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Abstract

Feature selection is popular for obtaining small, interpretable, yet
highly accurate prediction models. Conventional feature-selection meth-
ods typically yield one feature set only, which might not suffice in some
scenarios. For example, users might be interested in finding alternative
feature sets with similar prediction quality, offering different explanations
of the data. In this article, we introduce alternative feature selection
and formalize it as an optimization problem. In particular, we define
alternatives via constraints and enable users to control the number and
dissimilarity of alternatives. We consider sequential as well as simulta-
neous search for alternatives. Next, we discuss how to integrate conven-
tional feature-selection methods as objectives. In particular, we describe
solver-based search methods to tackle the optimization problem. Fur-
ther, we analyze the complexity of this optimization problem and prove
NP-hardness. Additionally, we show that a constant-factor approxima-
tion exists under certain conditions and propose corresponding heuristic
search methods. Finally, we evaluate alternative feature selection in com-
prehensive experiments with 30 binary-classification datasets. We observe
that alternative feature sets may indeed have high prediction quality, and
we analyze factors influencing this outcome.

Keywords: feature selection, alternatives, constraints, mixed-integer program-
ming, explainability, interpretability, XAI

1 Introduction

Motivation Feature-selection methods are ubiquitous for a variety of rea-
sons. By reducing dataset dimensionality, they lower the computational cost
and memory requirements of prediction models. Next, prediction models may
generalize better without irrelevant and spurious predictors. While some model
types can implicitly select relevant features, others cannot. Finally, prediction
models may become simpler [63], improving interpretability.

Most conventional feature-selection methods only return one feature set [11].
These methods optimize a criterion of feature-set quality, e.g., prediction per-
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formance. However, besides the optimal feature set, there might be other, dif-
ferently composed feature sets with similar quality. Such alternative feature sets
are interesting for users, e.g., to obtain several diverse explanations. Alterna-
tive explanations can provide additional insights into predictions, enable users
to develop and test different hypotheses, appeal to different kinds of users, and
foster trust in the predictions [51, 110].

For example, in a dataset describing physical experiments, feature selection
may help to discover relationships between physical quantities. In particular,
highly predictive feature sets indicate which input quantities are strongly related
to the output quantity. Domain experts may use these feature sets to formulate
hypotheses on physical laws. However, if multiple alternative sets of similar
quality exist, further analyses and experiments may be necessary to reveal the
true underlying physical mechanism. Only knowing one predictive feature set
and using it as the only explanation is misleading in such a situation.

Problem statement This article addresses the problem of alternative fea-
ture selection, which we informally define as follows: Find multiple, sufficiently
different feature sets that optimize feature-set quality. We provide formal defi-
nitions in Section 3.2. This problem entails an interesting trade-off: Depending
on how many alternatives are desired and how different the alternatives should
be, one may have to compromise on quality. In particular, a higher number
of alternatives or a stronger dissimilarity requirement may necessitate selecting
more low-quality features in the alternatives.

Two points are essential for alternative feature selection, which we both
address in this article. First, one needs to formalize and quantify what an
alternative feature set is. In particular, users should be able to control the
number and dissimilarity of alternatives and hence the quality trade-off. Second,
one needs an approach to find alternative feature sets efficiently. Ideally, the
approach should be general, i.e., cover a broad range of conventional feature-
selection methods, given the variety of the latter [15, 63].

Related work While finding alternative solutions has already been addressed
extensively in the field of clustering [9], there is a lack of such approaches for
feature selection. Only a few feature-selection methods target at obtaining mul-
tiple, diverse feature sets [11]. In particular, techniques for ensemble feature
selection [94, 98] and statistically equivalent feature subsets [58] produce multi-
ple feature sets but not optimal alternatives. These approaches do not guarantee
the diversity of the feature sets, nor do they let users control diversity. In fields
related to feature selection, the goal of obtaining multiple, diverse solutions has
been studied as well, e.g., for subspace clustering [43, 74], subgroup discov-
ery [61], subspace search [104], or explainable-AI techniques [2, 50, 73, 93] like
counterfactuals. These approaches are not directly applicable or easily adapt-
able to feature selection, and most of them provide limited or no user control
over alternatives, as we will elaborate in Section 4.
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Contributions Our contribution is five-fold.
First, we formalize alternative feature selection as an optimization problem.

In particular, we define alternatives via constraints on feature sets. This ap-
proach is orthogonal to the feature-selection method so that users can choose
the latter according to their needs. This approach also allows integrating other
constraints on feature sets, e.g., to capture domain knowledge [6, 33]. Finally,
this approach lets users control the search for alternatives with two parame-
ters, i.e., the number of alternatives and a dissimilarity threshold. For multiple
alternatives, we consider sequential as well as simultaneous search.

Second, we discuss how to solve this optimization problem. To that end, we
describe how to integrate different categories of conventional feature-selection
methods in the objective function of the optimization problem. In particular, we
outline solver-based search methods for white-box and black-box optimization.

Third, we analyze the computational complexity of the optimization prob-
lem. We show NP-hardness, even for a simple notion of feature-set quality, i.e.,
univariate feature qualities, as used in filter feature selection.

Fourth, we propose heuristic search methods for univariate feature qualities.
We show that, under certain conditions, the optimization problem resides in the
complexity class APX , i.e., a constant-factor approximation exists.

Fifth, we evaluate alternative feature selection with comprehensive experi-
ments. In particular, we use 30 binary-classification datasets from the Penn Ma-
chine Learning Benchmarks (PMLB) [84, 92] and five feature-selection methods.
We focus our evaluation on the feature-set quality of the alternatives relative
to our search methods for alternatives and user parameters. Additionally, we
evaluate runtime. We publish all our code1 and experimental data2 online.

Experimental results We observe that several factors influence the quality
of alternatives, i.e., the dataset, feature-selection method, metric for feature-
set quality, search method, and user parameters for searching alternatives. As
expected, feature-set quality tends to decrease with an increasing number of
alternatives and an increasing dissimilarity threshold for alternatives. Thus,
these parameters allow users to control the trade-off between dissimilarity and
quality of alternatives. Also, no valid alternative may exist if the parameter
values are too strict. Runtime-wise, a solver-based sequential search for multiple
alternatives was significantly faster than a simultaneous one while yielding a
similar quality. Additionally, our heuristic search methods for univariate feature
qualities achieved a high quality within negligible runtime. Finally, we observe
that the prediction performance of feature sets may only weakly correlate with
the quality assigned by feature-selection methods. In particular, seemingly bad
alternatives regarding the latter might still be good regarding the former.

Outline Section 2 introduces notation and fundamentals. Section 3 describes
and analyzes alternative feature selection. Section 4 reviews related work. Sec-

1https://github.com/Jakob-Bach/Alternative-Feature-Selection
2https://doi.org/10.35097/1920
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tion 5 outlines our experimental design, while Section 6 presents the experimen-
tal results. Section 7 concludes. Appendix A contains supplementary materials.

2 Fundamentals

In this section, we introduce basic notation (cf. Section 2.1) and review different
methods to measure the quality of feature sets (cf. Section 2.2).

2.1 Notation

X ∈ Rm×n stands for a dataset in the form of a matrix. Each row is a data
object, and each column is a feature. F̃ = {f1, . . . , fn} is the corresponding set
of feature names. We assume that categorical features have already been made
numeric, e.g., via one-hot encoding. X·j ∈ Rm denotes the vector representation
of the j-th feature. y ∈ Y m represents the prediction target with domain Y ,
e.g., Y = {0, 1} for binary classification or Y = R for regression.

In feature selection, one makes a binary decision sj ∈ {0, 1} for each feature,
i.e., either selects it or not. The vector s ∈ {0, 1}n combines all these selection
decisions and yields the selected feature set Fs = {fj | sj = 1} ⊆ F̃ . To simplify
notation, we drop the subscript s in definitions where we do not explicitly refer
to the value of s but only the set F . The function Q(s,X, y) returns the quality
of such a feature set. Without loss of generality, we assume that this function
should be maximized.

2.2 Measuring Feature (Set) Quality

There are different ways to evaluate feature-set quality Q(s,X, y). We only give
a short overview here; see [15, 63, 83] for comprehensive studies and surveys
of feature selection. Also, note that we assume a supervised feature-selection
scenario, i.e., feature-set quality depending on a prediction target y. In prin-
ciple, our definitions of alternatives also apply to an unsupervised scenario.
Since the prediction target only appears in the function Q(s,X, y), one could
replace Q(s,X, y) with Q(s,X), i.e., an unsupervised notion of quality.

A conventional categorization of feature-selection methods distinguishes be-
tween filter, wrapper, and embedded methods [37].

Filter methods Filter methods evaluate feature sets without training a pre-
diction model. Univariate filters assess each feature independently. They often
assign a score to each feature, e.g., the absolute Pearson correlation or the mu-
tual information between a feature and the prediction target. Such methods
ignore potential interactions between features, e.g., redundancies. In contrast,
multivariate filters evaluate feature sets as a whole. Such methods often combine
a measure of feature relevance with a measure of feature redundancy. Examples
include CFS [38, 39], FCBF [117], and mRMR [87].

4



Wrapper methods Wrapper methods [53] evaluate feature sets by training
prediction models with them and measuring prediction quality. They employ
a generic search strategy to iterate over candidate feature sets, e.g., genetic
algorithms. Feature-set quality is a black-box function in this search.

Embedded methods Embedded methods train prediction models with built-
in feature selection, e.g., decision trees [13] or random forests [12]. Thus, the
criterion for feature-set quality is model-specific. For example, tree-based mod-
els often use information gain or the Gini index to select features during training.

Post-hoc feature-importance methods Apart from conventional feature
selection, there are various methods that assess feature importance after training
a model. These methods range from local explanation methods like LIME [89]
or SHAP [65] to global importance methods like permutation importance [12]
or SAGE [20]. In particular, assessing feature importance plays a crucial role in
the field of machine-learning interpretability [14, 70].

3 Alternative Feature Selection

In this section, we present the problem of and approaches for alternative feature
selection. First, we define the overall structure of the optimization problem, i.e.,
objective and constraints (cf. Section 3.1). Second, we formalize the notion of
alternatives via constraints (cf. Section 3.2). Third, we discuss objective func-
tions corresponding to different feature-set quality measures from Section 2.2
and describe how to solve the resulting optimization problem (cf. Section 3.3).
Fourth, we analyze the computational complexity of the optimization problem
(cf. Section 3.4). Fifth, we propose and analyze heuristic search methods for
the optimization problem with univariate feature qualities (cf. Section 3.5).

3.1 Optimization Problem

Alternative feature selection has two goals. First, the quality of an alternative
feature set should be high. Second, an alternative feature set should differ from
one or more other feature set(s). There are several ways to combine these two
goals in an optimization problem:

First, one can consider both goals as objectives, obtaining an unconstrained
multi-objective problem. Second, one can treat feature-set quality as objective
and enforce alternatives with constraints. Third, one can consider being alter-
native as objective and constrain feature-set quality, e.g., with a lower bound.
Fourth, one can define constraints for both, feature-set quality and being alter-
native, searching for feasible solutions instead of optimizing.

We stick to the second formulation, i.e., optimizing feature-set quality sub-
ject to being alternative. This formulation has the advantage of keeping the
original objective function of feature selection. Thus, users do not need to spec-
ify a range or a threshold on feature-set quality but can control how alternative
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the feature sets must be instead. We obtain the following optimization problem
for a single alternative feature set Fs:

max
s

Q(s,X, y)

subject to: Fs being alternative
(1)

In the following, we discuss different objective functions Q(s,X, y) and suitable
constraints for being alternative. Additionally, many feature-selection methods
also limit the feature-set size |Fs| to a user-defined value k ∈ N, which adds a
further, simple constraint to the optimization problem.

3.2 Constraints – Defining Alternatives

In this section, we formalize alternative feature sets. First, we discuss the base
case where an individual feature set is an alternative to another one (cf. Sec-
tion 3.2.1). Second, we extend this notion to multiple alternatives, considering
sequential and simultaneous search as two different search problems (cf. Sec-
tion 3.2.2).

Our notion of alternatives is independent of the feature-selection method.
We provide two parameters, i.e., a dissimilarity threshold τ and the number of
alternatives a, allowing users to control the search for alternatives.

3.2.1 Single Alternative

We consider a feature set an alternative to another feature set if it differs suf-
ficiently. Mathematically, we express this notion with a set-dissimilarity mea-
sure [19, 26]. These measures typically assess how strongly two sets overlap
and relate this to their sizes. E.g., a well-known set-dissimilarity measure is the
Jaccard distance, which is defined as follows for the feature sets F ′ and F ′′:

dJacc(F
′, F ′′) = 1− |F

′ ∩ F ′′|
|F ′ ∪ F ′′|

= 1− |F ′ ∩ F ′′|
|F ′|+ |F ′′| − |F ′ ∩ F ′′|

(2)

In this article, we use a dissimilarity measure based on the Dice coefficient:

dDice(F
′, F ′′) = 1− 2 · |F ′ ∩ F ′′|

|F ′|+ |F ′′|
(3)

Generally, we do not have strong requirements on the set-dissimilarity mea-
sure d(·). Our definitions of alternatives only assume symmetry, i.e., d(F ′, F ′′) =
d(F ′′, F ′), and non-negativity, i.e., d(F ′, F ′′) ≥ 0, though one could adapt them
to other conditions as well. In particular, the dissimilarity measure does not
need to be a metric but can also be a semi-metric [112] like dDice(·).

We leverage the set-dissimilarity measure for the following definition:

Definition 1 (Single alternative). Given a symmetric, non-negative set-dissimi-
larity measure d(·) and a dissimilarity threshold τ ∈ R≥0, a feature set F ′ is an
alternative to a feature set F ′′ (and vice versa) if d(F ′, F ′′) ≥ τ .
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The threshold τ controls how alternative the feature sets must be and de-
pends on the dataset as well as user preferences. In particular, requiring strong
dissimilarity may cause a significant drop in feature-set quality. Some datasets
may contain many features of similar utility, thereby enabling many alternatives
of similar quality, while predictions on other datasets may depend on a few key
features. Only users can decide which drop in feature-set quality is acceptable
as a trade-off for obtaining alternatives. Thus, we leave τ as a user parameter.
In case the set-dissimilarity measure d(·) is normalized to [0, 1], like the Dice
dissimilarity (cf. Equation 3) or Jaccard distance (cf. Equation 2), the interpre-
tation of τ is user-friendly: Setting τ = 0 allows identical alternatives, while
τ = 1 implies zero overlap.

If the choice of τ is unclear a priori, users can try out different values and
compare the resulting feature-set quality. One systematic approach is a binary
search: Start with the mid-range value of τ = 0, i.e., 0.5 for τ ∈ [0, 1]. If the
quality of the resulting alternative is too low, decrease τ to 0.25, i.e., allow more
similarity. If the quality of the resulting alternative is acceptably high, increase
τ to 0.75, i.e., check a more dissimilar feature set. Continue this procedure till
an alternative with an acceptable quality-dissimilarity trade-off is found.

When implementing Definition 1, the following proposition gives way to
using a broad range of solvers to tackle the related optimization problem:

Proposition 1 (Linearity of constraints for alternatives). Using the Dice dis-
similarity (cf. Equation 3), one can express alternative feature sets (cf. Defini-
tion 1) with 0-1 integer linear constraints.

Proof. We re-arrange terms in the Dice dissimilarity (cf. Equation 3) to get rid
of the quotient of feature-set sizes:

dDice(F
′, F ′′) = 1− 2 · |F ′ ∩ F ′′|

|F ′|+ |F ′′|
≥ τ

⇔ |F ′ ∩ F ′′| ≤ 1− τ

2
· (|F ′|+ |F ′′|)

(4)

Next, we express set sizes in terms of the feature-selection vector s:

|Fs| =
n∑

j=1

sj

|Fs′ ∩ Fs′′ | =
n∑

j=1

s′j · s′′j

(5)

Finally, we replace each product s′j · s′′j with an auxiliary variable tj , bound by
additional constraints, to linearize it [71]:

tj ≤s′j
tj ≤s′′j

1 + tj ≥s′j + s′′j

tj ∈{0, 1}

(6)
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Combining Equations 4, 5, and 6, we obtain a set of constraints that only involve
linear expressions of binary decision variables. In particular, there are only
sum expressions and multiplications with constants but no products between
variables. If one feature set is known, i.e., either s′ or s′′ is fixed, Equation 5 only
multiplies variables with constants and is already linear without Equation 6.

Given a suitable objective function, which we discuss later, linear constraints
allow using a broad range of solvers. As an alternative formulation, one could
also encode such constraints into propositional logic (SAT) [105].

If the set sizes |F ′| and |F ′′| are constant, e.g., user-defined, Equation 4
implies that the threshold τ has a linear relationship to the maximum number of
overlapping features |F ′∩F ′′|. This correspondence eases the interpretation of τ
and makes us use the Dice dissimilarity in the following. In contrast, the Jaccard
distance exhibits a non-linear relationship between τ and the overlap size, which
follows from re-arranging Equation 2 in combination with Definition 1:

dJacc(F
′, F ′′) = 1− |F ′ ∩ F ′′|

|F ′|+ |F ′′| − |F ′ ∩ F ′′|
≥ τ

⇔ |F ′ ∩ F ′′| ≤ 1− τ

2− τ
· (|F ′|+ |F ′′|)

(7)

Further, if |F ′| = |F ′′|, as in our experiments, the Dice dissimilarity (cf. Equa-
tion 4) becomes identical to several other set-dissimilarity measures [26]. The
parameter τ then directly expresses which fraction of features in one set needs
to differ from the other set and vice versa, which further eases interpretability:

dDice(F
′, F ′′) ≥ τ ⇔ |F ′ ∩ F ′′| ≤ (1− τ) · |F ′| = (1− τ) · |F ′′| (8)

Thus, if users are uncertain how to choose τ and |F ′| is reasonably small, they
can try out all values of τ ∈ {i/|F ′|} with i ∈ {1, . . . , |F ′|}. In particular, these
|F ′| unique values of τ suffice to produce all distinct solutions that one could
obtain with an arbitrary τ ∈ (0, 1].

3.2.2 Multiple Alternatives

If users desire multiple alternative feature sets rather than only one, we can
determine these alternatives sequentially or simultaneously. The number of
alternatives a ∈ N0 is a parameter to be set by the user. The overall number of
feature sets is a + 1 since we deem one feature set the ‘original’ one. Table 1
compares the sizes of the optimization problems for these two search problems.

Sequential-search problem In the sequential-search problem, users obtain
several alternatives iteratively, with one feature set per iteration. We constrain
this new set to be an alternative to all previously found ones, which are given
in the set F:

Definition 2 (Sequential alternative). A feature set F ′′ is an alternative to a
set of feature sets F (and vice versa) if F ′′ is a single alternative (cf. Definition 1)
to each F ′ ∈ F.
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Sequential search
Simultaneous search

Alternative i Summed

Decision variables s n (a+ 1) · n (a+ 1) · n
Linearization variables t 0 0 a·(a+1)·n

2

Alternative constraints i a·(a+1)
2

a·(a+1)
2

Linearization constraints 0 0 3·a·(a+1)·n
2

Table 1: Size of the optimization problem by search problem, for a alternatives
(a+ 1 feature sets overall) and n features.

One could also think of less strict constraints, e.g., requiring only the average
dissimilarity to all previously found feature sets to pass a threshold τ . However,
definitions like the latter may allow some feature sets to overlap heavily or even
be identical if other feature sets are very dissimilar. Thus, we require pairwise
dissimilarity in Definition 2. Combining Equation 1 with Definition 2, we obtain
the following optimization problem for each iteration of the search:

max
s

Q(s,X, y)

subject to: ∀F ′ ∈ F : d(Fs, F
′) ≥ τ

(9)

The objective function remains the same as for a single alternative (|F| = 1),
i.e., we only optimize the quality of one feature set at once. In particular, with
F = ∅ in the first iteration, we optimize for the ‘original’ feature set, which is the
same as in conventional feature selection without constraints for alternatives.
Thus, the number of variables in the optimization problem is independent of the
number of alternatives a. Instead, we solve the optimization problem repeatedly;
each alternative only adds one constraint to the problem. As we always compare
only one variable feature set to existing, constant feature sets, we also do not
need to introduce auxiliary variables as in Equation 6. Thus, we expect the
runtime of exact, e.g., solver-based, sequential search to scale well with the
number of alternatives. Further runtime gains may arise if the solver keeps a
state between iterations and can warm-start.

However, as the solution space becomes narrower over iterations, feature-set
quality can deteriorate with each further alternative. In particular, multiple
alternatives from the same sequential search might differ significantly in their
quality. As a remedy, users can decide after each iteration if the feature-set
quality is already unacceptably low or if another alternative should be found.
In particular, users do not need to define the number of alternatives a a priori.

Simultaneous-search problem In the simultaneous-search problem, users
obtain multiple alternatives at once, so they need to decide on the number of
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alternatives a beforehand. We use pairwise dissimilarity constraints for alter-
natives again:

Definition 3 (Simultaneous alternatives). A set of feature sets F contains si-
multaneous alternatives if each feature set F ′ ∈ F is a single alternative (cf. Def-
inition 1) to each other set F ′′ ∈ F, F ′ ̸= F ′′.

Combining Equation 1 with Definition 3, we obtain the following optimiza-
tion problem for a+ 1 feature sets:

max
s(0),...,s(a)

agg
i∈{0,...,a}

Q(s(i), X, y)

subject to: ∀i1, i2 ∈ {0, . . . , a}, i1 ̸= i2 : d(Fs(i1) , Fs(i2)) ≥ τ
(10)

In contrast to the sequential case (cf. Equation 9), the problem requires a + 1
instead one decision vector s, and a modified objective function. The opera-
tor agg(·) defines how to aggregate the feature-set qualities of the alternatives.
In our experiments, we consider the sum as well as the minimum to instan-
tiate agg(·), which we refer to as sum-aggregation and min-aggregation. The
latter explicitly fosters balanced feature-set qualities. Appendix A.1 discusses
these two aggregation operators and additional ideas for balancing qualities in
detail.

Runtime-wise, we expect exact simultaneous search to scale worse with the
number of alternatives than exact sequential search, as it tackles one large op-
timization problem instead of multiple smaller ones. In particular, the number
of decision variables increases linearly with the number of alternatives a. Also,
for each feature and each pair of alternatives, we need to introduce an auxiliary
variable if we want to obtain linear constraints (cf. Equation 6 and Table 1).

In contrast to the greedy definition of sequential search, simultaneous search
optimizes alternatives globally. Thus, the simultaneous procedure should yield
the same or higher average feature-set quality for the same number of alterna-
tives. Also, the quality can be more evenly distributed over the alternatives,
as opposed to the dropping quality over the course of the sequential procedure.
However, increasing the number of alternatives still has a negative effect on the
average feature-set quality. Further, as opposed to the sequential procedure,
there are no intermediate steps where users could interrupt the search.

3.3 Objective Functions – Finding Alternatives

In this section, we discuss how to find alternative feature sets. In particular,
we describe how to solve the optimization problem from Section 3.1 for the
different categories of feature-set quality measures from Section 2.2. We distin-
guish between white-box optimization (cf. Section 3.3.1), black-box optimization
(cf. Section 3.3.2), and embedding alternatives (cf. Section 3.3.3).

3.3.1 White-Box Optimization

If the feature-set quality function Q(s,X, y) is sufficiently simple, one can tackle
alternative feature selection with a suitable solver for white-box optimization
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problems. We already showed that our notion of alternative feature sets results
in 0-1 integer linear constraints (cf. Proposition 1). We now discuss several
feature-selection methods with objectives that admit formulating a 0-1 integer
linear problem. Appendix A.2 describes feature-selection methods we did not
include in our experiments.

Univariate filter feature selection For univariate filter feature selection,
the objective function is linear by default. In particular, these methods decom-
pose the quality of a feature set into the qualities of the individual features:

max
s

Quni(s,X, y) =

n∑
j=1

q(X·j , y) · sj (11)

Here, q(·) typically is a bivariate dependency measure, e.g., mutual informa-
tion [56] or the absolute value of Pearson correlation, to quantify the relationship
between one feature and the prediction target.

For this objective, Appendix A.3 specifies the complete optimization prob-
lem, including the constraints for alternatives. Appendix A.4 describes how to
potentially speed up optimization by leveraging the monotonicity of the objec-
tive. Section 3.5 proposes heuristic search methods for this objective.

Instead of an integer problem, one could formulate a weighted partial maxi-
mum satisfiability (MaxSAT) problem [5, 62], i.e., a weighted Max One prob-
lem [48]. In particular, Equation 11 is a sum of weighted binary variables,
and the constraints for alternatives can be turned into SAT formulas with a
cardinality encoding [101] for the sum expressions.

Post-hoc feature importance Technically, one can also insert values of
post-hoc feature-importance scores into Equation 11. For example, one can
pre-compute permutation importance [12] or SAGE scores [20] for each feature
and use them as univariate feature qualities q(X·j , y). However, such post-hoc
importance scores typically evaluate the quality of each feature in the presence
of other features. For example, a feature may only be important in subsets
where another feature is present, due to feature interaction, but unimportant
otherwise, and a post-hoc importance method like SHAP [65] may reflect both
these aspects. In contrast, Equation 11 implicitly assumes feature independence
and cannot adapt importance scores depending on whether other features are
selected. Thus, treating pre-computed post-hoc importance scores as univariate
feature qualities in the optimization objective can serve as a heuristic but may
not faithfully represent the actual feature qualities in a particular selected set.

FCBF The Fast Correlation-Based Filter (FCBF) [117] bases on the notion
of predominance: Each selected feature’s correlation with the prediction target
must exceed a user-defined threshold as well as the correlation of each other
selected feature with the given one. While the original FCBF uses a heuristic
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search to find predominant features, we propose a formulation as a constrained
optimization problem to enable a white-box optimization for alternatives:

max
s

QFCBF(s,X, y) =

n∑
j=1

q(X·j , y) · sj

subject to: ∀j1, j2 ∈ {1, . . . , n}, j1 ̸= j2, (∗) : sj1 + sj2 ≤ 1

with (∗): q(X·j1 , y) ≤ q(X·j2 , X·j1)

(12)

We drop the original FCBF’s threshold on feature-target correlation and max-
imize the latter instead, as in the univariate-filter case. This change could
produce large feature sets that contain many low-quality features. As a coun-
termeasure, one can constrain the feature-set sizes, as we do in our experiments.
Additionally, one could also filter out the features with low target correlation
before optimization. Further, we keep FCBF’s constraints on feature-feature
correlation. In particular, we prevent the simultaneous selection of two features
if the correlation between them is at least as high as one of the features’ correla-
tion to the target. Since the condition q(X·j1 , y) ≤ q(X·j2 , X·j1) in Equation 12
does not depend on the decision variables s, one can check whether it holds
before formulating the optimization problem and add the corresponding linear
constraint sj1 + sj2 ≤ 1 only for feature pairs where it is needed.

mRMR Minimal Redundancy Maximum Relevance (mRMR) [87] combines
two criteria, i.e., feature relevance and feature redundancy. Relevance corre-
sponds to the dependency between features and prediction target, which should
be maximized, as for univariate filters. Redundancy, in turn, corresponds to
the dependency between features, which should be minimized. Both terms are
averaged over the selected features. Using a bivariate dependency measure q(·),
the objective is maximizing the following difference between relevance and re-
dundancy:

max
s

QmRMR(s,X, y) =

∑n
j=1 q(X·j , y) · sj∑n

j=1 sj

−
∑n

j1=1

∑n
j2=1 q(X·j1 , X·j2) · sj1 · sj2

(
∑n

j=1 sj)
2

(13)

If one knows the feature-set size
∑n

j=1 sj to be a constant k, the denominators of
both fractions are constant, so the objective leads to a quadratic-programming
problem [82, 91]. If one additionally replaces each product terms sj1 · sj2 ac-
cording to Equation 6, the problem becomes linear. However, there is a more
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efficient linearization [78, 80], which we use in our experiments:

max
s

QmRMR(s,X, y) =

∑n
j=1 q(X·j , y) · sj

k
−

∑n
j=1 zj

k · (k − 1)

subject to: ∀j1 : Aj1 =
∑
j2 ̸=j1

q(X·j1 , X·j2) · sj2

∀j : zj ≥M · (sj − 1) +Aj

∀j : zj ∈ R≥0

with indices: j, j1, j2 ∈ {1, . . . , n}

(14)

Here, Aj1 is the sum of all redundancy terms related to the feature with index j1,
i.e., the summed dependency value between this feature and all other selected
features. Thus, one can use one real-valued auxiliary variable zj for each feature
instead of one new binary variable for each pair of features. Since redundancy
should be minimized, zj assumes the value of Aj with equality if the feature
with index j is selected (sj = 1) and is zero otherwise (sj = 0). To this end, M
is a large positive value that deactivates the constraint zj ≥ Aj if sj = 0.

Since Equation 14 assumes the feature-set size k ∈ N to be user-defined
before optimization, it requires fewer auxiliary variables and constraints than
the more general formulation in [78, 80]. Additionally, in accordance with [82],
we assign a value of zero to the self-redundancy terms q(X·j , X·j), effectively
excluding them from the objective function. Thus, the redundancy term uses
k · (k − 1) instead of k2 for averaging.

3.3.2 Black-Box Optimization

If feature-set quality does not have an expression suitable for white-box opti-
mization, one has to treat it as a black-box function when searching for alter-
natives. This situation applies to wrapper feature-selection methods, which use
prediction models to assess feature-set quality. One can optimize such black-
box functions with search heuristics that systematically iterate over candidate
feature sets. However, search heuristics often assume an unconstrained search
space and may propose candidate feature sets that are not alternative enough.
We see four ways to address this issue:

Enumerating feature sets Instead of using a search heuristic, one may enu-
merate all feature sets that are alternative enough. E.g., one can iterate over
all feature sets and sort out those violating the constraints or use a solver to
enumerate all valid alternatives directly. Both approaches are usually very in-
efficient, as there can be a vast number of alternatives.

Sampling feature sets Instead of considering all possible alternatives, one
can also sample a limited number. E.g., one could sample from all feature sets
but remove samples that are not alternative enough. However, if the number
of valid alternatives is small, this approach might need many samples. One
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could also sample with the help of a solver. However, uniform sampling from
a constrained space is a computationally hard problem, possibly harder than
determining if a valid solution exists or not [28].

Multi-objective optimization If one phrases alternative feature selection
as a multi-objective problem (cf. Section 3.1), there are no hard constraints
anymore, and one could apply a standard multi-objective black-box search pro-
cedure. However, as explained in Section 3.1, we decided to pursue a single-
objective formulation with constraints.

Adapting search One can adapt an existing search heuristic to consider the
constraints for alternatives. One idea is to prevent the search from producing
feature sets that violate the constraints or at least make the latter less likely, e.g.,
with a penalty in the objective function. Another idea is to ‘repair’ feature sets
in the search that violate constraints, e.g., replacing them with the most similar
feature sets satisfying the constraints. Such solver-assisted search approaches
are common in search procedures for software feature models [35, 42, 111]. One
could also apply solver-based repair to sampled feature sets.

Greedy Wrapper For wrapper feature selection in our experiments, we use
a method that falls into the category adapting search. In particular, we propose
a novel greedy hill-climbing procedure, displayed in Algorithm 1. Unlike stan-
dard hill climbing for feature selection [53], our procedure observes constraints.
First, the algorithm uses a solver to find one solution that is alternative enough,
given the current constraints (Line 1). Thus, it has a valid starting point and
can always return a solution unless there are no valid solutions at all. Next, it
tries ‘swapping’ two features, i.e., selecting the features if they were deselected
or deselecting them if they were selected (Line 7). For simultaneous search, we
swap the affected two features in each alternative feature set. This swap might
violate cardinality constraints as well as constraints for alternatives. Thus, the
algorithm calls the solver again to find one solution S′ containing this swap
and satisfying the other constraints. If such a solution S′ exists and its qual-
ity Q(S′, X, y) is higher than the one of the current solution, the algorithm
proceeds with the new solution, attempting again to swap the first and second
features (Lines 10–12). Otherwise, it tries to swap the next pair of features
(Lines 13–17). Specifically, we assess only one solution per swap before pro-
ceeding instead of exhaustively enumerating and evaluating all valid solutions
involving the swap.

The algorithm terminates if no swap leads to an improvement or a fixed
number of iterations max iters is reached (Line 6). Due to its heuristic nature,
the algorithm might get stuck in local optima rather than yielding the global
optimum. In particular, max iters only is an upper bound on the iteration
count since the algorithm can stop earlier. We define the iteration count as the
number of invocations of the solver, i.e., attempts to generate valid alternatives.
This number also bounds the number of prediction models trained. However,
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Algorithm 1: Greedy Wrapper for alternative feature selection.

Input: Dataset X with n features,
Prediction target y,
Feature-set quality function Q(·),
Constraints for alternatives Cons,
Maximum number of iterations max iters

Output: Set of feature-selection decision vectors S = {s(0), . . . , s(a)}
1 S ← Solve(Cons) // Initial alternatives

2 iters← 1 // Number of iterations = solver calls

3 if S = ∅ then return ∅ // No valid alternatives exist

4 j1 ← 1 // Indices of features to be swapped

5 j2 ← j1 + 1
6 while iters < max iters and j1 < n do

7 S′ ← Solve(Cons ∪ {¬s(i)j1
,¬s(i)j2

| i ∈ {0, . . . , a}}) // Try swap

8 iters← iters+ 1
9 if S′ ̸= ∅ and Q(S′, X, y) > Q(S,X, y) then // Swap if improved

10 S ← S′

11 j1 ← 1 // Reset swap-feature indices

12 j2 ← j1 + 1

13 else if j2 < n then // Try next swap; advance one index

14 j2 ← j2 + 1

15 else // Try next swap; advance both indices

16 j1 ← j1 + 1
17 j2 ← j1 + 1

18 return S

we only train a model for valid solutions (Line 9), and not all solver invocations
may yield one.

3.3.3 Embedding Alternatives

If feature selection is embedded into a prediction model, there is no general
approach for finding alternative feature sets. Instead, one would need to embed
the search for alternatives into model training as well. Thus, we leave the
formulation of specific approaches open for future work. E.g., one could adapt
the training of decision trees to not split on a feature if the resulting feature set
of the tree was too similar to a given feature set. As another example, there are
various formal encodings of prediction models, e.g., as SAT formulas [77, 96,
116], where ‘training’ already uses a solver. In such representations, one may
directly add constraints for alternatives.
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3.4 Computational Complexity

In this section, we analyze the time complexity of alternative feature selection.
In particular, we study the scalability regarding the number of features n ∈ N,
also considering the feature-set size k ∈ N and the number of alternatives a ∈ N0.
Section 3.4.1 discusses exhaustive search, which works for arbitrary feature-
selection methods, while Section 3.4.2 examines the optimization problem with
univariate feature qualities (cf. Equation 11). Section 3.4.3 summarizes key
results.

3.4.1 Exhaustive Search for Arbitrary Feature-Selection Methods

An exhaustive search over the entire search space is the arguably simplest though
inefficient approach to finding alternative feature sets. This approach provides
an upper bound for the time complexity of a runtime-optimal search algorithm.
In this section, we assume unit costs for elementary arithmetic operations like
addition, multiplication, and comparison of two numbers.

Conventional feature selection In general, the search space of feature se-
lection grows exponentially with n, even without alternatives. In particular,
there are 2n− 1 possibilities to form a single non-empty feature set of arbitrary
size. For a fixed feature-set size k, there are

(
n
k

)
= n!

k!·(n−k)! ≤ nk solution

candidates. In an exhaustive search, we iterate over these feature sets:

Proposition 2 (Complexity of exhaustive conventional feature selection). Ex-
haustive search for one feature set of size k from n features has a time complexity
of O(nk) without the cost of evaluating the objective function.

Evaluating the objective means computing the quality of each solution can-
didate so that we can determine the best feature set in the end. The cost of this
step depends on the feature-selection method but should usually be polynomial
in n. Even better, since feature-set quality typically only depends on selected
features rather than unselected ones, this cost may be polynomial in k ≪ n.

If we assume k ≪ n, k ∈ O(1), i.e., k being a small constant, independent
from n, then the complexity in Proposition 2 is polynomial rather than exponen-
tial in n. This assumption makes sense for feature selection, where one typically
wants to obtain a small feature set from a high-dimensional dataset. However,
the exponent k may still render an exhaustive search practically infeasible. In
terms of parameterized complexity, the problem resides in class XP since the
complexity term has the form O(f(k) · ng(k)) [25], here with parameter k and
functions f(k) = 1, g(k) = k.

Sequential search Like conventional feature selection, sequential search for
alternatives (cf. Definition 2) optimizes feature sets one at a time. However,
not all size-k feature sets are valid anymore. In particular, the constraints for
alternatives put an extra cost on each solution candidate. Constraint checking
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involves iterating over all existing feature sets and features to compute the dis-
similarity between sets (cf. Equation 19). This procedure entails a cost of O(a·n)
for each new alternative and O(a2 ·n) for the whole sequential search with a al-
ternatives. Combining this cost with Proposition 2, we obtain the following
proposition:

Proposition 3 (Complexity of exhaustive sequential search). Exhaustive se-
quential search (cf. Equation 9) for a ∈ N alternative feature sets of size k from
n features has a time complexity of O(a2 · nk+1) without the cost of evaluating
the objective function.

Thus, the runtime resides in the parameterized complexity class XP with
the parameter k and remains polynomial if k ∈ O(1) and a ∈ O(nc), c ∈ O(1),
i.e., k is a small constant and a is at most polynomial in n.

Simultaneous search The simultaneous-search problem (cf. Definition 3) en-
larges the search space since it optimizes a + 1 feature sets at once. Thus, an
exhaustive search over size-k feature sets iterates over O((nk)a+1) = O(nk·(a+1))
solution candidates. Including the cost of constraint checking, we arrive at the
following proposition:

Proposition 4 (Complexity of exhaustive simultaneous search). Exhaustive
simultaneous search (cf. Equation 10) for a ∈ N alternative feature sets of size k
from n features has a time complexity of O(a2 · nk·(a+1)+1) without the cost of
evaluating the objective function.

The scalability with n is worse than for exhaustive sequential search since
the number of alternatives appears in the exponent now, except for a special
case discussed in Appendix A.5.1. Further, Proposition 4 assumes that the
constraints do not use linearization variables (cf. Equations 6 and 20), which
would enlarge the search space even further. Finally, the complexity remains
polynomial in n if a and k are small and independent from n, i.e., a · k ∈ O(1):

Proposition 5 (Parameterized complexity of simultaneous-search problem).
The simultaneous-search problem (cf. Equation 10) for a ∈ N alternative feature
sets of size k from n features resides in the parameterized complexity class XP
for the parameter a · k.

3.4.2 Univariate Feature Qualities

Motivation While the assumption a · k ∈ O(1) ensures polynomial runtime
regarding n for arbitrary feature-selection methods, the optimization problem
can still be hard without this assumption. In the following, we derive complexity
results for univariate feature qualities (cf. Equation 11 and Appendix A.3). This
feature-selection method arguably has the simplest objective function, where
the quality of a feature set is equal to the sum of the individual qualities of
its constituent features. This simplicity eases the transformation from and to
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well-known NP-hard problems. Appendix A.5.2 discusses related work on these
problems in detail.

In the following complexity analyses, we assume that the feature quali-
ties q(X·j , y) are given. In particular, one can pre-compute these qualities before
searching alternatives and treat them as constants in the optimization problem.
The complexity of this computation depends on the particular feature-quality
measure and the number of data objects m. However, the number of features n
should only affect the complexity linearly due to the univariate setting.

Min-aggregation with complete partitioning We start with three as-
sumptions, which we will drop later: First, we use a dissimilarity threshold
of τ = 1, i.e., zero overlap of feature sets. Second, all features must be part of one
set. Third, we analyze the simultaneous-search problem with min-aggregation
(cf. Equation 16). We call the combination of the first two assumptions, which
implies n = (a + 1) · k, a complete partitioning. This scenario differs from
a · k ∈ O(1), for which we made polynomial-runtime claims in Section 3.4.1.

A key factor for the hardness of partitioning is the number of solutions:
There are

{
n
a

}
ways to partition a set of n elements into a non-empty subsets, a

Stirling number of the second kind [32], which roughly scale like an/a! [72], i.e.,
exponential in n for a fixed a. Even if the subset sizes are fixed, the scalability
regarding n remains bad since it bases on a multinomial coefficient.

Our complete-partitioning scenario is a variant of the Multi-Way Number
Partitioning problem: Partition a multiset of n integers into a fixed number
of a subsets such that the sums of all subsets are as equal as possible [55]. One
problem formulation, called Multiprocessor Scheduling in [31], minimizes
the maximum subset sum: The goal is to assign tasks with different lengths
to a fixed number of processors such that the maximum processor runtime is
minimal. Multiplying task lengths with −1, one can turn the minimax prob-
lem of Multiprocessor Scheduling into the maximin formulation of the
simultaneous-search problem with min-aggregation: The tasks become features,
the negative task lengths become univariate feature qualities, and the processors
become feature sets. Since Multiprocessor Scheduling is NP-complete,
even for just two partitions [31], our problem is NP-complete as well:

Proposition 6 (Complexity of simultaneous-search problem with min-aggre-
gation, complete partitioning, and unconstrained feature-set size). Assuming
univariate feature qualities (cf. Equation 11), a dissimilarity threshold τ =
1, unconstrained feature-set sizes, and all n features have to be selected, the
simultaneous-search problem (cf. Equation 10) for alternative feature sets with
min-aggregation (cf. Equation 16) is NP-complete.

Since the assumptions in Proposition 6 denote a special case of alternative
feature selection, we directly obtain the following, more general proposition:

Proposition 7 (Complexity of simultaneous-search problem with min-aggrega-
tion). The simultaneous-search problem (cf. Equation 10) for alternative feature
sets with min-aggregation (cf. Equation 16) is NP-hard.
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While Proposition 6 allowed arbitrary sets sizes, there are also existing par-
titioning problems for constrained k, e.g., called Balanced Number Parti-
tioning or K-Partitioning. K-Partitioning with a minimax objective is
NP-hard [4] and can be transformed into our maximin objective as above:

Proposition 8 (Complexity of simultaneous-search problem with min-aggre-
gation, complete partitioning, and constrained feature-set size). Assuming uni-
variate feature qualities (cf. Equation 11), a dissimilarity threshold τ = 1, de-
sired feature-set size k, and all n features have to be selected, the simultaneous-
search problem (cf. Equation 10) for alternative feature sets with min-aggregation
(cf. Equation 16) is NP-complete.

Min-aggregation with incomplete partitioning We now allow that some
features may not be part of any feature set while we keep the assumption of
zero feature-set overlap. The problem of finding such an incomplete partitioning
still is NP-complete in general (cf. Appendix A.5.3 for the proof):

Proposition 9 (Complexity of simultaneous-search problem with min-aggre-
gation, incomplete partitioning, and constrained feature-set size). Assuming
univariate feature qualities (cf. Equation 11), a dissimilarity threshold τ =
1, desired feature-set size k, and not all n features have to be selected, the
simultaneous-search problem (cf. Equation 10) for alternative feature sets with
min-aggregation (cf. Equation 16) is NP-complete.

Min-aggregation with overlapping feature sets The problem with τ < 1,
i.e., set overlap, also is NP-hard in general (cf. Appendix A.5.3 for the proof):

Proposition 10 (Complexity of simultaneous-search problem with min-aggre-
gation, τ < 1, and constrained feature-set size). Assuming univariate feature
qualities (cf. Equation 11), a dissimilarity threshold τ < 1, and desired feature-
set size k, the simultaneous-search problem (cf. Equation 10) for alternative
feature sets with min-aggregation (cf. Equation 16) is NP-hard.

Sum-aggregation In contrast to the previous NP-hardness results for min-
aggregation, sum-aggregation (cf. Equation 15) with τ = 1 admits polynomial-
time algorithms (cf. Appendix A.5.3 for the proof):

Proposition 11 (Complexity of search problems with sum-aggregation and
τ = 1). Assuming univariate feature qualities (cf. Equation 11) and a dissimi-
larity threshold τ = 1, the search problem for alternative feature sets with sum-
aggregation (cf. Equation 15) has a time complexity of O(n) for a complete
partitioning of n features and O(n · log n) for an incomplete partitioning.

This feasibility result applies to sequential and simultaneous search, an arbi-
trary number of alternatives a, and arbitrary feature-set sizes. The key reason
for polynomial runtime is that sum-aggregation does not require balancing the
feature sets’ qualities. Thus, τ = 1 allows many solutions with the same objec-
tive value. While at least one of these solutions also optimizes the objective with
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min-aggregation, most do not. Hence, it is not a contradiction that optimizing
with min-aggregation is considerably harder.

3.4.3 Summary

We showed that the simultaneous-search problem for alternative feature sets is
NP-hard in general (cf. Proposition 7). We also placed it in the parameterized
complexity class XP (cf. Proposition 5), having a and k as the parameters that
drive the hardness of the problem. For univariate feature qualities and min-
aggregation, we obtained more specific NP-hardness results for (1) complete
partitioning, i.e., τ = 1 and (a + 1) · k = n (cf. Proposition 8), (2) incomplete
partitioning, i.e., (a+ 1) · k < n (cf. Proposition 9) and (3) feature set overlap,
i.e., τ < 1 (cf. Proposition 10). In contrast, we also inferred polynomial runtime
for univariate feature qualities, sum-aggregation, and τ = 1 (cf. Proposition 11).

3.5 Heuristic Search for Univariate Feature Qualities

In this section, we propose heuristic search methods for univariate feature qual-
ities (cf. Equation 11 and Section A.3), complementing the solver-based search
that we discussed in Section 3.3.1. The proposed heuristics may be faster than
exact optimization at the expense of lower feature-set quality. In particular,
we describe Greedy Replacement Search (cf. Section 3.5.1), which is a sequen-
tial search method, and Greedy Balancing Search (cf. Section 3.5.2), which is
a simultaneous search method. Additionally, Appendix A.6 introduces Greedy
Depth Search. All three heuristics leverage that the univariate objective sums up
the individual qualities qj of selected features and does not consider interactions
between features.

3.5.1 Greedy Replacement Search

Greedy Replacement Search is our first heuristic for alternative feature selection
with univariate feature qualities. This heuristic conducts a sequential search.

Algorithm Algorithm 2 outlines Greedy Replacement Search. We start by
sorting the features decreasingly based on their qualities qj (Line 1). For a fixed
feature-set size k, a dissimilarity threshold τ , and using the Dice dissimilarity
(cf. Equation 3), one subset with ⌊(1 − τ) · k⌋ features can be contained in all
alternatives without violating the dissimilarity threshold (cf. Equation 8). Thus,
our algorithms indeed selects the ⌊(1−τ)·k⌋ features with highest quality in each
alternative s(·) (Lines 2–7). We fill the remaining spots in the sets by iterating
over the alternatives and remaining features (Lines 8–15). For each alternative,
we select the ⌈τ · k⌉ highest-quality features not used in any prior alternative,
thereby satisfying the dissimilarity threshold. We continue this procedure until
we reach the desired number of alternatives a or until there are not enough
unused features to form further alternatives (Line 9).
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Algorithm 2: Greedy Replacement Search for alternative feature sets.

Input: Univariate feature qualities qj with j ∈ {1, . . . , n},
Feature-set size k,
Number of alternatives a,
Dissimilarity threshold τ

Output: List of feature-selection decision vectors s(·)

1 indices← sort indices(q, order=descending) // Order by qualities

2 s← {0}n // Initial selection for all alternatives

3 feature position← 1 // Index of index of current feature

4 while feature position ≤ ⌊(1− τ) · k⌋ do
5 j ← indices[feature position] // Index feature by quality

6 sj ← 1
7 feature position← feature position+ 1

8 i← 0 // Number of current alternative

9 while i ≤ a and i ≤ n−k
⌈τ ·k⌉ do

10 s(i) ← s // Select top ⌊(1− τ) · k⌋ features

11 for ← 1 to ⌈τ · k⌉ do // Select remaining ⌈τ · k⌉ features

12 j ← indices[feature position]

13 s
(i)
j ← 1

14 feature position← feature position+ 1

15 i← i+ 1

16 return s(0), . . . , s(i)

Example 1 (Algorithm of Greedy Replacement Search). With n = 10 features,
feature-set size k = 5, and τ = 0.4, each feature set must differ by ⌈τ · k⌉ = 2
features from the other feature sets. The original feature set s(0) consists of the
top k = 5 features regarding quality qj . The first alternative s(1) consists of
the top ⌊(1− τ) · k⌋ = 3 features plus the sixth- and seventh-best feature. The
second alternative s(2) consists of the top three features plus the eighth- and
ninth-best one. The algorithm cannot continue beyond i = 2 since there are not
enough unused features to form further alternatives in the same manner.

In general, i-th alternative consists of the top ⌊(1− τ) · k⌋ features plus the
features k + (i− 1) · ⌈τ · k⌉+ 1 to k + i · ⌈τ · k⌉ in descending quality order.

Complexity Sorting the qualities of n features (Line 1) has a complexity of
O(n · log n). Next, the algorithm iterates over the features and processes each
feature at most once. In particular, after selecting a feature in an alternative,
feature position increases by 1. The maximum value of this variable depends
on a and k (Line 9) but cannot exceed the total number of features n. For each
feature position, the algorithm accesses the arrays indices and s(i) (Lines 11–
14). Further, each alternative s(i) gets initialized as the selection s of the top
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⌊(1−τ)·k⌋ features (Line 10), which the algorithm only needs to determine once
before the main loop (Lines 2–7). Each array operation runs in O(n) or faster.
Combining the cost per feature position with the number of feature positions,
the overall time complexity is O(n2), i.e., polynomial in n.

Quality While not optimizing exactly, Greedy Replacement Search still offers
an approximation guarantee relative to exact search methods:

Proposition 12 (Approximation quality of Greedy Replacement Search). As-
sume non-negative univariate feature qualities of n features (cf. Equation 11),
a ∈ N0 alternatives, a dissimilarity threshold τ , desired feature-set size k, and
k+ a · ⌈τ · k⌉ ≤ n. Under these conditions, Greedy Replacement Search reaches

at least a fraction of ⌊(1−τ)·k⌋
k of the optimal objective values of the optimization

problems for (1) sequential search (cf. Equation 9), (2) simultaneous search with
sum-aggregation (cf. Equations 10 and 15), and (3) simultaneous search with
min-aggregation (cf. Equations 10 and 16).

Proof. For univariate feature qualities, the quality of a feature set is the sum
of the qualities of the contained features. Greedy Replacement Search includes
the ⌊(1− τ) · k⌋ highest-quality features in each alternative of size k, while the
remaining ⌈τ · k⌉ features may have an arbitrary quality. In comparison, the
optimal original, i.e., unconstrained, feature set of size k contains the top k
features, which are the union of the top ⌊(1− τ) · k⌋ features and the next-best
⌈τ · k⌉ features. Due to quality sorting, each of the next-best ⌈τ · k⌉ features
has at most the quality of each of the top ⌊(1− τ) · k⌋ features, i.e., contributes
the same or less to the summed quality of the feature set. Hence, assuming
non-negative qualities, each alternative yielded by Greedy Replacement Search
has at least a quality of ⌊(1−τ) ·k⌋/k relative to the optimal original feature set
of size k since the ⌊(1− τ) · k⌋ highest-quality features are part of both feature
sets. Next, the optimal original feature set of size k upper-bounds the quality
of any alternative feature set of size k found by any search method. Thus, the
quality bound of the heuristic solution relative to the exact solution also applies
to the minimum and sum of qualities over multiple alternatives.

In particular, Greedy Replacement Search yields a constant-factor approxi-
mation for the three optimization problems (cf. Equation 9 and 10) mentioned in
Proposition 12. The condition k+a·⌈τ ·k⌉ ≤ n describes scenarios where Greedy
Replacement Search can yield all desired alternatives, i.e., does not run out of
unused features. As the heuristic has polynomial runtime, alternative feature
selection lies in the complexity class APX [49] under the specified conditions:

Proposition 13 (Approximation complexity of alternative feature selection).
Assume non-negative univariate feature qualities of n features (cf. Equation 11),
a ∈ N0 alternatives, a dissimilarity threshold τ , desired feature-set size k, and
k+a·⌈τ ·k⌉ ≤ n. Under these conditions, the optimization problems of alternative
feature selection with (1) sequential search (cf. Equation 9), (2) simultaneous
search with sum-aggregation (cf. Equations 10 and 15), and (3) simultaneous
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search with min-aggregation (cf. Equations 10 and 16) reside in the complexity
class APX .

For τ = 1, Greedy Replacement Search even yields the same objective values
as exact sequential search and exact simultaneous search with sum-aggregation
since it becomes identical to a procedure we outlined in our complexity analysis
earlier (cf. Proposition 11). In contrast, for arbitrary τ , the following example
shows that the heuristic can be worse than exact sequential search for as few as
a = 2 alternatives:

Example 2 (Quality of Greedy Replacement Search vs. exact search). Consider
n = 6 features with univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-set
size k = 2, number of alternatives a = 2, and dissimilarity threshold τ = 0.5,
which permits an overlap of one feature between sets here. Exact sequential
search and exact simultaneous search, for min- and sum-aggregation, yield the
selection s(0) = (1, 1, 0, 0, 0, 0), s(1) = (1, 0, 1, 0, 0, 0), and s(2) = (0, 1, 1, 0, 0, 0),
with a summed quality of 17 + 16 + 15 = 48. Greedy Replacement Search
yields the selection s(0) = (1, 1, 0, 0, 0, 0), s(1) = (1, 0, 1, 0, 0, 0), and s(2) =
(1, 0, 0, 1, 0, 0), with a summed quality of 17 + 16 + 12 = 45.

While the first two feature sets are identical between exact and heuristic
search, the quality of s(2) is lower for the heuristic (12 vs. 15). In particular,
by always selecting all the top ⌊(1− τ) · k⌋ features, the heuristic misses out on
feature sets only involving some or none of them.

For min-aggregation in simultaneous search, a = 1 alternative already suf-
fices for the heuristic being potentially worse than exact search:

Example 3 (Quality of Greedy Replacement Search vs. min-aggregation). Con-
sider n = 6 features with univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-
set size k = 3, number of alternatives a = 1, and dissimilarity threshold τ = 0.5,
which permits an overlap of one feature between sets here. Exact simultane-
ous search with min-aggregation yields the selection s(0) = (1, 1, 0, 0, 1, 0) and
s(1) = (1, 0, 1, 1, 0, 0), with a quality of min{19, 19} = 19. Greedy Replacement
Search and exact sequential search yield the selection s(0) = (1, 1, 1, 0, 0, 0) and
s(1) = (1, 0, 0, 1, 1, 0), with a quality of min{24, 14} = 14. Exact simultane-
ous search with sum-aggregation may yield either of these two solutions or the
selection s(0) = (1, 1, 0, 1, 0, 0) and s(1) = (1, 0, 1, 0, 1, 0), all with the same sum-
aggregated quality of 38 but different min-aggregated quality.

In particular, Greedy Replacement Search does not balance feature-set qual-
ities since it is a sequential search method. We alleviate this issue with the
heuristic Greedy Balancing Search (cf. Section 3.5.2).

Limitations Proposition 12 and Examples 2, 3 already showed the potential
quality loss of Greedy Replacement Search compared to an exact search for
alternatives. Further, the heuristic only works as long as some features have not
been part of any feature set yet, i.e., k+a·⌈τ ·k⌉ ≤ n. Once the heuristic runs out
of unused features, one would need to switch the search method. Thus, to obtain

23



a high number of alternatives a with the heuristic, the following conditions are
beneficial: The number of features n should be high, the feature-set size k should
be low, and the dissimilarity threshold τ should be low. These conditions align
well with typical feature-selection scenarios where k ≪ n.

Another drawback is that Greedy Replacement Search assumes a very simple
notion of feature-set quality. If the latter becomes more complex than a sum of
univariate qualities, quality-based feature ordering (Line 1) may be impossible
or suboptimal. Further, Greedy Replacement Search cannot accommodate ad-
ditional constraints on feature sets, e.g., based on domain knowledge. Finally,
the heuristic assumes the same size k for all feature sets.

3.5.2 Greedy Balancing Search

Greed Balancing Search modifies Greedy Replacement Search to obtain more
balanced feature-set qualities by employing a simultaneous search method.

Algorithm Algorithm 3 outlines Greedy Balancing Search. First, we check
whether the algorithm should terminate early, i.e., whether the number of fea-
tures n is not high enough to satisfy the desired user parameters k, a, and τ
(Line 1). Next, we select the first ⌊(1 − τ) · k⌋ features in each alternative like
in Greedy Replacement Search (cf. Algorithm 2), i.e., we pick the features with
the highest quality qj (Lines 3–11).

For the remaining spots in the alternatives, we use a Longest Processing
Time (LPT) heuristic (Lines 12–24). Such heuristics are common for Multi-
processor Scheduling and Balanced Number Partitioning problems [4,
18, 60] (cf. Section A.5.2). In particular, we continue iterating over features by
decreasing quality. We assign each feature to the alternative that currently has
the lowest summed quality Q(i) and whose size k has not been reached yet. We
continue this procedure until all alternatives have reached size k (Line 14).

Example 4 (Algorithm of Greedy Balancing Search). Consider n = 6 features
with univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-set size k = 4,
number of alternatives a = 1, and dissimilarity threshold τ = 0.5, which permits
an overlap of two features between sets here. The features with qualities 9 and
8 become part of both feature sets, s(0) and s(1) (Lines 3–11). At this point,
both alternatives have the same relative quality Q(0) = Q(1) = 0. Note that
Q(i) in the algorithm ignores the quality of the shared features. Now the LPT
heuristic becomes active (Lines 12–24). The feature with quality 7 is added to
s(0), which causes Q(0) > Q(1) (i.e., 7 > 0). Thus, the feature with quality 3 is
added to s(1). As Q(0) > Q(1) (i.e., 7 > 3) still holds, the feature with quality 2
becomes part of s(1) as well. Because s(1) has reached size k = 4, the feature
with quality 1 is added to s(0), even if the latter still has a higher relative
quality (i.e., 7 > 5). Now both alternatives have reached their desired size and
n = 6 = ⌈0.5 ·4⌉·1+4 = ⌈τ ·k⌉·a+k (Line 14). Thus, the algorithm terminates.
The solution consists of s(0) = (1, 1, 1, 0, 0, 1) and s(1) = (1, 1, 0, 1, 1, 0).
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Algorithm 3: Greedy Balancing Search for alternative feature sets.

Input: Univariate feature qualities qj with j ∈ {1, . . . , n},
Feature-set size k,
Number of alternatives a,
Dissimilarity threshold τ

Output: List of feature-selection decision vectors s(0), . . . , s(a)

1 if ⌈τ · k⌉ · a+ k > n then
2 return ∅
3 indices← sort indices(q, order=descending) // Order by qualities

4 for i← 0 to a do // Initial selection for all alternatives

5 s(i) ← {0}n

6 feature position← 1 // Index of index of current feature

7 while feature position ≤ ⌊(1− τ) · k⌋ do // Select top features

8 j ← indices[feature position] // Index feature by quality

9 for i← 0 to a do // Same features in all alternatives

10 s
(i)
j ← 1

11 feature position← feature position+ 1

12 for i← 0 to a do
13 Q(i) ← 0 // Relative quality of each alternative

14 while feature position ≤ ⌈τ · k⌉ · a+ k do // Fill all positions

15 Qmin ←∞ // Find alternative with lowest quality

16 imin ← −1
17 for i← 0 to a do

18 if Q(i) < Qmin and
∑n

j=1 s
(i)
j < k then // Check cardinality

19 Qmin ← Q(i)

20 imin ← i

21 j ← indices[feature position] // Index feature by quality

22 s
(imin)
j ← 1 // Add to lowest-quality, non-full alternative

23 Q(imin) ← Q(imin) + qj // Update quality of that alternative

24 feature position← feature position+ 1

25 return s(0), . . . , s(a)
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Complexity Like Greedy Replacement Search, Greedy Balancing Search has
an upfront cost of O(n · log n) for sorting feature qualities (Line 3) and then
iterates over O(n) feature positions. For each feature position, the algorithm
iterates over a alternatives and conducts a fixed number of array operations in
O(n). Thus, the overall complexity of Greedy Balancing Search is O(a · n2).

Quality Greed Balancing Search selects the same features as Greedy Replace-
ment Search and only changes their assignment to the feature sets. Thus, the
summed feature-set quality remains the same, while the minimum feature-set
quality may be higher due to balancing. Hence, the quality guarantee of Greedy
Replacement Search (cf. Proposition 12) holds here as well:

Proposition 14 (Approximation quality of Greedy Balancing Search). Assume
non-negative univariate feature qualities of n features (cf. Equation 11), a ∈
N0 alternatives, a dissimilarity threshold τ , desired feature-set size k, and k +
a · ⌈τ · k⌉ ≤ n. Under these conditions, Greedy Balancing Search reaches at

least a fraction of ⌊(1−τ)·k⌋
k of the optimal objective values of the optimization

problems for (1) sequential search (cf. Equation 9), (2) simultaneous search with
sum-aggregation (cf. Equations 10 and 15), and (3) simultaneous search with
min-aggregation (cf. Equations 10 and 16).

For min-aggregation in the objective, Greedy Balancing Search can even be
better than exact sequential search, as Example 3 shows, where the heuristic
search would yield the same solution as exact simultaneous search with min-
aggregation. However, the heuristic can also be worse than exact sequential
search and exact simultaneous search, as Example 2 shows, where Greedy Bal-
ancing Search would yield the same solution as Greedy Replacement Search.

Limitations Greedy Balancing Search shares several limitations with Greedy
Replacement Search, e.g., it may be worse than exact search, assumes univariate
feature qualities, and does not work if the number of features n is too low
relative to k, a, and τ . In the latter case, Greedy Balancing Search yields
no solution due to its simultaneous nature, while Greedy Replacement Search
yields at least some alternatives. However, if running out of features is not an
issue, Greedy Balancing Search has the advantage of more balanced feature-set
qualities. Also, one could easily adapt Greedy Balancing Search to yield the
highest feasible number of alternatives in case a alternatives are infeasible.

4 Related Work

In this section, we review related work from the fields of feature selection (cf. Sec-
tion 4.1), subgroup discovery (cf. Section 4.2), clustering (cf. Section 4.3), sub-
space clustering and subspace search (cf. Section 4.4), explainable artificial in-
telligence (cf. Section 4.5), and Rashomon sets (cf. Section 4.6). To the best
of our knowledge, searching for optimal alternative feature sets in the sense of
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this paper is novel. However, there is literature on optimal alternatives outside
the field of feature selection. Also, there are works on finding multiple, diverse
feature sets.

4.1 Feature Selection

Conventional feature selection Most feature-selection methods only yield
one solution [11], though some exceptions exist. Nevertheless, none of the fol-
lowing approaches searches for optimal alternatives in our sense.

[99] proposes a genetic algorithm that iteratively updates a population of
multiple feature sets. To foster diversity, the algorithm’s fitness criterion does
not only consider feature-set quality but also a penalty on feature-set overlap in
the population. However, users cannot control the admissible overlap, i.e., there
is no parameter comparable to τ . In contrast, the genetic algorithm’s parameter
for the population size corresponds to the number of alternatives.

[27] employs multi-objective genetic algorithms to obtain prediction models
with different complexity and diverse feature sets. However, the two objectives
are prediction performance and feature-set size, while diversity only influences
the genetic selection step under particular circumstances.

[75] clusters features and forms alternatives by picking one feature from each
cluster. However, they do this to reduce the number of features for subsequent
model selection and model evaluation, not as a guided search for alternatives.

Ensemble feature selection Ensemble feature selection [94, 98] combines
feature-selection results, e.g., obtained by different feature-selection methods or
on different samples of the data. Fostering diverse feature sets might be a sub-
goal to improve prediction performance, but it is usually only an intermediate
step. This focus differs from our goal of finding optimal alternatives.

[115] obtains feature sets or rankings on bootstrap samples of the data.
Next, an aggregation strategy creates one or multiple diverse feature sets. The
authors propose using k-medoid clustering and frequent itemset mining for the
latter. While these approaches allow to control the number of feature sets, there
is no parameter for their dissimilarity. Also, aggregation builds on bootstrap
sampling instead of being allowed to form arbitrary alternatives.

[64] builds an ensemble prediction model from classifiers trained on different
feature sets. To this end, a genetic algorithm iteratively evolves a population
of feature sets. Diversity is one of multiple fitness criteria, with the Hamming
distances quantifying the dissimilarity of feature sets. However, since feature
diversity is only one of several objectives, users cannot control it directly.

[36] computes feature relevance separately for each class and then combines
the top features. This procedure can yield alternatives but does not enforce
dissimilarity. Also, the number of alternatives is fixed to the number of classes.

Statistically equivalent feature sets Approaches for statistically equiva-
lent feature sets [11, 58] use statistical tests to determine features or feature sets
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that are equivalent for predictions. E.g., a feature may be independent of the
target given another feature. A search algorithm conducts multiple such tests
and outputs equivalent feature sets or a corresponding feature grouping.

Our notion of alternatives differs from equivalent feature sets in several as-
pects. In particular, building optimal alternatives from equivalent feature sets
is not straightforward. Depending on how the statistical tests are configured,
there can be an arbitrary number of equivalent feature sets without explicit
quality-based ordering. Instead, we always provide a fixed number of alterna-
tives. Also, our alternatives need not have equivalent quality but should be
optimal under constraints. Further, our dissimilarity threshold allows control-
ling overlap between feature sets instead of eliminating all redundancies.

Constrained feature selection We define alternatives via constraints on
feature sets. There already is work on other kinds of constraints in feature
selection, e.g., for feature cost [85], feature groups [118], or domain knowledge [6,
33]. These approaches are orthogonal to our work, as such constraints do not
explicitly foster optimal alternatives. At most, they might implicitly lead to
alternative solutions [6]. Further, most of the approaches are tied to particular
constraint types, while our integer-programming formulation also supports such
constraints besides the ones for alternatives. [6] is an exception in that regard
since it models feature selection as a Satisfiability Modulo Theories (SMT)
optimization problem, which admits our constraints for alternatives as well.

4.2 Subgroup Discovery

[61] presents six strategies to foster diversity in subgroup set discovery, which
searches for interesting regions in the data space, i.e., combinations of condi-
tions on feature values, rather than only selecting features. Three strategies
yield a fixed number of alternatives, and the other three a variable number.
The strategies become part of beam search, i.e., a heuristic search procedure,
while we mainly consider exact optimization. Also, the criteria for alternatives
differ from ours. The strategy fixed-size description-based selection prunes sub-
groups with the same quality as previously found ones if they differ by at most
one feature-value condition. In contrast, we require dissimilarity independent
from the quality, have a flexible dissimilarity threshold, and support simulta-
neous besides sequential search for alternatives. Another strategy, variable-size
description-based selection, limits the total number of subgroups a feature may
occur in but does not constrain subgroup overlap per se. The four remaining
strategies in [61] have no obvious counterpart in our feature-selection scenario.

4.3 Clustering

Finding alternative solutions has been addressed extensively in the field of clus-
tering. [9] gives a taxonomy and describes algorithms for alternative clustering.
Our problem definition in Sections 3.1 and 3.2 is, on a high level, inspired by
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the one in [9]: Find multiple solutions that maximize quality while minimiz-
ing similarity. [9] also distinguishes between singular/multiple alternatives and
sequential/simultaneous search. They mention constraint-based search for al-
ternatives as one of several solution paradigms. Further, feature selection can
help to find alternative clusterings [103]. Nevertheless, the problem definition
for alternatives in clustering and feature selection is fundamentally different.
First, the notion of dissimilarity differs, as we want to find differently composed
feature sets while alternative clustering targets at different assignments of data
objects to clusters. Second, our objective function, i.e., feature-set quality, re-
lates to a supervised prediction scenario while clustering is unsupervised.

Two exemplary approaches for alternative clustering are COALA [7] and
MAXIMUS [8]. COALA [7] imposes cannot-link constraints on pairs of data
objects rather than constraining features: Data objects from the same cluster in
the original clustering should be assigned to different clusters in the alternative
clustering. In each step of its iterative clustering procedure, COALA compares
the quality of an action observing the constraints to another one violating them.
Based on a threshold on the quality ratio, either action is taken. MAXIMUS [8]
employs an integer program to formulate dissimilarity between clusterings. In
particular, it wants to maximize the dissimilarity of the feature-value distribu-
tions in clusters between the clusterings. The output of the integer program
leads to constraints for a subsequent clustering procedure.

4.4 Subspace Clustering and Subspace Search

Finding multiple useful feature sets plays a role in subspace clustering [43, 74]
and subspace search [30, 81, 104]. These approaches strive to improve the re-
sults of data-mining algorithms by using subspaces, i.e., feature sets, rather
than the full space, i.e., all features. While some subspace approaches only con-
sider individual subspaces, others explicitly try to remove redundancy between
subspaces [74, 81] or foster subspace diversity [30, 104]. In particular, [43] sur-
veys subspace-clustering approaches yielding multiple results and discusses the
redundancy aspect. However, subspace clustering and -search approaches differ
from alternative feature selection in at least one of the following aspects:

First, the objective differs, i.e., definitions of subspace quality deviate from
feature-set quality in our scenario. Second, definitions of subspace redundancy
may consider dissimilarity between projections of the entire data, i.e., data ob-
jects with feature values, into subspaces, while our notion of dissimilarity purely
bases on binary feature-selection decisions. Third, controlling dissimilarity in
subspace approaches is often less user-friendly than with our parameter τ . E.g.,
dissimilarity might be a regularization term in the objective rather than a hard
constraint, or there might not be an explicit control parameter at all.

4.5 Explainable Artificial Intelligence (XAI)

In the field of XAI, alternative explanations might provide additional insights
into predictions, enable users to develop and test different hypotheses, appeal to
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different kinds of users, and foster trust in the predictions [51, 110]. In contrast,
obtaining significantly different explanations for the same prediction might raise
doubts about how meaningful the explanations are [44]. Finding diverse expla-
nations had been studied for various explainers, e.g., for counterfactuals [21,
45, 69, 73, 93, 107], criticisms [50], and semifactual explanations [2]. There are
several approaches to foster diversity, e.g., ensembling different kinds of expla-
nations [100], considering multiple local minima [107], using a search algorithm
that maintains diversity [21], extending the optimization objective [2, 50, 73],
or introducing constraints [45, 69, 93]. The last option is similar to the way we
enforce alternatives. Of the various mentioned approaches, only [2, 69, 73] in-
troduce a parameter to control the diversity of solutions. Of these three works,
only [69] offers a user-friendly dissimilarity threshold in [0, 1], while the other
two approaches employ a regularization parameter in the objective.

Despite similarities, all the previously mentioned XAI techniques tackle dif-
ferent problems than alternative feature selection. In particular, they provide
local explanations, i.e., target at prediction outcomes for individual data objects
and build on feature values. In contrast, we are interested in the global predic-
tion quality of feature sets. For example, counterfactual explanations [34, 102,
106] alter feature values as little as possible to produce an alternative prediction
outcome. In contrast, alternative feature sets might alter the feature selection
significantly while trying to maintain the original prediction quality.

4.6 Rashomon Sets

A Rashomon set is a set of prediction models that reach a certain, e.g., close-to-
optimal, prediction performance [29]. Despite similar performance, these models
may still assign different feature importance scores, leading to different explana-
tions [57]. Thus, Rashomon sets may yield partial information about alternative
feature sets. However, approaches for Rashomon sets do not explicitly search
for alternative feature sets as a whole, i.e., feature sets satisfying a dissimilarity
threshold relative to other sets. Instead, these approaches focus on the range
of each feature’s importance over prediction models. Further, our notion of al-
ternatives is not bound to model-based feature importance but encompasses a
broader range of feature-selection methods. Finally, we use importance scores
from one instead of multiple models to find importance-based alternatives.

5 Experimental Design

In this section, we describe our experimental design. We give a brief overview of
its goal and components (cf. Section 5.1) before elaborating on the components
in detail. In particular, we describe evaluation metrics (cf. Section 5.2), methods
(cf. Section 5.3), datasets (cf. Section 5.4), and implementation (cf. Section 5.5).
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5.1 Overview

We conduct experiments with 30 binary-classification datasets. As evaluation
metrics, we consider feature-set quality and runtime. We compare five feature-
selection methods, representing different notions of feature-set quality. Also, we
train prediction models with the resulting feature sets and analyze prediction
performance. To find alternatives, we consider simultaneous as well as sequential
search, both with solver-based and heuristic search methods. We systematically
vary the number of alternatives a and the dissimilarity threshold τ .

5.2 Evaluation Metrics

Feature-set quality We evaluate feature-set quality with two metrics. First,
we report the objective value Q(s,X, y) of the feature-selection methods, which
guided the search for alternatives. Second, we train prediction models with the
found feature sets. We report prediction performance in terms of the Matthews
correlation coefficient (MCC) [66]. This coefficient is insensitive to class im-
balance, reaches its maximum of 1 for perfect predictions, and is 0 for random
guessing as well as constant predictions.

To analyze how well feature selection and prediction models generalize, we
conduct a stratified five-fold cross-validation. The search for alternatives and
model training only have access to the training data. However, we also use the
test data to evaluate the quality of each feature set found with the training
data. For the test-set objective value, we initialize the objective function with
feature qualities computed on the test set but insert the feature selection from
the training set. For the test-set prediction performance, we predict on the test
set but use a prediction model trained with these features on the training set.

Runtime We consider two metrics related to runtime.
First, we analyze the optimization time. For white-box feature-selection

methods in solver-based search for alternatives, we measure the summed runtime
of solver calls. We exclude the time for computing feature qualities and feature
dependencies for the objective since one can compute these values once per
dataset and then re-use them in each solver call. For Greedy Wrapper as the
feature-selection method and for the heuristic search methods for alternatives,
we measure the runtime of the corresponding search algorithms. For Greedy
Wrapper, this search procedure involves multiple solver calls and trainings of
the prediction model.

Second, we examine the optimization status, which can take four values for
the solver-based search. If the solver finished before reaching a timeout, it either
found an optimal solution or proved the problem infeasible, i.e., no solution
exists. If the solver reached its timeout, it either found a feasible solution whose
optimality it could not prove or found no valid solution, though one might exist,
so the problem is not solved. For the heuristic search methods, we only use not
solved and feasible as statuses, as these search methods are neither guaranteed
to find the optimum nor do they prove infeasibility if they terminate early.
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5.3 Methods

We compare several approaches for making predictions (cf. Section 5.3.1), fea-
ture selection (cf. Section 5.3.2), and searching alternatives (cf. Section 5.3.3).

5.3.1 Prediction

As prediction models, we use decision trees [13] and random forests with 100
trees [12]. Both these models admit learning complex, non-linear dependencies
from the data. We leave the hyperparameters of the models at their defaults,
except for using information gain instead of Gini impurity as the split criterion,
to be consistent with our parametrization of filter feature-selection methods.
Preliminary experiments with a k-nearest neighbors classifier yielded similar
insights paired with a lower average prediction performance.

Note that tree models also carry out feature selection themselves, i.e., they
are embedded feature-selection approaches. Thus, they may not use all features
from the alternative feature sets. However, this is not a problem for our study.
We are interested in which performance the models achieve if they are limited
to certain feature sets, not if and how they use each feature from these sets.

5.3.2 Feature Selection (Objective Functions)

We search for alternatives under different notions of feature-set quality in the
objective function. We choose five well-known feature-selection methods that
are easy to parameterize and cover the different categories from Section 2.2
except embedded, as explained in Section 3.3.3. However, we use feature im-
portance from an embedded method, i.e., decision trees, as univariate post-hoc
importance scores.

Four feature-selection methods allow a white-box formulation of the opti-
mization problem, while Greedy Wrapper tackles black-box optimization. With
each feature-selection method, we select k ∈ {5, 10} features, thereby obtaining
small feature sets. We enforce the desired k with simple equality constraints in
optimization, using the feature-set-size expression from Equation 5.

Filter feature selection We evaluate three filter methods, all using mutual
information [56] as the dependency measure q(·). This measure can capture
arbitrary dependencies rather than, e.g., just linear correlations. MI denotes a
univariate filter (cf. Equation 11), while FCBF (cf. Equation 12) and mRMR
(cf. Equation 14) are multivariate. Since mutual information has no fixed upper
bound, we normalize its value per dataset and cross-validation fold to improve
the comparability of feature-set quality. For FCBF and MI, we normalize the
individual features’ qualities such that selecting all features yields a quality of 1
and selecting no feature yields a quality of 0. FormRMR, we min-max-normalize
all mutual-information values to [0, 1], so the overall objective is in [−1, 1].
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Wrapper feature selection As a wrapper method, we employ our hill-
climbing procedure Greedy Wrapper (cf. Algorithm 1). We set max iters to
1000. To evaluate feature-set quality within the wrapper, we apply a strati-
fied 80:20 holdout split and train decision trees. Q(s,X, y) corresponds to the
prediction performance in terms of MCC on the 20% validation part.

Post-hoc feature importance As a post-hoc importance measure called
Model Gain, we use importance scores from scikit-learn’s decision trees. There,
importance expresses a feature’s contribution towards optimizing the split cri-
terion of the tree, for which we choose information gain. These importances
are normalized to sum up to 1 by default. We plug the importances into Equa-
tion 11, i.e., treat them like univariate filter scores. The interpretation is dif-
ferent, though, since the importance scores originate from trees trained with all
features rather than assessing features in isolation.

5.3.3 Alternatives (Constraints)

Overview In our evaluation, we categorize search methods for alternatives
in two dimensions that are orthogonal to each other: Solver-based vs. heuris-
tic and sequential vs. simultaneous. Also, we analyze the impact of the user
parameters a and τ on the search for alternatives.

Solver-based search methods In Sections 6.1, 6.2, and 6.3, we use solver-
based search methods to find alternative feature sets. For the four white-box
feature-selection methods, we use an integer-programming solver to solve the
underlying optimization problems exactly. Thus, given sufficient solving time,
these alternatives are globally optimal. For Greedy Wrapper as the feature-
selection method, the search procedure (Algorithm 1) is heuristic (though still
solver-based, so we place it in this category rather than the former) and might
not cover the entire search space. There, the solver only assists in finding valid
solutions but does not optimize.

For each feature selection method, we analyze sequential (cf. Equation 9)
and simultaneous (cf. Equation 10) solver-based search for alternatives. For
the latter, we employ sum-aggregation (cf. Equation 15) and min-aggregation
(cf. Equation 16) in the objective. In figures and tables, we use the abbreviations
seq., sim. (sum), and sim. (min) to denote these solver-based search methods.

Heuristic search methods In Section 6.4, we additionally compare heuris-
tic search methods that do not use a solver (cf. Section 3.5). In particular,
we employ Greedy Replacement (cf. Algorithm 2), which is a sequential search
method, and Greedy Balancing (cf. Algorithm 3), which is a simultaneous search
method. In figures and tables, we use the abbreviations rep. and bal. to de-
note these heuristic search methods. Since these heuristics assume univariate
feature qualities (cf. Equation 11), we only combine them with the univariate
feature-selection methods MI and Model Gain.

33



Search parametrization We vary the parameters of the search systemati-
cally: We evaluate a ∈ {1, . . . , 10} alternatives for sequential search methods
and a ∈ {1, . . . , 5} for simultaneous search methods due to the potentially higher
runtime of the latter. For the dissimilarity threshold τ , we analyze all possible
sizes of the feature-set overlap in the Dice dissimilarity (cf. Equations 3 and 8).
Thus, for k = 5, we consider τ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}, corresponding to an
overlap of four to zero features. For k = 10, we consider τ ∈ {0.1, 0.2, . . . , 1.0}.
We exclude τ = 0, which would allow returning duplicate feature sets.

Timeout In solver-based search, we employ a timeout to make a large-scale
evaluation feasible and to account for the high variance of solver runtime, which
even occurs for optimization problems of the same size. In particular, we grant
each solver call 60 s multiplied by the number of feature sets sought. Thus,
solver-based sequential search conducts multiple solver calls with 60 s timeout
each, while solver-based simultaneous search conducts one solver call with pro-
portionally more time, e.g., 300 s for five feature sets (i.e., four alternatives).
The summed timeout for a fixed number of alternatives is the same for solver-
based sequential and simultaneous search. For 84% of the feature sets in our
evaluation, the solver finished before the timeout.

Competitors for search methods As discussed in Section 4, approaches
from related work pursue different objective functions, operate with different
notions of alternatives, and may only work for particular feature-selection meth-
ods. All these points prevent a meaningful comparison of these approaches to
ours. E.g., a feature set considered alternative in related work might violate
our constraints for alternatives. Further, within our search methods, we can
still put the feature-set quality into perspective by comparing alternatives to
each other. In particular, the quality of the ‘original’ feature set, i.e., obtained
by running the feature-selection methods without constraints for alternatives,
serves as a natural reference point.

5.4 Datasets

Selection criteria We use a variety of datasets from the Penn Machine Learn-
ing Benchmarks (PMLB) [84, 92]. To harmonize evaluation, we only consider
binary-classification datasets, though alternative feature selection also works
for regression and multi-class problems. We exclude datasets with less than 100
data objects since they might entail a high uncertainty when assessing feature-
set quality. Otherwise, the number of data objects should not systematically
impact the feature-set quality and is unimportant for our evaluation. Also, we
exclude datasets with less than 15 features to leave some room for alternatives.
Next, we exclude one dataset with 1000 features, which would dominate the
overall runtime of the experiments. Finally, we manually exclude datasets that
seem duplicated or modified versions of other datasets from the benchmark.

Consequently, we obtain 30 datasets with 106 to 9822 data objects and 15

34



Dataset m n Mean corr.

backache 180 32 0.10
chess 3196 36 0.08
churn 5000 20 0.04
clean1 476 168 0.25
clean2 6598 168 0.25
coil2000 9822 85 0.07
credit a 690 15 0.12
credit g 1000 20 0.07
dis 3772 29 0.08
GE 2 Way 20atts 0.1H EDM 1 1 1600 20 0.02
GE 2 Way 20atts 0.4H EDM 1 1 1600 20 0.02
GE 3 Way 20atts 0.2H EDM 1 1 1600 20 0.02
GH 20atts 1600 Het 0.4 0.2 50 EDM 2 001 1600 20 0.02
GH 20atts 1600 Het 0.4 0.2 75 EDM 2 001 1600 20 0.02
hepatitis 155 19 0.15
Hill Valley with noise 1212 100 1.00
horse colic 368 22 0.16
house votes 84 435 16 0.30
hypothyroid 3163 25 0.15
ionosphere 351 34 0.25
molecular biology promoters 106 57 0.08
mushroom 8124 22 0.18
ring 7400 20 0.02
sonar 208 60 0.21
spambase 4601 57 0.14
spect 267 22 0.20
spectf 349 44 0.19
tokyo1 959 44 0.44
twonorm 7400 20 0.17
wdbc 569 30 0.42

Table 2: Datasets from PMLB used in our experiments. m denotes the num-
ber of data objects and n the number of features. Mean corr. is the average
of absolute values of all pairwise Spearman’s rank correlations between fea-
tures. In dataset names, we replaced GAMETES Epistasis with GE and GA-
METES Heterogeneity with GH to reduce the table’s width.
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to 168 features. The datasets do not contain any missing values. Categorical
features have an ordinal encoding by default. Table 2 lists these datasets.

Feature correlation Table 2 also displays the datasets’ average feature cor-
relation. In particular, we compute Spearman’s rank correlation between each
pair of features and take the absolute values to evaluate the strength of depen-
dencies rather than their sign. For the datasets in our study, the average feature
correlations are often weak, mostly below 0.3. Generally, correlated features in-
dicate that alternative feature sets may exist. However, there are two caveats.
First, rank correlation only captures certain types of dependencies, while our
feature-selection criteria and prediction models are more general. Second, for
optimal alternatives, the dependency between highly predictive features is cru-
cial, while the dependency between unimportant features matters less. However,
the table only shows the mean over all feature pairs.

5.5 Implementation and Execution

We implemented our experimental pipeline in Python 3.8, using scikit-learn [86]
for machine learning and the solver SCIP [10] via the package OR-Tools [88]
for optimization. A requirements file in our code specifies the versions of all
packages. The experimental pipeline parallelizes over datasets, cross-validation
folds, and feature-selection methods, while solver calls and model training are
single-threaded. We ran the pipeline on a server with 128 GB RAM and an
AMD EPYC 7551 CPU, having 32 physical cores and a base clock of 2.0 GHz.
The parallelized pipeline run took 255 hours, i.e., about 10.6 days.

6 Evaluation

In this section, we evaluate our experiments. In particular, we discuss the
parametrization for searching alternatives with solver-based search methods: the
search method (cf. Section 6.1), number of alternatives a (cf. Section 6.2), and
dissimilarity threshold τ (cf. Section 6.3). Further, we compare heuristic search
methods for univariate feature qualities to solver-based optimization (cf. Sec-
tion 6.4). Section 6.5 summarizes key findings. Additionally, Appendix A.7
contains results for further dimensions of our experimental design.

6.1 Solver-Based Search Methods for Alternatives

Variance in feature-set quality As expected, the search method influences
how much the training-set objective value Q varies between alternatives found
within each search run. Figure 1a visualizes this result for MI as the feature-
selection method and k = 5. Each box in the figure shows how the variance
within individual search runs for alternatives is distributed over other exper-
imental settings, e.g., datasets and cross-validation folds. In particular, the
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(b) Mean of training-set objective value
within search runs.
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(c) Standard deviation of test-set objec-
tive value within search runs.
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(d) Mean of test-set objective value with-
in search runs.
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(e) Standard deviation of test-set predic-
tion performance within search runs.
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(f) Mean of test-set prediction perfor-
mance within search runs.

Figure 1: Feature-set quality over the number of alternatives a, by solver-based
search method for alternatives and evaluation metric. Results with MI as the
feature-selection method and k = 5. Y-axes are truncated to improve readabil-
ity.
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(b) Difference in quality between simulta-
neous (sum-aggregation) and sequential
search by evaluation metric. Y-axis is
truncated to improve readability.

Figure 2: Feature-set quality by feature-selection method and solver-based
search method for alternatives. Results with k = 5 and a ∈ {1, 2, 3, 4, 5}.

quality of multiple alternatives found by solver-based sequential search usu-
ally varies more than for solver-based simultaneous search. For solver-based
simultaneous search, min-aggregation yields considerably more homogeneous
feature-set quality than sum-aggregation. These findings apply to all white-box
feature-selection methods but not the heuristic Greedy Wrapper.

As Figures 1c and 1e show, the variance of feature-set quality differs con-
siderably less between the solver-based search methods on the test set, for the
objective value as well as prediction performance. In particular, alternatives
found by solver-based simultaneous search do not have considerably more ho-
mogeneous test feature-set quality than for solver-based sequential search. This
effect might result from overfitting: Even if training feature-set quality is similar,
some alternatives might generalize better, i.e., lose less quality on the test set
than others. Thus, the variance in test feature-set quality caused by overfitting
could alleviate the effect on variance caused by the search method.

Average value of feature-set quality While obtaining alternatives of ho-
mogeneous quality can be one goal of simultaneous search, the main selling point
compared to sequential search would be alternatives of higher average quality.
However, we found that solver-based simultaneous search is not clearly better
than solver-based sequential search in that regard. In particular, Figure 1b
compares the distribution of the mean training-set objective in search runs with
MI as the feature-selection method and k = 5. We observe that all solver-based
search methods yield very similar distributions of feature-set quality. The other
four feature-selection methods besides MI also do not show a general quality
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Feature selection Search
Optimization status

Infeasible Feasible Optimal

FCBF seq. 74.51% 0.00% 25.49%
FCBF sim. (min) 73.07% 1.73% 25.20%
FCBF sim. (sum) 73.07% 2.19% 24.75%
MI seq. 4.93% 0.00% 95.07%
MI sim. (min) 4.67% 9.15% 86.19%
MI sim. (sum) 4.67% 2.88% 92.45%
Model Gain seq. 4.93% 0.00% 95.07%
Model Gain sim. (min) 4.67% 5.17% 90.16%
Model Gain sim. (sum) 4.67% 1.84% 93.49%
mRMR seq. 4.88% 9.63% 85.49%
mRMR sim. (min) 4.67% 49.04% 46.29%
mRMR sim. (sum) 4.67% 67.39% 27.95%

Table 3: Frequency of optimization statuses (cf. Section 5.2) by feature-selection
method and solver-based search method for alternatives. Results with k = 5,
a ∈ {1, 2, 3, 4, 5}, and excluding Greedy Wrapper, which uses the solver for
satisfiability checking rather than optimizing. Each row adds up to 100%.

advantage of solver-based simultaneous search. At most, solver-based simul-
taneous search tends to develop a slight advantage with a growing number of
alternatives for MI, as visible in Figure 1b, and Model Gain.

The test-set objective value in Figure 1d and the test-set prediction per-
formance in Figure 1f also exhibit the negligible quality difference between the
solver-based search methods. As Figure 2a displays, the variation in predic-
tion performance caused by other dimensions of the experimental design, e.g.,
dataset, dissimilarity threshold τ , etc., exceeds the variation due to the choice
of the solver-based search method.

Finally, Figure 2b displays the difference in feature-set quality between
solver-based sequential and simultaneous search compared on each search set-
ting separately, i.e., each combination of dataset, dissimilarity threshold τ , etc.
Positive values in this figure denote a higher quality of simultaneous-search so-
lutions, while negative values denote a higher quality of sequential-search solu-
tions. The figure matches previous results by showing little variation in quality
between the solver-based search methods except for Greedy Wrapper feature se-
lection. In particular, the quality difference is usually close to zero, apart from
a few outliers. Additionally, the figure highlights that outliers can occur in both
directions: While solver-based simultaneous search can yield better feature sets
in some scenarios, solver-based sequential search can be better in others.

Optimization status One reason why solver-based simultaneous search fails
to consistently beat solver-based sequential search quality-wise is that search re-
sults can be suboptimal. For Greedy Wrapper, the search is heuristic per se and
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a
Optimization status

Infeasible Feasible Optimal

1 16.10% 7.57% 76.33%
2 17.50% 13.43% 69.07%
3 20.00% 20.40% 59.60%
4 27.00% 21.47% 51.53%
5 28.23% 30.00% 41.77%

Table 4: Frequency of optimization statuses (cf. Section 5.2) by number of alter-
natives a. Results from solver-based simultaneous search with sum-aggregation,
k = 5, and excluding Greedy Wrapper. Each row adds up to 100%.

does not cover the entire search space. For all feature-selection methods, the
solver can time out. Table 3 shows that solver-based simultaneous search has a
higher likelihood of timeouts than solver-based sequential search, likely due to
the larger size of the optimization problem (cf. Table 1). In particular, for up to
five alternatives and k = 5, all solver-based sequential searches for FCBF, MI,
and Model Gain finished within the timeout, i.e., yielded the optimal feature set
or ascertained infeasibility, while mRMR had about 10% timeouts. In contrast,
for solver-based simultaneous search with sum-aggregation, all feature-selection
methods experience timeouts: 1-3% of the searches for FCBF, MI, and Model
Gain, and 67% of the searches for mRMR found a feasible solution but could
not prove optimality. Such timeout-affected simultaneous solutions can be worse
than optimal sequential solutions. The optimization status not solved, i.e., not
finding a feasible solution without proving infeasibility, did not occur in the dis-
played results. The feature-selection method mRMR is especially prone to sub-
optimal solutions, likely because it has a more complex objective than MI and
Model Gain. In contrast, FCBF often results in infeasible optimization problems
since its constraints, preventing the selection of redundant features (cf. Equa-
tion 12), might prevent finding any valid feature set of size k. Min-aggregation
instead of sum-aggregation in solver-based simultaneous search exhibits more
timeouts for MI and Model Gain but less for FCBF and mRMR. Still, solver-
based sequential search incurs fewer timeouts for all these four feature-selection
methods.

Finally, note that the fraction of timeouts strongly depends on the number
of alternatives a, as Table 4 displays: For solver-based simultaneous search with
k = 5 and sum-aggregation, roughly 8% of the white-box searches timed out
for a = 1 but 20% for a = 3 and 30% for a = 5. While we grant solver-
based simultaneous searches proportionally more time for multiple alternatives,
the observed increase in timeouts suggests that runtime clearly increases super-
proportionally, as we analyze next.

Optimization time The optimization times also speak in favor of sequential
search. As Table 5 shows, the mean optimization time of solver-based sequential

40



Feature selection
Optimization time

Seq. Sim. (min) Sim. (sum)

FCBF 0.22 s 11.91 s 13.09 s
Greedy Wrapper 54.23 s 61.10 s 63.45 s
MI 0.02 s 46.36 s 24.19 s
Model Gain 0.02 s 29.46 s 18.79 s
mRMR 34.12 s 157.87 s 189.76 s

Table 5: Mean optimization time by feature-selection method and solver-based
search method for alternatives. Results with k = 5 and a ∈ {1, 2, 3, 4, 5}.

a
Optimization time

FCBF Wrapper MI Model Gain mRMR

1 0.52 s 25.94 s 0.02 s 0.02 s 44.99 s
2 0.95 s 39.44 s 0.07 s 0.06 s 118.80 s
3 3.26 s 56.52 s 0.25 s 0.22 s 208.90 s
4 14.02 s 86.13 s 3.39 s 3.19 s 258.40 s
5 46.71 s 109.20 s 117.21 s 90.49 s 317.69 s

Table 6: Mean optimization time by number of alternatives and feature-selection
method. Results from solver-based simultaneous search with sum-aggregation
and k = 5.

search is lower for all five feature-selection methods. In particular, the difference
between solver-based sequential and simultaneous search is up to three orders
of magnitude for the four white-box feature-selection methods. Further, FCBF,
MI, and Model Gain experience a dramatic increase in optimization time with
the number of alternatives a in solver-based simultaneous search, as Table 6
displays. In contrast, the runtime increase is considerably less for solver-based
sequential search, which shows an approximately linear trend with the number
of alternatives.

Based on all results described in this section, we focus on solver-based se-
quential search in the subsequent Sections 6.2 and 6.3. In particular, it was
significantly faster than solver-based simultaneous search while yielding similar
feature-set quality.

Another interesting question for practitioners is how the runtime relates
to n, the number of features in the dataset. One would expect a positive corre-
lation since the optimization problem’s instance size increases with n. Roughly
speaking, this trend appears in our experimental data indeed. However, the ob-
served trend is rather noisy, particularly for solver-based simultaneous search,
and some higher-dimensional datasets even show lower average runtimes than
lower-dimensional ones. This result indicates that other factors than n influ-
ence runtime. Besides factors related to the datasets and experimental design,
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search heuristics used by the solver may also cause the runtime to fluctuate
considerably.

6.2 Number of Alternatives a

Feature-set quality For sequential search, the training-set objective value
has to decrease with the number of alternatives, at least for exact optimiza-
tion. In particular, each found feature set constrains the optimization problem
further. Figures 3a and 3c illustrate this trend for MI -based feature selection.
Since feature-set quality varies between datasets (cf. Appendix A.7.1), we addi-
tionally normalize feature-set quality here. In particular, we analyze the relative
development of feature-set quality within each search run for alternatives. First,
we shift the range of all evaluation metrics to [0, 1] since prediction performance
and the objectives of Greedy Wrapper and mRMR have the range [−1, 1] with-
out this shift. Second, we max-normalize feature-set quality for each search of
alternatives, i.e., the highest feature-set quality in the search run is set to 1,
and the other qualities are scaled accordingly. Figure 3a shows that multiple
alternatives may have a similar quality, as the median training-set objective
value remains relatively stable over the alternatives and is above 0.8 even for
the tenth alternative. For comparison, Figure 3c uses min-max normalization,
i.e., the worst of the alternatives gets 0 as objective. This figure makes the
decrease in quality over the alternatives more visible. In particular, this figure
highlights that the training-set objective value decreases most from the original
feature set, i.e., the zeroth alternative in the figures, to the first alternative, but
the decrease is less beyond.

Additionally, Figures 3a and 3c show that the test-set objective value also
drops most to the first alternative. However, this decrease is less prominent than
on the training set, and there is no clear trend beyond the first few alternatives.
In particular, alternatives can even have a higher test-set objective value than
the original feature set due to overfitting. Similar findings hold for test-set
prediction performance. Overall, these results indicate that alternative feature
sets fulfill their purpose of being different solutions with similar quality.

Optimization status The prior observations refer to the quality of the found
feature sets. However, the more alternatives are desired, the likelier an infeasible
optimization problem is (cf. Table 4). For example, MI -based feature selection
in solver-based sequential search always finds an original feature set. However,
with k = 5, the problem is infeasible in 2% of the cases for the third alternative,
12% for the fifth, and 17% for the tenth. Increasing the feature-set size k or
having lower dataset dimensionality n naturally causes more infeasible solutions,
as fewer features become available for alternatives. Thus, even if the quality of
found feature sets remains relatively stable for more alternatives, valid alterna-
tives may simply not exist. Figures 3b and 3d show the same data as Figures 3a
and 3c but with the quality of infeasible feature sets set to zero, i.e., the theoret-
ical minimum after we shifted the value ranges of evaluation metrics. In these
figures, the downward trend of feature-set quality over the alternatives becomes
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(a) Max-normalized, infeasible feature sets excluded.
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(b) Max-normalized, infeasible feature sets assigned a quality of 0.
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(c) Min-max-normalized, infeasible feature sets excluded.
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(d) Min-max-normalized, infeasible feature sets assigned a quality of 0.

Figure 3: Feature-set quality, normalized per search run for alternatives, over
the number of alternatives, by evaluation metric and normalization method.
Results from solver-based sequential search with MI as the feature-selection
method and k = 5.
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slightly more prominent, particularly for many alternatives. This trend also
depends on the dissimilarity threshold τ , which we analyze in the next section.

Influence of feature-selection method While we discussed MI before, the
decrease in objective value over the number of alternatives occurs for all feature-
selection methods in our experiments, as Figure 4a displays. The strength of
the decrease varies between the feature selection methods. For example, Greedy
Wrapper and mRMR show little effect of increasing the number of alternatives,
while MI and Model Gain exhibit the strongest effect. As Figure 4b displays,
the quality decrease becomes more prominent if one sets the quality of infeasible
feature sets to zero. Further, for the test-set prediction performance shown in
Figure 4c, no feature-selection method exhibits a strong decrease over the num-
ber of alternatives, unless we account for infeasible feature sets (cf. Figure 4d).

6.3 Dissimilarity Threshold τ

Feature-set quality As Figure 5a shows for MI as the feature-selection
method, the decrease in the objective value Q over the number of alternatives
strongly depends on the dissimilarity threshold τ . We use results with k = 10
instead of k = 5 here to show more distinct values of τ . For a low dissimilarity
threshold, e.g., τ = 0.1, the objective value barely drops over the number of
alternatives. In contrast, the objective value decreases significantly for a high
dissimilarity threshold, e.g., τ = 1. This trend is expected since a higher τ con-
strains the feature selection more. Further, datasets with more features n tend
to experience a smaller decrease in quality over a and τ . As higher-dimensional
datasets offer more options for alternatives, this observation makes sense. How-
ever, this effect is not guaranteed since datasets with many features could also
contain many useless features instead of interesting alternatives.

As Figure 5c displays, the decreasing quality over τ also shows for the test-set
objective value, though the trend is weaker there. The effect of τ on predic-
tion performance exhibits an even less clear trend, as visualized in Figure 5e.
This result underlines our previous observations that the objective value is only
partially indicative of prediction performance.

Optimization status Similar to our analysis for the number of alternatives
(cf. Section 6.2), one needs to consider that setting τ too high can make the
optimization problem infeasible. In particular, a higher dissimilarity threshold
increases the likelihood that no feature set is alternative enough. Figure 6
visualizes the fraction of valid feature sets over the number of alternatives and
dissimilarity threshold τ . Figures 5b, 5d, and 5f account for infeasible feature
sets by setting their feature-set quality to zero. Compared to Figures 5a, 5c,
and 5e, the decrease in feature-set quality is noticeably stronger. In contrast,
if only considering valid feature sets, the mean quality can increase over the
number of alternatives, as visible in Figure 5a for τ = 1.0 or in Figure 4a for MI
and Model Gain. This counterintuitive phenomenon can occur because some
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(a) Training-set objective value. Infeasi-
ble feature sets excluded.
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(b) Training-set objective value. Infeasi-
ble feature sets assigned a quality of 0.
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(c) Test-set prediction performance. In-
feasible feature sets excluded.
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(d) Test-set prediction performance. In-
feasible feature sets assigned a quality
of 0.

Figure 4: Mean of feature-set quality, max-normalized per search run for al-
ternatives, over the number of alternatives, by feature-selection method and
evaluation metric. Results from solver-based sequential search with k = 5.
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(a) Training-set objective value. Infeasi-
ble feature sets excluded.
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(b) Training-set objective value. Infeasi-
ble feature sets assigned a quality of 0.
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(c) Test-set objective value. Infeasible
feature sets excluded.
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(d) Test-set objective value. Infeasible
feature sets assigned a quality of 0.
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(e) Test-set prediction performance. In-
feasible feature sets excluded.
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(f) Test-set prediction performance. In-
feasible feature sets assigned a quality
of 0.

Figure 5: Mean of feature-set quality, max-normalized per search run for al-
ternatives, over the number of alternatives and dissimilarity threshold τ , by
evaluation metric. Results from solver-based sequential search with MI as the
feature-selection method and k = 10.
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(a) Feature-set size k = 5.
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(b) Feature-set size k = 10.

Figure 6: Fraction of optimization runs yielding a valid feature set over the num-
ber of alternatives and dissimilarity threshold τ , by feature-set size k. Results
from solver-based sequential search with MI as the feature-selection method.

datasets run out of valid feature sets sooner than others, so the average quality
may be determined for different sets of datasets at each number of alternatives.

Influence of feature-selection method The impact of τ on feature-set
quality varies between feature-selection methods, as Figure 7a shows. Besides
MI, the objective value of Model Gain strongly depends on τ as well. In con-
trast, the remaining three feature-selection methods exhibit little influence of τ
on feature-set quality unless one also accounts for infeasible feature sets (cf. Fig-
ure 7b). For Greedy Wrapper, this outcome may be explained by the heuristic,
inexact search procedure. For FCBF, the additional constraints on feature-
feature correlation (cf. Equation 12) may alleviate the effect of τ . For mRMR,
the low influence of τ matches the low influence of the number of alternatives.
For this feature-selection method, alternatives tend to vary little in their ob-
jective value. Finally, the test-set prediction performance does not vary con-
siderably over τ for any feature-selection method, as Figure 7c displays. Only
considering infeasible feature sets results in decreased prediction performance
(cf. Figure 7d).

6.4 Heuristic Search Methods for Alternatives

Variance in feature-set quality Figure 8 shows how the feature-set quality
varies over alternatives within individual search runs for alternatives. The figure
uses MI as the feature-selection method, but results for Model Gain are similar.
Also, this figure is similar to Figure 1a from our analysis of solver-based search
methods but includes heuristic search methods.

For the training-set objective value (cf. Figure 8a), we observe that the
heuristic Greedy Balancing yields a small variance of quality within search
runs, very similar to the solver-based simultaneous search with min-aggregation.
While the variance within search runs produced by the heuristic is slightly higher
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(a) Training-set objective value. Infeasi-
ble feature sets excluded.
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(b) Training-set objective value. Infeasi-
ble feature sets assigned a quality of 0.
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(c) Test-set prediction performance. In-
feasible feature sets excluded.
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(d) Test-set prediction performance. In-
feasible feature sets assigned a quality
of 0.

Figure 7: Mean of feature-set quality, max-normalized per search run for al-
ternatives, over the dissimilarity threshold τ , by feature-selection method and
evaluation metric. Results from solver-based sequential search with k = 10.
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(b) Standard deviation of test-set objective value within search runs.

Figure 8: Feature-set quality over the number of alternatives a, by search
method for alternatives (including heuristics) and evaluation metric. Results
with MI as the feature-selection method and k = 5. Y-axes are truncated to
improve readability.

than for the solver-based search, this difference is barely visible in the figure. In
contrast, the heuristic Greedy Replacement rather mimics solver-based sequen-
tial search, having a substantial variance over alternatives within search runs.
Also, the variance of Greedy Replacement noticeably grows with the number
of alternatives a and the dissimilarity threshold τ . For Greedy Balancing, the
increase in variance over a also exists but is considerably smaller.

For the test-set objective value (cf. Figure 8b) and the test-set prediction
performance, the variance within search runs differs less between the different
search methods for alternatives. As explained for solver-based search methods in
Section 6.1, this phenomenon may be caused by overfitting, i.e., the training-set
quality does not perfectly correspond to the test-set quality, thereby introducing
additional variance.

Average value of feature-set quality Figure 9 compares the mean training-
set objective value of alternatives within search runs for each search setting sepa-
rately, like Figure 2b does. In particular, we compare solver-based simultaneous
search with min-aggregation to Greedy Balancing (cf. Figures 9a and 9c) and

49



1 2 3 4 5
Number of alternatives a

0.12

0.08

0.04

0.00

0.04

0.08

0.12

Q
tra

in
 (s

im
. (

m
in

) v
s.

 b
al

.)

Selection MI Model Gain

(a) Difference between solver-based si-
multaneous (min-aggregation) search and
Greedy Balancing, over the number of al-
ternatives a.
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(b) Difference between solver-based se-
quential search and Greedy Replacement,
over the number of alternatives a.
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(c) Difference between solver-based si-
multaneous (min-aggregation) search and
Greedy Balancing, over the dissimilarity
threshold τ .
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(d) Difference between solver-based se-
quential search and Greedy Replacement,
over the dissimilarity threshold τ .

Figure 9: Difference in mean training-set objective value between solver-based
and heuristic search methods for alternatives, over user parameters a and τ , by
feature-selection method and search methods. Results with k = 5.
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solver-based sequential search to Greedy Replacement (cf. Figures 9b and 9d).
Positive values in Figure 9 express that solver-based search is better; negative
values favor heuristic search. The latter can only occur if solver-based search
encounters timeouts and may, therefore, yield suboptimal solutions, which hap-
pens for solver-based simultaneous search (cf. Table 3).

Figures 9a and 9b compare solver-based and heuristic search over the number
of alternatives a. For a = 1, solver-based and heuristic search yield the same
training-set objective value except when timeouts occur. The more alternatives
are desired, the more advantageous a solver-based search is regarding training-
set objective value. As in prior analyses, the picture is less clear on the test
set. In particular, the quality advantage of solver-based search is smaller for
the test-objective value than for the training-set objective value and vanishes
for the test-set prediction performance.

Further, the difference in training-set objective value between Greedy Bal-
ancing and solver-based simultaneous search (cf. Figure 9a) grows faster with a
than between Greedy Replacement and solver-based sequential search (cf. Fig-
ure 9b). This phenomenon may be explained by the fact that simultaneous
search can generally develop an advantage over sequential search for more al-
ternatives. While Greedy Balancing is a simultaneous search heuristic in the
sense that it balances the quality of the alternatives, it selects the same features
as Greedy Replacement, i.e., a sequential search heuristic, and only distributes
them differently into feature sets.

Figures 9c and 9d compare solver-based and heuristic search over the dis-
similarity threshold τ . Unlike for a, the difference in training-set objective value
between solver-based and heuristic search does not increase over the whole range
of τ but shows an increase followed by a decrease. In particular, τ = 1 allows
the two heuristic search methods to reach the same training-set objective value
as the solver-based methods. This observation corresponds to our theoretical
result that optimizing the summed quality of alternatives with τ = 1 admits
polynomial-time algorithms (cf. Proposition 11).

Regarding the feature-selection methods, MI exhibits a larger difference
in training-set objective value between solver-based and heuristic search than
Model Gain, which is also visible in Figure 9. In particular, the univariate
feature qualities computed by Model Gain in our experiments may have a dis-
tribution that brings heuristic search closer to the optimum than for MI -based
feature qualities.

Optimization status Table 7 displays the frequency of optimization sta-
tuses (cf. Section 5.2) for the different search methods. The status feasible for
solver-based simultaneous search indicates timeouts, which explains why Greedy
Balancing is better in some cases (cf. Figure 9).

The table shows that Greedy Replacement more often did not find a valid
alternative (9.2%) than solver-based sequential search (4.93%). A similar phe-
nomenon occurred for Greedy Replacement (9.2%) compared to solver-based
simultaneous search (4.67%). One can expect such a result since the termina-
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Selection Search
Optimization status

Infeasible Not solved Feasible Optimal

MI bal. 0.00% 9.20% 90.80% 0.00%
MI rep. 0.00% 9.20% 90.80% 0.00%
MI seq. 4.93% 0.00% 0.00% 95.07%
MI sim. (min) 4.67% 0.00% 9.15% 86.19%
MI sim. (sum) 4.67% 0.00% 2.88% 92.45%
Model Gain bal. 0.00% 9.20% 90.80% 0.00%
Model Gain rep. 0.00% 9.20% 90.80% 0.00%
Model Gain seq. 4.93% 0.00% 0.00% 95.07%
Model Gain sim. (min) 4.67% 0.00% 5.17% 90.16%
Model Gain sim. (sum) 4.67% 0.00% 1.84% 93.49%

Table 7: Frequency of optimization statuses (cf. Section 5.2) by feature-selection
method and search method for alternatives (including heuristics). Results with
k = 5 and a ∈ {1, 2, 3, 4, 5}. Each row adds up to 100%.

tion criterion of both heuristic search methods causes them to terminate early as
soon as each feature is part of at least one alternative. The latter criterion does
not prevent further solutions from existing, but one would need a new strategy
to enumerate further valid alternatives.

Optimization time The optimization time of the heuristic search methods is
negligible. In particular, Greedy Replacement and Greedy Balancing never took
longer than 1 ms per search run for alternatives. As discussed in Section 6.1,
solver-based sequential search required less than 1 s on average forMI andModel
Gain as feature-selection methods (cf. Table 5), while solver-based simultaneous
search sometimes did not even finish within the 1-min timeout per alternative
(cf. Table 3). These results highlight the runtime advantage of the heuristics,
particularly of Greedy Balancing for simultaneous search.

6.5 Summary

Datasets (cf. Appendix A.7.1) Generally, feature-set quality strongly de-
pended on the dataset. Thus, an analysis of alternative feature sets should be
dataset-specific or appropriately normalize quality, as we did.

Feature-set quality metrics (cf. Appendix A.7.2) Different notions of
feature-set quality exhibited different trends in our experiments, so one should
choose a notion of feature-set quality carefully. In particular, the objective
function of feature-selection methods might disagree with the prediction perfor-
mance of the corresponding feature sets. Further, we observed overfitting, i.e.,
a gap between training-set quality and test-set quality, also for simple objective
functions, though to a lesser extent than for prediction performance.
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Feature-selection methods (cf. Appendix A.7.3) Among the feature-
selection methods, Model Gain resulted in the best prediction performance on
average, though the simple univariate MI also turned out competitive. Greedy
Wrapper and mRMR required high optimization times, while our constraint-
based version of FCBF yielded many infeasible solutions. Finally, selecting
k = 10 instead of k = 5 features yielded only a slight improvement in prediction
performance for all feature-selection methods, so one might stick to smaller
feature-set sizes if such a setting benefits interpretability for users.

Solver-based search methods for alternatives (cf. Section 6.1) Solver-
based simultaneous search, particularly with min-aggregation, considerably re-
duced the variance of the training-set objective value over alternatives compared
to solver-based sequential search, as we desired. However, results were less clear
on the test set and when using prediction performance to measure feature-set
quality. Further, the average quality of alternatives was similar to solver-based
sequential search. In addition, the latter was considerably faster and led to less
solver timeouts, particularly when increasing the number of alternatives. Also,
sequential search allows users to stop searching after each alternative instead
of requiring the number of alternatives to be specified beforehand. Thus, we
recommend using solver-based sequential search.

Number of alternatives a (cf. Section 6.2) Feature-set quality decreased
most from the original feature set to the first alternative but less beyond. The
strength of this decrease depended on the feature-selection method. There usu-
ally were several alternatives of similar quality, if such valid alternatives existed
at all. In particular, the frequency of infeasible solutions increased with a due
to more constraints. Finally, the quality decrease was more prominent on the
training set than on the test set.

Dissimilarity threshold τ (cf. Section 6.3) A higher dissimilarity thresh-
old caused a stronger decrease in feature-set quality in terms of objective value
for the feature-selection methods MI and Model Gain. This result shows that
users can control a trade-off between quality and dissimilarity. However, re-
sults regarding prediction performance and for the other three feature-selection
methods were less clear. In any case, a higher τ naturally caused more infeasible
solutions, which users should be aware of.

Heuristic search methods for alternatives (cf. Section 6.4) The heuris-
tic search methods Greedy Replacement and Greedy Balancing for univariate
feature qualities achieved a good feature-set quality relative to solver-based
search, particularly for a low number of alternatives and on the test set. Apart
from noticeable differences in training-set objective value for a high number of
alternatives, users should be aware that the heuristics may stop in situations
where solver-based search can still find further alternatives. As a positive point,
both the heuristics’ runtime was negligible. Also, Greedy Balancing achieved a
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low variance of training-set objective value between alternatives found simulta-
neously, similar to solver-based simultaneous search with min-aggregation.

7 Conclusions and Future Work

In this section, we summarize our work (cf. Section 7.1) and give an outlook on
potential future work (cf. Section 7.2).

7.1 Conclusions

Feature-selection methods are a valuable tool to foster interpretable predic-
tions. Conventional feature-selection methods typically yield only one feature
set. However, users may be interested in obtaining multiple, sufficiently diverse
feature sets of high quality. Such alternative feature sets may provide alternative
explanations for predictions from the data.

In this article, we defined alternative feature selection as an optimization
problem. We formalized alternatives via constraints that are independent of
the feature-selection method, can be combined with other constraints on fea-
ture sets, and allow users to control diversity according to their needs with
two parameters, i.e., the number of alternatives a and a dissimilarity thresh-
old τ . Further, we discussed how to integrate different categories of conven-
tional feature-selection methods as objectives. We also analyzed the complexity
of this optimization problem and proved NP-hardness, even for simple notions
of feature-set quality. Additionally, we showed that the problem gives way to a
constant-factor approximation under certain conditions, and we proposed cor-
responding heuristic search methods. Finally, we evaluated alternative feature
selection with 30 classification datasets and five feature-selection methods. We
compared sequential and simultaneous search for alternatives, both with solver-
based and heuristic search methods, and varied the number of alternatives as
well as the dissimilarity threshold for alternatives.

7.2 Future Work

Feature selection (objective function) One could search for alternatives
with other feature-selection methods than the five we analyzed. In particular, we
implemented only one procedure to find alternatives for wrapper feature selec-
tion (cf. Section 3.3.2). Embedded feature selection, which we did not evaluate,
would also need adapted search methods for alternatives (cf. Section 3.3.3).

Alternatives (constraints) One could vary the definition of alternatives,
e.g., the set-dissimilarity measure (cf. Section 3.2.1), the quality aggregation for
simultaneous alternatives (cf. Appendix A.1), or the overall optimization prob-
lem (cf. Section 3.1). While we made general and straightforward decisions for
each of these points, particular applications might demand other formalizations
of alternatives. E.g., one could use soft instead of hard constraints.
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Computational complexity Appendix A.5.4 discusses how one could extend
our complexity analysis of alternative feature selection (cf. Section 3.4).

Runtime Our experiments (cf. Section 6.1) and theoretical analyses (cf. Sec-
tion 3.2.2) revealed that exact simultaneous search scales poorly with the num-
ber of alternatives. One could conceive a more efficient problem formulation.
Further, one could limit the solver runtime and take the intermediate results
once the timeout is reached. We already used a fixed timeout in our exper-
iments, but studying the exact influence of timeouts on feature-set quality is
an open topic. Next, one could use a different solver, e.g., one for non-linear
optimization, so the auxiliary variables from Equation 6 become superfluous.
Finally, one could develop further simultaneous heuristics (cf. Section 3.5.2).

Datasets In the current article, we conducted a broad quantitative evalua-
tion of alternative feature selection on datasets from various domains. (cf. Sec-
tion 5.4). While we uncovered several general trends, the existence and quality
of alternatives naturally depend on the dataset. Thus, practitioners may em-
ploy alternative feature selection in domain-specific case studies and evaluate
the alternative feature sets qualitatively, thereby assessing their usefulness for
interpreting predictions.

Acknowledgments This work was supported by the Ministry of Science,
Research and the Arts Baden-Württemberg, project Algorithm Engineering for
the Scalability Challenge (AESC).

A Appendix

In this section, we provide supplementary materials. Section A.1 discusses pos-
sible aggregation operators for the objective of the simultaneous-search problem
(cf. Equation 10). Section A.2 discusses additional objective functions for multi-
variate filter feature selection (cf. Section 3.3.1). Section A.3 provides complete
definitions of the alternative-feature-selection problem (cf. Section 3.2) for the
univariate objective (cf. Equation 11). Section A.4 proposes how to speed up
optimization for the univariate objective (cf. Equation 11). Section A.5 com-
plements the complexity analysis (cf. Section 3.4). Section A.6 proposes an-
other heuristic search method for the univariate objective (cf. Equation 11),
complementing Section 3.5. Section A.7 contains additional evaluation results
(cf. Section 6).

A.1 Aggregation Operators for the Simultaneous-Search
Problem

In this section, we discuss operators to aggregate the feature-set quality of mul-
tiple alternatives in the objective of the simultaneous-search problem (cf. Equa-
tion 10).
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Sum-aggregation The arguably simplest way to aggregate the qualities of
multiple feature sets is to sum them up, which we call sum-aggregation:

max
s(0),...,s(a)

a∑
i=0

Q(s(i), X, y) (15)

While this objective fosters a high average quality of feature sets, it does not
guarantee that the alternatives have similar quality:

Example 5 (Sum-aggregation). Consider n = 6 features with univariate feature
qualities (cf. Equation 11) q = (9, 8, 7, 3, 2, 1), feature-set size k = 3, number of
alternatives a = 2, and dissimilarity threshold τ = 0.5, which permits an overlap
of one feature between sets here. Exact sequential search yields the selection
s(0) = (1, 1, 1, 0, 0, 0), s(1) = (1, 0, 0, 1, 1, 0), and s(2) = (0, 1, 0, 1, 0, 1), with a
summed quality of 24 + 14 + 12 = 50. One possible exact simultaneous-search
solution consists of the feature sets s(0) = (1, 1, 0, 1, 0, 0), s(1) = (1, 0, 1, 0, 1, 0),
and s(2) = (0, 1, 1, 0, 0, 1), with a summed quality of 20 + 18 + 16 = 54.
Another possible exact simultaneous-search solution is s(0) = (1, 1, 0, 0, 0, 1),
s(1) = (1, 0, 1, 0, 1, 0), and s(2) = (0, 1, 1, 1, 0, 0), with a summed quality of
18 + 18 + 18 = 54.

This example allows several insights. First, exact sequential search yields
worse quality than exact simultaneous search here, i.e., 50 vs. 54. Second, the
feature-set qualities of the sequential solution, i.e., 24, 14, and 12, differ sig-
nificantly. Third, exact simultaneous search can yield multiple solutions whose
feature-set quality is differently balanced. Here, the feature-set qualities in the
second simultaneous-search solution, i.e., 18, 18, and 18, are more balanced than
in the first, i.e., 20, 18, and 16. However, both solutions are equally optimal for
sum-aggregation.

Min-aggregation To actively foster balanced feature-set qualities in simul-
taneous search, we propose min-aggregation in the objective:

max
s(0),...,s(a)

min
i∈{0,...,a}

Q(s(i), X, y) (16)

In the terminology of social choice theory, this objective uses an egalitarian rule
instead of a utilitarian one [76]. In particular, min-aggregation maximizes the
quality of the worst selected alternative. Thereby, it incentivizes all alternatives
to have high quality and implicitly balances their quality.

Note that optimizing the objective with either sum-aggregation or min-
aggregation does not necessarily optimize the other. We already showed a solu-
tion optimizing sum-aggregation but not min-aggregation (cf. Example 5). In
the following, we demonstrate the other direction:

Example 6 (Min-aggregation). Consider n = 6 features with univariate feature
qualities (cf. Equation 11) q = (11, 10, 6, 5, 4, 1), feature-set size k = 3, number
of alternatives a = 1, and dissimilarity threshold τ = 0.5, which permits an
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overlap of one feature between sets here. One solution optimizing the objective
with min-aggregation is s(0) = (1, 1, 0, 0, 1, 0) and s(1) = (1, 0, 1, 1, 0, 0), with a
summed quality of 25 + 22 = 47. Another solution is s(0) = (1, 1, 0, 0, 0, 1) and
s(1) = (1, 0, 1, 1, 0, 0), with a summed quality of 22 + 22 = 44.

While both solutions have the same minimum feature-set quality, only the
first solution optimizes the objective with sum-aggregation. In particular, min-
aggregation permits reducing the quality of feature sets as long as the latter
remains above the minimum quality of all sets.

From the technical perspective, Equation 16 has the disadvantage of be-
ing non-linear regarding the decision variables s(0), . . . , s(a). However, we can
linearize it with one constraint per feature set and an auxiliary variable Qmin:

max
s(0),...,s(a)

Qmin

subject to: ∀i ∈ {0, . . . , a} : Qmin ≤ Q(s(i), X, y)

Qmin ∈ R

(17)

As we maximize Qmin, this variable will implicitly assume the actual minimum
value ofQ(s(i), X, y) with equality since the solution would not be optimal other-
wise. This situation relieves us from introducing further auxiliary variables that
are usually necessary when linearizing maximum or minimum expressions [71].

Further approaches for balancing quality Min-aggregation provides no
control or guarantee of how much the feature-set qualities will actually differ
between alternatives since it only incentivizes high quality for all sets. One
can alleviate this issue by adapting the objective or constraints. First, related
work on Multi-Way Number Partitioning also uses other objectives for
balancing [55, 59] (cf. Section A.5.2). E.g., one could minimize the difference
between maximum and minimum feature-set quality. Second, one could use
sum-aggregation but constrain the minimum or maximum quality of sets, or
the difference between the qualities. However, such constraint-based approaches
introduce one or several parameters bounding feature-set quality, which are dif-
ficult to determine a priori. Third, one could treat balancing qualities as another
objective besides maximizing the summed quality. One can then optimize two
objectives simultaneously, filtering results for Pareto-optimal solutions or opti-
mizing a weighted combination of the two objectives. In both cases, users may
need to define an acceptable trade-off between the objectives. It is an open ques-
tion if a solution always exists that jointly optimizes min- and sum-aggregation.
If yes, then optimizing a weighted combination of the two objectives would also
optimize each of them on its own, assuming positive weights.

A.2 Further Objectives for Multivariate Filter Methods

While Section 3.3.1 already addressed FCBF and mRMR as multivariate filter
feature-selection methods, we discuss the objectives of CFS and Relief here.
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CFS Correlation-based Feature Selection (CFS) [38, 39] follows a similar prin-
ciple as mRMR but uses the ratio instead of the difference between a relevance
term and a redundancy term for feature-set quality. Using a bivariate depen-
dency measure q(·) to quantify correlation, the objective is as follows:

QCFS(s,X, y) =

∑n
j=1 q(X·j , y) · sj√∑n

j=1 sj +
∑n

j1=1

∑n
j2=1
j2 ̸=j1

q(X·j1 , X·j2) · sj1 · sj2
(18)

One can square this objective to remove the square root in the denominator [80].
Nevertheless, the objective remains non-linear in the decision variables s since
it involves a fraction and multiplications between variables. However, one can
linearize the objective with additional variables and constraints [79, 80], allowing
to formulate alternative feature selection for CFS as a linear problem.

Relief Relief [52, 90] builds on the idea that data objects with a similar value
of the prediction target should have similar feature values, but data objects
that differ in their target should differ in their feature values. Relief assigns a
score to each feature by sampling data objects and quantifying the difference
in feature values and target values compared to their nearest neighbors. We
deem Relief to be multivariate since the nearest-neighbor computations involve
all features instead of considering them independently. However, the resulting
feature scores can directly be put into the univariate objective (cf. Equation 11)
to obtain a linear problem. One can also use Relief scores in CFS to consider
feature redundancy [38, 39], which the default Relief does not.

A.3 Complete Specifications of the Optimization Problem
for the Univariate Objective

In this section, we provide complete specifications of the alternative-feature-
selection problem for sequential and simultaneous search as integer-linear prob-
lem. In particular, we combine all relevant definitions and equations from Sec-
tion 3. We use the objective of univariate filter feature selection (cf. Equa-
tion 11). The corresponding feature qualities q(·) are constants in the optimiza-
tion problem. Further, we use the Dice dissimilarity (cf. Equation 8) to measure
feature-set dissimilarity for alternatives. The dissimilarity threshold τ ∈ [0, 1]
is a user-defined constant. Finally, we assume fixed, user-defined feature-set
sizes k ∈ N.

Sequential-search problem In the sequential case, only one feature set Fs

is variable in the optimization problem, while the existing feature sets Fs̄ ∈ F
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with their selection vectors s̄ are constants.

max
s

Quni(s,X, y) =

n∑
j=1

q(X·j , y) · sj

subject to: ∀Fs̄ ∈ F :

n∑
j=1

sj · s̄j ≤ (1− τ) · k

n∑
j=1

sj = k

s ∈ {0, 1}n

(19)

Simultaneous-search problem In the simultaneous case, all feature sets
are variable. a ∈ N0 denotes the number of alternatives, which corresponds to
the number of feature sets minus one. Next, we introduce auxiliary variables
to linearize products between variables (cf. Equation 6). Finally, we use sum-
aggregation (cf. Equation 15) over alternatives in the objective here.

max
s(0),...,s(a)

∑
i

Quni(s
(i), X, y) =

∑
i

∑
j

q(X·j , y) · s(i)j

subject to: ∀i1 ∀i2 :
∑
j

t
(i1,i2)
j ≤ (1− τ) · k

∀i1 ∀i2 ∀j : t
(i1,i2)
j ≤ s

(i1)
j

∀i1 ∀i2 ∀j : t
(i1,i2)
j ≤ s

(i2)
j

∀i1 ∀i2 ∀j : 1 + t
(i1,i2)
j ≥ s

(i1)
j + s

(i2)
j

∀i :
∑
j

s
(i)
j = k

∀i : s(i) ∈ {0, 1}n

∀i1 ∀i2 : t(i1,i2) ∈ {0, 1}n

with indices: i ∈ {0, . . . , a}
i1 ∈ {1, . . . , a}
i2 ∈ {0, . . . , i1 − 1}
j ∈ {1, . . . , n}

(20)

A.4 Pre-Selection for the Univariate Objective

In this section, we describe how to potentially speed up the optimization of
the univariate objective (cf. Equation 11) by pre-selection if the user-defined
feature-set sizes k and the number of alternatives a are small.

The univariate objective is monotonic in the features’ qualities q(X·j , y) and
the selection decisions sj . In particular, the objective is non-decreasing when re-
placing a feature with another one of higher quality. Further, unless some feature
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qualities are negative, selecting more features does not decrease the objective.
Sum-aggregation (cf. Equation 15) and min-aggregation (cf. Equation 16) for
the simultaneous-search problem are monotonic as well.

Thus, assuming (a+1) ·k < n, it suffices to use the (a+1) ·k highest feature
qualities when searching for an optimal solution out of a+1 feature sets. Due to
monotonicity, the remaining feature qualities cannot improve the objective, so
one can drop them before optimization. We call this step pre-selection. While
there might also be optimal solutions using the dropped features, their objective
value cannot be higher than with pre-selection. For example, such solutions can
arise in case of multiple identical qualities or for min-aggregation in the objective
(cf. Example 6). Also, the optimal solution might not contain all pre-selected
features, i.e., pre-selection over-approximates the set of selected features.

One can conduct pre-selection before using a solver or any other search
mechanism, e.g., exhaustive search. The latter generally has polynomial runtime
regarding n assuming small, constant a and k, i.e., a·k ∈ O(1) (cf. Section 3.4.1).
With pre-selection, the pure search cost would even become independent from n,
i.e., O(1) under that assumption. However, one would need to determine the
highest feature qualities first, e.g., by sorting all qualities in O(n · log n) or
iteratively determining the maximum quality in O((a+ 1) · k · n).

A.5 Computational Complexity

In this section, we provide details for our analysis of computational complexity
(cf. Section 3.4). In particular, we discuss a special case of exhaustive simulta-
neous search (cf. Section A.5.1), outline related work (cf. Section A.5.2), provide
proofs (cf. Section A.5.3), and describe future work (cf. Section A.5.4).

A.5.1 A Special Case of Exhaustive Simultaneous Search

The complexity of exhaustive simultaneous search is lower than in Proposition 4
for the special case 0 < τ · k ≤ 1, i.e., if feature sets need to differ in only one
feature. There, each feature set is an alternative to each other unless both
sets are identical. Thus, each set of a + 1 distinct feature sets constitutes a
valid solution, and further constraint checking is unnecessary. Hence, instead of
iterating over sets of feature sets, one can iterate over individual feature sets and
maintain a buffer containing the a+1 feature sets with the highest quality. For
each feature set iterated over, one needs to determine if its quality is higher than
the lowest feature-set quality in the buffer and replace it if yes. This procedure
has a runtime of O((a+1) ·nk) without the cost of evaluating the objective. I.e.,
unlike in Proposition 4, the number of alternatives a is not part of the exponent
anymore, and the cost corresponds to the search for one feature set times the
cost of updating the buffer. For large a, one can implement the buffer as a heap,
thereby reducing the linear factor regarding a to a logarithmic one.
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A.5.2 Related Work

In this section, we discuss related work on NP-hard problems that resemble
alternative feature-selection with univariate feature qualities (cf. Equation 11),
providing background for Section 3.4.2.

Integer programming The univariate objective and several other feature-
selection methods allow us to phrase alternative feature selection as a 0-1 integer
linear program (cf. Section 3.3.1). Integer Programming is NP-complete in
general, even for binary decision variables [31, 46]. Thus, alternative feature se-
lection with a white-box objective suitable for Integer Programming resides
in NP. However, it could still be easier since alternative feature selection only
uses particular constraint types instead of expressing arbitrary integer linear
problems. Vice versa, the membership in NP based on Integer Program-
ming assumes a particular encoding of alternative feature selection, i.e., each
constraint is stored separately and counts towards the problem’s input size. If
we instead define the input size only as the number of features n or the to-
tal encoding length of the objective function plus parameters a, k, and τ , the
problem could be harder than NP, e.g., for a high number of alternatives. In
particular, increasing the number of alternatives would increase the encoding
length logarithmically but the cost of constraint checking quadratically.

Multi-way number partitioning / multiprocessor scheduling The lit-
erature provides different formulations of Multi-Way Number Partitioning
and Multiprocessor Scheduling. In particular, different objectives for-
malize the notion of balanced subset sums and can lead to different optimal
solutions [55, 59]. The maximin formulation we use for min-aggregation in the
simultaneous-search problem (cf. Equations 10 and 16) is one such notion.

There are several exact algorithms to solve Multi-Way Number Parti-
tioning, e.g., using branch-and-bound approaches that might have exponential
runtime [40, 97, 109]. For a fixed number of partitions, the problem is weakly
NP-complete since it admits pseudo-polynomial algorithms [31, 54]. Such algo-
rithms run in polynomial time if the input numbers are bounded to a particular
size known in advance. Since our feature qualities typically are real numbers,
one would need to scale and discretize them to apply such an algorithm. Also,
for an arbitrary number of partitions, the problem is strongly NP-complete, so
no pseudo-polynomial algorithm can exist unless P = NP [31].

However, NP-completeness does not exclude the existence of approximation
routines that run in polynomial time and have a guaranteed quality relative to
the optimal solution. For example, [1, 24, 114] present such algorithms for
the maximin formulation of Multi-Way Number Partitioning, which cor-
responds to our objective with min-aggregation. In particular, [1, 114] describe
polynomial-time approximation schemes (PTAS), which can provide a solution
arbitrarily close to the optimum. However, the runtime depends on the desired
approximation ratio and can grow exponentially the more precision is desired.
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Unless P = NP, the strong NP-completeness of the problem prevents the exis-
tence of a fully polynomial-time approximation scheme (FPTAS), which would
only polynomially depend on the precision of approximation [1, 114]. However,
an FPTAS does exist for each fixed number of partitions [95]. Further, besides
approximations, the problem also has polynomial-time exact algorithms if cer-
tain parameters of the problem are fixed, e.g., the number of unique numbers to
be partitioned or the largest number [68]. Thus, the problem is fixed-parameter
tractable (FPT ) for an appropriate definition of ‘parameter’.

Balanced number partitioning / k-partitioning While the previous ap-
proaches considered sets of arbitrary sizes, there are number-partitioning prob-
lems with constrained k as well, e.g., called Balanced Number Partitioning
orK-Partitioning. The problem formulations differ in their objective and car-
dinality constraints, e.g., if equalities or inequalities are used.

For the minimax objective, [4, 67, 119] propose heuristic algorithms, some
with approximation guarantees. [4] also provides a bound of the objective value
relative to the unconstrained case. Further, there is a PTAS for each fixed set
size k [67]. Finally, the problem exhibits a polynomial-time exact algorithm for
k = 2 [22, 23] and an FPTAS for k = n/2 [113].

One can also loosen the cardinality constraints by requiring ≤ k instead of
= k. Further, the cardinality k might vary between partitions. This generalized
problem is strongly NP-hard but has heuristics running in polynomial time [47].
In particular, [17] provides an efficient PTAS (EPTAS).

As another problem formulation, [18, 41, 60] use a maximin objective as we
do. This objective was rarely addressed in combination with cardinality con-
straints in the literature [60]. Also, all these three references use ≤ k constraints
instead of = k. Again, this problem is strongly NP-hard [41], but [18, 41, 60]
propose approximation algorithms, partly with quality guarantees.

Other partitioning problems There are other NP-complete problems that
partition elements into non-overlapping subsets [31]. E.g., Partition [46] asks
if one can partition a set of elements with positive integer weights into two sub-
sets with the same subset sum. 3-Partition [31] demands a partitioning into
three-element subsets with an identical, predefined subset sum of the elements’
positive integer weights. In contrast to these two problems, we do not require
alternative feature sets to have the same quality.

Bin covering Bin Covering [3] distributes elements with individual weights
into bins such that the number of bins is maximal and the summed weights in
each bin surpass a predefined limit. [59] noted a relationship between Multi-
Way Number Partitioning and Bin Covering, which may improve solution
approaches for either problem [108, 109]. In our case, we could maximize the
number of alternatives such that each feature set’s quality exceeds a threshold.
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Multiple knapsack The simultaneous-search problem with sum-aggregation,
τ = 1, and univariate feature qualities is a special case of the Multiple Knap-
sack problem [16]. The latter involves knapsacks, i.e., sets with individual
capacities, and elements with individual weights and profits. The goal is to
assign elements to knapsacks such that the summed profit of selected elements
is maximal. Each element can be assigned to at most one knapsack, and the
weights of all elements in the knapsack must not violate its capacity. This
problem is strongly NP-complete in general, though it exhibits a PTAS [16].
However, our problem is a special case where the feature qualities act as profits,
the feature-set sizes are capacities, and each feature has a weight of 1. These
uniform weights enable the polynomial-runtime result stated in Proposition 11.

A.5.3 Proofs

In this Section, we provide proofs for propositions from Section 3.4.2.

Proof of Proposition 9

Proof. Let an arbitrary problem instance I of the complete-partitioning problem
be given and the feature-set size k be fixed. We add one feature f ′ to I and keep
a, k, and τ as before, obtaining an instance I ′ of the incomplete-partitioning
problem since one feature will not be selected. We choose the quality q′ of f ′

to be lower than the quality of all other features in I. Since the univariate
objective with min-aggregation is monotonically increasing in the selected fea-
ture qualities, selecting feature f ′ in a solution of I ′ does not have any benefit
since f ′ would replace a feature with higher quality. If f ′ is not selected, then
this solution of I ′ also solves I. However, if the qualities of the resulting alterna-
tives are not equal, f ′ might be chosen in a set that does not have the minimum
quality of all sets since only the latter determines the overall objective value
(cf. Example 6). In that case, we replace f ′ with the remaining feature that
was not selected instead; the objective value remains the same, and the solution
becomes valid for I. Thus, in any case, we can easily transform a solution for I ′

to a solution for I.
This argument shows that an algorithm for incomplete partitioning can solve

arbitrary complete-partitioning problem instances with negligible computational
overhead. Thus, a polynomial-time algorithm for incomplete partitioning could
also solve complete partitioning polynomially. However, the latter problem type
is NP-complete (cf. Proposition 8), so incomplete partitioning has to be NP-
hard. Since checking a solution for incomplete partitioning needs only polyno-
mial time, we obtain membership in NP and thereby NP-completeness.

Proof of Proposition 10

Proof. Let an arbitrary problem instance I of the complete-partitioning problem
be given and the feature-set size k be fixed. We create a new problem instance I ′

by adding a new feature f ′ and increasing the feature-set size to k′ = k + 1.
Further, we set τ ′ = (k′ − 1)/k′, thereby allowing an overlap of at most one
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feature between feature sets. Also, we choose f ′ to have a considerably higher
quality q′ than all other features. The goal is to force the selection of f ′ in all
feature sets such that any other solution would be worse, no matter which other
features are selected. One possible choice is q′ =

∑n
j=1 qj+ε, with ε ∈ R>0 being

a small positive number, or, if the qualities are integers, ε = 1. This quality q′

of f ′ is higher than of any feature set not containing it. Thus, a solution for I ′

contains f ′ in each feature set while the remaining features are part of exactly
one feature set. Hence, we remove f ′ to get feature sets of size k = k′ − 1 that
constitute an optimal solution for the original problem instance I.

This transformation shows how an algorithm for problem instances with
τ < 1 can help solve arbitrary problem instances with τ = 1. Given the NP-
completeness of the latter problem, we obtain NP-hardness of the former.

Adding the proposed f ′ with a high quality q′ enlarges the size of the problem
instance. However, the transformation from I to I ′ still runs in polynomial time
and increases the input size by at most a fixed factor. In particular, encoding
a problem instance involves n feature qualities and the values of a, k, and τ .
Assuming the feature qualities in I have an average encoding size of c ∈ R, the
overall quality encoding has the size c · n. As q′ roughly equals the sum of all
feature qualities, its encoding size is upper-bounded by c · n if we disregard ϵ.
The change of k and τ is negligible for the encoding size of the problem instance
overall. In consequence, the input size of I ′ is at most roughly double the
size of I. If we explicitly stored all the constraints instead of only the relevant
parameters, we would obtain a similar result: Besides adding q′ to the objective,
all constraints would accommodate one new feature, independent of its quality,
increasing their encoding size from O(n) to O(n+ 1), i.e., less than double.

One can extend the reduction above from τ ′ = (k′−1)/k′ to all other τ > 0.
In particular, for a fixed feature set-size k, there is only a finite number of τ
values leading to different set overlaps, i.e., τ = {0, 1/k, . . . , (k − 1)/k, 1}. The
highest overlap except τ = 0 requires creating an instance I ′ with τ ′ = 1/k from
an instance with τ = 1. For this purpose, k2−k features need to be added since
τ ′ = k/k′ = k/(k+ k2 − k) = 1/k. I.e., k out of k′ = k2 features need to form a
complete partitioning, while the remaining k2−k features occur in each feature
set and will be removed after solving I ′. The maximum number of features to
be added is polynomial in k and thereby also polynomial in n.

Proof of Proposition 11

Proof. For a complete partitioning, we must use each of the n features exactly
once. How we distribute the features among sets does not change the objective
value, which is the sum of all n qualities in any case. We only need to ensure
that each feature set satisfies cardinality constraints if the latter exist. Thus,
‘searching’ for alternatives amounts to iterating over the features once to assign
them to the feature sets. Hence, the time complexity is O(n) assuming each
assignment takes O(1), e.g., using arrays to store feature-set membership.
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For an incomplete partitioning, we use the monotonicity of the univariate ob-
jective with sum-aggregation (cf. Section A.4): This objective cannot decrease
when selecting features of higher quality. Thus, we order the features decreas-
ingly by their individual quality. Next, we pick features without replacement
until we have the desired number of alternatives with the desired feature-set
sizes. Again, assigning features to sets does not matter for the objective value.
Due to the quality-based sorting, the time complexity is O(n · log n). If only
a small fraction of features is used, one might slightly improve complexity by
iteratively picking the maximum instead of sorting all qualities.

A.5.4 Future Work

In this section, we outline future work on alternative feature selection from the
complexity-theory perspective, supplementing the Sections 3.4 and 7.2.

Scenarios of alternative feature selection Our prior complexity analy-
ses focused on special cases of alternative feature selection. E.g., while we
obtained NP-hardness for min-aggregation with feature-set overlap (cf. Propo-
sition 10), an analysis of sum-aggregation with overlap is open, even for the
sequential-search problem. Sum-aggregation admits polynomial runtime for
τ = 1 (cf. Proposition 11), but this result might not extend to τ < 1. In
particular, τ < 1 increases the number of solution candidates, which could neg-
atively affect the runtime.

Further, our complexity analyses mostly assumed univariate feature quali-
ties (cf. Equation 11). Other feature-selection methods can reside in different
complexity classes.

Complexity classes For analyzing other scenarios of alternative feature se-
lection, several questions spring to mind. First, one could establish a complex-
ity result like NP-hardness or membership in P. In the former case, there
might be pseudo-polynomial approaches or (F)PTAS. As a first step in that
direction, we showed membership in complexity class APX under certain con-
ditions (cf. Proposition 13), i.e., there are polynomial-time algorithms yielding
constant-factor approximations. One may attempt to tighten the quality bound
we derived. Further, there might be efficient exact or approximate algorithms
for certain types of problem instances, e.g., satisfying additional assumptions
regarding feature-set quality or the parameters k, a, and τ . Finally, while we
placed alternative feature selection in the parameterized complexity class XP
(cf. Proposition 5), one might prove membership or hardness for more specific
parameterized complexity classes.

Related problem formulations We only focused on the optimization prob-
lem of alternative feature selection until now. Another interesting question is
how many alternatives exist for a given n, k, and τ , regardless of their quality.
Also, given the number of alternatives as well, it would be interesting to have
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an exact or approximate estimate for the number of valid solutions for alterna-
tive feature selection, i.e., sets of feature sets. While both these estimates are
straightforward for τ = 1, allowing arbitrary τ poses a larger challenge. Finally,
one could re-formulate alternative feature selection similar to Bin Covering
(cf. Section A.5.2) and analyze this problem in detail.

A.6 Greedy Depth Search for the Univariate Objective

In this section, we propose another heuristic search method for univariate fea-
ture qualities (cf. Equation 11 and Section A.3), complementing the methods
discussed in Section 3.5. In particular, the new method Greedy Depth Search
is a sequential search method that generalizes Greedy Replacement Search and
allows to obtain more than n−k

⌈τ ·k⌉ alternatives.

Algorithm Algorithm 4 outlines Greedy Depth Search. As in the other two
heuristics, we start by sorting the features decreasingly according to their qual-
ities qj (Line 1). However, instead of keeping the same ⌊(1− τ) · k⌋ features in
each alternative and only replacing the remaining ones, we now allow all features
to be replaced. In particular, we may exhaustively iterate over all feature sets,
depending on the number of alternatives a. Thus, we maintain not only one
feature position as before but a length-k array of the feature positions for the
current feature set (Lines 2–4). This array represents feature indices regarding
the sorted qualities and is sorted increasingly, which prevents evaluating the
same feature set, only with different feature order, multiple times.

In the main loop of the algorithm, we find alternatives sequentially (Lines 7–
24). For each potential alternative, we select the features based on the position
array (Lines 8–11). We check the resulting feature set against the constraints for
alternatives (Line 12) and only store it if it is valid. This check was unnecessary
in the other two heuristics, which only formed valid alternatives by design.

Next, we update the feature positions for the next potential alternative
(Lines 14–24). First, we try to replace the lowest-quality feature in the cur-
rent feature set by advancing one position in the sorted qualities. This step
may not be possible, as the feature set may already contain the feature with the
overall lowest quality, i.e., position n in the array of sorted qualities (Line 17). In
this case, we try to replace the second-lowest-quality feature in the current fea-
ture set by advancing its position. If this action is impossible as well, we iterate
further over positions in the current feature set by increasing quality (Line 22).
Once we find a feature position that we can increase, we also advance all sub-
sequent, i.e., lower-quality, positions accordingly. Hence, the feature positions
remain sorted by decreasing quality (Lines 18–19).

We repeat the main loop until we reach the desired number of alternatives a
or until we cannot update any feature position without exceeding the number
of features n, i.e., we cannot form another alternative (Lines 7 and 23).

Example 7 (Algorithm of Greedy Depth Search). Consider n = 6 features with
univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-set size k = 4, number
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Algorithm 4: Greedy Depth Search for alternative feature sets.

Input: Univariate feature qualities qj with j ∈ {1, . . . , n},
Feature-set size k,
Number of alternatives a,
Dissimilarity threshold τ

Output: List of feature-selection decision vectors s(·)

1 indices← sort indices(q, order=descending) // Order by qualities

2 feature positions← {0}k // Indices of indices of features

3 for p← 1 to k do // Start with top k features

4 feature positions[p]← p // Ordered by qualities as well

5 i← 0 // Number of current alternative

6 has next solution← true
7 while i ≤ a and has next solution do
8 s(i) ← {0}n
9 for p← 1 to k do // Select k features, indexed by quality

10 j ← indices[feature positions[p]]

11 s
(i)
j ← 1

12 if is valid alternative(s(i), {s(0), . . . , s(i−1)}) then
13 i← i+ 1 // Else, s(i) overwritten in next iteration

14 p← k // Update feature positions, starting with last

15 while p ≥ 1 do
16 position← feature positions[p]
17 if position < n+ p− k then // Position can be increased

18 for ∆p ← 0 to k − p do // Also update later positions

19 feature positions[p+∆p]← position+∆p + 1

20 p← −1 // Position update finished

21 else // Position cannot be increased

22 p← p− 1 // Also update at least one prior position

23 if p = 0 then // Updating positions further would violate n
24 has next solution← false

25 return s(0), . . . , s(i)
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of alternatives a = 1, and dissimilarity threshold τ = 0.5, which permits an
overlap of two features between sets here. Note that the features are already
ordered by quality here, i.e., indices = (1, 2, 3, 4, 5, 6) (Line 1). Next, the algo-
rithm initializes feature positions = (1, 2, 3, 4) (Line 2–4). s(0) contains these
k features, i.e., s(0) = (1, 1, 1, 1, 0, 0). Given that there are no other alternatives
yet, this feature set is valid (Line 12)) and the algorithm moves on to i = 1.

For forming s(1), the position-update step (Lines 14–24) first tries to only
replace the lowest-quality feature in the alternative, i.e., feature positions =
(1, 2, 3, 5) and feature positions = (1, 2, 3, 6). However, neither of these fea-
ture sets constitutes a valid alternative regarding s(0). Thus, the algorithm at-
tempts to replace the feature with the second-lowest quality as well, evaluating
feature positions = (1, 2, 4, 5) and feature positions = (1, 2, 4, 6). However,
the overlap with s(0) is still too large. The next value is feature positions =
(1, 2, 5, 6), which yields the valid alternative s(1) = (1, 1, 0, 0, 1, 1).

Greedy Replacement Search would terminate now since the options for re-
placing the ⌈τ · k⌉ = 2 lowest-quality features are exhausted. In contrast,
Greedy Depth Search attempts to replace the third-lowest-quality feature, start-
ing with feature positions = (1, 3, 4, 5). This feature set is not a valid alterna-
tive, and neither are the subsequent sets with feature positions = (1, 3, 4, 6),
feature positions = (1, 3, 5, 6), etc. After more iterations, the algorithm also re-
places the highest-quality feature, starting with feature positions = (2, 3, 4, 5).
Eventually, the algorithm reaches feature positions = (3, 4, 5, 6), which yields
the valid alternative s(2) = (0, 0, 1, 1, 1, 1). After obtaining s(2), there is no valid
update of the feature positions left (Line 23). Thus, the algorithm terminates.

Complexity The runtime behavior differs from the other two heuristics. In
particular, Greedy Replacement Search has the same runtime cost between sub-
sequent alternatives since it directly creates valid alternatives by design. In con-
trast, Greedy Depth Search iterates over all possible feature sets, and the runtime
between valid alternatives may vary. For each values of feature positions, the
algorithm creates a feature selection in O(k ·n) (Lines 8–11), checks constraints
in O(a · n) (Line 12), and updates the position array in O(k2) (Lines 14–24).
However, there are O(nk) potential feature positions, and Greedy Depth Search
may exhaustively iterate over them. This cost is comparable to exhaustive con-
ventional feature selection (cf. Proposition 2) and exhaustive sequential search
(cf. Proposition 3). Unlike the latter, the search does not restart for each alter-
native, i.e., it only considers each feature set once instead of a+ 1 times.

On the positive side, Greedy Depth Search can yield more alternatives than
Greedy Replacement Search with its O(n2) cost or Greedy Balancing Search with
its O(a ·n2) cost. Nevertheless, in scenarios where the latter two are applicable,
i.e., k + a · ⌈τ · k⌉ ≤ n, they have a lower cost than Greedy Depth Search. In
particular, Greedy Depth Search needs O(n⌈τ ·k⌉) iterations to cover the options
for replacing the worst ⌈τ · k⌉ features in size-k feature sets, which is the search
space of the other two heuristics. In particular, the cost disadvantage relative to
the other two heuristics grows with the dissimilarity threshold τ . As a remedy,
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one may use Greedy Replacement Search for as many alternatives as possible
and then continue with Greedy Depth Search, initializing the feature positions
(Line 2–4) based on the results of the former heuristic.

Quality Greedy Depth Search initially yields the same solutions as Greedy
Replacement Search. Thus, Greedy Depth Search also yields a constant-factor
approximation of the optimal solution in case k + a · ⌈τ · k⌉ ≤ n (cf. Proposi-
tion 12). The quality analysis becomes more involved for further alternatives
since these do not contain all top ⌊(1 − τ) · k⌋ features anymore, on which our
proof of Proposition 12 builds. Thus, we leave this analysis open for future
work. The quality of alternatives may not even be monotonically decreasing
anymore, as the following example shows:

Example 8 (Non-monotonic quality of Greedy Depth Search). Consider n =
4 features with univariate feature qualities q = (9, 8, 7, 1), feature-set size k = 2,
number of alternatives a = 3, and dissimilarity threshold τ = 0.5, which permits
an overlap of one feature between sets here. Greedy Depth Search yields the
the selection s(0) = (1, 1, 0, 0), s(1) = (1, 0, 1, 0), s(2) = (1, 0, 0, 1), and s(3) =
(0, 1, 1, 0), with the corresponding feature-set qualities 17, 16, 10, and 15.

Limitations Like Greedy Balancing Search and Greedy Replacement Search,
Greedy Depth Search assumes univariate feature qualities and may be worse than
exact search. As a sequential procedure, it does not balance the alternatives’
qualities. It may yield more alternatives than the former two heuristics but has
a higher and more variable runtime.

A.7 Evaluation

In this section, we evaluate experimental results not covered in Section 6. In par-
ticular, we cover three experimental dimensions not stemming from the search
for alternatives: datasets (cf. Section A.7.1), feature-set-quality metrics (cf. Sec-
tion A.7.2), and feature-selection methods (cf. Section A.7.3).

A.7.1 Datasets

Naturally, feature-set quality depends on the dataset, and several effects could
occur. For example, the distribution of feature-set quality in a dataset may
be relatively uniform or relatively skewed. Further, datasets with more fea-
tures n give way to more alternative feature sets. At the same time, the feature
quality can be spread over more features than for lower-dimensional datasets,
making it harder to compose a small high-quality feature set. Indeed, our exper-
iments show a broad variation of feature-set quality over the datasets. Figure 10
depicts the relationship between datasets and the quality of the original, i.e.,
unconstrained, feature set in solver-based sequential search. To account for the
varying dataset dimensionality, we put the ratio between feature-set size k and
dimensionality n on the x-axis, which measures relative feature-set sizes. As
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Figure 10: Feature-set quality in datasets over feature-set size k relative to
dimensionality n, by feature-set size k and evaluation metric. Results from the
original feature sets of solver-based sequential search with MI as the feature-
selection method.

Figure 10a displays, the objective of the univariate feature-selection method
MI approximately increases linearly with k/n. However, there still is variation
exclusively caused by the dataset rather than its dimensionality. Further, the
quality of a prediction model, i.e., decision trees, does not exhibit any trend
but varies strongly between datasets, as Figure 10b visualizes. This variation
justifies our normalization of feature-set quality when analyzing alternatives in
Sections 6.2 and 6.3.

A.7.2 Feature-Set Quality Metrics

Prediction models and overfitting As one can expect, random forests
have a higher average prediction performance than decision trees. Further,
both model types exhibit overfitting, i.e., there is a gap between training-set
and test-set performance. In particular, over all feature sets from solver-based
search runs, both model types have a mean training-set MCC around 0.85-0.86
(median: 1.0). In contrast, decision trees have a mean MCC of 0.47 (median:
0.53) on the test set, while random forests have a slightly higher mean MCC of
0.52 (median: 0.61). I.e., prediction performance is significantly worse on the
test set than on the training set. The existence of overfitting makes sense as we
do not regularize, i.e., limit the growth of the trees or prune them after training.

As another comparison, Figure 11a shows the distribution of the difference
between training and test feature-set quality, again over all feature sets from
solver-based search runs. Once more, we observe that training feature-set qual-
ity is usually higher, i.e., the difference shown in the figure is greater than zero.
However, this phenomenon does not invalidate our analysis of how feature-set
quality develops over alternatives. The optimization objective Q, which Fig-
ure 11a also depicts, shows overfitting for all feature-selection methods as well,
though to a lesser extent than prediction performance. Thus, Section 6 consid-
ers the training and test set for the objective value, but only the test set for
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Figure 11: Feature-set quality by evaluation metric. Results from all solver-
based search runs.

prediction performance.

Correlation between evaluation metrics Figure 11b shows the Spearman
correlation between different evaluation metrics over all feature sets from solver-
based search runs: First, we compute the correlation between metrics for each
combination of dataset, cross-validation fold, and feature-selection method. Sec-
ond, we average the correlation values over these three experimental dimensions.
This two-step procedure accounts for the different objectives of feature-selection
methods and the normalization of quality per dataset and cross-validation fold
in some objectives (cf. Section 5.3.2). The plot shows that the performance
of decision trees and random forests is highly correlated. Thus, we only report
MCC of decision trees in Section 6, which are the simpler model type and always
consider all features during training rather than randomly sampling them.

Figure 11b also shows that the correlation between training and test feature-
set quality over all solver-based search runs is only moderate for the optimiza-
tion objective Q and weak for prediction performance in terms of MCC. This
result might be caused by overfitting, whose strength may depend on the ex-
perimental settings. Further, the correlation between optimization objective Q
and prediction MCC is only weak to moderate as well. I.e., the objective of
feature selection is only partially indicative of prediction performance since the
former might use a simplified quality criterion. Among the five feature-selection
methods, Greedy Wrapper has the highest correlation between training-set ob-
jective value and test-set MCC, with a value of 0.48. Since this feature-selection
method uses prediction performance in its objective, a comparatively high cor-
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Figure 12: Feature-set quality by feature-selection method and feature-set size k.
Results from the original feature sets of solver-based sequential search.

relation is expected. The correlation still is far from perfect since the search
procedure of Greedy Wrapper evaluates feature sets with a validation split of
the training set. MCC on this holdout set may not perfectly correspond to
MCC on the test set, which is not used in the search. On the other end of the
spectrum, mRMR exhibits a correlation of -0.05 between training-set objective
value and test-set MCC. This filter method penalizes the correlation between
features in its objective. However, redundant features may not hurt prediction
performance in decision trees, even if they do not improve it.

A.7.3 Feature-Selection Methods

Prediction performance As the five feature-selection methods employ dif-
ferent objective functions Q, comparing absolute objective values between them
does not make sense. However, we can analyze the prediction performance of
the obtained feature sets. Figure 12a compares a decision tree’s test-set MCC
on the original feature sets of solver-based sequential search between feature-
selection methods. On average, Model Gain is the best feature-selection method:
The mean test-set MCC of decision trees is 0.53 for Model Gain, 0.49 for Greedy
Wrapper, 0.47 for MI, 0.46 for mRMR, 0.43 for FCBF. In particular, the univari-
ate, model-free method MI keeps up surprisingly well with more sophisticated
methods. Thus, the analyses of alternative feature sets in Section 6 focus on MI
while still discussing the remaining feature-selection methods. The overall best
feature-selection method, Model Gain, uses the same objective function as MI
but obtains its feature qualities from a prediction model rather than a bivariate
dependency measure, which might boost its performance.
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While Greedy Wrapper uses actual prediction performance to assess feature-
set quality, its heuristic nature might prevent better results: This method only
evaluates a fraction of all feature sets, while the other feature-selection methods
optimize globally. In particular, Greedy Wrapper performed 629 iterations on
average (median: 561) to determine the original feature sets of solver-based
sequential search. However, the number of possible feature sets is much higher,
e.g., already 215 = 32768 for the lowest-dimensional datasets in our evaluation
(cf. Table 2).

FCBF ’s results may be taken with a grain of salt: Over all solver-based
search runs, 89% of the feature sets for FCBF were infeasible, i.e., no solution
satisfied the constraints. In contrast, this figure only is 18% for MI. Even the
original feature set in solver-based sequential search is infeasible in 71% of the
cases for FCBF but never for the other feature-selection methods. In partic-
ular, the combination of feature-correlation constraints in our formulation of
FCBF (cf. Equation 12) with a feature-set-cardinality constraint, i.e., enforcing
a feature-set size k, may make the problem infeasible, especially if k gets larger.

Influence of feature-set size k As expected, larger feature sets usually
exhibit a higher feature-set quality than smaller feature sets in our experiments.
However, the increase in quality with k is not proportional, and there might even
be a decrease. As Figure 12b shows for the original feature sets of solver-based
sequential search, MI and Model Gain exhibit an increase of the training-set
objective value Qtrain from k = 5 to k = 10, i.e., the difference depicted in
Figure 12b is positive. As these objectives are monotonic in the set of selected
features, a decrease in the training-set objective value is impossible. In contrast,
the heuristic Greedy Wrapper does not necessarily benefit from more features.
The latter insight also applies to mRMR, which normalizes its objective with
the number of selected features and penalizes feature redundancy. For FBCF,
the fraction of feasible feature sets changes considerably from k = 5 to k = 10,
so one cannot directly compare the overall quality between these two settings.
As Figure 12b also displays, the benefit of larger feature sets is even less clear
for prediction performance. In particular, all feature-selection methods except
FCBF show a median difference in test-set MCC close to zero when comparing
k = 5 to k = 10. Thus, Section 6 focuses on smaller feature sets, i.e., k = 5.
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Feature Selection Measures”. In: Proc. DISCML. Vancouver, BC, Canada,
2009. url: https://www.researchgate.net/publication/231175763.

[79] Hai Thanh Nguyen, Katrin Franke, and Slobodan Petrović. “Improving Ef-
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