

Karlsruhe Institute of Technology

Elektrotechnisches Institut (ETI) Battery Technology Center

Hermann-von-Helmholtz-Platz 1, Bldg. 276 76344 Eggenstein-Leopoldshafen, Germany www.batterietechnikum.kit.edu

Operational Performance Characterization of Commercial Scale VFB at Various Electrical and Thermal States

Lakshimi Narayanan Palaniswamy¹, Nina Munzke¹, Christian Kupper¹, Bernhard Schwarz¹, Marc Hiller¹, Frank Säuberlich²

¹Karlsruhe Institute of Technology, ²1st Flow Energy Solutions GmbH

01 Motivation

- With project "BiFlow" in KIT, a Vanadium Flow Battery (VFB) is used as an electrical <u>as well as thermal storage</u>.
- The VFB could be artificially cooled or heated through a Thermal Coupling Module (TCM) in near future.
- Thermal vs electrical characteristics of the VFB are required in order to optimally control this novel application.

02 Setup and data used for analysis

- VFB is used for self-sufficiency improvement of a student residence in Bruchsal, Germany.
- Operated since April 2022 at max 14 kW and between 12 - 47 °C.
- Runs from 0 100 % SOC_{BMS} almost <u>daily</u>.
- Can be operated till 20 kW in near future.

Fig 3. System level efficiency when operated at 14 kW. Resolution: 1 °C by 1 % SOC

- has a significant impact on the η_{svs}
- when higher, could improve roundtrip efficiency of VFB

as electrical and thermal storage can prove advantageous not only in economical but also in operational perspective.

Dual usage of VFB

In future:

- with increased nominal power, $\eta_{\rm sys}$ would still increase as $P_{\rm Aux}$ would remain same.
- with TCM the unknown temperature regions will be explored further.

References

[1] F. Holger, "Untersuchung von Verlustmechanismen in Vanadium-Flussbatterien", dissertation, Technische Universität München, 2019

[2] X.Li, J. Xiong, A.Tang, Y.Qin, J.Liu, C.Yan, "Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery", Applied Energy, vol. 211, pp. 1050-1059, 2018

Contact: Lakshimi Narayanan Palaniswamy, Lakshimi.Palaniswamy@kit.edu

International Flow Battery Forum, 26-29 June 2023

for Economic Affairs Funding code: and Climate Action 03EI3025A

on the basis of a decision by the German Bundestag

Supported by:

KIT – The Research University in the Helmholtz Association

