)

where Ȧ(0) is the Born amplitude in Eq. (18.6) with a dot on the W boson propagator.

Both results in Eqs. (18.5)-(18.8) are compact. It is clear that Higgs boson production
in WBF has a larger number of scales and, thus, we expect a more consequent expression.
It would be desirable to develop methods to derive such results by directly expanding
loop amplitudes in the forward limit. First, we will reproduce the idea from Ref. [7] and
calculate the eikonal contribution by combining the four diagrams that compose the
one-loop amplitude. However, this approach is not easily generalised to higher order in
the t/s-expansion and we would like to consider different ways to derive the sub-eikonal
contribution. The first method that we will investigate involves reducing the one-loop

2 For simplicity, we do not consider the O(ε) terms in this analysis. However, one should keep in mind that
they are required to evaluate non-factorisable corrections.
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amplitude to master integrals and, then, approximating these master integrals in the
forward limit using differential equations. The second method is based on the expansion
by regions technique [173, 174, 176].

18.2 the eikonal contribution

In this section, we determine the leading-order terms in Eq. (18.5), following the calcula-
tion done for WBF in Ref. [7].

The one-loop amplitude is made of four diagrams, shown in Fig. 18.2. In each of them,
we assign the loop momentum k to the gluon propagator. We consider the limit where

iM(1)
1 = k

p1

p2

p3

p4

Wg k + r iM(1)
2 =

p1

p2

p3

p4

Wk + r kg

iM(1)
3 =

p1

p2

p3

p4

k + rk

iM(1)
4 =

p1

p2

p3

p4

k + r k

Figure 18.2: Definition of the four diagrams. The external momenta are on-shell. The transverse
momentum is defined as r = p1 − p3. The diagramsM(1)

3 andM(1)
4 are respectively

related toM(1)
1 andM(1)

2 ) by the momentum mapping p1 ↔ −p3.

the outgoing jets are very energetic compared to the momentum in the transverse plane
to the incoming momenta p1, p2. In light-cone coordinates, they read

p1 =
(√

s/2, 0,~0
)

, p2 =
(

0,
√

s/2,~0
)

. (18.9)

To separate teh physics of the null components from that of the transverse plane, we
perform a Sudakov decomposition of the loop momentum

k = αp1 + βp2 + k⊥ , (18.10)
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In this coordinate system, the kinematic limit that we consider translates to α ∼ β� √s.
In addition, we assume that k⊥ ∼ r⊥ �

√
s, which is the small scale of our problem.

This allows an expansion of the fermion propagators in their eikonal form

1
/k + /p1,2 + iε

=
/k + /p1,2

(k + p1,2)
2 + iε

≈ /p1,2

2k · p1,2 + iε
=

γ∓

2k∓ + iε
. (18.11)

The second equality of Eq. (18.11) is obtained by assuming that k2 � k · p1. If the loop
momentum and p1,2 have a relative sign, the location of the pole changes

1
/k − /p1,2 + iε

≈
−/p1,2

−2k · p1,2 + iε
=

γ∓

2k∓ − iε
. (18.12)

We consider the first diagram in Fig. 18.2

iM(1)
1 = C

∫ ddk
(2π)d

〈3|γµ(/k + /p1)γ
ν|1]〈4|γµ(/k − /p2)γν|2]

k2(k2 + 2k · p1)(k2 − 2k · p2)[(k + r)2 −m2
W ]

, (18.13)

where C = g2
s g2

W/2 ta
21ta

43 contains the coupling and the colour factors. In Eq. (18.13),
we use the fact that only left-handed incoming partons contribute. Since we are only
interested in the leading-order contribution, we can drop the loop momentum in the
currents in Eq. (18.13) and use Eq. (18.11) to rewrite the two fermion propagators in
their eikonal form

iM(1)
1 ≈ C

∫ ddk
(2π)d

〈3|γµγ−γν|1]〈4|γµγ+γν|2]
k2(2k− + iε)(2k+ − iε)[(k + r)2 −m2

W ]
. (18.14)

Similarly, the third diagram becomes

M(1)
3 ≈ −C

∫ ddk
(2π)d

〈3|γνγ−γµ|1]〈4|γµγ+γν|2]
k2(2k− − iε)(2k+ − iε)[(k + r)2 −m2

W ]
, (18.15)

where we use Eq. (18.12) to expand the first fermion propagator and the fact that p3 ≈ p1

in the eikonal approximation. Except an overall sign, the only difference with the result
from the first diagram in Eq. (18.14) comes from the sign of the Feynman prescription on
one of the eikonal propagator. The sum of the two diagrams is conveniently expressed as

iM(1)
1 +M(1)

3 ≈ C
∫ ddk

(2π)d

Jµν
31 Jµν,42

k2(2k+ − iε)[(k + r)2 −m2
W ]

×
[

1
2k− + iε

− 1
2k− − iε

]
,

(18.16)

where we introduce the following notations for the two fermion currents

Jµν
31 = 〈3|γµγ−γν|1] , Jµν,42 = 〈4|γµγ+γν|2] . (18.17)
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Note that, to write Eq. (18.16), we perfom the replacement Jµν
31 ↔ Jνµ

31 that will be justified
later. The integral in Eq. (18.16) can be simplified since

1
2k+ ± iε

= P 1
2k+
∓ iπδ(2k+) , (18.18)

where P denotes the principal value [177]. This expression means that the propagator
is real except when k+ vanishes. In this case, there is a pole in the complex plane of k+

which leads to a residue once integrated. The sign of the residue is determined by the
location of the pole in either the upper or the lower half of the complex plane.

Then, using Eq. (18.18), the square bracket in Eq. (18.16) can be written as

1
2k− + iε

− 1
2k− − iε

= 2Im
{

1
2k+ + iε

}
= −2iπδ(2k+) = −iπδ(k+) . (18.19)

The combinaison of the propagators becomes a Dirac delta function that force the plus
component of the loop momentum to vanish. The sum of the first and the third diagram
becomes

iM(1)
1 +M(1)

3 ≈ C Jµν
31 Jµν,42

∫ ddk
(2π)d

−iπδ(k+)
k2(2k+ − iε)[(k + r)2 −m2

W ]
. (18.20)

An analogous derivation can be performed for the two other diagrams. We find

iM(1)
2 +M(1)

4 ≈ −C Jµν
42 Jµν,42

∫ ddk
(2π)d

−iπδ(k+)
k2(2k+ + iε)[(k + r)2 −m2

W ]
. (18.21)

We can now combine Eqs. (18.20)-(18.21) to write the full amplitude as

iM(1) = C Jµν
31 Jµν,42

∫ ddk
(2π)d

−iπδ(k+)
k2[(k + r)2 −m2

W ]

[
1

2k+ − iε
− 1

2k+ + iε

]
= C Jµν

31 Jµν,42

∫ ddk
(2π)d

π2δ(k+)δ(k−)
k2[(k + r)2 −m2

W ]
.

(18.22)

The loop integral is therefore reduce to the integral over the transverse plane. This can
be made explicit by expressing the measure in light-cone coordinates3

ddk = dk+ dk− dd−2k⊥ . (18.23)

Then, Eq. (18.22) becomes

iM(1) = π2 C Jµν
31 Jµν,42

∫ dd−2k⊥
(2π)d

1
k⊥

2[(k⊥ + r⊥)2 + m2
W ]

, (18.24)

3 We denote Euclidian vector with bold symbol such that k2
⊥ = −k⊥

2
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where we use the fact that the null components of r cannot contribute in k · r because of
the two Dirac functions and the fact that at leading order r2 ≈ −r⊥ 2.

The two currents can also be further simplified. We consider the upper current
Jµν
31 = 〈3|γµγ−γν|1]. We use the Dirac equation

〈3|/p3 = 0 , (18.25)

and the fact that, at leading order, p3 ≈ p1, to write

〈3|/p3 ≈ 〈3|γ− = 0 . (18.26)

Therefore, the upper current necessarily reads

Jµν
31 → 〈3|γ+γ−γν|1] . (18.27)

We note that the first Dirac matrix in Eq. (18.27) cannot be γ⊥ since p3 does not have a
transverse component at leading order. To go further, we derive the anti-commutation
relation for the light-cone Dirac matrices{

γ+, γ−
}
=

1
2
{

γ0 + γ3, γ0 − γ3} =
1
2
(
2η00 − 2η33) 1 = 21 . (18.28)

Using the anti-commutation relation in Eq. (18.28) and the Dirac equation in Eq. (18.26),
we find

Jµν
31 → 2〈3|γν|1] . (18.29)

The same reasoning is applied to Jµν
42 . We note that this reasoning also justify the permu-

tation of the Lorentz index in Eq. (18.16).

Once the fermion currents are simplified using Eq. (18.29), the one-loop amplitude in
Eq. (18.24) becomes

M(1) = i
g2

s
4π

ta
31 ta

42 χ(1)A(0) , (18.30)

where we use the expression of the colour-stripped Born amplitude A(0) defined in
Eq. (18.6) and define

χ(1) =
1

(2π)−2ε

∫ dd−2k⊥
π

t−m2
W

k⊥
2[(k⊥ + r⊥)2 + m2

W ]
. (18.31)

Apart from the choice of regulator for the loop integral, this result matches the one in
Ref. [7]. We can perform the Euclidian loop integral by introducing Feynman parameters
and considering spherical coordinates. We find

χ(1) =
π−ε

(2π)−2ε

Γ(1 + ε)Γ(−ε)

Γ(1− ε)

t−m2
W

(m2
W)1+ε 2F1 (1, 1 + ε; 1− ε;−ρ) . (18.32)
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We use this result and we renormalise the strong coupling in the MS scheme. Then, the
one-loop amplitude in Eq. (18.30) becomes

A(1) =
αs(µ)

π

[
− iπ

ε
+ iπ ln

(
(t−m2

W)2

µ2m2
W

)
+O

(
t
s

)]
A(0) , (18.33)

where we use r⊥ 2 = −t +O(t/s). This result matches what we found from the expan-
sion of the exact analytic amplitude in Eq. (18.5).

We would like to go beyond the eikonal contribution. The computation that we
followed from Ref. [7] is straightforward and give the correct expression. Nevertheless,
it is not clear how one can extend this procedure to higher order in t/s-expansion. In
the following sections, we present different ways to approximate Feynman integrals in
this limit.

18.3 approximation of the master integrals using differential equa-
tions

In this section, we consider that it is possible to reduce the one-loop amplitude to master
integrals, but that the latters are difficult to compute exactly. We approximate them in
the limit t� s using differential equations build from IBP relations, as discussed for the
computation of the two-loop triangle integrals in Appendix C.

The reduction of the one-loop amplitude is performed with Kira [178]. We find two
integral families, one planar and one crossed. The integrals of the crossed family can be
mapped to the ones of the planar family by crossing symmetry p1 ↔ −p3, see Fig. 18.1.
We focus on the planar family. It is defined by the following set of propagators{

k2, (k + p2)
2, (k− p1)

2, (k− p1 + p3)
2 −m2

W
}

. (18.34)

Five master integrals belong to this integral family. They are diagrammatically repre-
sented on Fig. 18.3. We would like to find the expression of these five master integrals in
the limit where t ∼ m2

W and t� s. We consider the following scaleless ratios

x = − t
s

, ρ = − t
m2

W
. (18.35)

In the limit we are considering, x is a small parameter. On the other hand, since t ∼ m2
W ,

we need to determine the exact dependence on ρ. We can differentiate the set of master
integrals with respect to x and ρ using LiteRed [179]. The differential equation reads4

d~I = Mx(x, ρ, ε)~I dx + Mρ(x, ρ, ε)~I dρ , (18.36)

4 We note that, for simplicity, we have set the scale t = −1. It can be reconstructed at the end of the calculation
by dimensional analysis.
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mW

(a) I1

s

(b) I2

mW

t

(c) I3

mWs

(d) I4
p2

mW

p4

p3p1

(e) I5

Figure 18.3: Master integrals of the first integral family. The double lines indicate massive W
boson propagators. Dashed lines are related to massless propagators and on-shell
legs. Solid lines are used to denote off-shell legs.

where

Mx =



0 0 0 0 0

0 ε
x 0 0 0

0 0 0 0 0
ρ2(ε−1)

ρ+x
ρ(1−2ε)

ρ+x 0 ρ−εx+x
ρx+x2 0

ρ3(ε−1)(ρx+ρ+3x−1)
(ρ+1)2(x−1)(ρ+x)

ρ(1−2ε)x
(x−1)(ρ+x)

2ρ2(1−2ε)
(ρ+1)2(x−1)

ρε
(x−1)(ρ+x)

εx+x−1
(x−1)x


, (18.37)

and

Mρ =



ε−1
ρ 0 0 0 0

0 0 0 0 0
1−ε
ρ+1 0 − 1−2ε

ρ2+ρ
0 0

− ρ(ε−1)x
ρ+x

(2ε−1)x
ρ+x 0 ε(ρ+2x)

ρ(ρ+x) 0

− ρ2(ε−1)x
(ρ+1)(ρ+x) −

(2ε−1)x(ρ+2x)
(ρ+1)(ρ+x) 0 − ρε

ρ2+ρx+ρ+x
2ε+1
ρ2+ρ


. (18.38)

We consider that the master integrals defined in Fig. 18.3 assume the following form

Ii ∼
∞

∑
n=−∞

xn+mε lnk(x) g(i)nmk(ρ, ε) , (18.39)

where the possible values of n, m, and k are fully defined by the form of the differential
equation in x defined in Eq. (18.37) and the desired order of expansion. Once the x
dependence is fixed, we are left with only few functions g(i)nmk(ρ, ε). Using the second
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differential equation in ρ, defined in Eq. (18.38), we built differential equations that relate
these different building blocks.

As an example, it is clear from Eq. (18.37) that the first master integral does not depend
on x. Thus,

I1 = g(1)000(ρ, ε) . (18.40)

Then, the ρ-dependent function is determined by the second differential equation. We
find

dI1

dρ
=

d
dρ

g(1)000(ρ, ε) =
−1 + ε

ρ
g(1)000(ρ, ε) . (18.41)

Therefore,

g(1)000(ρ, ε) = c1(ε)ρ
−1+ε , (18.42)

which is the correct expression for the one-loop tadpole integral. Similarly, we find with
ease that

I2 = c2(ε)xε ,

I3 =

(
ρ

1 + ρ

)2ε−1 [
c3(ε) + c1(ε)ρ

1−ε
2F1 (2− 2ε, 1− ε, 2− ε,−ρ))

]
.

(18.43)

Up to now, we found the integrals in their exact form. The situation is different for the
fourth integral, which has a non-trivial dependence on x. From Eq. (18.37), we read

dI4

dx
=

[
(ε− 1)ρ +O(x)

]
I1 +

[
(1− 2ε) +O(x)

]
I2 +

[
1
x
− ε

ρ
+O(x)

]
I4 , (18.44)

where we approximate the equation using x � ρ ∼ 1. The form of this equation indicates
that I4 has the following x dependence in the x → 0 limit

I4 = xg(4)100(ρ, ε) + x ln(x)g(4)101(ρ, ε) + x1+εg(4)110(ρ, ε) +O(x2) , (18.45)

where we discard O(x2) terms since they do not contribute to the next-to-leading order
in the eikonal approximation of the one-loop amplitude. By plugging this Ansatz in
Eq. (18.37), we see that two of the g’s are fixed by the previous master integral g’s. We
find

g(4)101(ρ, ε) = c1(ε)(ε− 1)ρε , g(4)110(ρ, ε) = c2(ε)
1− 2ε

ε
. (18.46)

The last one, g(4)100(ρ, ε), is a new building block that needs to be determined using the
differential equation in ρ. From Eq. (18.38), we find

d
dρ

g(4)100(ρ, ε) = c1(ε)(1− ε)ρ−1+ε +
ε

ρ
g(4)100(ρ, ε) . (18.47)
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This differential equation be solved and lead to a new integration constant c4(ε)

g(4)100(ρ, ε) = ρε (c4(ε) + (1− ε)c1(ε) ln(ρ)) . (18.48)

The last integral is the box integral I5. We note that, in this case, we need to include
the O(x2) terms, since after reduction of the one-loop amplitude, I5 comes with O(1/x)
coefficients. In the x → 0 limit, we find that the differential equation with respect to x
reads

dI5

dx
=

[
(1− ρ)ρ2(ε− 1)

(1 + ρ)2 +
ρ(1 + ρ + 2ρ2)(1− ε)

(1 + ρ)2 x +O(x2)

]
I1

+

[
(2ε− 1)x +O(x2)

]
I2 +

[
2ρ2(2ε− 1)
(1 + ρ)2

]
I3 −

[
ε +O(x)

]
I4

+

[
1
x
− ε− εx

]
I5 .

(18.49)

We look at the different x terms present in the equation and suppose the following
Ansatz for I5

I5 = xg(5)100(ρ, ε) + x ln(x)g(5)101(ρ, ε) + x2g(5)200(ρ, ε) + x2+εg(5)210(ρ, ε)

+ x2 ln(x)g(5)201(ρ, ε) +O(x3) .
(18.50)

Four of the five coefficients are directly fixed by the previous expressions. We find

g(5)101(ρ, ε) = c1(ε)(ε− 1)ρε

g(5)201(ρ, ε) = −ε
(

c1(ε)ρ
ε(ε− 1) + g(5)101(ρ, ε)

)
g(5)210(ρ, ε) = c2(ε)

2(ε− 1)
1 + ε

(18.51)

g(5)200(ρ, ε) = c1(ε)
ρε(1 + ρ + 2ρ2)(1− ε)

(1 + ρ)2 +
2ρ2(2ε− 1)
(1 + ρ)2 g(3)000(ρ, ε)

+ ε
(

c1(ε)ρ
ε(ε− 1)− g(4)100(ρ, ε)− g(5)100(ρ, ε) + g(5)101(ρ, ε)

)
.

The last coefficient is determined by the second differential equation, keeping only the x
terms

dg(5)100(ρ, ε)

dρ
=

1 + 2ε

ρ(1 + ρ)
g(5)100(ρ, ε) +

ρε

(1 + ρ)
[c1(ε)(1− ε)(1− ε ln(ρ))− c4(ε)ε] . (18.52)

The solution to this differential equation can be expressed as hypergeometric functions

g(5)100(ρ, ε) =

(
ρ

1 + ρ

)1+2ε
[

ρ−ε

ε

(
c1(ε)(1− ε)3F2 (−2ε,−ε,−ε; 1−ε, 1−ε;−ρ)

+ 2F1 (−2ε,−ε; 1− ε;−ρ)

(
c4(ε)ε− c1(ε)(ε− 1)(ε ln(ρ)− 1)

))
+ c5(ε)

]
.

(18.53)
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We have found a solution for each of the master integrals of the planar topology in the
limit t� s. The ρ dependence is kept exact through the determination of the function
g. Each of these building blocks is associated with a x branch. We find that only one
branch is to be computed since the others are fixed by integrals in lower sector. As the
result, we have one integration constant for each integrals that can be computed in a
convenient limit.

18.3.1 Boundary conditions

To fix the five integration constants, we need to compute the master integrals in some
convenient limit. In addition to the x → 0 limit that we are considering since the be-
ginning, we consider the large mW limit, which is equivalent to ρ → 0. The Feynman
integrals become easier to calculate. We focus on the determination of c5(ε).

We can determine the integration constants by calculating the integral I5 in the
limit x → 0 and ρ → 0 using the standard Feynman parametrisation. We report such
computations in Appendix D. We find that

c5(ε) = O(ε) . (18.54)

Nevertheless, such computation, even if it is less tedious than the original integral, can be
difficult for two-loop integrals. We would like to exploit the structure of the differential
equations solution. Indeed, most of the expression is fixed by other integration constants
as the g(i)nmk(ρ) are shuffled between the different master integrals. For instance, the
integral I5 in Eq. (18.50) is fully determined up to the branch x. It would be counter-
productive to compute again the branches x ln(x), x2, x2+ε and x2 ln x. In addition, by
looking at the solution in Eq. (18.53), we know that, in fact, we only need the branch
xρ1+2ε of I5.

For this purpose, we find that it is convenient to use the Mellin-Barnes representation
of the W boson propagator. Indeed, since the dependence on mW is only present in the
propagator, it allows us to write it as a massless propagator and a factor of the mass.
Formally, the idea behind this method is to use the following identity

1
(X + Y)λ

=
1

Γ(λ)
1

2πi

∫ i∞

−i∞
dz Γ(λ + z)Γ(−z)

Yz

Xλ+z , (18.55)

where the integration contour has to pass between the left poles, Γ(· · ·+ z), and the right
poles, Γ(· · · − z). The integration contour is then closed to the left-hand side or to the
right-hand side complex part of the complex plane. We refer the reader to Ref. [176]
for an introduction on the Mellin-Barnes representation and its use to compute loop
integrals.
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We consider the integral I5 where we use the Eq. (18.55) on the massive W boson
propagator and invert the order of integration

I5 = − 1
2πi

∫ i∞

−i∞
dz (m2

W)z Γ(1 + z)Γ(−z)

×
∫ ddk

iπd/2
(−1)1+z

(k2)1+z(k + p4)2(k− p3)2(k + p1 − p3)2 .
(18.56)

The integration becomes simpler since we need to calculate a massless box integral
with non-integer exponents. We combine the propagators pairwise by introducing two
Feynman parameters. We find

I5 =
1

2πi

∫ i∞

−i∞
dz (m2

W)z Γ(−z)
Γ(−ε− z)Γ(−ε)Γ(2 + z + ε)

Γ(−2ε− z)

×
∫ 1

0
dx

∫ 1

0
dy

1

[−s(1− y)x− t(1− x)y]2+z+ε
.

(18.57)

We use Eq. (18.55) to write the denominator of Eq. (18.58) in its Mellin-Barnes represen-
tation. The x and y integration is easily performed as we recognise the integral form of
the beta function. We find

I5 =
1

(2πi)2

∫ i∞

−i∞
dz (m2

W)z Γ(−z)
Γ(−ε− z)Γ(−ε)

Γ(−2ε− z)

∫ i∞

−i∞
dz2 Γ(−z2)

× Γ(2 + z + ε + z2)

(
t
s

)z2+2+z+ε Γ(−1− ε− z− z2)2Γ(1 + z2)2

Γ(−ε− z)2 .
(18.58)

We are left with the integration over the two Mellin-Barnes variables. We start with z2.
The integrand in Eq. (18.58) has two sets of poles of order 2, 0 + n and −1− ε− z + n,
with n ∈N. Since we want to find the branch x of I5, it is clear that we need to consider
the second set of poles. In addition, we want to find the result only for the branch ρ1+2ε.
It means that we have to consider the pole in z = −1− 2ε. However, once the integration
over z2 has been performed, it is easy to see that the integrand is not divergent at
z = −1− 2ε. We conclude that the branch xρ1+2ε does not contribute to I5 and, therefore,
c5(ε) = 0.

This result agrees with the one found using Feynman parameters. We note that the
Mellin-Barnes representation greatly simplifies the calculation and is more systematic.
We report a similar calculation for c4(ε) in Sec. D.2. For more complicated cases, such
calculations can be facilitated by the collection of Mathematica codes MB tools [180–182].
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To summarise, we find the following boundary constants

c1(ε) =
1
ε
+ 1 +

(
1 +

π2

12

)
ε +

(
1 +

π2

12
+

ψ(1)
6

)
ε2 +O(ε3) ,

c2(ε) =
1
ε
+ 2 + iπ +

(
4 + 2iπ − 7

12
π2
)

ε +O(ε2) ,

c3(ε) = O(ε2) ,

c4(ε) = −
1
ε2 −

iπ
ε
+

5π2

12
+O(ε) ,

c5(ε) = 0 ,

(18.59)

which completes the determination of the master integrals of the first integral family
in the x → 0 limit. A similar analysis can be performed for the crossed topology. Then,
by expanding the reduction table to the required x dependence, we check that the
next-to-eikonal contribution to the one-loop massless single top production, shown in
Eq. (18.5), is correctly reproduced.

We have shown that the master integrals that compose the non-factorisable contribution
to t-channel massless single-top one-loop amplitude can be expanded in the forward
limit. We have computed the master integrals up to the sub-eikonal terms, allowing us
to reproduce the result for the one-loop amplitude which has been derived in Eq. (18.5).
Nevertheless, this method relies on the fact that loop amplitudes can be reduced to
master integrals. In the next section, we take a different approach and study the master
integral using the expansion by regions.

18.4 expansion by regions

The expansion by regions is used to approximate multi-loop integrals, in the case where
they depend on scales that are very different in size [172–174]. Since we are considering
that the fermion currents are nearly not scattering, leading to the hierarchy t� s, this
method is appropriate for our problem.

In this section, we consider again the master integral I5. We use the expansion by
regions to derive its leading order expression in the limit t� s. Then, we show how one
can compute higher-order contributions.

The box integral I5, shown in Fig. 18.3e, reads

I5 =
∫ ddk

iπd/2
1

(k2 −m2)(k2 − 2k · p1)(k2 + 2k · p2)(k− r)2 , (18.60)
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where we define r = p1 − p3. We characterise the small scale of our problem with a
parameter λ� 1. In the forward limit, we have

m2
W ∼ t ∼ λ , s ∼ 1 . (18.61)

The regions are defined by the scaling of the loop momentum k, whose components are
independent from each other. Similar to the computation of the eikonal contribution in
Sec. 18.2, it is convenient to use the Sudakov decomposition

kµ = αpµ
1 + βpµ

2 + kµ
⊥ . (18.62)

The two incoming 4-momenta p1 and p2 define the null components and the transverse
plane is spanned by the Euclidian 2-vector k⊥ such that

k2
⊥ = −k⊥

2 (18.63)

We can determine the scale of the transverse momentum rµ using its Sudakov decompo-
sition

rµ = αr pµ
1 + βr pµ

2 + rµ
⊥ . (18.64)

The different components can be expressed in term of the Mandelstam variables. For
instance,

2p1 · r = sβr = −2p1 · p3 = t =⇒ βr =
t
s

, (18.65)

and similarly

2p2 · r = sαr = 2p1 · p2 − 2p2 · p3 = s + u = −t =⇒ αr = −
t
s

. (18.66)

Finally, the transverse component is fixed by the norm of r

r2 = αrβr − r⊥ 2 = t =⇒ r⊥ 2 = −t(1 +
t
s
) . (18.67)

Each component of rµ is now explicitely 0 as t→ 0 since rµ ∼ (λ, λ,
√

λ).

Regions are defined by the scaling of α, β and k⊥. They can be determined in several
ways. One of them is to use the Mathematica package asy.m [174, 175]. This computer
program works with the Symmanzik polynomials U and F and provides all possible
scaling of the Feynman parameters which lead to non-vanishing integrals. Each of this
set is associated to a region. In the case of I5, we find that the different regions are

(h) : α ∼ 1, β ∼ 1, k⊥ ∼ 1

(1c) : α ∼ 1, β ∼ λ, k⊥ ∼
√

λ

(2c) : α ∼ λ, β ∼ 1, k⊥ ∼
√

λ .

(18.68)
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where the first region corresponds to k being hard and the last two are regions where k
is collinear to either p1 or p2. The scaling of I5 is clearly defined in each region. We find

I(h)5 ∼ 1 , I(1c)
5 ∼ λ−1 , I(2c)

5 ∼ λ−1 . (18.69)

Other scalings, like the soft region k ∼ (λ, λ,
√

λ), results in scaleless integrals which are
set to 0 in the MS scheme. In the rest of this section, we compute the integral I5 in each
of these regions.

18.4.1 Hard region

In the hard region, all the components of the loop momentum are large k ∼ (1, 1, 1) and
the integral I5 drastically simplifies. Using Eq. (A.28) from Ref. [176], we find that the
leading term of the hard region reads

I(h)5 =
∫ ddk

iπd/2
1

(k2 + 2k · p1)(k2 − 2k · p2)(k2)2

=
1

(−s)2+ε

Γ(−ε)2Γ(1 + ε)

(1 + ε)Γ(−2ε)
+O(λ) .

(18.70)

As expected, the hard region provides sub-leading contributions.

18.4.2 First collinear region

The collinear regions correspond to the loop momentum k being collinear to the incoming
momenta p1 and p2. We compute the first collinear region characterised by k ∼ (1, λ,

√
λ)

and, then, by symmetry, deduce the expression for the second one. Each of these regions
require a special treatment because they display unregulated divergences. We follow
Ref. [173] and regulate the integral by introducing auxiliary parameters to the exponents
to both fermion propagators. The integral I5 reads

I(1c)
5 (λ1, λ2)

=
∫ ddk

iπd/2
1

(k2 −m2)(k2 + 2k · p2)1+λ2(k2 − 2k · p1)1+λ1(k− βr p2 − r⊥)2 ,
(18.71)

where the W boson propagator has been expanded, keeping only the O(λ) terms. Since
k2 � k · p2, we expand the first fermion propagator

1
(k2 + 2k · p2)1+λ2

=
1

Γ(1 + λ2)

∞

∑
n=0

Γ(1 + λ2 + n)
Γ(1 + n)

(k2)n

(2p2 · k)1+n+λ2
. (18.72)
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We use Eq. (18.72) to rewrite Eq. (18.73) and see that I5 scales as I5 ∼ x1+λ1+n. We
consider the leading order term n = 0. It reads

I(1c)
5 =

∫ ddk
iπd/2

1
(k2 −m2)(2k · p2)1+λ2(k2 − 2k · p1)1+λ1(k− βr p2 − r⊥)2 . (18.73)

The loop integral is easily performed by introducting Feynman parameters. We find

I(1c)
5 =

1
(−s)1+λ2

1
(m2)1+ε+λ1

Γ(λ1 − λ2)Γ(1 + ε + λ1)Γ(−ε− λ1)

Γ(1 + λ1)Γ(1− ε− λ2)

× 2F1 (1 + ε + λ1, 1; 1− ε− λ2;−ρ) .
(18.74)

As explained, this expression is singular as λ1 − λ2 → 0. This pole is expected to cancel
to the one in the second collinear region. We would like to make this pole explicit and to
sum this result with the one from the second collinear region. Then, we will be able to
safely consider the limit λ1, λ2 → 0.

First, we change variables λ1 = δ and λ2 = −δ such that the pole is located at δ→ 0.
To expand Eq. (18.74) in δ, we write the hypergeometric function in its integral form.
Since the integral is regulated as δ → 0, we can safely expand the integrand in δ and
integrate order by order. It reads

2F1 (1, 1+ε+δ; 1−ε+δ;−ρ) =
Γ(1− ε + δ)

Γ(1 + ε + δ)Γ(−2ε)

∫ 1

0

dz zε+δ

(1− z)1+2ε(1 + ρz)

=
Γ(1− ε + δ)

Γ(1 + ε + δ)

[
Γ(1 + ε)

Γ(1− ε)
2F1 (1, 1 + ε; 1− ε;−ρ)

+
δ

Γ(−2ε)

∫ 1

0
dz

zε(1− z)−2ε−1

1 + ρz
ln(z) +O(δ2)

]
.

(18.75)

We remark that the integral at order O(δ) is free of divergences as ε→ 0, since the limit
z→ 1 is regulated by the logarithm. We can, therefore, expand in ε and integrate order
by order

2F1 (1, 1 + ε + δ; 1− ε + δ;−ρ) =
Γ(1− ε + δ)

Γ(1 + ε + δ)Γ(−2ε)

[
Γ(1 + ε)Γ(−2ε)

Γ(1− ε)

× 2F1 (1, 1 + ε; 1− ε;−ρ) +
δ

1 + ρ

(
Li2(−ρ)− π2

6
+O(ε)

)
+O(δ2)

]
.

(18.76)
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Using this result in Eq. (18.74), we find that, in the first collinear region, the master
integral I5 reads

I(1c)
5 =

Γ(−ε− δ)Γ(2δ)

Γ(1 + δ)Γ(−2ε)

1
(−s− iε)1−δ

1
(m2)1+ε+δ

[
Γ(1 + ε)Γ(−2ε)

Γ(1− ε)

× 2F1 (1, 1+ε; 1−ε;−ρ) +
δ

1 + ρ

(
Li2(−ρ)− π2

6
+O(ε)

)
+O(δ2)

]
.

(18.77)

It can be checked that the second collinear sector is obtained by switching λ1 ↔ λ2, or
equivalently δ→ −δ, such that

I(2c)
5 (δ) = I(1c)

5 (−δ) . (18.78)

Once summed, the results from the two collinear regions provide the leading order of
the integral I5

I5 = lim
δ→0

(
I(1c)
5 (δ) + I(2c)

5 (δ)
)

. (18.79)

We successfully derived the leading order of the master integral I5. Nevertheless, to
determine the next-to-eikonal contribution to the one-loop amplitude, we need to
compute the next-to-leading order terms.

18.4.3 Next-to-leading order of the master integrals

In this section, we explain how the next-to-leading order contributions can be obtained
using the expansion by regions. Again, we focus on the master integral I5 of the first
integral family.

We have already computed the leading-order term of I5 by considering the first and
the second collinear regions, see Eq.(18.79). We would like now to calculate the next-
to-leading contribution in the x expansion. At this order, we need to consider the hard
contribution, calculated in Eq. (18.70). Then, we need to expand the collinear regions to
the next-to-leading order. We focus on this task.

First, to compute the next-to-leading order of I5 in the first collinear region, we need
to consider the n = 1 term in the fermion propagator expansion (18.72). It reads

1
(k2 + 2k · p2)1−δ

=
1

(2k · p2)1−δ
− (1− δ)

k2

(2k · p2)2−δ
+O

(
(k2)2) . (18.80)

Similarly, to write Eq. (18.73), we have expanded the W boson propagator to the leading
order. We have neglected the component αr pµ

1 of rµ and have used r2
⊥ = −r⊥ 2 =
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t(1− x) = t +O(x), where x = −t/s. To understand how to expand this propagator to
sub-leading orders, we introduce the following variable

r̃⊥ =
r⊥√
1− x

, (18.81)

such that r̃ 2
⊥ = t which corresponds to the approximation we are making at leading

order. It means that the leading order propagator can be unambiguously written as

1
(k− r)2 =

1
(k− βr p2 − r̃⊥)2 +O(λ0) . (18.82)

It is now clear how we should expand r̃⊥ since

r̃⊥ =
r⊥√
1− x

(
1 + (

√
1− x− 1)

)
=

r⊥√
1− x

(
1− x

2

)
+O(x2) . (18.83)

Therefore, the expansion of the W boson propagator to the next-to-leading order reads

1
(k− r)2 =

1
k2 − βr2k · p2 + t− 2k · r̃⊥

+ x
2k · p1 − k · r̃⊥

[(k− βr p2 − r̃⊥)2]2
+O(x2) . (18.84)

The scalar product appearing on the numerator of Eqs. (18.80)-(18.84) can be rewritten
in terms of the propagator of the first topology, see Eq. (18.34). We find

k2 = (k2 −m2) + m2

2k · p1 = −(k2 − 2k · p1) + (k2 −m2) + m2

k · r⊥ = −1
2
(k− βr p2 − r⊥)2 +

1
2
(t + m2

W) +
1
2
(k2 −m2)− 1

2
βr(2k · p2) ,

(18.85)

where in the last equation we have neglected higher-order contribution O(λ2).

The contributions from the expansion of the fermion propagator in Eq. (18.80) and
the expansion of the W boson propagator in Eq. (18.84) provide the next-to-leading
order contribution to I5 in the collinear regions. Tensor integrals that appear after the
expansion of the propagators are reduced to scalar integrals using Eq. (18.85).

To simplify the calculation and to make it more systematic, we can set IBP relations
for these integrals. We emphasise that, in this case, we need to derive IBP relations for
integrals with propagators raised to non-integer exponents. We proceed in the following
way. We use LiteRed [179] to generate the IBP relations. Since this computer program
use symbolic placeholders for the exponents of the propagators, it is easy to shift them
with the regulators λ1 and λ2. Then, we use FiniteFlow to solve the system of linear
equations and find the master integrals.
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Once solve, the system of equations reveals that the triangle integral I4 and the box
integral I5, computed in the collinear region, are the only two master integrals needed.
We can, therefore, express all the integrals present at NLO in terms of those. For example,
the next-to-leading order of I5 in the first collinear region is found to be

I(1c),NLO
5 =

[
δ(1− ε)−ε+O(δ2)

]
I(1c)
4 + x

[
δ(1 + ε)−ε+O(δ2)

]
I(1c)
5 , (18.86)

where the triangle integral I4 in the first collinear region is easily derived. It reads

I(1c)
4 (δ) = (−s)−1+δ(m2

W)−δ−ε Γ(2δ)Γ(δ + ε)Γ(1− δ− ε)

Γ(1 + δ)Γ(1 + δ− ε)
+O (λ) . (18.87)

The second collinear region in obtained by symmetry, see Eq. (18.78). Once the two
collinear regions are combined with the hard contribution, given in Eq. (18.70), we get the
next-to-leading order term of the master integral I5. A similar calculation is performed
for the second integral family. Then, we proceed in the same way as in Sec. 18.3. We
expand the reduction table to the required order in x and use the approximate results of
the master integrals. We find the expected result, derived from the exact amplitude in
Eq. (18.5).

The expansion by regions offers a convenient way to understand how the loop mo-
mentum scales with respect to the other scale of the considered integral. In fact, it offers
a convenient framework to extend the results of Ref. [7]. Indeed, one of the main idea of
this reference is that one can benefits from major simplification when the diagrams are
combined, see Sec. 18.2. It should be possible to consider build on this idea and use the
expansion by regions to compute higher-order terms, following what has been discussed
in this section.

In the next chapter, we apply this idea to compute the non-factorisable, double-virtual
contribution to Higgs boson production in WBF in the forward limit.
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In this chapter, we study non-factorisable corrections to the double virtual contribution
to Higgs boson production in weak boson fusion. We extend the calculation of Ref. [7]
by computing the next-to-leading term in the eikonal expansion. We provide numerical
results and estimate the accuracy of our result.

We note that, in this chapter, we closely follow Ref. [161].

19.1 kinematics

We consider Higgs boson production in weak boson fusion

q(p1) + q(p2)→ q(p3) + q(p4) + H(pH) . (19.1)

We consider all quarks to be massless, p2
i = 0, i = 1, . . . , 4, and the Higgs boson is

on-shell, p2
H = m2

H. Experimentally, events with two nearly forwarded jets are selected
to reduce the background. To describe this situation, we proceed in the same way as in
Sec. 18.4 and consider the Sudakov decomposition of the outgoing jet momenta. They
read

p3 = α3 p1 + β3 p2 + p3,⊥ ,

p4 = α4 p1 + β4 p2 + p4,⊥ .
(19.2)

In the forward limit, we have that α3 ∼ β4 ∼ 1 and p2
3,⊥/s ∼ p2

4,⊥/s ∼ λ where λ� 1 is
the small parameter of the problem. Since p3 and p4 are on-shell, we find1

β3 =
p2

3,⊥
sα3

, α4 =
p2

4,⊥
sβ4

, (19.3)

so that β3 ∼ α4 ∼ λ. The momenta that flow through the weak boson propagators are

q1 = p1 − p3 = δ3 p1 − β3 p2 − p3,⊥ ,

q2 = p2 − p4 = −α4 p1 + δ4 p2 − p4,⊥ ,
(19.4)

where we defined δ3 = 1− α3 and δ4 = 1− β4. Because α3 ∼ β4 ∼ 1, the scaling of δ3

and δ4 is not transparent and needs to be determined. Thanks to the energy-momentum
conservation,

pH = q1 + q2 . (19.5)

1 As in Chapter 18, we denote Euclidian vectors with bold symbol.
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Using the fact that the Higgs is produced on-shell, we find

δ3δ4s = m2
H +

p2
3,⊥
α3

+
p2

4,⊥
β4

+ 2p3,⊥ · p4,⊥ −
p2

3,⊥p2
4,⊥

α3β4s
. (19.6)

This equation can be used to defined the smallness of δ3 and δ4. Indeed, the contribution
to the cross section mainly comes from p3,4,⊥ ∼ mV where we use V = W, Z to denote
quantities related to weak gauge bosons. This leads to the following hierarchy

δ3δ4 ∼
m2

V
s
∼ m2

H
s
∼

p2
3,⊥
s
∼

p2
4,⊥
s
∼ λ� 1 , (19.7)

where we use the fact that mV and mH are numerically close to each other in the SM.
Assuming that we are interested in the central production of the Higgs boson, we write

δ3 ∼ δ4 ∼
√

λ� λ . (19.8)

Finally, we note that the variables δ3 and δ4 can be written as

δ3,4 =

√
p2

H,⊥ + m2
H

s
e±yH +O(λ) , (19.9)

where yH is the rapidity of the Higgs boson in the partonic centre-of-mass frame. From
this equation, it is clear that kinematic configurations with large yH may violate the
assumed scaling.

19.2 one-loop amplitude

We start our analysis with the one-loop amplitude. Unlike the case of the single top
production, both Z and W bosons contribute to the Higgs production in WBF. As we will
see, through the next-to-leading order in the eikonal expansion, the Lorentz-structure of
the one- and two-loop amplitudes coincide with the Born one. Therefore, for simplicity,
we consider only the vector part of the weak boson coupling, −igVγµ, and take the
left-handed external fermions. The generalisation of our result to V = W and V = Z
with their helicity-dependent couplings is straightforward.

The one-loop amplitude can be written as

M1 = g2
s g2

W gVVH ta
i3i1 ta

i4i2 A1 , (19.10)

where we set the coupling of the weak bosons and the Higgs boson to be igVVH gµν. In
Eq. (19.10), we defined the colour-stripped one-loop amplitude

A1 =
∫ ddk1

(2π)d
1

d1d3d4
Jµν(k1,−k1 − q1) J̃µν(−k1, k1 − q2) , (19.11)
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k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ν

k1 −k1 − q1

Figure 19.1: To compute the one-loop amplitude, shown on the left, we consider the two quark
currents separately. The convention for momentum assignment is described for the
upper current on the right. The lower current is defined in an analogous way.

where we use a simplified notation for the boson propagators

d1 = k2
1 + iε, d3 = (k1 + q1)

2 −m2
V + iε, d4 = (k1 − q2)

2 −m2
V + iε , (19.12)

and the fermion currents, defined following the convention in Fig. 19.1, read

Jµν(k1,−k1 − q1) = 〈3|
[

γν(/p1 + /k1)γ
µ

ρ1(k1)
+

γµ(/p3 − /k1)γ
ν

ρ3(−k1)

]
|1] ,

J̃µν(−k1, k1 − q2) = 〈4|
[

γν(/p2 + /k1)γ
µ

ρ2(k1)
+

γν(/p4 − /k1)γµ

ρ4(−k1)

]
|2] .

(19.13)

The currents Jµν and J̃µν contain the fermion propagators which read

ρi(k) =
1

(pi + k)2 + iε
. (19.14)

At this stage, we would like to use the expansion by regions [172–174], as done in
the previous chapter in Sec. 18.4. We consider the Sudakov decomposition of the loop
momentum

k1 = α1 p1 + β1 p2 + k1,⊥ . (19.15)

The loop integral measure becomes

ddk1

(2π)d =
s
2

dα1

2π

dβ1

2π

dd−2k1,⊥
(2π)d−2 . (19.16)

To understand the scaling of the loop momentum components, we proceed in the
following way. The inverse propagators of the colour-stripped one-loop amplitude in
Eq. (19.11) are linear in α1 and β1. If we perform the integration over one of these
variables, for instance α1, we get a contribution from the poles. Then, once the residue
from one of the poles has been computed, the dependence in the second variable, in this
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case β1, in the other propagators is at most quadratic. If we assume that the transverse
components of k1 are either of the order of the partonic centre-of-mass energy or of the
order of the transverse momentum, then, the possible scales of β1 are unambiguously
defined, and, consequently, the scale of α1. The regions that we found in this way are
listed in Table 19.1. Following the order of the list in Table 19.1, we identify the Glauber,
the Glauber-soft, the soft, the collinear, and the hard regions.

Region α1 β1 k1,⊥

a λ λ
√

λ

b λ
√

λ
√

λ

c
√

λ
√

λ
√

λ

d 1 λ
√

λ

e 1 1 1

Table 19.1: Relevant regions for the non-factorisable, one-loop amplitude. Each column is related
to one component of the loop momentum k1 = (α1, β1, k1,⊥), as defined in Eq. (19.15).
We do not list symmetric regions.

It is easy to determine the scaling of the one-loop amplitude in the different regions.
We find

M(a) ∼ λ−2 , M(b) ∼ λ−2 , M(c) ∼ λ−2 , M(d) ∼ λ−3/2 , M(e) ∼ 1 . (19.17)

In the regions a), b) and c), the one-loop amplitude has the same scaling as the Born
amplitude, i. e. λ−2. These regions provide the leading order contribution in the eikonal
approximation. We aim to determine the next-to-leading order corrections. Therefore,
we have to consider these three regions to the next-to-leading order and the region d) to
the leading order. The hard region can obviously be ignored for our purpose.

We will now consider the amplitude A1 in the relevant regions. To simplify the
notation, we introduce definitions for various quantities in the plane transverse to the
light-like momenta p1 and p2

∆1 = −k2
1,⊥, ∆3,1 = −(k1,⊥ − p3,⊥)

2 −m2
V , ∆4,1 = −(k1,⊥ + p4,⊥)

2 −m2
V ,

Θ3,1 = −
(
k2

1,⊥ − 2k1,⊥ · p3,⊥
)

, Θ4,1 = −
(
k2

1,⊥ + 2k1,⊥ · p4,⊥
)

.
(19.18)

These definitions will be common to all the regions.

19.2.1 Glauber region

In the Glauber region, the inverse propagators of the one-loop amplitude A1 scales as
O(λ) at the leading order. As mentioned earlier, we need to calculate the amplitude up
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to the next-to-leading order in the eikonal approximation in this region. Therefore, we
keep terms in the propagators which scale as λ3/2 and neglect the ones that scale as
O(λ2). We find

d1 ≈ ∆1 + iε, d3 ≈ sδ3(β1 − β3) + ∆3,1 + iε ,

d4 ≈ −sδ4(α1 + α4) + ∆4,1 + iε ,

ρ1(k1) ≈ sβ1 + ∆1 + iε , ρ2(−k1) ≈ −sα1 + ∆1 + iε ,

ρ3(−k1) ≈ −sα3β1 + Θ3,1 + iε , ρ4(k1) ≈ sβ4α1 + Θ4,1 + iε .

(19.19)

We use Eq. (19.19) and the definition of A1 in Eq. (19.11) to express the one-loop
amplitude in the Glauber region. It reads

A(a)
1 = − s

2

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

Φµν Φ̃µν , (19.20)

where the fermion currents factorise. In Eq. (19.20), we defined the currents as

Φµν =

σ∫
−σ

dβ1

2πi
∆3,1

sδ3(β1 − β3) + ∆3,1

× 〈3|
[

γν(/p1 + /k1,⊥)γµ

sβ1 + ∆1 + iε
+

γµ(/p3 − /k1,⊥)γν

−sα3β1 + Θ3,1 + iε

]
|1] ,

(19.21)

Φ̃µν =

σ∫
−σ

dα1

2πi
∆4,1

−sδ4(α1 + α4) + ∆4,1

× 〈4|
[

γν(p2 + /k1,⊥)γµ

−sα1 + ∆1 + iε
+

γν(p4 − /k1,⊥)γµ

sβ4α1 + Θ4,1 + iε

]
|2] .

(19.22)

In Eqs. (19.21)-(19.22), we have performed the replacement k1 → k1,⊥ in the numerators
since the null components of k1 which scale as λ cannot contribute the O(

√
λ) relative

corrections. In addition, we have limited the integration by introducing an auxiliary
parameter σ�

√
λ that limits α1 and β1 to the Glauber region. In addition, we impose

that

λ� σ�
√

λ , (19.23)

such that the same cut-off parameter can be used in the Glauber-soft region, where one
of the null components of k1 scales as

√
λ.

The numerator of the currents in Eqs. (19.21)-(19.22) can be further simplified. We
recall that we need to compute O(

√
λ) relative corrections. As the result, if we consider

the transverse momentum /k1,⊥ ∼
√

λ in one of the current, then the other current has to
be considered to the leading order. However, at leading order, the currents become

〈4|γµ
/p2,4γν|2] ≈ 4pµ

2 pν
2 , 〈3|γµ

/p3,1γν|1] ≈ 4pµ
1 pν

1 . (19.24)
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Once the leading order current is contracted with the other current, the transverse
component k1,⊥ vanishes, since

/pi/k1,⊥/pi = 0, i = 1, 2 , (19.25)

because p1,2 · k1,⊥ = 0 and p2
1,2 = 0. The integrand of Eqs. (19.21)-(19.22) can be further

simplified. We use the fact that β1 ∈ [−σ, σ] and α1 ∈ [−σ, σ] to write

∆3,1

sδ3(β1 − β3) + ∆3,1 + iε
≈ 1 +

sδ3(β3 − β1)

∆3,1
+O(λ) ,

∆4,1

−sδ4(α1 + α4) + ∆4,1 + iε
≈ 1 +

sδ4(α4 + α1)

∆4,1
+O(λ) ,

(19.26)

where we neglect O(λ) corrections.

We use Eq. (19.26) and the simplification of the numerators discussed earlier to rewrite
the currents Φµν and Φ̃µν. We focus on the former. It is convenient to define

Φµν =
2pµ

1 〈3|γν|1]
s

Φ , (19.27)

where

Φ =

σ∫
−σ

dβ1

2πi

(
1 +

sδ3(β3 − β1)

∆3,1

)[
1

β1 +
∆1
s + iε

+
1

−β1 +
Θ3,1
sα3

+ iε

]
. (19.28)

The integration is performed using Cauchy’s residue theorem. We note that there are
poles in the upper half of the complex plane and in the lower one. We use

σ∫
−σ

dβ1

2πi
1

±β1 − za + iε
= −1

2
+O(za/σ) , (19.29)

and ∫ σ

−σ

dβ1

2πi
β1

(
1

β1 − za + iε
+

1
−β1 − zb + iε

)
= −1

2
(za − zb) +O(z2

a/σ, z2
b/σ) .

(19.30)

We note that Eqs. (19.29)-(19.30) are valid for |za| < σ. These result are found by closing
the integration contour in the plane where there is no pole and by integrating over the
half-circle of radius σ. Using the results in Eq. (19.29) and Eq. (19.30), we find

Φ = (−1)
[

1 +
δ3

2∆3,1
(2sβ3 + ∆1 −Θ3,1)

]
. (19.31)
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Similarly, the lower current in Eq. (19.22) is defined as

Φ̃µν =
2pµ

2 〈4|γν|2]
s

Φ̃ . (19.32)

We easily find that

Φ̃ = (−1)
[

1 +
δ4

2∆4,1
(2sβ4 + ∆1 −Θ4,1)

]
. (19.33)

Altogether, the contribution of the Glauber region to the non-factorisable, one-loop
amplitude A1 reads

A(a)
1 = −〈3|γµ|1]〈4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

×
(

1 +
δ3

2∆3,1
(2sβ3 + ∆1 −Θ3,1) +

δ4

2∆4,1
(2sβ4 + ∆1 −Θ4,1)

)
.

(19.34)

19.2.2 Glauber-soft region

We consider now the Glauber-soft region. As mentioned earlier, the contribution from
this region naively start at λ−2. However, we will now argue that there is an additional√

λ suppression which implies that we only need to consider the leading order contribu-
tion in this region.

First, we demonstrate that the loop momentum in the numerator can be discarded.
According to the scaling of the loop momentum k1 described in Table 19.1, we can
perform the following replacement k1 → β1 p2 + k1,⊥ in the numerator of both currents.
Then, if we consider the O(

√
λ) relative correction in Jµν, the other current has to be

considered at leading order, J̃µν ∼ pµ
2 pν

2. It is clear that the contribution from k1 vanishes.
On the other hand, if we consider the O(

√
λ) relative correction in J̃µν, the argument

differs. We note that, in the numerator of J̃µν, the loop momentum is independent of α1

and the sign of the loop momentum is different in the two propagators. Therefore, once
we integrate over α1, the contribution from the loop momentum k1 in the numerator of
J̃µν vanishes.

Then, we use the fact that β1 � ∆1/s, Θ3,1/s to write the current Jµν as

Jµν(k1,−q1 − k1) ≈ pµ
1 pν

1

(
1

sβ1 + ∆1 + iε
+

α3

−sα3β1 + Θ3,1 + iε

)
≈ − pµ

1 pν
1

sβ2
1
(∆1 + Θ3,1) ,

(19.35)
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where we remind the reader that the poles in β1 = −∆1/s and β1 = Θ3,1/s/α3 are out-
side of the integration region, R− [−σ, σ]. We see that, for the scaling k1 ∼ (λ,

√
λ,
√

λ),
the current Jµν in Eq. (19.35) does not scale as λ−1/2, but as O(1). We conclude that the
Glauber-soft region starts contributing at λ−3/2.

We use the expansion of the current Jµν in Eq. (19.35) and consider the rest of the
amplitude A1 at the leading order. We find

A(b)
1 = −〈3|γµ|1]〈4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

∆Φ Φ̃ , (19.36)

where

∆Φ =

(
−∆1

s
− Θ3,1

s

) ∞∫
−∞

dβ1

2πi
(θ(β1 − σ) + θ(−σ− β1))∆3,1

(sδ3β1 + ∆3,1 + iε) β2
1

. (19.37)

The calculation of the integral in Eq. (19.37) is easily performed. We find

∆Φ =
δ3

2∆3,1
(∆1 + Θ3,1) . (19.38)

This concludes the calculation for the Glauber-soft region where k1 ∼ (λ,
√

λ,
√

λ). There
is a symmetric region which scales as k1 ∼ (

√
λ, λ,

√
λ). We proceed in a analogous way

and find

∆Φ̃ =
δ4

2∆4,1
(∆1 + Θ4,1) . (19.39)

We combine the result from the Glauber region in Eq. (19.34) with the one from the two
Glauber-soft regions. We find

Aa&b
1 = −〈3|γµ|1]〈4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

×
(

1 +
δ3

∆3,1
(sβ3 −Θ3,1) +

δ4

∆4,1
(sα4 −Θ4,1)

)
.

(19.40)

19.2.3 Soft and collinear regions

We consider the soft region where k1 ∼ (
√

λ,
√

λ,
√

λ). Naively, we have seen that we
need to expand the contribution of this region to the next-to-leading order in the eikonal
approximation. We will now argue that, in fact, this contribution is suppressed by a
factor O(

√
λ) per current and, thus, does not contribute at O(λ−3/2). Indeed, at leading

order, the currents vanish. For instance, in the soft region, the upper current Jµν reads

Jµν(k1,−q1 − k1) ≈ pµ
1 pν

1

(
1

sβ1 + iε
+

α3

−sα3β1 + iε

)
= pµ

1 pν
1(−2iπ)δ(β1)→ 0 ,

(19.41)



19.2 one-loop amplitude 157

where the pole in β1 = 0 has been ignored because it was already considered in the
Glauber region. The same argument holds for the second current J̃µν. Therefore, the
contribution from the soft region can be ignored.

Similarly, we can ignore the contribution from the collinear regions. We have seen
earlier that the collinear regions start contributing at O(λ−3/2), which implies that every
terms that make up the one-loop amplitude have to be considered to the leading order.
As the result, for the scaling k1 ∼ (λ, 1,

√
λ), the currents read

Jµν(k1, k2) = 〈3|
[

γν(/p1 + β1/p2)γ
µ

β1s + iε
+

γµ(/p1 − β1/p2)γ
ν

−β1s + iε

]
|1]

= 〈3|γµ
/p2γν + γν

/p2γµ|1] = 2〈3|pµ
2 γν + pν

2γµ − gµν
/p2|1],

J̃µν(k1, k2) = 〈4|
[
(1 + β1)

γν/p2γµ

ρ2(k1)
+ (1− β1)

γν/p2γµ

ρ4(−k1)

]
|2] .

(19.42)

We see that the contraction of the currents in Eq. (19.42) vanishes and, therefore, the
collinear region do not contribute at O(λ−3/2). The same argument holds for the sym-
metric region.

19.2.4 Final result

We conclude that only two regions are required to compute the non-factorisable one-loop
contribution to the Higgs boson production at the next-to-leading order in the eikonal
approximation, namely the Glauber region and the Glauber-soft region in Eq. (19.40).
Interestingly, this result can be computed directly from the following current

Φ =
∫ dβ1

2πi
∆3,1

sδ3(β1 − β3) + ∆3,1 + iε

[
1

β1 +
∆1
s + iε

+
1

−β1 +
Θ3,1
sα3

+ iε

]
, (19.43)

where this expression is obtained by following the same first steps described in Sec. 19.2.1
up to Eq. (19.28), except that we do not perform the expansion shown in Eq. (19.26).
Then, we close the contour in the upper half-plane, we only need to consider the residue
of the pole β1 = Θ3,1/s/α3. We find

Φ = (−1)
∆3,1

∆3,1 + δ3(Θ3,1 − sβ3)
. (19.44)

A similar expression is found for Φ̃. Then, once expanded in δ3 and δ4, we recover the
result in Eq. (19.40).

Finally, the one-loop amplitudeM1 can be written as

M1 = i
g2

s
4π

Ta
i3i1 Ta

i4i2M0 C1 , (19.45)
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where we define the Born amplitude as

M0 = ig2
W gVVH

〈3|γµ|1]〈4|γµ|2]
(q2

1 −m2
V)(q

2
2 −m2

V)
. (19.46)

In Eq. (19.45), we define C1 which contains the integral over the transverse components
of the loop momentum. It reads

C1 =
∫ dd−2k1,⊥

π(2π)−2ε

(p2
3,⊥ + m2

V)(p
2
4,⊥ + m2

V)

∆1∆3,1∆4,1

×
[

1− δ3

(
m2

V
p2

3,⊥ + m2
V
+

m2
V

∆3,1

)
− δ4

(
m2

V
p2

4,⊥ + m2
V
+

m2
V

∆4,1

)]
.

(19.47)

19.3 two-loop amplitude

The calculation we have just performed at the one-loop level can be straightforwardly
extended to the computation of the next-to-leading order corrections to the two-loop
amplitude in the eikonal approximation. We write the latter as

M2 = −ig4
s g2

W gVVH

(
1
2
{ta, tb}

)
i3i1

(
1
2
{ta, tb}

)
i4i2
A2 , (19.48)

where the colour-stripped two-loop amplitude is defined as

A2 =
1
2!

∫ ddk1

(2π)d
ddk2

(2π)d
1

d1d2d3d4
Jµνα(k1, k2,−k12 − q1)

× J̃µνα(−k1,−k2, k12 − q2) .
(19.49)

In Eq. (19.48), we account for identical gluons in the final state and defined k12 = k1 + k2.
In Eq. (19.49), the inverse boson propagators are defined as

d1 = k2
1 + iε , d2 = k2

2 + iε ,

d3 = (k12 + q1)
2 −m2

V + iε , d4 = (k12 − q2)
2 −m2

V + iε ,
(19.50)

and the currents follow the convention in Fig. 19.2. They read

Jµνα(k1, k2,−k12 − q1) = 〈3|
{

γα(/p1 + /k12)γ
ν(/p1 + /k1)γ

µ

ρ1(k12)ρ1(k1)
+

γα(/p1 + /k12)γ
µ(/p1 + /k2)γν

ρ1(k12)ρ1(k2)

+
γν(/p3 − /k2)γα(/p1 + /k1)γ

µ

ρ3(−k2)ρ1(k1)
+

γµ(/p3 − /k1)γ
α(/p1 + /k2)γν

ρ3(−k1)ρ1(k2)

+
γν(/p3 − /k2)γµ(/p3 − /k12)γ

α

ρ3(−k2)ρ3(−k12)
+

γµ(/p3 − /k1)γ
ν(/p3 − /k12)γ

α

ρ3(−k1)ρ3(−k12)

}
|1] ,

(19.51)
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p1 p3

p2 p4

H

W/Z

W/Z

k2k1

p1 p3

µ ν α

k1 k2 −k12 − q1

Figure 19.2: Similar to the computation of the one-loop amplitude, we think of the two-loop
amplitude, shown on the left, in terms of the two quark currents that make it up.
The convention for momentum assignment are presented for the upper current on
the right. The lower current is defined in an analogous way.

and

J̃µνα(−k1,−k2, k12 − q2) = 〈4|
{

γα(/p2 − /k12)γ
ν(/p2 − /k1)γ

µ

ρ2(−k12)ρ2(−k1)
+

γα(/p2 − /k12)γ
µ(/p2 − /k2)γν

ρ2(−k12)ρ2(−k2)

+
γν(/p4 + /k2)γα(/p2 − /k1)γ

µ

ρ4(k2)ρ2(−k1)
+

γµ(/p4 + /k1)γ
α(/p2 − /k2)γν

ρ4(k1)ρ2(−k2)

+
γν(/p4 + /k2)γµ(/p4 + /k12)γ

α

ρ4(k2)ρ4(k12)
+

γµ(/p4 + /k1)γ
ν(/p4 + /k12)γ

α

ρ4(k1)ρ4(k12)

}
|2] .

(19.52)

We consider the Sudakov decomposition of both loop momenta

ki = αi p1 + βi p2 + ki,⊥ , i = 1, 2 . (19.53)

We extend the definitions of the quantities which depend on the transverse components
of the loop momenta

∆i = −k2
i,⊥ , ∆3,i = −(ki,⊥ − p3,⊥)

2 −m2
V , ∆4,i = −(ki,⊥ + p4,⊥)

2 −m2
V ,

Θ3,i = −
(
k2

i,⊥ − 2ki,⊥ · p3,⊥
)

, Θ4,i = −
(
k2

i,⊥ + 2ki,⊥ · p4,⊥
)

,
(19.54)

where i ∈ {1, 2, 12}. Similarly, we define α12 = α1 + α2, β12 = β1 + β2 for later purpose.

At two-loop level, the scaling of each loop momentum is given by the same kine-
matic regions, defined in Table 19.1. Naturally, we expect that the Glauber region where
α1 ∼ β1 ∼ α2 ∼ β2 ∼ λ and |k1,⊥| ∼ |k2,⊥| ∼

√
λ to provide the leading contribution.

Then, analogously to the one-loop case, we expect the sub-leading corrections to be
provided by either one or both loop momenta being in the Glauber-soft region. In what
follows, we will talk about it as the mixed region and there is several configurations that
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we will now discuss.

First of all, for all these configurations, we can discard the loop momentum on the
numerator of the currents in Eq. (19.51) and Eq. (19.52) for the same reasons as in the
one-loop case. Then, among the different combinations of scaling of the loop momenta,
only the one where one of both β’s scaling as

√
λ and both α’s scale as λ (and vice versa)

contributes. Indeed, if one of the α’s and one of the β’s scale as
√

λ, then k12 is soft. In
this case, both currents in Eqs. (19.51)-(19.52) receive O(

√
λ) relative corrections, leading

to an overall scaling λ−1. As the result, if we consider corrections to one of the currents,
then the other current has to be considered to the leading order.

Following the observation made at one-loop order in Eq. (19.43), we expand the
propagators such that they contain both the leading and the sub-leading terms of the
Glauber region and only the leading order terms in the mixed region because we already
have O(

√
λ) relative corrections from one of the current. We find

d1,2 ≈ ∆1,2 + iε , d3 ≈ sδ3(β12 − β3) + ∆3,12 + iε ,

d4 ≈ −sδ4(α12 + α4) + ∆4,12 + iε ,

ρ1(ki) ≈ sβi + ∆i + iε , ρ3(ki) ≈ sα3β3 + Θ3,i + iε ,

ρ2(ki) ≈ sαi + ∆i + iε , ρ4(ki) ≈ sβ4αi + Θ4,i + iε .

(19.55)

The colour-stripped two-loop amplitude in this region is expressed as

Aa&b
2 =

1
2!
〈3|γα|1]〈4|γα|2]

∫ dd−2k1,⊥
(2π)d−2

dd−2k2,⊥
(2π)d−2

1
∆1∆2∆3,12∆4,12

Φ Φ̃ , (19.56)

where the integration over the α’s and the β’s factorise. In Eq. (19.56), we defined

Φ =
∫ dβ1

2πi
dβ2

2πi
∆3,12

sδ3(β12 − β3) + ∆3,12 + iε

{
1

(β12 +
∆12

s + iε)(β1 +
∆1
s + iε)

+
1

(β12 +
∆12

s + iε)(β2 +
∆2
s + iε)

+
1

(−β2 +
Θ3,2
sα3

+ iε)(β1 +
∆1
s + iε)

+
1

(−β1 +
Θ3,1
sα3

+ iε)(β2 +
∆2
s + iε)

+
1

(−β2 +
Θ3,2
sα3

+ iε)(−β12 +
Θ3,12
sα3

+ iε)

+
1

(−β1 +
Θ3,1
sα3

+ iε)(−β12 +
Θ3,12
sα3

+ iε)

}
,

(19.57)
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and

Φ̃ =
∫ dα1

2πi
dα2

2πi
∆4,12

−sδ4(α4 + α12) + ∆4,12 + iε

{
1

(−α12 +
∆12

s + iε)(−α1 +
∆1
s + iε)

+
1

(−α12 +
∆12

s + iε)(−α2 +
∆2
s + iε)

+
1

(α2 +
Θ4,2
sβ4

+ iε)(−α1 +
∆1
s + iε)

+
1

(α1 +
Θ4,1
sβ4

+ iε)(−α2 +
∆2
s + iε)

+
1

(α2 +
Θ4,2
sβ4

+ iε)(α12 +
Θ4,12
sβ4

+ iε)

+
1

(α1 +
Θ4,1
sβ4

+ iε)(α12 +
Θ4,12
sβ4

+ iε)

}
.

(19.58)

Before integrating, it is convenient to rewrite the terms in curly bracket in Eq. (19.57) as{
....

}
→

∆1
s + ∆2

s − ∆12
s

(β12 +
∆12

s + iε)(β1 +
∆1
s + iε)(β2 +

∆2
s + iε)

+

Θ3,1
α3s + Θ3,2

α3s −
Θ3,12
α3s

(−β12 +
Θ3,12
α3s + iε)(−β1 +

Θ3,1
α3s + iε)(−β2 +

Θ3,2
α3s + iε)

+

(
1

β1 +
∆1
s + iε

+
1

−β1 +
Θ3,1
sα3

+ iε

)(
1

β2 +
∆2
s + iε

+
1

−β2 +
Θ3,2
sα3

+ iε

)
.

(19.59)

We consider the integration of each term in Eq. (19.59) separately. The first one is trivially
zero because all the poles are located in the lower half of the complex plane

Φ1 =
∫ dβ1

2πi
dβ2

2πi
∆3,12

sδ3(β12 − β3) + ∆3,12 + iε

×
∆1
s + ∆2

s − ∆12
s

(β12 +
∆12

s + iε)(β1 +
∆1
s + iε)(β2 +

∆2
s + iε)

= 0 .
(19.60)

The second term of Eq. (19.59) can be integrated by closing the integration contour in
the lower half of the complex plane for both β1 and β2. We find

Φ2 =
∫ dβ1

2πi
dβ2

2πi
∆3,12

sδ3(β12 − β3) + ∆3,12 + iε

×
Θ3,1
α3s + Θ3,2

α3s −
Θ3,12
α3s

(−β12 +
Θ3,12
α3s + iε)(−β1 +

Θ3,1
α3s + iε)(−β2 +

Θ3,2
α3s + iε)

=
δ3(Θ3,1 + Θ3,2 −Θ3,12)

∆3,12
.

(19.61)
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Finally, the third term of Eq. (19.59) is easily evaluated by closing the contour in the
upper half of the complex plane. It reads

Φ3 =
∫ dβ1

2πi
dβ2

2πi
∆3,12

sδ3(β12 − β3) + ∆3,12 + iε

×
(

1
β1 +

∆1
s + iε

+
1

−β1 +
Θ3,1
sα3

+ iε

)(
1

β2 +
∆2
s + iε

+
1

−β2 +
Θ3,2
sα3

+ iε

)

=
∆3,12

sδ3(
Θ3,1

s + Θ3,2
s − β3) + ∆3,12

≈ 1− δ3(Θ3,1 + Θ3,2 − sβ3)

∆3,12
.

(19.62)

The current Φ is given by the sum of Eq. (19.60), Eq. (19.61), and Eq. (19.62). We find

Φ =
3

∑
i=1

Φi = 1− δ3(Θ3,12 − sβ3)

∆3,12
. (19.63)

Similarly, the other current is found to be

Φ̃ = 1− δ3(Θ4,12 − sα4)

∆4,12
. (19.64)

The contribution from the Glauber and the mixed regions to the two-loop amplitude in
Eq. (19.56) becomes

Aa&b
2 = − 1

2!
〈3|γα|1]〈4|γα|2]

∫ dd−2k1,⊥
(2π)d−2

dd−2k2,⊥
(2π)d−2

1
∆1∆2∆3,12∆4,12

×
[

1 +
δ3

∆3,12
(sβ3 −Θ3,12) +

δ4

∆4,12
(sα4 −Θ4,12)

]
.

(19.65)

Similar to Eq. (19.45), the non-factorisable, two-loop amplitude factorises to the Born.
We write the amplitudeM2 from Eq. (19.48) as

M2 = −1
2

g4
s

(4π)2

(
1
2
{Ta, Tb}

)
i3i1

(
1
2
{Ta, Tb}

)
i4i2
M0 C2 , (19.66)

where the integral over the transverse components of the loop momenta reads

C2 =
∫ dd−2k1,⊥

π(2π)−2ε

dd−2k2,⊥
π(2π)−2ε

(p2
3,⊥ + m2

V)(p
2
4,⊥ + m2

V)

∆1∆2∆3,12∆4,12

×
[

1− δ3

(
m2

V
p2

3,⊥ + m2
V
+

m2
V

∆3,12

)
− δ4

(
m2

V
p2

4,⊥ + m2
V
+

m2
V

∆4,12

)]
.

(19.67)

The result in Eq. (19.66) contains the contribution of both the Glauber and the mixed
regions. Similar to the one-loop case, the soft and the collinear region do not contribute
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at two-loop level. The arguments are analogous to the one-loop case and they rely on
additional suppressions that occur only when one first combines the diagrams before
integrating. For instance, if one of the loop momentum is soft and the other one is
in the Glauber region, then k12 is also soft. In this case, both currents receive O(

√
λ)

corrections. Indeed, if we consider the current in Eq. (19.59), we see that the last term,
which is dominant as it naively scales as λ−3/2, is in fact additionally suppressed once
the pole in β1 = 0 has been ignored, in analogy to Eq. (19.41). Since the same argument
holds for the other current Φ̃, this region only start at O(λ−1).

19.4 ir pole cancellation and finite remainder

The loop integrals in the transverse plane C1 in Eq. (19.47) and C2 in Eq. (19.67) are
calculated analytically using differential equations method, introduced in Appendix C.2

C1 is required to O(ε) becauseM1, which will contribute once squared, has a 1/ε pole
of soft origin.3 On the other hand, the C2 up to finite order in ε. The final expression for
C1 and C2 contains at most dilogarithm functions.4.

When we have discussed the evaluation of the double-virtual contribution to t-channel
single top production in Sec. 13.5, we argued that real-emission contribution are sup-
pressed by a factor p2

⊥/s ∼ λ if the limit where the top quark is massless. In the case of
the WBF, this suppression is exact because the external partons are massless. Thus, the
double-virtual contribution is free of infrared pole of soft origin up to the next-to-leading
order in the eikonal approximation. This can also be seen from the form of the Catani’s
operator applied to non-factorisable corrections, see Eq. (18.7). As explained in Ref. [7],
the poles that we get are related to the fact that the exchanged gluons are static [184].
These poles are expected to cancel at the level of the cross section. We write

dσ̂NNLO
nf =

N2
c − 1
4N2

c
α2

s Cnf dσ̂LO , (19.68)

where

Cnf = C2
1 − C2 . (19.69)

We find that the two coefficients assume the following expansions in ε

C1 = −1
ε
+ C1,0 + ε C1,1 +O(ε2) ,

C2 =
1
ε2 −

2
ε
C1,0 + C2,0 +O(ε) .

(19.70)

2 We report the reader to the Appendix of Ref. [161] for details about the analytic calculation of C1 and C2.
3 See Chapter 13 for a discussion about the pole structure of the double-virtual contribution for non-

factorisable corrections.
4 We point out that the analytic expressions of these functions in the eikonal approximation (δ3,4 → 0) has

been recently calculated [183].
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The pole cancellation is explicit and we write the coefficient of the non-factorisable,
double-virtual contribution as

Cnf = C2
1,0 − 2 C1,1 − C2,0 . (19.71)

The analytic expression of Cnf can be found in the ancillary file of Ref. [161].

19.5 numerical results

Our results can be checked in different ways. First, at leading order in the eikonal limit,
i. e. δ3,4 = 0, we compare numerically the expression of Cnf to the one computed in
Ref. [7] and find agreement. Then, it is interesting to determine the accuracy of the
sub-eikonal contribution by comparing it to the exact amplitude. Since this is obviously
not possible at two-loop level, we focus on the one-loop amplitude.
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Figure 19.3: On the left, we show the distribution of the typical values of δ3 and δ4 for points
passing the WBF cuts and yH < 1 in the partonic centre-of-mass frame. On the right,
we show the distribution of Xδ as defined in Eq. (19.72).

Using the van Neerven-Vermaseren basis5 [152] and the Passarino-Veltman reduc-
tion [80], we reduce the one-loop amplitude A(1) to a set of scalar integral, which are
evaluated at any phase-space points using LoopTools [185]. We define the following
quantity

Xδ =
A1 −Aa&b

1

Aa&b
1 −A(0)

1

, (19.72)

where we defined the one-loop amplitude in the eikonal approximation as

A(0)
1 = −〈3|γµ|1]〈4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

, (19.73)

5 The van Neerven-Vermaseren has already been introduced in Chapter 14.
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which is given by Eq. (19.45) with δ3,4 = 0. We expect Xδ ∼
√

λ. The standard deviation
of the distribution of Xδ also allows an estimation of the neglected contributions O(λ).
To evaluate Xδ, we generate a list of phase-space points that pass WBF cuts [186] and
evaluate Xδ for each of them.

We consider the standard WBF cuts where both jet should satisfy pjet,⊥ > 25 GeV
and have an invariant mass of at least 600 GeV. Then, we required that yjet < 4.5 and
that |yj1 − yj2 | > 4.5. In addition, the jets should be in opposite hemisphere, which is
equivalent to yj1 yj2 < 0. Finally, to stay in the part of the phase space that corresponds
to our approximation, we impose that |yh| < 1 in the partonic centre-of-mass frame,
such that δ3 and δ4, defined in Eq. (19.9), stay smaller than one. By doing so, we exclude
around O(5%) of points which were passing the WBF cuts.6
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Figure 19.4: Double-virtual contribution to the absolute value of the transverse momentum
distribution of the leading jet (left) and the sub-leading jet (right) in the forward
limit. The leading-order contribution is plotted with a red dashed line and the sub-
leading one with a green solid line. On the lower panes, we show the next-to-leading
order corrections, normalised to the eikonal contribution.

On the left pane of Fig. 19.3, we see that, for most of the points, δ3,4 ∼
√

λ ∼ 0.1, which
justifies the choice of expansion variables. On the right pane, we show the distribution of
Xδ. We see that this distribution is centered around 8%, which means that the sub-eikonal
corrections reproduce the evaluation of the one-loop amplitude in the forward limit. As
expected, Xδ ∼

√
λ. Then, for the majority of the points, the O(λ) terms that have been

neglected amounts for O(0.3) of the sub-eikonal correction.

6 Note that, in general, the square root in Eq. (19.9) evaluates to O(0.1).
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Figure 19.5: Double-virtual contribution to the rapidity distributions of the transverse momentum
distribution of the leading jet (left) and the sub-leading jet (right) in the forward limit.
The leading-order contribution is plotted with a red dashed line and the sub-leading
one with a green solid line. On the lower panes, we show the next-to-leading order
corrections, normalised to the eikonal contribution.

The non-factorisable, double-virtual contribution to Higgs boson production in WBF

cross section reads

dσ = ∑
i,j

∫
dx1 dx2 fi(x1, µF) dσ̂NNLO

n f (x1, x2, µR) f j(x2, µF) , (19.74)

where we consider dynamical renormalisation and factorisation scales, set to the same
value

µF = µR =
mH

2

(
1 +

4p2
H,⊥

m2
H

)1/4

. (19.75)

Again, for the same reasons stated in Part II, one can question that this choice of scale,
which is standard for WBF studies [186], is appropriate to describe non-factorisable
corrections.

We find that, in the forward limit, the non-factorisable corrections to the double-virtual
contribution evaluates to

σVV = (−3.1 + 0.53) fb , (19.76)

where the first number corresponds to the eikonal contribution and the second one
is the corrections from the sub-eikonal terms. We note that, unlike the leading-order
contribution, to evaluate the next-to-leading order corrections, we have to impose an
additional cut on the Higgs rapidity in the partonic centre-of-mass frame to stay in the
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Figure 19.6: Double-virtual contribution to the absolute value of the transverse momentum of
the Higgs boson (left) and to its rapidity distribution (right) in the forward limit.
The leading-order contribution is plotted with a red dashed line and the sub-leading
one with a green solid line. On the lower panes, we show the next-to-leading order
corrections, normalised to the eikonal contribution.

forward limit, see Eq. (19.9). We find that the sub-eikonal corrections reduce the leading
contribution by 17%.

In Fig. 19.4, we show the absolute value of the jet transverse momentum distributions.
As observed in Ref. [7], the eikonal contribution to the transverse momentum of the
leading jet and the sub-leading jet change sign around pj1,⊥ ∼ 2mV and pj2,⊥ ∼ mV . For
pj1,⊥ < 80 GeV, the sub-leading contribution amounts for less than O(10%), whereas
the tail of the leading-jet distribution is enhanced by a constant corrections O(50%). The
sub-leading jet is less affected by the sub-leading contribution since, if we exclude the
region where the corrections change sign, it amounts for less than O(10%).

The jet-rapidity distributions, shown in Fig. 19.5, present similar characteristics. The
next-to-leading order corrections reduce the leading-order contribution by O(10%)

around the peaks |yjet| ∼ 4. For small rapidity values, the corrections are larger as they
reach O(30%) for |yjet| ∼ 1. Nevertheless, contributions from this part of the phase are
negligible.

In Fig. 19.6, we show observables related to the Higgs boson. The next-to-leading order
corrections to the distribution of the Higgs boson transverse momentum are always
larger than O(15%). For small pH,⊥, the correction reaches 30%. For large pH,⊥, the
corrections are linearly growing and also reach 30% for pH,⊥ = 400 GeV. The peak of
the Higgs boson rapidity distribution is centered at yH ∼ 0, where the sub-eikonal con-
tribution amounts for O(20%). These corrections become less than O(10%) for |yH | > 2.
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We have computed the non-factorisable, double-virtual contribution to Higgs boson pro-
duction in WBF in the forward limit including next-to-leading order contribution. Unlike
the t-channel single top production, the evaluation of the exact two-loop amplitude is
currently infeasible. As a starting point, we referred to the calculation performed in
Ref. [7] and aimed to expand upon their approach to compute sub-leading contributions.

In Chapter 18, we have studied t-channel massless single top production as a toy
model. The physics of this process is indeed close to the one of Higgs boson production,
but simpler because there is only two particles in the final state. By expanding the
exact one-loop amplitude in the forward limit, we observed that it can be expressed
in a concise form up to the next-to-leading order in the eikonal expansion. First, we
computed the leading-order term following the approach outlined in Ref. [7] for this
specific case. Then, we studied two methods to calculate the sub-leading corrections.

First, we demonstrated that the master integrals, which the one-loop amplitude can
be reduced to, can be calculated in the forward limit using differential equations. By
expanding the reduction table to the appropriate order, we successfully recovered the
correct result. However, this method assumes that a reduction of the loop amplitude is
possible.

To delve further, we examined the same master integrals using the expansion by
regions technique [172–174]. Unlike the differential equations method, it turns out that
the expansion by region can be conveniently used to work directly on Feynman diagrams.
It allows us to extend the idea used in Ref. [7] to take profit of simplifications that occurs
once the diagrams are summed.

In Chapter 19, we implemented the aforementioned approach to analyse the double-
virtual contribution to Higgs boson production in WBF in the forward limit of the tagging
jets. We showed that, among the multiple regions that would naively contribute to the
next-to-leading order in the eikonal expansion, only two are actually needed.

As the result, we obtained a concise expression for the double-virtual contribution,
which naturally extends the eikonal result derived in Ref. [7]. Comparing it to the
t-channel massless single top production, we found that the sub-leading corrections
are more significant, scaling as mH/s or p⊥,H/s. With realistic WBF cuts [186], we
determined that the eikonal contribution decreases by O(20) percent, resulting in a
permille corrections to the total cross section.

169
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We note that a recent work [187] has focused on calculating the double-real and real-
virtual, non-factorisable contribution to Higgs boson production in WBF. However, these
contributions are highly suppressed due to the WBF cuts. Considering our findings in
conjunction with the result of this reference, we conclude that the current understanding
of non-factorisable effects in Higgs boson production in WBF is suitable for studying
Higgs production in WBF during the HL-LHC.
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In this thesis, we studied three problems related to precision exploration of Higgs bosons
and top quarks at the Large Hadron Collider.

In Part I, we investigated the production of the Higgs boson in association with
a charm quark jet. This process is considered as one of the most promising ways to
measure the Yukawa coupling of the charm quark [4]. There are two mechanisms
that contribute to this process: interaction of the Higgs boson with the charm quark
and production of the Higgs boson in gluon fusion. For a massless charm quark, the
interference between these two mechanisms vanishes. However, since the charm quark
is massive, this interference does not vanish and, numerically, comprises O(10%) of the
Yukawa coupling contribution.

We showed that computing the NLO QCD corrections to this interference is an inter-
esting problem. Indeed, it requires a redefinition of the parton distribution functions to
account for massive partons in the initial state and forces us to explore unconventional
infrared soft and collinear limits of the interference. We explained how to extract the
logarithms of the charm quark mass from the different contributions using the nested
soft-collinear subtraction scheme [65] and analysed their impact on the interference at
NLO QCD. Although NLO QCD corrections are large, it is unlikely that they significantly
affect the prospects of extracting the charm Yukawa coupling from pp→ H + jetc.

In Part II and Part III, we studied the non-factorisable corrections to single top and
Higgs boson production in weak boson fusion. These corrections arise because of the
exchange of gluons between the colliding partons, whereas, at Born level, only an ex-
change of a colourless boson occurs. The non-factorisable contributions were omitted in
the previous studies of NNLO QCD corrections to single top and WBF processes because
they are colour suppressed.

In Part II, we investigated non-factorisable effects in t-channel single top production.
We have shown that the computation of real-emission contributions are simpler in
non-factorisable corrections since the gluons are effectively Abelian. We employed the
auxiliary mass flow method [126, 127] tailored to our problem, and successfully com-
puted the challenging double-virtual contribution. We observed that the non-factorisable
corrections are rather small but can be comparable to the NNLO QCD factorisable ones.
We have shown that the virtual contributions are dominant for such corrections and
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that they become even more important when the centre-of-mass collision energy is
increased. Computation of non-factorisable corrections formally completes the NNLO

QCD description of the single top production process.

In Part III, we studied the double-virtual contribution to Higgs boson production in
weak boson fusion. Because of the higher complexity of Feynman integrals in this process,
exact calculation of non-factorisable corrections in this case is not feasible. Building upon
the approach introduced in Ref. [7], we computed the double-virtual corrections to this
process in the forward limit including next-to-leading terms in the eikonal expansions. It
turns out that these corrections are quite important; they reduce earlier estimates of the
non-factorisable corrections for this process at the LHC by O(20) percent.



Part IV

A P P E N D I X





A O N T H E O R E T I C A L P R E D I C T I O N S I N
PA RT I C L E P H Y S I C S

In this chapter, we present a brief and intentionally simplified overview of the journey
from the mathematical formulation of the Standard Model to a theoretical prediction of
physical quantities.

a.1 feynman rules in qcd

The Standard Model Lagrangian provides a mathematical framework for describing
elementary particles’ kinematics and their interactions. A complete derivation of the
rules that can be extracted from this Lagrangian is the subject of many textbooks [177,
188, 189]. In this section, we follow these references and focus on the QCD Lagrangian. It
reads

LQCD =− 1
4

GA
µνGµν

A + ∑
flavours

ψ̄i
(
i /Dij + m f

)
ψj −

1
2λ

(
∂µ AA

µ

)2
+ Lghost , (A.1)

where i, j = 1, . . . , Nc and A = 1, . . . , N2
c − 1, where Nc is the number of colours. In the

Standard Model, Nc = 3. We emphasise that we use the Einstein summation convention
and, therefore, summation over pair of indices is always implied. The dynamic of the
quarks field ψ is governed by the covariant derivative

Dµ
ij(x) = ∂µδij + igs tA

ij Aµ,A(x) , (A.2)

which is defined such that the gauge symmetry SU(3)c holds locally. The object tA
ij are

the representation of the generator of the related Lie algebra also known as Gell-Mann
matrices [190]. The gluon field Aµ,A dynamic and self-interaction is dictated by the
strength field tensor

GA
µν = ∂µ AA

ν − ∂ν AA
µ − gs f ABC AB

µ AC
ν , (A.3)

where the structure constant f ABC is an antisymmetric tensor. It is characteristic of the
commutator defining the corresponding Lie algebra

[tA, tB] = i f ABC tC . (A.4)

Finally, the last term in the QCD Lagragian in Eq. (A.1) is the gauge fixing term. It is
required to eliminate the unphysical polarisations of the gluon field. It is standard to
work in Feynman gauge with λ = 1 and it will be assumed in what follows. Note that
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this gauge is insufficient to fully cure the unphysical degree of freedom. The term Lghost
in Eq. (A.1), which contains additional Grassmann fields c and c̄ named ghosts, needs to
be added to the theory

Lghost = ∂µ c̄A∂µcA + gs f ABC
(

∂µ c̄A
)

AB
µcC . (A.5)

We see that ghosts are intimately related to the non-Abelian nature of QCD as their
interaction with the gluon field is proportional to the structure constant f abc.

From the QCD Lagrangian, it is possible to extract different Feynman rules such as the
propagator of the gluon

k

A B
=

iηµνδAB

k2 + i0
. (A.6)

which is here represented in momentum space. As the Lagrangian describes a theory
where the particles interact, one can derive interaction vertices such as the fermion-
fermion-gluon vertex

j

i

A = igs tA
ij , (A.7)

or the triple gluon vertex

p1

p2

p3

A, µ

B, ν

C, σ

= −gs f ABC

[
ηµν(p1 − p2)

σ + ηνσ(p2 − p3)
µ

+ ησµ(p3 − p1)
ν

]
.

(A.8)

Using elementary Feynman rules, one can describe any interactions in Nature by draw-
ing Feynman diagrams. The sum of all Feynman diagrams representing a process is
a complex number called the amplitude. It is clear that there is an infinite amount of
diagrams that can describe a process and, therefore, an exact computation of the ampli-
tude is impossible. We assume that the coupling constant is small enough to perform
a perturbative expansion. Diagrams with the least amount of interactions make up the
Born amplitude. Radiative corrections to this leading-order term are then classified into
real-emission contributions, where additional particles are present in the final state, and
into virtual contributions, where the Born diagram are dressed with loop corrections.
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a.2 uv divergences

Virtual and real-emission corrections can display divergences. For instance, the following
diagram

q

q̄

p

k

µ, A ν, B = g2
s TF δABεµεν

∫ ddk
(2π)d Tr

{
1
/k

γµ 1
/k + /p

γν

}
, (A.9)

is divergent as the energy of the quark pair becomes infinite. This kind of divergences
is called ultraviolet (UV) divergences. The renormalisation of the bare parameter of the
theory, such as the masses, the couplings and the wave-function normalisations, curses
these divergences. The price to pay is the introduction of a renormalisation scale µR, on
which all the renormalised parameters will depend. The dependence of the couplings
on the renormalisation scale is dictated by the β function

µ
d

dµR
g(µR) = β(g) . (A.10)

In QED, it simply reads

β(α) =
2α2(µR)

3π
+O(α4) , (A.11)

where α = e2/(4π) and e is the electric charge. It is clear that the coupling becomes
infinitely large as µR → ∞. The situation is different for QCD since

β(αs) =
αs

π

(
−11

3
Nc +

n f

3

)
+O(α4

s ) , (A.12)

where n f is the number of quarks flavors. Since n f < 11Nc/2 in the SM, the beta function
is negative. Consequently, the larger the renormalisation scale, the weaker the strong
coupling. This is known as the asymptotic freedom [191, 192]. At sufficiently high-energy
values, or, equivalently, small distances, quarks can be considered as free particles.
However, there exists a pole at low energy values where the strong coupling constant
diverges. This pole, called a Landau pole, is situated around ΛQCD ∼ O(100) MeV,
which corresponds to the mass of the pions. At this energy level, the coupling is so
strong that the quarks cannot be separated. This is known as colour confinement.

If we work at an energy scale ΛQED � Q � ΛQCD, both the strong and the weak
couplings are small and can be chosen as expansion parameters. Again, for conciseness,
we only consider the expansion in the strong coupling

|M(q1, . . . , qn)|2 =
∞

∑
n=0

( αs

2π

)n
|M(n)(q1, . . . , qn)| . (A.13)
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The amplitude of a process can be directly related to its likelihood. The smaller is the
norm of the amplitude, the more unlikely is the considered process.

a.3 predictions for hadronic cross section

We need to relate the amplitude to physical quantities that can be measured. The essential
quantity computed for collider physics is the physical cross-section. In the case of the
LHC, we are colliding two protons. The factorisation theorem [49] states that

σ = ∑
i,j

∫
dx1 dx2 fi(x1, µF) f j(x2, µF) dσ̂ij(x1, x2)

[
1 +O

(
ΛQCD

Q

)]
. (A.14)

where σ is the physical cross section σ, fi(x1, µF) are the parton distribution functions,
and σ̂ is the partonic cross section. The PDFs, which are empirically determined, describe
the distribution of partons (light quarks, gluons, and photons) in the proton at the
factorisation scale µF. The indices i and j runs over the parton types. The multiplicative
factor on the right-hand side of Eq. (A.14) reminds us that this formula is valid only if
the non-perturbative effect can be neglected.

The partonic cross section can be calculated order by order in the expansion of the cou-
pling constant αs by considering the appropriate set of Feynman diagrams. Tremendous
efforts have been made to improve the precision of the partonic cross section. Today,
corrections to most of the processes of interest for the LHC are known to the NNLO in
the strong coupling constant.

p1

p2

q1

q2

qn−1

qn

Figure A.1: Generic process where two incoming partons produce n outgoing particles.

To understand how to compute the partonic cross section, we consider a generic
process where two incoming partons produce n outgoing particles

pµ
1 = x1Pµ

1 , pµ
2 = x2Pµ

2 , (A.15)
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where Pµ
1 and Pµ

2 are the proton 4-momenta and x1 and x2 are the Bjorken x momentum
fractions. The outgoing momenta are denoted q1, . . . , qn. This is illustrated in Fig. A.1.
The partonic cross section is computed from the integration of the amplitudeM over
the phase space of the outgoing particles

dσ̂ij =
1
2ŝ

∫
dLips(q1, . . . , qn) |M(q1, . . . , qn)|2Fkin(q1, . . . , qn) , (A.16)

where Fkin is some IR-safe observable which will be defined later and ŝ = x1x2s is the
partonic invariant mass. The Lorentz invariant phase space dLips can be defined as

dLips =
n

∏
i=1

{
ddqi

(2π)d−1 δ+
(
q2

i −m2
i
)}

(2π)4δ(4)

(
p1 + p2 −

n

∑
i=1

qi

)

≡
n

∏
i=1

[ dqi](2π)4δ(4)

(
p1 + p2 −

n

∑
i=1

qi

)
,

(A.17)

where q2
i = m2

i defined the mass of the outgoing particles. We have introduced a
convenient notation for the individual phase space integral. It reads

[ dqi] =
ddqi

(2π)d−1 δ+
(
q2

i −m2
i
)
=

dd−1~qi

2Ei(2π)3 , (A.18)

where the delta function δ+(q2
i −m2) selects the solution where the energy of the particle

is positive and the energy is Ei =
√

m2
i +~q2

i . The integration over the outgoing particle

phase space is not straightforward as both the squared matrix element |M|2 and the
Lorentz-invariant phase space dLips suffer from IR singularities. These singularities
occurs when a particle is soft or collinear to an other particle. For instance, the emission
of a gluon from a massless quark presents both type of IR divergences

1c

4g

1c − 4g

∝
∫

[ dp4]

p1 · p4
∝
∫ ∞

0

dE4

E4

∫ 1

−1

d cos θ

1− cos θ
. (A.19)

Unlike the UV divergences, the IR divergences cannot be removed. However, the KLN
theorem [193, 194] states that for any IR-safe observable, the IR singularities cancel once
both real corrections, where an additional particle is present in the final state, and virtual
corrections, where the emitted particle is absorbed in the same diagram, are summed.

This feature leads to the development of subtraction schemes where the IR singularities
are made explicit in every pieces of the calculations [65, 195–197]. All these schemes
aim to provide a suitable way to absorb collinear emissions from initial state partons
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into the PDFs and to combine poles related to soft and collinear emission contributions
from final state particles with the poles of the virtual contribution. These poles are made
explicit by introducing a regulator, which is usually done by working in d = 4− 2ε

dimensions. Once the poles are combined and the cancellation is manifest, the regulator
can be dropped, resulting in quantities that can be handled numerically. As an example,
in the first section of Chapter 3, we report the general NLO corrections to Higgs boson
production at the LHC in the nested soft-collinear subtraction scheme, following Ref. [65].

Finally, we aim to produce theoretical predictions for physical cross sections and
distributions of infrared-safe observables. We evaluate the cross section by integrating
Eq. (A.14) using a Vegas integrator [78]. We randomly generate kinematical configura-
tions to cover the complete phase space. For a given integrand, the Vegas integrator first
determine numerically a change of variables that flatten the integrand and, then, per-
form the integration using Monte-Carlo technique. Similarly, we produce distributions
of observable that can be compared to actual measurements at a particle collider.



B D E TA I L E D I N T E G R AT I O N O F T H E
S O F T- Q UA R K E I K O N A L F U N C T I O N S

In this chapter, we present in details the integration of the eikonal functions originating
from soft-quark singularities, discussed in Chapter 6.

b.1 integral from the soft-collinear subtraction term in sector 41 -
c g channel

The cg-channel, real-emission contribution displays a soft-collinear singularity in the
massless charm-quark limit when the emitted gluon 4g is both collinear to the incoming
charm quark 1c and that its energy is zero. We consider a massive charm quark and
regulate the cross section using the nested soft-collinear subtraction scheme [65], similar
to Eq. (5.2) in the gg channel. The soft-collinear subtraction term in sector 41 is given by

〈C41S4FLM(1c, 2g, 3c, 4g)〉 = −g2
s 〈 FLM(1c, 2g, 3c)C41

∫
[ dp4] fsoft〉 , (B.1)

where fsoft is the conventional soft function [50]. It reads

fsoft = −CA
p1 · p2

p1 · p4 p2 · p4
+ (CA − 2CF)

p1 · p3

p1 · p4 p3 · p4
+ CF

m2
c

(p1 · p4)2 . (B.2)

The operator C41 acts on the eikonal functions. In this quasi-singular limit, the soft
function in Eq. (B.2) reads

C41 fsoft = −2CF
E1

E4

1
p1 · p4

+ CF
m2

c
(p1 · p4)2 . (B.3)

Note that the two first eikonal functions in Eq. (B.2) are now combined and that the
colour factor CA disappeared. The integrated subtraction term to be computed is then

〈C41S4FLM(1c, 2g, 3c, 4g)〉 = −g2
s CF〈FLM(1c, 2g, 3c)〉

×
∫
[ dp4]

(
m2

c
(p1 · p4)2 − 2

E1

E4

1
p1 · p4

)
,

(B.4)

where the phase-space measure needs to be considered in d = 4− 2ε since the subtraction
term displays soft singularity. It reads∫

[ dp4] =
∫ dΩd−2

2(2π)d−1

∫ Emax

0
dE4 E1−2ε

4

∫ 1

−1
d(cos θ) sin−2ε θ . (B.5)
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The integration over the energy is trivially performed and provides a 1/ε pole. The
mass of the emitter protects the gluon from developing another pole in ε from collinear
singularity. Instead, the integral over the solid angle will result in a logarithm of the
charm-quark mass. We consider the two eikonal functions with normalised 4-momenta
ni = pi/Ei, i = 1, 4. They read

I1 =
∫ 1

−1
d(cos θ) (sin2 θ)−ε 1

n1 · n4
, (B.6)

I2 =
∫ 1

−1
d(cos θ) (sin2 θ)−ε m2

c

E2
1

1
(n1 · n4)2 . (B.7)

We emphasise that the charm-quark mass is still present in the scalar product since

n1 · n4 = E1E4(1− β cos θ) , (B.8)

where the velocity of the incoming parton is β =
√

1−m2
c /E2

1.

It is clear that the integrals in Eq. (B.7) are singular when β → 1. We would like
to extract the leading logarithms of mc in these two integrals and to set mc → 0, or
equivalently β→ 1, in any other terms. We start with I1. It reads

I1 =
∫ 1

−1
d(cos θ)

(1− cos2 θ)−ε

1− β cos θ
. (B.9)

We perform the change of variable cos θ = 1− 2η and find

I1 = 2
∫ 1

0
dη

[4η(1− η)]−ε

1− β(1− 2η)
=

1
β

∫ 1

0
dη

[4η(1− η)]−ε

∆ + η
, (B.10)

where we have defined

∆ =
1− β

2β
. (B.11)

This new variable ∆ is a small parameter in the limit β→ 1. The factor β in front of the
integral in Eq. (B.10) is safely set to one.

We know that the dependence of I1 in ∆ is logarithmic. Indeed, for ∆ = 0, the integrand
behaves as dη/η ∼ d ln η. However, for large values of η � ∆, the integral behaves as if
∆ = 0. We would like to take profit of this fact by supposing the existence of a parameter
δ such that ∆� δ� 1 which splits the integration domain in two

I1 = I1 θ (δ− η) + I1 θ (η − δ) . (B.12)

The introduction of this additional parameter simplifies the computation of the integral.
Once summed, the dependence on δ in the two parts of the integral has to vanish. We
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consider each part of the integral, keeping in mind that ∆� δ� 1. In the calculation,
we discard any terms that vanish as δ→ 0.

We consider the first term in Eq. (B.12). Since η � 1, Eq. (B.10) becomes

I1 θ (δ− η) =
∫ δ

0
dη

[4η(1− η)]−ε

∆ + η
≈ 2−2ε

∫ δ

0
dη

η−ε

∆ + η
. (B.13)

We change variable s = η/∆ and split the integral in two

I1 θ (δ− η) = (4∆)−ε
∫ δ/∆

0
ds

s−ε

1 + s

= (4∆)−ε

[∫ ∞

0
ds

s−ε

1 + s
−
∫ ∞

δ/∆
ds

s−ε

1 + s

]
.

(B.14)

The first integral in Eq. (B.14) is calculated by changing variable u = 1/(1 + s) and in
the second integral we use δ/∆� 1. We find

I1 θ (δ− η) = 2−2ε

[
∆−εΓ(ε)Γ(1− ε)− 1

ε
δ−ε

]
. (B.15)

We consider now the second part of Eq. (B.12). We use the fact that η � ∆ to write

I1 θ (η − δ) =
∫ 1

δ
dη

[4η(1− η)]−ε

∆ + η
≈ 2−2ε

∫ 1

δ
dη η−ε−1(1− η)−ε

= 2−2ε
∫ 1

δ
dη η−ε−1 [(1− η)−ε − 1

]
+ 2−2ε

∫ 1

δ
dη η−ε−1 .

(B.16)

We have split the integral into two terms such that the first part is not divergent as ε→ 0.
Thus, δ does not regulate any singularities. It means that the dependence on δ in the
first part of this integral is linear. By consequence, we set δ = 0 in this first part. In
contrast, the second part of the integral in Eq. (B.16) is divergent as δ→ 0 and therefore,
it produces a logarithmic dependence on δ. We find that Eq. (B.16) becomes

I1 θ (η − δ) = 22ε

[
1
ε

δ−ε +
Γ(−ε)Γ(1− ε)

Γ(1− 2ε)

]
. (B.17)

As expected, by adding the result from Eq. (B.15) and Eq. (B.17), we find that the integral
I1 does not depend on the parameter δ

I1 =
∫ 1

0
dη

[4η(1− η)]−ε

∆ + η
= (4∆)−εΓ(−ε)Γ(1− ε) + 2−2ε Γ(−ε)Γ(1− ε)

Γ(1− 2ε)
. (B.18)
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The integral over the solid angle I1 needs to be expanded to O(ε) since the integral over
the energy of the emitted gluon has generated a 1/ε pole. We expand Eq. (B.18) in ε and
find

I1 = 2 ln
(

2E1

mc

)
+

[
π2

3
− 4 ln(2) ln

(
2E1

mc

)
+ 2 ln2

(
2E1

mc

)]
ε

+O(ε2) +O(mc) .

(B.19)

where, in the mc → 0 limit,

ln (∆) = ln
(

1− β

2β

)
= −2 ln

(
2E1

mc

)
+O(mc) . (B.20)

The second integral in Eq. (B.7) that we need to determine the soft-collinear subtraction
term can be treated in a similar way. It reads

I2 =
m2

c

E2
1

∫ 1

−1
d(cos θ)

(sin2 θ)−ε

(1− β cos θ)2 =
m2

c

E2
1

1
21+2ε

1
β2

∫ 1

0
dη

(η(1− η)−ε

[∆ + η]2

≡ m2
c

E2
1

1
21+2εβ2 Ĩ2 ,

(B.21)

where we factored out the kinematic dependences to focus on the extraction of the
logarithm from the quasi-collinear limit. We proceed in the same way as for I1 by
introducing a new parameter ∆� δ� 1

Ĩ2 = Ĩ2 θ(δ− η) + Ĩ2 θ(η − δ) (B.22)

We start with the first region where 0 < η < δ. We use this approximation to rewrite Ĩ2

as

Ĩ2 θ(δ− η) =
1

∆2

∫ δ

0
dη

η−ε

[1 + η/∆]2

≈ ∆−1−ε

[∫ ∞

0
ds

s−ε

[1 + s]2
−
∫ ∞

δ/∆
ds s−ε−2

]
,

(B.23)

where we have changed variable s = η/∆ and have used the fact that 1� δ/∆. The first
part of the integral reduces to a beta function once we change of variable u = 1/(1 + s)
and the second part of the integral does not present any difficulties. We find that the
integral in Eq. (B.23) can be written as

Ĩ2 θ(δ− η) = ∆−1−ε − 1
1 + ε

δ−1−ε . (B.24)
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We consider now the integral over the second domain [δ, 1]. In this region, we use the
fact that η � ∆ and we find

Ĩ2 θ(η − δ) =
∫ 1

δ
dη η−ε−2(1− η)−ε

=
∫ 1

δ
dη η−ε−2 [(1− η)−ε − 1

]
+
∫ 1

δ
dη η−ε−2 ,

(B.25)

where again the first integral is free of divergences as ε→ 0 and, therefore, the depen-
dence in δ is at least linear. We set δ→ 0 in the first integral and the second part provides
O(ln δ) contribution. We find

Ĩ2 θ(η − δ) =
Γ(−ε− 1)Γ(1− ε)

Γ(−2ε)
+

1
1 + ε

δ−1−ε . (B.26)

The integral I2 from Eq. (B.21) is found by adding the result from Eq. (B.24) and the one
from Eq. (B.26). It reads

I2 =
1

21+2ε

1
β2

m2
c

E2
1

[
∆−1−ε +

Γ(−ε− 1)Γ(1− ε)

Γ(−2ε)

]
, (B.27)

which is indeed independent of δ. In the massless charm-quark limit, the expansion of
the integral in

I2 = 2 + 4 ln
(

E1

mc

)
ε +O(ε2) +O(mc) . (B.28)

This ends the extraction of the logarithm of mc in the case of a soft-collinear eikonal
functions. In the next section, we apply a similar technique to the calculation of the
integrated soft eikonal function issued from quasi-soft quark limit.

b.2 integrated quasi-soft quark eikonal functions

In this section, we compute the following integrated eikonal function

I(mA,mB)
AB =

∫ d3~p
(2π)3E~p

θ(Emax − E~p)
pA · pB

(pA · p)(pB · p)
, (B.29)

where p2 = m2, p2
A = m2

A and p2
B = m2

B. We consider this integral in the limit where
Emax � m and m ∼ mA ∼ mB. We note that we have seen this integral in the treatment
of the gg-channel real-emission contribution in Eq. (5.7). We will need both I(0,0)

AB and
I(m,0)

AB . We start by integrating the former.
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First, we extract the energy dependence of the eikonal function

I(0,0)
AB =

∫ d3~p
(2π)32E3

~p
θ(Emax − E~p)

p̄A · p̄B

( p̄A · p̄)( p̄B · p̄)
. (B.30)

where we define the normalised 4-vectors of the emitters as

pA,B = (1,~nA,B)
t , p = (1, β~n)t . (B.31)

We introduce a Feynman parametrisation of the denominator

1
(pA · p)(pB · p)

=
∫ 1

0

dy

[p · (pAy + pB(1− y))]2
. (B.32)

This is convenient to define a new 4-vector that depends on y. It reads

pAB(y) = (1,~nAy +~nB(1− y))

≡ (1, ηy~nAB) ,
(B.33)

where we have defined

ηy = |~nAy +~nB(1− y)| . (B.34)

We expand the phase-space measure, perform the integration over the azimuthal angle θ

and change variable β =
√

1−m2
c /E2

~p. We find that Eq. (B.30) becomes

I(0,0)
AB =

s2

2π2

∫ βmax

0

dβ β2

1− β2

∫ 1

0

dy
1− β2η2

y
, (B.35)

where we defined the constant s ≡ sin(θAB/2) and where the integration boundary is
β2

max = 1−m2/E2
max.

To be able to integrate Eq. (B.35) over y, we need to understand the y dependence of
ηy. We use its definition in Eq. (B.34) to write

η2
y = |y~nA + (1− y)~nB|2 = 1− 4y(1− y)s2 . (B.36)

We focus on the y integration in Eq. (B.35). It reads

Iy =
∫ 1

0

dy
1− β(1− 4y(1− y)s2)

. (B.37)

We use the symmetry of the integrand to reduce the integration to the range y ∈ [0, 1/2]
with a factor 2 as a trade-off. This allows, then, the following change of variable 1− z2 =

4y(1− y). The integral I(0,0)
AB in Eq. (B.35) becomes

I(0,0)
AB =

s

4π2

∫ βmax

0

dβ β

1− β2
1√

1− β2c2
ln

(√
1− β2c2 + βs√
1− β2c2 − βs

)
. (B.38)
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We are left with the integration over β. We notice that

∂

∂β
ln

(√
1− β2c2 + βs√
1− β2c2 − βs

)
=

2s√
1− β2c2(1− β2)

. (B.39)

Therefore,

IAB(0, 0) =
1

16π2

∫ βmax

0
dβ β

∂

∂β

[
ln2

(√
1− β2c2 + βs√
1− β2c2 − βs

)]
. (B.40)

We perform an integration by part so that Eq. (B.40) becomes

IAB(0, 0) =
1

16π2

{
βmax ln2

(√
1− β2

maxc
2 + βmaxs√

1− β2
maxc

2 − βmaxs

)

−
∫ βmax

0
dβ ln2

(√
1− β2c2 + βs√
1− β2c2 − βs

)}
,

(B.41)

where βmax =
√

1−m2/E2
max. The argument of the first logarithm is expanded in the

limit where m� Emax

√
1− β2

maxc
2 + βmaxs√

1− β2
maxc

2 − βmaxs
=

(√
1− β2

maxc
2 + βmaxs

)2

1− β2
max

=
E2

max
m2

(√
1− βmaxc+ βmaxs

)2
≈ 4s2E2

max
m2 .

(B.42)

We focus on the second part of Eq. (B.41). It reads

Iβ ≡
∫ βmax

0
dβ ln2

(√
1− β2c2 + βs√
1− β2c2 − βs

)
. (B.43)

We lower the degree of the logarithm by taking the derivative of the integrand with
respect to s

∂Iβ

∂s
=
∫ 1−δ

0
dβ 2 ln

(√
1− β2c2 + βs√
1− β2c2 − βs

)
2β√

1− β2c

= − 4
c2

∫ 1−δ

0
dβ

∂

∂β

[√
1− β2c2

]
ln

(√
1− β2c2 + βs√
1− β2c2 − βs

)
,

(B.44)
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where we introduce the small parameter δ = 1 − βmax. The result in Eq. (B.44) is
integrated by part

∂Iβ

∂s
≈ − 4

c2

{
s ln

(
2s2

δ

)
− 2s

∫ 1−δ

0

dβ

1− β2

}
= − 4

c2

{
s ln

(
2s2

δ

)
− 2s

∫ 1−δ

0
dβ

[
1

1− β
− 1

1 + β

]}
= − 4

c2

{
s ln

(
2s2

δ

)
− 2s ln

2
δ

}
= −4s

c2 ln
(
s2) ,

(B.45)

where on the first line we have approximated the argument of the logarithm in the limit
δ� 1. It is now possible to calculate the integral in Eq. (B.43) by integrating the result
of Eq. (B.45). We choose s = 0 as the boundary condition since from Eq. (B.43), we see
that Iβ(s = 0) = 0

Iβ = −4
∫ s

0

dx x
1− x2 ln(x2) = −2

∫ 1

1−s2

dx
x

ln(1− x) = 2
(

π2

6
− Li2

(
c2)) (B.46)

Finally, the integral from Eq. (B.41) takes a simple form

I(0,0)
AB =

1
16π2

{
ln2
(

4s2E2
max

m2

)
− π2

3
+ 2Li2

(
c2)} , (B.47)

where

s2 = sin2
(

θAB

2

)
=

1− cos θAB

2

c2 = cos2
(

θAB

2

)
=

1 + cos θAB

2
.

We also need to consider the case where the quasi-soft quark is emitted from a massive
parton with mA = m. The direct integration is difficult and we need to find a way to
circumvent it. We start over from Eq. (B.35) and integrate first over β

I(0,0)
AB =

s2

4π2

∫ 1

0

dy
1− η2

y

{
ln
(

1 + βmax

1− βmax

)
− 1

ηy
ln
(

1 + βmaxη

1− βmaxηy

)}
. (B.48)

The limit βmax → 1 cannot be taken because of the argument of the first logarithm. We
rewrite the logarithms

ln
(

1 + βmax

1− βmax

)
− 1

ηy
ln
(

1 + βmaxηy

1− βmaxηy

)
= −1− ηy

ηy
ln
(

1 + βmaxηy

1− βmaxηy

)
− ln

(
1 + βmaxηy

1 + βmax

)
+ ln

(
1− βmaxηy

1− βmax

)
,

(B.49)
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and we use the following equation

ln
(

1− βmaxηy

1− βmax

)
= ln

(
1− β2

maxη2
y

1− β2
max

)
− ln

(
1 + βmax

1 + βmaxηy

)
, (B.50)

to rewrite the integral that we have just computed in Eq. (B.35) as

I(0,0)
AB =

s2

4π2

∫ 1

0
dy

[
− 1

(1 + ηy)ηy
ln
(

1 + βmaxηy

1− βmaxηy

)

+
1

1− η2
y

ln

(
1− β2

maxη2
y

1− β2
max

)
− 2

1− η2
y

ln
(

1 + βmaxηy

1 + βmax

)]
.

(B.51)

Despite a more complex integrand, we have isolated the singularity in one logarithm
whose argument is free of square roots. The Eq. (B.51) is approximated using Emax � m.
It reads

I(0,0)
AB =

s2

4π2

∫ 1

0
dy

[
− 1

(1 + ηy)ηy
ln
(

1 + ηy

1− ηy

)

+
1

1− η2
y

ln

(
1− β2

maxη2
y

1− β2
max

)
− 2

1− η2
y

ln
(

1 + ηy

2

)]
.

(B.52)

We consider the argument of the second logarithm where it is not safe to set βmax → 1.
We make explicit the mass dependence

1− β2
maxη2

y

1− β2
max

=
m2/E2

max + β2
max(1− η2

y)

m2/E2
max

=
ξ2 + 4y(1− y)s2

ξ2 , (B.53)

and we defined the ratio ξ = m2/E2
max and sent βmax → 1 since ξ acts as a regulator

of the divergences in y = 0 and y = 1 in the argument of the logarithm. We need the
following integral

Iy =
1

16π2

∫ 1

0
dy

1
y(1− y)s2 ln

(
ξ2 + 4y(1− y)

ξ2

)
. (B.54)

This integral diverges as y → 0 and y → 1. Similar to what has been done in the
beginning of this chapter to compute the integration soft-collinear eikonal function, we
introduce a small parameter ξ � Λ� 1 to split the integration domain in three parts.
The first integral we are considering reads

I1 =
∫ Λ

0

dy
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
≈
∫ Λ

0

dy
y

ln
(

1 +
4ys2

ξ2

)
=

1
2

ln2
(

4s2Λ
ξ2

)
+

π2

6
+O(Λ) .

(B.55)
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The second integral is defined as

I2 =
∫ 1

1−Λ

dy
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
≈
∫ 1

1−Λ

dy
1− y

ln
(

1 +
4(1− y)s2

ξ2

)
.

(B.56)

We recognise that this is exactly the integral I1. Finally, the last integral reads

I3 =
∫ 1−Λ

Λ

dy
y(1− y)

ln
(

ξ2 + 4y(1− y)s2

ξ2

)
≈
∫ 1−Λ

Λ
dy
(

1
y
+

1
1− y

) [
ln
(

4s2

ξ2

)
+ ln(y) + ln(1− y)

]
= −π2

3
− ln2

(
4s2Λ

ξ2

)
+ ln2

(
4s2

ξ2

)
.

(B.57)

As expected, the dependence on Λ vanishes once the three integral are summed. We
find that Eq. (B.54) becomes

Iy =
1

16π2 ln2
(

4s2E2
max

m2

)
. (B.58)

Plugging this result in the expression for the massless integral, we find that Eq. (B.52)
reads

I(0,0)
AB =

s2

4π2

∫ 1

0
dy

[
− 1

(1 + ηy)ηy
ln
(

1 + ηy

1− ηy

)

− 2
1− η2

y
ln
(

1 + ηy

2

)]
+

1
16π2 ln2

(
4s2E2

max
m2

)
.

(B.59)

By direct comparison with the final result of the first part in Eq. (B.47), we find

s2

4π2

∫ 1

0
dy

[
− 1
(1 + ηy)ηy

ln
(

1 + ηy

1− ηy

)
− 2

1− η2
y

ln
(

1 + ηy

2

)]

=
1

16π2

[
2Li2

(
c2)− π2

3

] (B.60)

This result will be used in the computation of the integral I(m,0)
AB . We start from Eq. (B.29)

and expand the phase-space measure. We find

I(m,0)
AB =

1− βA cos θAB

4π2

∫ Emax

m

dE~p

E~p
β
∫ 1

−1

d(cos θ)

2

∫ 1

0

dy[
1− βηy cos θ

]2 . (B.61)
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where we use the definition from Eq. (B.34). We send βA → 1 in the prefactor and change
the integration over the energy to an integration over β

I(m,0)
AB =

1− cos θAB

4π2

∫ βmax

0

dβ β2

1− β2 β
∫ 1

−1

d(cos θ)

2

∫ 1

0

dy[
1− βηy cos θ

]2 . (B.62)

After integration over the azimuthal angle, we find the same integral that in Eq. (B.35).
We perform the integration over β and use the known result in Eq. (B.52). We remind
the result for convenience

I(m,0)
AB =

s2

4π2

∫ 1

0
dy

[
− 1

(1 + ηy)ηy
ln
(

1 + ηy

1− ηy

)

+
1

1− η2
y

ln

(
1− β2

maxη2
y

1− β2
max

)
− 2

1− η2
y

ln
(

1 + ηy

2

)]
.

(B.63)

In this case, the norm ηy is different from the one in Eq. (B.52) as it depends on the
velocity of one of the emitter. The norm of ηy reads

η2
y = β2

Ay2 + (1− y)2 + 2βAy(1− y) cos θAB

= 1− 2y(1− y)(1− cos θAB)− ξ2
Ay(y + (1− y) cos θAB) ,

(B.64)

where we defined ξA = mA
EA

. Similar to Eq. (B.53), we expand the argument of the second
logarithm in Eq. (B.63) which is divergent as βmax → 1. Then, Eq. (B.63) becomes

I(m,0)
AB =

1
16π2

(
2Li2

(
c2)− π2

3

)

+
s2

4π2

∫ 1

0

dy
y

ln
(

ξ2+4y(1−y)s2+ξ2
Ay(1−y) cos θAB

ξ2

)
4s2(1− y) + ξ2

A(y + (1− y) cos θAB)
.

(B.65)

This last integral is again calculated by introducing an auxiliary parameter Λ� 1 which
split the integration domain in three parts, [0, 1] = [0, Λ] ∪ [Λ, 1−Λ] ∪ [1−Λ, 1]. The first
integral reads

I1 =
s2

4π2

∫ Λ

0

dy
y

1
4s2 + ξ2

A cos θAB
ln
(

ξ2 + 4ys2 + ξ2
Ay cos θAB

ξ2

)
. (B.66)

We recall that ξA = m/EA � 1 so the integrand simplifies. We find

I1 =
1

16π2

∫ Λ

0

dy
y

ln
(

ξ2 + 4ys2

ξ2

)
=

1
16π2

[
1
2

ln2
(

4s2Λ
ξ2

)
+

π2

6

]
. (B.67)

The second integral reads

I2 =
s2

4π2

∫ 1

1−Λ
dy

1
4s2(1− y) + ξ2

A
ln
(

ξ2 + 4s2(1− y) + ξ2
A

ξ2

)
. (B.68)
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We change the integration variable f = 4s2(1− y) + ξ2
A and find

I2 =
1

16π2

∫ 4s2

ξA

df
f

ln
(

ξ2 + f
ξ2

)
= I1 −

1
16π2

∫ ξ2
A

0

df
f

ln
(

1 +
f

ξ2

)
=

1
16π2

[
1
2

ln2
(

4s2Λ
ξ2

)
+

π2

6
+ Li2

(
− ξ2

A
ξ2

)]
.

(B.69)

The third integral reads

I3 =
1

16π2

∫ 1−Λ

Λ

dy
y(1− y)

ln
(

4y(1− y)s2

ξ2

)
, (B.70)

which is the same as Eq. (B.57). Once the three parts are combined, the dependence on
Λ cancel as expected and we find the desired result

I(m,0)
AB =

1
16π2

[
2Li2

(
c2)− π2

3
+ Li2

(
−E2

max

E2
A

)
+ ln2

(
4s2E2

max
m2

)]
. (B.71)

We note that this result differ from Eq. (B.47) by only one term.
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In this chapter, we present the calculation of the two-loop triangle integrals I16 and
I17, shown in Fig. 13.4. These integrals are required for the computation of boundary
conditions for the master integrals for t-channel single top production. Unfortunately,
they were not found in the literature and need to be evaluated up to order O(ε5) and
O(ε6), respectively.

To compute these two-loop triangle integrals, we follow the standard procedure for
multi-loop Feynman integrals [198]. First, we use LiteRed [179, 199] to reduce the desired
integrals to a basis of master integrals. Then, we differentiate these master integrals
with respect to the kinematic invariants and use IBP relations to build a system of
ordinary differential equations. Next, we use the Mathematica package CANONICA [200]
to change the integral basis to bring the differential equation into canonical form. In this
form, the solution to the differential equation is easily expressed through harmonic
polylogarithms (HPLs) [201]. Finally, we consider a convenient kinematical limit where the
master integrals are easy to calculate, allowing us to compute the integration constants.

c.1 loop-integral calculations using differential equations

To numerically evaluate the 428 master integrals using the auxiliary mass flow method,
we need a set of 17 integrals at the boundary m2

W → −i∞ and the internal top-quark
mass m2

t → m2 → −i∞, as explained in Chapter 13. Two of them were not found in the
literature, namely I16 and I17, shown in Fig. C.1. They read

I16 =
∫ 2

∏
j=1

(
ddk j

iπd/2

)
1

(k2
2 −m2)(k1 − k2)2(p1 − k1)2(p2 + k1)2

, (C.1)

I17 =
∫ 2

∏
j=2

(
ddk j

iπd/2

)
1

(k2
2 −m2)2(k1 − k2)2(p1 − k1)2(p2 + k1)2

, (C.2)

where p2
1 = m2, p2

2 = 0 and (p1 + p2)2 = s.

We would like to calculate these integrals analytically through the order O
(
ε5) and

O
(
ε6), respectively. Direct calculations of I16 and I17 using Feynman parameters leads

to complicated integrals. Instead, we use differential equations Ref. [198] which allows a
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I16 =

m2

s

0

p1

p2

m2 , I17 =

m2

s

0

p1

p2

m2

Figure C.1: Two-loop triangle integrals required as boundary conditions by the auxiliary mass
flow method to evaluate the two-loop amplitude. Double lines stand for massive
propagators and legs with mass m2. Massive leg with p2 = s is denoted by a thick
line. Simple solid lines are massless. Dots indicate that the propagator is squared.

simpler and more systematic approach.

The two-loop triangle integrals I16 and I17 depend only on the Mandelstam variable
s = (p1 + p2)2 and the squared mass m2. We decided to differentiate the integrals with
respect to the dimensionless ratio x = s/m2, set m → 1, and reconstruct the mass
dependence at the end of the calculation by dimensional analysis. By doing this and
using IBP relations, we build the differential equation

∂x~I =M(x, ε)~I , (C.3)

whereM is a matrix that depends on x and ε, and a vector of master integrals reads

~I =

{
s , , , s , s

}
. (C.4)

The determination of the master integrals and the differentiation is performed using
LiteRed [179, 199].

The first three master integrals in ~I are easy to compute analytically. Indeed, they
contain a massless internal bubble which is well-known

k1

k2

k1 + k2

=
∫ ddk2

iπd/2
1

(k2)2(k1 + k2)2 = Γ(ε)β(1− ε, 1− ε)(−k2
1)
−ε (C.5)

As the result, we are left with an one-loop integration where the massless internal
topology has been replaced by a simple propagator 1/(−k2

1)
ε and some ε-dependent

factors. After the second loop integration, we find

s = −Γ(−1 + ε)Γ(ε)β(1− ε, 1− ε)(−x)−ε(m2)1−ε (C.6)
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= −Γ(−1 + 2ε)β(1− ε, 1− ε)β(ε, 2− 2ε)(m2)1−2ε (C.7)

= −Γ(−1 + 2ε)β(1− ε, 1− ε)β(3− 4ε, ε)(m2)1−2ε . (C.8)

The next step is called fuchsification. It consists in a change of master integral basis,
defined by the matrix F , such that the differential equation in Eq. (C.3) becomes

∂x~J = εM′(x)~J , (C.9)

where ~J is a linear transformation of ~I such that ~I = F~J and the Fuchsian matrix M′

reads

M′ =
1
x



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0
1
10

3
10 − 5

7 4 9

0 − 1
10

1
7 0 1


+

1
1− x



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 −1 −6

0 0 0 1 4


. (C.10)

The differential equation in Eq. (C.9) is said to be in the canonical form or in ε-form. We
found the canonical basis using CANONICA [200].

c.2 solution to the differential equation in canonical form

We would like to solve the differential equations in Eq. (C.9). The first important point
to notice is that the matrix M′ is singular at x = 0, x = 1 and x → ∞. These three
singularities are related to special physical points. Indeed, the singularity at x = 0
corresponds to the kinematical limit s = 0 where the centre-of-mass energy vanishes.
The singularity at x = 1 corresponds to s = m2 which is the production threshold.
Finally, the singular point x → ∞ corresponds to the kinematical region where s� m2.

It is clear that, if we integrate once the differential equation in Eq. (C.9), we get loga-
rithms of x and 1− x with a factor ε. The next order in ε is obtained by a consecutive in-
tegration. These integrals are commonly known as harmonic polylogarithms (HPLs) [201].
They are defined as

Hmω (x) =
∫ x

0
dt fa(t)Hmω−1(t) , (C.11)

where

H0(x) ≡ ln(x) , H1(x) ≡ − ln(1− x) , H−1(x) ≡ ln(1 + x) , (C.12)
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and

f0(x) ≡ 1
x

, f1(x) ≡ 1
1− x

, f−1(x) ≡ 1
1 + x

. (C.13)

The numbers −1, 1 and 0 are call letters and the set {−1, 0, 1} is called the alphabet. In
Eq. (C.11), the vector mω is a ω-dimensional vector whose entries are the letters of the
alphabet, and a is a letter. The two vectors in Eq. (C.11) are related in the following way

mω = (a, mω−1) . (C.14)

The solution to the differential equations in canonical form, as shown in Eq. (C.9), can
be conveniently expressed using HPL, whose alphabet is {0, 1}1. However, at each order
in ε, we obtain integration constants, one for each master integrals, which need to be
fixed by considering the master integrals I in a convenient kinematical limit.

c.3 two-loop triangle integrals at the boundary

Unlike the sunrise integrals, the two-loop triangle integrals I16 and I17 do not have a
massless sub-topology, which makes the integration more challenging. In this section,
we demonstrate how to overcome this difficulty by using dispersion integrals. First,
we review the concept of dispersion integral by deriving the dispersion integrals for
an one-loop bubble integral with a massive internal propagator. Then, we apply this
method to compute the integral I16 and I17 in the limit x → 0.

c.3.1 Dispersion integrals – bubble with one massive propagator

Dispersion integrals relate a kinematic-dependent function F(q2) to its imaginary part
through Cauchy theorem. A review can be found in Ref. [204]. The dispersion integral
for F(q2) reads

F(q2) =
1
π

∫ ∞

q2
0

ds
Im F(s + iε)
s− q2 − iε

, (C.15)

where Im F denotes the imaginary part of F and q2
0 is the energy threshold. In complex

analysis, q2
0 stands for the start of the branch cut on the real axis in the complex plane.

1 We note that, when the letters of the alphabet are not restricted to the set {−1, 0, 1}, we speak about multiple
polylogarithm (MPL). There is a different sign convention between MPL and HPL. There are equal to each
other up to (−1)p where p is the number of letter 1 in mω of the HPL. [133, 202]. One can deal with MPL

using the Mathematica package HPL [203].



C.3 two-loop triangle integrals at the boundary 197

In this subsection, we will compute the dispersion integral for a bubble with one
massive propagator and off-shell legs. This results can be found in Ref. [205]. In this
case, the function F(q2) reads

F(q2) =
m2

q2 =
∫ ddk

iπd/2
1

(k2 −m2)(k− q)2 . (C.16)

To compute the dispersion integral, we need to obtain an expression for the imaginary
part of the bubble integral. This can be easily done using Cutkosky’s rules [206]. The
imaginary part of the diagram is given by the sum over all possible cuts of the diagram’s
propagator. To cut a propagator means to force it be on-shell. Graphically,

2Im
(

F(q2)
)
= s

=
∫ ddk

iπd/2

[
2πi θ(k0)δ(k2 −m2)

] [
2πi θ(q0 − k0)δ((q− k)2)

]
.

(C.17)

This integral can be calculated by splitting it into an integration over the energy k0 and
an integration over the momentum~k. It reads

Im
(

F(q2)
)
=− 2π2

iπd/2

∫ q0

0
dk0

∫
dd−1~k δ

(
(k0)2 −~k2 −m2

)
× δ

(
(k0)2 −~k2 − 2q · k + q2

)
.

(C.18)

As the integrand is invariant under Lorentz transformations, we can choose the frame
where q = (q0,~0). We switch to spherical coordinates and perform the integral over the
solid angle. We find

Im
(

F(q2)
)
=

4π3/2i

Γ
(

d−1
2

) ∫ q0

0
dk0

∫ ∞

0
dr rd−2δ

(
(k0)2 − r2 −m2)

× δ
(
(k0)2 − r2 − 2q0k0 + (q0)2) .

(C.19)

The integration over r can be performed and we restore the Lorentz invariance by going
back in a general frame

Im
(

F(q2)
)
=

2π3/2i
Γ
( 3

2 − ε
) (q2 −m2)1−2ε

(4q2)1−ε
. (C.20)

As a check, the dispersion integral can be used to find the result of the bubble integral
F(q2)

F
(
q2) = 1

π

∫ ∞

m2
ds

Im F(s + iε)
s− q2 − iε

=
2−1+2επ1/2

Γ (3/2− ε)
(m2)−ε Γ (ε) Γ (2− 2ε)

Γ (2− ε)
2F1

(
1, ε; 2− ε;

q2 + iε
m2

)
.

(C.21)
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This result, which is numerically cross-checked using PySecDec [148], is indeed the
formula for the one-loop bubble with one massive propagator and off-shell legs.

c.3.2 Application to the two-loop triangle integrals I16 and I17

In the previous section, we derived the dispersion integral for a bubble integral with a
massive propagator and off-shell legs. In this section, we use this result to compute the
two-loop triangle integrals I16 and I17.

Using the Eq. (C.20), the two-loop triangle integral I16 can be written as

m2

s

p1

p2

m2 =
−2π1/2

Γ
( 3

2 − ε
) ∫ ∞

m2
dλ

(
λ−m2)1−2ε

(4λ)1−ε


m2

s

0

p1

p2

λ

 . (C.22)

We see that the dispersion representation for the bubble integral derived in the previous
section allows us to express the two-loop integral I16 as a convolution of an one-loop
integral with a propagator with squared mass λ with the bubble’s spectral density. This
one-loop triangle integral is calculated in the limit x → 0.

We find

I1L(λ) =

m2

s

0

p1

p2

λ = I1 − (−s− iε)−ε I2 +O(x) , (C.23)

where

I1 =
Γ (1 + ε)

ε
λ−1−ε 1

1− ε
2F1

(
1 + ε, 1; 2− ε;

m2

λ

)
, (C.24)

I2 = Γ (1 + ε)
1

λε

Γ (1− ε)2

Γ (2− 2ε)
2F1

(
1, 1− ε; 2− 2ε;

m2

λ

)
. (C.25)

Using this result in Eq. (C.22), we find the expression for I16 at the boundary x → 0. It
reads

I(0)16 =
−2π1/2

Γ
( 3

2 − ε
) ∫ ∞

m2
dλ

(λ−m2)

(4λ)1−ε
I1L(λ)

=
−2−1+2εi

√
π

Γ
( 3

2 − ε
) [

Γ (1 + ε)

ε(1− ε)
A16 − (−s−iε)−ε Γ (1 + ε)

ε

Γ (1− ε)2

Γ (2− 2ε)
B16

]
,

(C.26)
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where we defined

A16 =
∫ ∞

m2
dλ

(λ−m2)1−2ε

λ2 2F1

(
1 + ε, 1; 2− ε;

m2

λ

)
, (C.27)

B16 =
∫ ∞

m2
dλ

(λ−m2)1−2ε

λ2−ε 2F1

(
1, 1− ε; 2− 2ε;

m2

λ

)
. (C.28)

We need to compute these two integrals. We change the integration variable to x = m2/λ.
The integral A16 becomes

A16 = (m2)−2ε Γ (2ε) Γ (2− 2ε) 3F2 (1, 1 + ε, 2ε; 2− ε, 2; 1) . (C.29)

This integral can be expanded using the Mathematica package HypExp [207]. We find

A16 = (m2)−2ε

[
1
2ε

+

(
1− π2

6

)
+ ε

(
3 +

2π2

3
− 5ζ3

)
+ ε2

(
10ζ(3) + 9

+ π2 − 13π4

36

)
+ ε3

(
10ζ(3)− 5π2ζ(3)− 75ζ(5) + 27 + 3π2

+
79π4

90

)
+ ε4

(
30ζ(3) + 10π2ζ(3)− 25ζ(3)2 + 150ζ(5)

+ 81 + 9π2 +
31π4

30
− 317π6

540

)
+ ε5

(
90ζ(3) + 10π2ζ(3)

− 31π4ζ(3)
6

+ 50ζ(3)2 + 150ζ(5)− 75π2ζ(5)− 1005ζ(7)

+ 243 + 27π2 +
31π4

10
+

781π6

630

)
+O

(
ε6) ] .

(C.30)

Similarly, we find that the integral B reads

B16 = (m2)−ε

[
1
ε
+

(
1− π2

6

)
+ ε

(
3 +

2π2

3
− 6ζ3

)
+ ε2

(
14ζ(3) + 9

+
π2

3
− 37π4

120

)
+ ε3

(
2ζ(3)− 7π2ζ(3)

3
− 75ζ(5) + 27 + π2

+
43π4

60

)
+ ε4

(
6ζ(3) +

16π2ζ(3)
3

− 12ζ(3)2 + 156ζ(5) (C.31)

+ 81 + 3π2 +
π4

10
− 1759π6

5040

)
+ ε5

(
18ζ(3) +

2π2ζ(3)
3

− 73π4ζ(3)
60

+ 26ζ(3)2 + 6ζ(5)− 26π2ζ(5)− 5733ζ(7)
8

+ 243 + 9π2 +
3π4

10
+

5521π6

7560

)
+O

(
ε6) ] .
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Analogously, we use dispersion integrals to get an expression for I17 at the boundary
x → 0. However, we do not apply the Cutkosky’s rule to obtain the imaginary part of
the bubble integral with a dotted propagator. Instead, we use IBP relations to rewrite it
through a bubble integral and a massive tadpole integral using LiteRed [179, 199]. We
find

k1

k1 − k2

m2

=
d− 3

k2
1 −m2

k1

k1 − k2

m2

+
d− 2
2m2

1
k2

1 −m2
. (C.32)

Using the dispersion relation for the bubble integral, we obtain the following representa-
tion for the integral I17

m2

m2 =
2
√

πi
Γ
( 3

2 − ε
) (1− 2ε)

×
{ ∫ ∞

m2
dλ

(λ−m2)−2ε

(4λ)1−ε

m2

s

0

p1

p2

λ −
∫ ∞

m2
dλ

(λ−m2)−2ε

(4λ)1−ε

}

− (1− ε)(m2)−εΓ (ε− 1)

m2

s

0

m2 .

(C.33)

We note that in writing Eq. (C.33), we used the analytic expression for the massive
tadpole

= Γ (ε− 1) (m2)−ε . (C.34)

After few manipulations, the integral I17 at the boundary x → 0 is expressed as

I(0)17 =
2−1+2ε

√
πi

Γ
( 3

2 − ε
) (1− 2ε)

[
Γ (1 + ε)

ε

{
1

1− ε
A17 − (−s)−ε Γ (1− ε)2

Γ (2− 2ε)
B17

}

− (m2)−εβ (1− 2ε, ε) I1L(m2)

]
− (1− ε)Γ (ε− 1) (m2)−ε I1L(m2) ,

(C.35)
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where

A17 = (m2)−1−2ε

[
π2

6
+ ε

(
5ζ3 −

π2

6

)
+ ε2

(
13π4

36
− 5ζ(3)

)
+ ε3

(
5π2ζ(3) + 75ζ(5)− 13π4

36

)
+ ε4

(
25ζ(3)2

− 5π2ζ(3)− 75ζ(5) +
317π6

540

)
+ ε5

(
31π4ζ(3)

6

− 25ζ(3)2 + 75π2ζ(5)− 317π6

540
+ 1005ζ(7)

)
+ ε6

(
25π2ζ(3)2 − 31π4ζ(3)

6
+ 750ζ(3)ζ(5)

− 75π2ζ(5)− 1005ζ(7) +
13499π8

15120

)
+O(ε7)

]
,

(C.36)

and

B17 = (m2)−1−ε

[
π2

6
+ ε

(
6ζ3 −

π2

3

)
+ ε2

(
37π4

120
− 12ζ(3)

)
+ ε3

(
7π2ζ(3)

3
+ 75ζ(5)− 37π4

60

)
+ ε4

(
12ζ(3)2

− 14π2ζ(3)
3

− 150ζ(5) +
1759π6

5040

)
+ ε5

(
73π4ζ(3)

60

− 24ζ(3)2 + 26π2ζ(5) +
5733ζ(7)

8
− 1759π6

2520

)
+ ε6

(
− 73π4ζ(3)

30
+

13π2ζ(3)2

3
− 52π2ζ(5)

+ 186ζ(3)ζ(5)− 5733ζ(7)
4

+
88871π8

259200

)
+O(ε7)

]
.

(C.37)

This ends the computation of the boundary conditions for the integrals I16 and I17. We
note that the analytic expressions for the two-loop triangle integrals I16 and I17, which
are not reported here, are checked numerically using pySecDec [148, 149].





D
D E T E R M I N AT I O N O F T H E
B O U N D A RY C O N D I T I O N S F O R T H E
M A S S L E S S S I N G L E - T O P M A S T E R
I N T E G R A L S .

In Sec. 18, we derived solutions for the five master integrals of the planar topology. In
this Appendix, we compute the integration constant c5(ε) by a convenient limits. In
addition to the small transverse momentum approximation x → 0, we consider that the
limit where mW is very large so that ρ→ 0.

We are conscious that even computing the integral in some convienient limit can be
cumbersome at two-loop. Therefore, we want to find another way. We note that to fix
the integration constants, one does not need to fully compute the integrals. Indeed,
these constants are indeed related to branches in x and ρ. For instance, to fix c4(ε),
we only need to know the branch x of the integral I(4). Therefore, the Mellin-Barnes
representation can be especially useful.

d.1 fixing c5 (ε) using feynman parametrisation

The integral we want to compute is the following

I5 =
∫ ddk

iπd/2
1

k2(k + p1)2(k + p1 + p2)((k + p3)2 −m2
W)

. (D.1)

We introduce Feynman parametrisation and perform the integration over the loop
momentum k′. We get

I5 = Γ(2 + ε)
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3

× 1[
−sx2(1− x1 − x2 − x3) + x3(m2

W − tx1)
]2+ε

.
(D.2)

We see that, in this case, we can safely consider the limit m2
W � −t to drastically simplify

the calculation. After integration over x3, the integral reads

Iρ→0
5 = Γ(1 + ε)

∫ 1

0
dx1

∫ 1

0
dx2

(1− x1 − x2)−1−ε

m2
W + sx2

[
(−sx2)

−1−ε − (m2
W)−1−ε

]
≡ I(mW)

5 + I(s)5 .

(D.3)
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We can compute separately the two terms in the integral. The first one can be integrated
without further ado

I(mW)
5 = −Γ(1 + ε)(m2

W)−1−ε
∫ 1

0
dx2

∫ 1−x2

0
dx1

(1− x1 − x2)−1−ε

m2
W + sx2

= Γ(ε)(m2
W)−1−ε

∫ 1

0
dx2

(1− x2)−ε

m2
W + sx2

=
Γ(ε)
1− ε

(m2
W)−2−ε

2F1(1, 1; 2− ε;−s/m2
W) .

(D.4)

The second part of the integral requires slightly more attention

I(s)5 = Γ(1 + ε)(−s)−1−ε
∫ 1

0
dx1

∫ 1−x1

0
dx2

(1− x1 − x2)−1−ε

m2
w + sx2

x−1−ε
2

= −Γ(ε)(−s)−1−ε
∫ 1

0
dx2

(1− x2)−ε

m2
W + sx2

1
x1+ε

2

.
(D.5)

The integration over x2 will produce a pole in ε. We make it explicit by introducting a
subtraction term

I(s)5 = −Γ(ε)(−s)−1−ε

{ ∫ 1

0
dx2

[
(1− x2)−ε

m2
W + sx2

− (1− x2)−ε

m2
W

]

+ (m2
W)−1

∫ 1

0
dx2 x−1−ε

2 (1− x2)
−ε

}

= −Γ(ε)β(−ε, 1− ε)

(−s)1+εm2
W

− Γ(ε)Γ(1− ε)2

(−s)ε(m2
W)2

2F1(1, 1− ε; 2− 2ε;−s/m2
W)

Γ(2− 2ε)
,

(D.6)

Combining the results from Eq. (D.4) and Eq. (D.6), we find

Iρ→0
5 =− Γ(ε)β(−ε, 1− ε)

(−s)1+εm2
W

− Γ(ε)Γ(1− ε)2

(−s)ε(m2
W)2

2F1(1, 1− ε; 2− 2ε; ,−s/m2
W)

Γ(2− 2ε)

+
Γ(ε)
1− ε

(m2
W)−2−ε

2F1(1, 1; 2− ε;−s/m2
W) .

(D.7)

In order to fix c5(ε), we need to match our results to the solution we found for I5 in
Eq. (18.50). We assume an expansion in ε for the integration constant

c5(ε) =
c(−2)

5
ε2 +

c(−1)
5
ε1 + c(0)5 +O(ε) , (D.8)

and find

c(−2)
5 = 0 , c(−1)

5 = 0 , c(0)5 = 0 . (D.9)
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d.2 fixing c4 (ε) using mellin-barnes representation

The triangle integral I4 reads

I4 =
∫ ddk

iπd/2
1

(k2 −m2
W)(k− p1)2(k + p2)2

. (D.10)

We can apply Eq. (18.55) to the massive propagator. After permuting the integration over
z and the one over the loop momentum k, we find

I4 = − 1
2πi

∫ i∞

−i∞
dz (m2

W)zΓ(1 + z)Γ(−z)

×
∫ ddk

iπd/2
1

(−k2)1+z(k− p1)2(k + p2)2 .
(D.11)

The integral over the loop momentum k becomes easy as it consists on a massless triangle
integral with arbitrary exponents. We use the results (A.28) from Ref. [176] to write∫ ddk

iπd/2
1

(−k2)1+z(k− p1)2(k + p2)2 =
Γ(−z− ε)2Γ(1 + z− ε)

Γ(1− z− ε)

1
(−s)1+z−ε

(D.12)

Using this result, the triangle integral I4 reads

I4 = − 1
2πi

1
(−s)1+ε

∫ i∞

−i∞
dz
(

m2
W
−s

)z
Γ(−z)Γ(1 + ε + z)Γ(1 + z)Γ(−ε− z)2

Γ(1− 2ε− z)
.

(D.13)

The integration contour can be chosen such that −1 < <(z) < <(ε). Then, we close it to
the positive z axis. The poles of the integrand are defined by the poles of the different
gamma functions. For instance, Γ(−z) has simple poles in z = n, n ∈N. The integration
contour will be equal to the sum of the different residues calculated at each poles∮

dz f (z) =
∫ i∞

−i∞
dz f (z) +

∫
C

dz f (z)

= −2πi ∑
{z0}

Res( f (z), z = z0) ,
(D.14)

where f (z) represents the integrand and {z0} the set of all pole present within the close
path of integration in the complex plane. Note the minus sign in front of the sum as the
contour integral goes clockwise.

We give few remarks about the residue of gamma functions. The residue of the
function Γ(z) at a pole z0 = −n, n ∈N reads

Res(Γ(z), z = z0) = lim
z→−n

(z + n)Γ(z) = lim
z→−n

Γ(z + n + 1)
z(z + 1) . . . (z + n− 1)

=
1

−n(−n + 1) . . . (−1)
=

(−1)n

n!

(D.15)
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Going back to the triangle integral I4, we now see that we will get a term per pole
present within the contour. Each of this term will comes with a definite branch in x. If
we look at the kinematic dependence of the integrand, it reads

f (z) = − 1
2πi

1
(−s)1+ε

(
−m2

W
s

)z
Γ(−z)Γ(1 + ε + z)Γ(1 + z)Γ(−ε− z)2

Γ(1− 2ε− z)

= − 1
2πi

(−x)1+z+ερ−z Γ(−z)Γ(1 + ε + z)Γ(1 + z)Γ(−ε− z)2

Γ(1− 2ε− z)
.

(D.16)

The constant c4(ε) that need to be fixed comes with xρε. We notice that this branch is
produce by the pole of order two, z0 = −ε. Indeed,

2πi Res( f (z), z = −ε) = xρεΓ(ε)(2ψ(1− ε)− ln(ρ)− ψ(ε) + ln(−x) + γE) , (D.17)

where ψ(z) is the digamma function defined as

ψ(z) =
Γ′(z)
Γ(z)

. (D.18)

As x > 0, we can analytically continue ln(−x) = ln(x) + iπ in Eq. (D.17). Then, the
factor in front of ρεx reads

Γ(ε)(− ln(ρ) + 2ψ(1−ε)− ψ(ε) + ln(x) + iπ + γE) . (D.19)

We can drop the superfluous kinematic dependent terms ln(x) and ln(ρ) and apply
the same normalisation of the loop momentum measure to determine the integration
constant

c4(ε) = eεγE Γ(ε)(2ψ(1− ε)− ψ(ε) + iπ + γE)

= − 1
ε2 −

iπ
ε
+

5π2

12
+O(ε) ,

(D.20)

which agrees with the results found in Eq. (18.59).



B I B L I O G R A P H Y

[1] Georges Aad et al. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC.” In: Phys. Lett. B 716

(2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020. arXiv: 1207.7214
[hep-ex].

[2] G. Apollinari, O. Brüning, T. Nakamoto, and Lucio Rossi. “High Luminosity Large
Hadron Collider HL-LHC.” In: CERN Yellow Rep. 5 (2015). Ed. by G Apollinari,
I Béjar Alonso, O Brüning, M Lamont, and L Rossi, pp. 1–19. doi: 10.5170/CERN-
2015-005.1. arXiv: 1705.08830 [physics.acc-ph].

[3] ATLAS collaboration. “Standard Model Summary Plots February 2022.” In: (2022).

[4] Ilaria Brivio, Florian Goertz, and Gino Isidori. “Probing the Charm Quark Yukawa
Coupling in Higgs+Charm Production.” In: Phys. Rev. Lett. 115.21 (2015), p. 211801.
doi: 10.1103/PhysRevLett.115.211801. arXiv: 1507.02916 [hep-ph].

[5] Mathias Brucherseifer, Fabrizio Caola, and Kirill Melnikov. “On the NNLO QCD
corrections to single-top production at the LHC.” In: Phys. Lett. B 736 (2014),
pp. 58–63. doi: 10.1016/j.physletb.2014.06.075. arXiv: 1404.7116 [hep-ph].

[6] John Campbell, Tobias Neumann, and Zack Sullivan. “Single-top-quark pro-
duction in the t-channel at NNLO.” In: JHEP 02 (2021), p. 040. doi: 10.1007/
JHEP02(2021)040. arXiv: 2012.01574 [hep-ph].

[7] Tao Liu, Kirill Melnikov, and Alexander A. Penin. “Nonfactorizable QCD Effects
in Higgs Boson Production via Vector Boson Fusion.” In: Phys. Rev. Lett. 123.12

(2019), p. 122002. doi: 10.1103/PhysRevLett.123.122002. arXiv: 1906.10899
[hep-ph].

[8] Michelangelo Mangano. “Physics at the FCC-hh, a 100 TeV pp collider.” In: 3/2017

(June 2017). doi: 10.23731/CYRM-2017-003. arXiv: 1710.06353 [hep-ph].

[9] A. Abada et al. “FCC-hh: The Hadron Collider: Future Circular Collider Concep-
tual Design Report Volume 3.” In: Eur. Phys. J. ST 228.4 (2019), pp. 755–1107. doi:
10.1140/epjst/e2019-900087-0.

[10] H. Weyl. “Electron and Gravitation. 1. (In German).” In: Z. Phys. 56 (1929), pp. 330–
352. doi: 10.1007/BF01339504.

[11] Chen-Ning Yang and Robert L. Mills. “Conservation of Isotopic Spin and Isotopic
Gauge Invariance.” In: Phys. Rev. 96 (1954). Ed. by Jong-Ping Hsu and D. Fine,
pp. 191–195. doi: 10.1103/PhysRev.96.191.

[12] G Zweig. An SU3 model for strong interaction symmetry and its breaking. en. 2002.
doi: 10.17181/CERN-TH-412. url: http://cds.cern.ch/record/570209.

207

https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7214
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.5170/CERN-2015-005.1
https://arxiv.org/abs/1705.08830
https://doi.org/10.1103/PhysRevLett.115.211801
https://arxiv.org/abs/1507.02916
https://doi.org/10.1016/j.physletb.2014.06.075
https://arxiv.org/abs/1404.7116
https://doi.org/10.1007/JHEP02(2021)040
https://doi.org/10.1007/JHEP02(2021)040
https://arxiv.org/abs/2012.01574
https://doi.org/10.1103/PhysRevLett.123.122002
https://arxiv.org/abs/1906.10899
https://arxiv.org/abs/1906.10899
https://doi.org/10.23731/CYRM-2017-003
https://arxiv.org/abs/1710.06353
https://doi.org/10.1140/epjst/e2019-900087-0
https://doi.org/10.1007/BF01339504
https://doi.org/10.1103/PhysRev.96.191
https://doi.org/10.17181/CERN-TH-412
http://cds.cern.ch/record/570209


208 bibliography

[13] M. Gell-Mann. “A schematic model of baryons and mesons.” In: Physics Letters
8.3 (Feb. 1964), pp. 214–215. doi: 10.1016/s0031-9163(64)92001-3. url: https:
//doi.org/10.1016/s0031-9163(64)92001-3.

[14] M. Y. Han and Yoichiro Nambu. “Three Triplet Model with Double SU(3) Sym-
metry.” In: Phys. Rev. 139 (1965). Ed. by T. Eguchi, B1006–B1010. doi: 10.1103/
PhysRev.139.B1006.

[15] Richard P. Feynman. “Very High-Energy Collisions of Hadrons.” In: Phys. Rev.
Lett. 23 (24 1969), pp. 1415–1417. doi: 10.1103/PhysRevLett.23.1415. url:
https://link.aps.org/doi/10.1103/PhysRevLett.23.1415.

[16] S. L. Glashow, J. Iliopoulos, and L. Maiani. “Weak Interactions with Lepton-
Hadron Symmetry.” In: Phys. Rev. D 2 (7 1970), pp. 1285–1292. doi: 10.1103/
PhysRevD.2.1285. url: https://link.aps.org/doi/10.1103/PhysRevD.2.1285.

[17] Makoto Kobayashi and Toshihide Maskawa. “CP Violation in the Renormalizable
Theory of Weak Interaction.” In: Prog. Theor. Phys. 49 (1973), pp. 652–657. doi:
10.1143/PTP.49.652.

[18] H. Fritzsch, Murray Gell-Mann, and H. Leutwyler. “Advantages of the Color
Octet Gluon Picture.” In: Phys. Lett. B 47 (1973), pp. 365–368. doi: 10.1016/0370-
2693(73)90625-4.

[19] Abdus Salam and John Clive Ward. “Electromagnetic and weak interactions.” In:
Phys. Lett. 13 (1964), pp. 168–171. doi: 10.1016/0031-9163(64)90711-5.

[20] Steven Weinberg. “A Model of Leptons.” In: Phys. Rev. Lett. 19 (1967), pp. 1264–
1266. doi: 10.1103/PhysRevLett.19.1264.

[21] Gerard ’t Hooft and M. J. G. Veltman. “Regularization and Renormalization
of Gauge Fields.” In: Nucl. Phys. B 44 (1972), pp. 189–213. doi: 10.1016/0550-
3213(72)90279-9.

[22] S. L. Glashow, J. Iliopoulos, and L. Maiani. “Weak Interactions with Lepton-
Hadron Symmetry.” In: Phys. Rev. D 2 (1970), pp. 1285–1292. doi: 10.1103/
PhysRevD.2.1285.

[23] S. L. Glashow. “Partial Symmetries of Weak Interactions.” In: Nucl. Phys. 22 (1961),
pp. 579–588. doi: 10.1016/0029-5582(61)90469-2.

[24] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons.” In: Phys.
Rev. Lett. 13 (16 1964), pp. 508–509. doi: 10.1103/PhysRevLett.13.508. url:
https://link.aps.org/doi/10.1103/PhysRevLett.13.508.

[25] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons.” In: Phys. Rev. Lett. 13 (1964). Ed. by J. C. Taylor, pp. 321–323. doi:
10.1103/PhysRevLett.13.321.

https://doi.org/10.1016/s0031-9163(64)92001-3
https://doi.org/10.1016/s0031-9163(64)92001-3
https://doi.org/10.1016/s0031-9163(64)92001-3
https://doi.org/10.1103/PhysRev.139.B1006
https://doi.org/10.1103/PhysRev.139.B1006
https://doi.org/10.1103/PhysRevLett.23.1415
https://link.aps.org/doi/10.1103/PhysRevLett.23.1415
https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1103/PhysRevD.2.1285
https://link.aps.org/doi/10.1103/PhysRevD.2.1285
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1103/PhysRevD.2.1285
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.13.508
https://link.aps.org/doi/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321


bibliography 209

[26] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Thomas
Gehrmann, Franz Herzog, and Bernhard Mistlberger. “Higgs boson gluon–fusion
production at threshold in N3LO QCD.” In: Phys. Lett. B 737 (2014), pp. 325–328.
doi: 10.1016/j.physletb.2014.08.067. arXiv: 1403.4616 [hep-ph].

[27] Julien Baglio, Claude Duhr, Bernhard Mistlberger, and Robert Szafron. “Inclusive
production cross sections at N3LO.” In: JHEP 12 (2022), p. 066. doi: 10.1007/
JHEP12(2022)066. arXiv: 2209.06138 [hep-ph].

[28] Federico Buccioni, Fabrizio Caola, Herschel A. Chawdhry, Federica Devoto,
Matthias Heller, Andreas von Manteuffel, Kirill Melnikov, Raoul Röntsch, and
Chiara Signorile-Signorile. “Mixed QCD-electroweak corrections to dilepton
production at the LHC in the high invariant mass region.” In: JHEP 06 (2022),
p. 022. doi: 10.1007/JHEP06(2022)022. arXiv: 2203.11237 [hep-ph].

[29] John M. Campbell, R. Keith Ellis, and Francesco Tramontano. “Single top produc-
tion and decay at next-to-leading order.” In: Phys. Rev. D 70 (2004), p. 094012. doi:
10.1103/PhysRevD.70.094012. arXiv: hep-ph/0408158.

[30] Edmond L. Berger, Jun Gao, C. P. Yuan, and Hua Xing Zhu. “NNLO QCD
Corrections to t-channel Single Top-Quark Production and Decay.” In: Phys. Rev.
D 94.7 (2016), p. 071501. doi: 10.1103/PhysRevD.94.071501. arXiv: 1606.08463
[hep-ph].

[31] Edmond L. Berger, Jun Gao, and Hua Xing Zhu. “Differential Distributions for
t-channel Single Top-Quark Production and Decay at Next-to-Next-to-Leading
Order in QCD.” In: JHEP 11 (2017), p. 158. doi: 10.1007/JHEP11(2017)158. arXiv:
1708.09405 [hep-ph].

[32] Matteo Cacciari, Frédéric A. Dreyer, Alexander Karlberg, Gavin P. Salam, and
Giulia Zanderighi. “Fully Differential Vector-Boson-Fusion Higgs Production
at Next-to-Next-to-Leading Order.” In: Phys. Rev. Lett. 115.8 (2015). [Erratum:
Phys.Rev.Lett. 120, 139901 (2018)], p. 082002. doi: 10.1103/PhysRevLett.115.
082002. arXiv: 1506.02660 [hep-ph].

[33] J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover, and A. Huss. “Second-order
QCD effects in Higgs boson production through vector boson fusion.” In: Phys.
Lett. B 781 (2018), pp. 672–677. doi: 10.1016/j.physletb.2018.04.046. arXiv:
1802.02445 [hep-ph].

[34] Frédéric A. Dreyer and Alexander Karlberg. “Vector-Boson Fusion Higgs Pro-
duction at Three Loops in QCD.” In: Phys. Rev. Lett. 117.7 (2016), p. 072001. doi:
10.1103/PhysRevLett.117.072001. arXiv: 1606.00840 [hep-ph].

[35] Wojciech Bizon, Kirill Melnikov, and Jérémie Quarroz. “On the interference of ggH
and ccH Higgs production mechanisms and the determination of charm Yukawa
coupling at the LHC.” In: JHEP 06 (2021), p. 107. doi: 10.1007/JHEP06(2021)107.
arXiv: 2102.04242 [hep-ph].

https://doi.org/10.1016/j.physletb.2014.08.067
https://arxiv.org/abs/1403.4616
https://doi.org/10.1007/JHEP12(2022)066
https://doi.org/10.1007/JHEP12(2022)066
https://arxiv.org/abs/2209.06138
https://doi.org/10.1007/JHEP06(2022)022
https://arxiv.org/abs/2203.11237
https://doi.org/10.1103/PhysRevD.70.094012
https://arxiv.org/abs/hep-ph/0408158
https://doi.org/10.1103/PhysRevD.94.071501
https://arxiv.org/abs/1606.08463
https://arxiv.org/abs/1606.08463
https://doi.org/10.1007/JHEP11(2017)158
https://arxiv.org/abs/1708.09405
https://doi.org/10.1103/PhysRevLett.115.082002
https://doi.org/10.1103/PhysRevLett.115.082002
https://arxiv.org/abs/1506.02660
https://doi.org/10.1016/j.physletb.2018.04.046
https://arxiv.org/abs/1802.02445
https://doi.org/10.1103/PhysRevLett.117.072001
https://arxiv.org/abs/1606.00840
https://doi.org/10.1007/JHEP06(2021)107
https://arxiv.org/abs/2102.04242


210 bibliography

[36] G. Aad and al. “Combined measurements of Higgs boson production and decay
using up to 80 fb−1 of proton-proton collision data at

√
s = 13 TeV collected

with the ATLAS experiment.” In: Phys. Rev. D 101 (1 2020), p. 012002. doi:
10.1103/PhysRevD.101.012002. url: https://link.aps.org/doi/10.1103/
PhysRevD.101.012002.

[37] Georges Aad et al. “A search for the dimuon decay of the Standard Model Higgs
boson with the ATLAS detector.” In: Phys. Lett. B 812 (2021), p. 135980. doi:
10.1016/j.physletb.2020.135980. arXiv: 2007.07830 [hep-ex].

[38] Morad Aaboud et al. “Observation of H → bb̄ decays and VH production with
the ATLAS detector.” In: Phys. Lett. B 786 (2018), pp. 59–86. doi: 10.1016/j.
physletb.2018.09.013. arXiv: 1808.08238 [hep-ex].

[39] A. M. Sirunyan et al. “Observation of Higgs boson decay to bottom quarks.” In:
Phys. Rev. Lett. 121.12 (2018), p. 121801. doi: 10.1103/PhysRevLett.121.121801.
arXiv: 1808.08242 [hep-ex].

[40] Morad Aaboud et al. “Cross-section measurements of the Higgs boson decaying
into a pair of τ-leptons in proton-proton collisions at

√
s = 13 TeV with the ATLAS

detector.” In: Phys. Rev. D 99 (2019), p. 072001. doi: 10.1103/PhysRevD.99.072001.
arXiv: 1811.08856 [hep-ex].

[41] Albert M Sirunyan et al. “Search for the associated production of the Higgs boson
and a vector boson in proton-proton collisions at

√
s = 13 TeV via Higgs boson

decays to τ leptons.” In: JHEP 06 (2019), p. 093. doi: 10.1007/JHEP06(2019)093.
arXiv: 1809.03590 [hep-ex].

[42] Albert M. Sirunyan et al. “Search for the Higgs boson decaying to two muons
in proton-proton collisions at

√
s = 13 TeV.” In: Phys. Rev. Lett. 122.2 (2019),

p. 021801. doi: 10.1103/PhysRevLett.122.021801. arXiv: 1807.06325 [hep-ex].

[43] Gilad Perez, Yotam Soreq, Emmanuel Stamou, and Kohsaku Tobioka. “Prospects
for measuring the Higgs boson coupling to light quarks.” In: Phys. Rev. D
93.1 (2016), p. 013001. doi: 10.1103/PhysRevD.93.013001. arXiv: 1505.06689
[hep-ph].

[44] Joseph Walker and Frank Krauss. “Constraining the Charm-Yukawa coupling at
the Large Hadron Collider.” In: Phys. Lett. B 832 (2022), p. 137255. doi: 10.1016/
j.physletb.2022.137255. arXiv: 2202.13937 [hep-ph].

[45] Alexander L. Kagan, Gilad Perez, Frank Petriello, Yotam Soreq, Stoyan Stoynev,
and Jure Zupan. “Exclusive Window onto Higgs Yukawa Couplings.” In: Phys.
Rev. Lett. 114.10 (2015), p. 101802. doi: 10.1103/PhysRevLett.114.101802. arXiv:
1406.1722 [hep-ph].

[46] Tanmoy Modak and Rahul Srivastava. “Probing anomalous Higgs couplings in
H → ZV decays.” In: Mod. Phys. Lett. A 32.03 (2017), p. 1750004. doi: 10.1142/
S0217732317500043. arXiv: 1411.2210 [hep-ph].

https://doi.org/10.1103/PhysRevD.101.012002
https://link.aps.org/doi/10.1103/PhysRevD.101.012002
https://link.aps.org/doi/10.1103/PhysRevD.101.012002
https://doi.org/10.1016/j.physletb.2020.135980
https://arxiv.org/abs/2007.07830
https://doi.org/10.1016/j.physletb.2018.09.013
https://doi.org/10.1016/j.physletb.2018.09.013
https://arxiv.org/abs/1808.08238
https://doi.org/10.1103/PhysRevLett.121.121801
https://arxiv.org/abs/1808.08242
https://doi.org/10.1103/PhysRevD.99.072001
https://arxiv.org/abs/1811.08856
https://doi.org/10.1007/JHEP06(2019)093
https://arxiv.org/abs/1809.03590
https://doi.org/10.1103/PhysRevLett.122.021801
https://arxiv.org/abs/1807.06325
https://doi.org/10.1103/PhysRevD.93.013001
https://arxiv.org/abs/1505.06689
https://arxiv.org/abs/1505.06689
https://doi.org/10.1016/j.physletb.2022.137255
https://doi.org/10.1016/j.physletb.2022.137255
https://arxiv.org/abs/2202.13937
https://doi.org/10.1103/PhysRevLett.114.101802
https://arxiv.org/abs/1406.1722
https://doi.org/10.1142/S0217732317500043
https://doi.org/10.1142/S0217732317500043
https://arxiv.org/abs/1411.2210


bibliography 211

[47] Matthias König and Matthias Neubert. “Exclusive Radiative Higgs Decays as
Probes of Light-Quark Yukawa Couplings.” In: JHEP 08 (2015), p. 012. doi:
10.1007/JHEP08(2015)012. arXiv: 1505.03870 [hep-ph].

[48] Geoffrey T. Bodwin. “Factorization of the Drell-Yan Cross-Section in Perturbation
Theory.” In: Phys. Rev. D 31 (1985). [Erratum: Phys.Rev.D 34, 3932 (1986)], p. 2616.
doi: 10.1103/PhysRevD.34.3932.

[49] John C. Collins and Davison E. Soper. “The Theorems of Perturbative QCD.” In:
Ann. Rev. Nucl. Part. Sci. 37 (1987), pp. 383–409. doi: 10.1146/annurev.ns.37.
120187.002123.

[50] John C. Collins, Davison E. Soper, and George F. Sterman. “Factorization of Hard
Processes in QCD.” In: Adv. Ser. Direct. High Energy Phys. 5 (1989), pp. 1–91. doi:
10.1142/9789814503266_0001. arXiv: hep-ph/0409313.

[51] John C Collins. Cambridge monographs on particle physics, nuclear physics and cos-
mology: Foundations of perturbative QCD series number 32. Cambridge, England:
Cambridge University Press, Apr. 2011.

[52] R. Doria, J. Frenkel, and J. C. Taylor. “Counter Example to Nonabelian Bloch-
Nordsieck Theorem.” In: Nucl. Phys. B 168 (1980), pp. 93–110. doi: 10.1016/0550-
3213(80)90278-3.

[53] C. Di’Lieto, S. Gendron, I. G. Halliday, and Christopher T. Sachrajda. “A Counter
Example to the Bloch-Nordsieck Theorem in Nonabelian Gauge Theories.” In:
Nucl. Phys. B 183 (1981), pp. 223–250. doi: 10.1016/0550-3213(81)90554-X.

[54] J. Frenkel, J. G. M. Gatheral, and J. C. Taylor. “IS QUARK - ANTI-QUARK
ANNIHILATION INFRARED SAFE AT HIGH-ENERGY?” In: Nucl. Phys. B 233

(1984), pp. 307–335. doi: 10.1016/0550-3213(84)90418-8.

[55] S. Catani, M. Ciafaloni, and G. Marchesini. “Noncancelling Infrared Divergences
in QCD Coherent State.” In: Nucl. Phys. B 264 (1986), pp. 588–620. doi: 10.1016/
0550-3213(86)90500-6.

[56] Stefano Catani. “Violation of the Bloch-nordsieck Mechanism in General Non-
abelian Theories and SUSY QCD.” In: Z. Phys. C 37 (1988), p. 357. doi: 10.1007/
BF01578128.

[57] A. Andrasi, M. Day, R. Doria, J. Frenkel, and J. C. Taylor. “Soft Divergences in
Perturbative QCD.” In: Nucl. Phys. B 182 (1981), pp. 104–124. doi: 10.1016/0550-
3213(81)90460-0.

[58] C. A. Nelson. “Avoidance of Counter Example to Nonabelian Bloch-Nordsieck
Conjecture by Using Coherent State Approach.” In: Nucl. Phys. B 186 (1981),
pp. 187–204. doi: 10.1016/0550-3213(81)90099-7.

[59] Ikuo Ito. “Cancellation of Infrared Divergence and Initial Degenerate State in
QCD.” In: Prog. Theor. Phys. 65 (1981), p. 1466. doi: 10.1143/PTP.65.1466.

https://doi.org/10.1007/JHEP08(2015)012
https://arxiv.org/abs/1505.03870
https://doi.org/10.1103/PhysRevD.34.3932
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1146/annurev.ns.37.120187.002123
https://doi.org/10.1142/9789814503266_0001
https://arxiv.org/abs/hep-ph/0409313
https://doi.org/10.1016/0550-3213(80)90278-3
https://doi.org/10.1016/0550-3213(80)90278-3
https://doi.org/10.1016/0550-3213(81)90554-X
https://doi.org/10.1016/0550-3213(84)90418-8
https://doi.org/10.1016/0550-3213(86)90500-6
https://doi.org/10.1016/0550-3213(86)90500-6
https://doi.org/10.1007/BF01578128
https://doi.org/10.1007/BF01578128
https://doi.org/10.1016/0550-3213(81)90460-0
https://doi.org/10.1016/0550-3213(81)90460-0
https://doi.org/10.1016/0550-3213(81)90099-7
https://doi.org/10.1143/PTP.65.1466


212 bibliography

[60] Nobuo Yoshida. “Diagrammatical Display of the Counter Example to Nonabelian
Bloch-nordsieck Conjecture.” In: Prog. Theor. Phys. 66 (1981), p. 269. doi: 10.1143/
PTP.66.269.

[61] Nobuo Yoshida. “Cancellation of the Infrared Singularity through the Unitarity
Relation.” In: Prog. Theor. Phys. 66 (1981), p. 1803. doi: 10.1143/PTP.66.1803.

[62] T. Muta and Charles A. Nelson. “Role of Quark - Gluon Degenerate States in
Perturbative QCD.” In: Phys. Rev. D 25 (1982), p. 2222. doi: 10.1103/PhysRevD.
25.2222.

[63] B. F. L. Ward. “Quark masses and resummation in precision QCD theory.” In:
Phys. Rev. D 78 (2008), p. 056001. doi: 10.1103/PhysRevD.78.056001. arXiv:
0707.2101 [hep-ph].

[64] Fabrizio Caola, Kirill Melnikov, Davide Napoletano, and Lorenzo Tancredi. “Non-
cancellation of infrared singularities in collisions of massive quarks.” In: Phys. Rev.
D 103.5 (2021), p. 054013. doi: 10.1103/PhysRevD.103.054013. arXiv: 2011.04701
[hep-ph].

[65] Fabrizio Caola, Kirill Melnikov, and Raoul Röntsch. “Nested soft-collinear sub-
tractions in NNLO QCD computations.” In: Eur. Phys. J. C 77.4 (2017), p. 248. doi:
10.1140/epjc/s10052-017-4774-0. arXiv: 1702.01352 [hep-ph].

[66] Stefano Catani. “The Singular behavior of QCD amplitudes at two loop order.”
In: Phys. Lett. B 427 (1998), pp. 161–171. doi: 10.1016/S0370-2693(98)00332-3.
arXiv: hep-ph/9802439.

[67] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mas-
trolia, and E. Remiddi. “Two-loop QCD corrections to the heavy quark form-
factors: The Vector contributions.” In: Nucl. Phys. B 706 (2005), pp. 245–324. doi:
10.1016/j.nuclphysb.2004.10.059. arXiv: hep-ph/0406046.

[68] Stefano Frixione. “Initial conditions for electron and photon structure and frag-
mentation functions.” In: JHEP 11 (2019), p. 158. doi: 10.1007/JHEP11(2019)158.
arXiv: 1909.03886 [hep-ph].

[69] Guido Altarelli and G. Parisi. “Asymptotic Freedom in Parton Language.” In:
Nucl. Phys. B 126 (1977), pp. 298–318. doi: 10.1016/0550-3213(77)90384-4.

[70] Yuri L. Dokshitzer. “Calculation of the Structure Functions for Deep Inelastic
Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromo-
dynamics.” In: Sov. Phys. JETP 46 (1977), pp. 641–653.

[71] V. N. Gribov and L. N. Lipatov. “Deep inelastic e p scattering in perturbation
theory.” In: Sov. J. Nucl. Phys. 15 (1972), pp. 438–450.

[72] Johannes Reinking. “Infra-red Factorisation in Power Suppressed Contributions
to pp→ H + jetc at the LHC.” MA thesis. KIT, 2022.

https://doi.org/10.1143/PTP.66.269
https://doi.org/10.1143/PTP.66.269
https://doi.org/10.1143/PTP.66.1803
https://doi.org/10.1103/PhysRevD.25.2222
https://doi.org/10.1103/PhysRevD.25.2222
https://doi.org/10.1103/PhysRevD.78.056001
https://arxiv.org/abs/0707.2101
https://doi.org/10.1103/PhysRevD.103.054013
https://arxiv.org/abs/2011.04701
https://arxiv.org/abs/2011.04701
https://doi.org/10.1140/epjc/s10052-017-4774-0
https://arxiv.org/abs/1702.01352
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://doi.org/10.1016/j.nuclphysb.2004.10.059
https://arxiv.org/abs/hep-ph/0406046
https://doi.org/10.1007/JHEP11(2019)158
https://arxiv.org/abs/1909.03886
https://doi.org/10.1016/0550-3213(77)90384-4


bibliography 213

[73] J. A. M. Vermaseren. “New features of FORM.” In: (Oct. 2000). arXiv: math-
ph/0010025.

[74] J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga. “FORM version 4.0.” In:
Comput. Phys. Commun. 184 (2013), pp. 1453–1467. doi: 10.1016/j.cpc.2012.12.
028. arXiv: 1203.6543 [cs.SC].

[75] J. Kuipers, T. Ueda, and J. A. M. Vermaseren. “Code Optimization in FORM.” In:
Comput. Phys. Commun. 189 (2015), pp. 1–19. doi: 10.1016/j.cpc.2014.08.008.
arXiv: 1310.7007 [cs.SC].

[76] Ben Ruijl, Takahiro Ueda, and Jos Vermaseren. “FORM version 4.2.” In: (July
2017). arXiv: 1707.06453 [hep-ph].

[77] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. “The automated computation of tree-level
and next-to-leading order differential cross sections, and their matching to parton
shower simulations.” In: JHEP 07 (2014), p. 079. doi: 10.1007/JHEP07(2014)079.
arXiv: 1405.0301 [hep-ph].

[78] G Peter Lepage. “A new algorithm for adaptive multidimensional integration.” In:
Journal of Computational Physics 27.2 (May 1978), pp. 192–203. doi: 10.1016/0021-
9991(78)90004-9. url: https://doi.org/10.1016/0021-9991(78)90004-9.

[79] P. Nogueira. “Automatic Feynman Graph Generation.” In: Journal of Computational
Physics 105.2 (1993), pp. 279–289. doi: 10.1006/jcph.1993.1074. url: https:
//doi.org/10.1006/jcph.1993.1074.

[80] G. Passarino and M. J. G. Veltman. “One Loop Corrections for e+ e- Annihilation
Into mu+ mu- in the Weinberg Model.” In: Nucl. Phys. B 160 (1979), pp. 151–207.
doi: 10.1016/0550-3213(79)90234-7.

[81] Hiren H. Patel. “Package-X: A Mathematica package for the analytic calculation
of one-loop integrals.” In: Comput. Phys. Commun. 197 (2015), pp. 276–290. doi:
10.1016/j.cpc.2015.08.017. arXiv: 1503.01469 [hep-ph].
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