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Abstract

In this paper, we use a phase field method coupled with the Navier-Stokes equations for
numerical investigation of wetting phenomena. Simulations on capillary rise and droplet wetting
on a flat substrate with fixed grids produce steady computational results in good agreement with
analytical solutions and experimental data in the literature. As key element to achieve CPU-time
efficient simulations, we present the first 3D finite-volume based phase-field simulations for
wetting phenomena with adaptive mesh refinement around interface, to the best of our
knowledge. Results for the droplet motion on an inclined plane indicate that the droplet speed
depends critically on the mobility. Since in our phase-field method, the mobility (respectively the
corresponding Peclet number) is rather a numerical than a physically measurable parameter, we
conclude that the method is not yet predictive for droplet sliding on inclined surface.
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1. Introduction transition region of small but finite width,
endowed with surface tension [4]. Based on
fluid free energy instead of force, the method
can be traced to van der Waals a century ago
[5]. The phase field method has become
popular just in recent years as a numerical
technique for simulating two-phase flows with a
wide range of hydrodynamic and interfacial
phenomena [6]. In our study, the most
significant feature of this method is that it allows
motion of the contact line in combination with a
no-slip boundary condition at a solid wall via a
diffusive mechanism induced by a chemical

The wetting of liquid on solid surface is a crucial
process in many applications in chemical
industry, such as coating, painting, and reacting
two-phase flows in chemical sponge reactors,
for instance. The technological improvement of
these processes requires precise knowledge of
wetting dynamics. To gain these insights, CFD
can be a valuable tool. For reliable CFD
simulations, it is vital to model accurately the
motion of the contact line where the two-phase
flow is in contact with the solid surface. In this

context, conventional sharp-interface otential gradient [7]
hydrodynamic models suffer from a paradox P .g ) .
between the moving contact line and no-slip In this paper, we study wetting processes

boundary condition at the solid wall [1]. To ~ humerically, with the phase figld method we
resolve this problem, various methods have have developed in OpenFOAM®. In Section 2,

been proposed (e.g., the precursor film model we present the mathematical formulation of the
[2] and the slip model [3]). numerical method. Section 3 presents the 2D

static-mesh simulations on capillary rise and
droplet wetting, and demonstrates the method’s
capability with adaptive mesh refinement of 3D
simulations of droplet wetting on flat/inclined
substrates. In Section 4 we present the
conclusions and outlook.

Among the various methods for interfacial
simulations of two-phase flows, the phase field
method is probably the most promising
approach for handling moving contact lines. It is
a diffuse interface method that treats the
interface between two immiscible fluids as a
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2. Mathematical formulation
2.1 The phase field method

For a two-phase flow of incompressible,
viscous and isothermal fluids, we introduce an
order parameter (C) to characterize the two
different phases. C is defined as the difference
in volumetric phase fractions of phase A/B, i.e.
C = a4— ap. Thus, C takes distinct values C, =1
and Cz = —1 for bulk phase A/B and varies
rapidly but smoothly in a thin layer which
represents the diffuse interface. The interface
dynamics is governed by an evolution equation
for C, namely the Cahn-Hilliard equation that
reads in non-dimensional form:

ocC
—+
ot

where
¢=C-C-Cn’V>C

is the chemical potential.

The term on the right-hand-side of Eq. (1)
provides a diffusive mechanism for motion of
the contact line at a no-slip wall. Based on the
wall free energy formulation at local equilibrium,
one can derive the following boundary condition
to account for the wettability of the solid
substrate:

(u-V)C=—Vp, 1)
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where 6, is the equilibrium (static) contact
angle.

2.2 Equations of fluid flow

The single-field Navier-Stokes equations can
be expressed in the dimensionless form

V-u=0, (4)

p(C)Re(% +(u- V)uJ =—Vp+u(C)Vu+f, +f,, (5)

where the surface tension and buoyance force
are given by

1
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1 Eo
f =———(C+1e
b 2Ca( e,

f

st

CV4(C), (6)

()

The non-dimensional density and viscosity of
the mixture are
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Here, p4s and u4p are the density and viscosity
of phase A/B. In these equations, ¢, u and p
denote time, velocity field and pressure.
Physical dimensionless groups are the
Reynolds number Re = p4L.tUref/u4, the capillary
number Ca = (8/9)*u4Uwt/o, and the Eo6tvos
number Eo = (p4 - ps)gLwi/c, Where ¢ and g are
surface tension coefficient and gravitational
acceleration. In addition, there are two
phase-field method specific non-dimensional
parameters: the mobility Peclet number Pe, =
(8/9)°3LyetUrese/ko and the Cahn number Cn = ¢/L,
where ¢ and « denote the interfacial width and
mobility. Pe, indicates the ratio between the
convective and diffusive transports of the order
parameter. It quantifies the diffusion process
that governs the motion of the contact line. Cn
specifies the interface thickness. In the
non-dimensional system, the length scale is Ly,
the velocity scale U, and the time scale Lie/ Urer.
Based on this normalization, we show all
simulation results in non-dimensional form.

2.3 Numerical treatment

In our previous study [8], the phase field
method was coupled with the Navier-Stokes
equations and implemented in OpenFOAM®.
The method was verified and validated by
various test problems, and the influence of Pe,
and Cn was investigated. Based on the
outcome of the previous study, we choose here
at least four mesh cells for resolving the
interface layer; for the Cahn number we use Cn
= 0.01. In the following simulations, all spatial
derivatives are approximated by central
differences and time integration is performed by
a backward scheme. For further details about
the implementation and numerical setups we
refer to [8].

3. Results and discussion
3.1 2D static-mesh simulations

3.1.1 Capillary rise

In this test case, we reproduce the capillary
rise phenomenon driven by wall adhesion force,
between two parallel plates if the distance
between them (w) is small enough. In the
simulation, initially the vertical channel is filled
with air and the water is in the container (Figure
1a). When the simulation starts, the wall
adhesion force causes the water to creep up
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along the wall, to meet the prescribed
equilibrium contact angle (Figure 1b). Then a
pressure jump arises across the curved
interface, and drives the water to move upward
further (Figure 1c). The water keeps rising until
the capillary force is balanced by the gravity
force (Figure 1d).

(a) £=0.0 (b) t=0.15 () t=25 (d) t=35

Figure 1: 2D simulation of capillary rise of water into
the channel between two parallel plates. Equilibrium
contact angle e = 45°.

Based on the balance relation between the
two forces, we can derive an analytical solution
of the water final height

b 20 cos(b,)
PEW

Steady simulation results for different values of
the equilibrium contact angle 6. agree well with
the analytical solution (Figure 2).
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Figure 2: Final height of the water column.

3.1.2 Partial droplet wetting
3.1.2.1 Final droplet shape

We divide our study into two cases: one
without gravity force (Eo = 0) and the other with
gravity force (Eo > 0). In the case Fo = 0, the
capillary effect is the only driving force for
droplet wetting. We consider the following
scenario: initially, a semi-circle droplet with
initial radius Ry and contact angle 6, = 90° is
released on a flat surface (Figure 3a). If the
equilibrium contact angle 6. is different from 6,
the contact line moves, and the droplet spreads
to the equilibrium shape of a circular cap with 6.
[9] (Figure 3b).
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Figure 3: (a) initial shape of the droplet released on
the surface. (b) equilibrium shape of the droplet

By conservation of droplet volume, the
analytical spreading length L and the droplet
height H at the equilibrium shape can be
derived as:

V4
L=2 ing 1
RO\/ 20, —sin6,cos0,) ¢ ()
H=R z (1-cos6,) (12)
°\[2(6, —siné, cosb,) ‘

We compare the analytical and simulated
values of L and H in Figure 4. Good agreement
is achieved in a wide range of surface
wettability for both hydrophilic and hydrophobic
situations (from .= 45° to 6.= 135°). The best
agreement is found when .= 90°, because the
droplet remains stationary when 6. = 6.
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Figure 4: Analytical and simulated spreading length
L and height H versus equilibrium contact angle 6..

In the case Eo > 0, the droplet is wetting the
solid surface due to the combined effect of
gravity and capillary forces: the gravity force
tends to spread out the droplet further while the
capillary force tends to maintain it as a circular
cap. If Eo << 1, the capillary force is dominant.
Thus, the droplet height (H)) at the equilibrium
shape is the same as in the case Eo =0:

H,=R z
* 26, -sind, cosb,)

For Eo >> 1, the gravity force dominates. The
circular droplet forms to a puddle and its
analytical height at the equilibrium shape (H.) is
given by Eq. (14) [9].

(1-cosd,) (13)
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Figure 5 shows equilibrium droplet shapes at
Eo = 0.1, 1.0 and 10 from the simulations, with
equilibrium contact angle 6. = 60°. It is evident
that the droplet takes the shape of a circular cap
at small Eo and of a puddle at large Eo. The
droplet resembles an elongated circular cap at
Eo = 1.0, where the capillary and gravity forces
are of the same order of magnitude.

H

[ee]

(14)

(@) Fo=01 (b)Eo=10  (c) Eo=10

Figure 5: 2D simulated final droplet shapes at
different E6tvos numbers; 0. = 60°.

In Figure 6, we plot the final droplet height H,
normalized by H, from Eq. (13), as a function of
Eo. The simulation results are in good
agreement with the two asymptotic solutions
given by Eq. (13) and Eq. (14), at small and
large Eo respectively. As expected, we can
observe a transition around Eo = 1.
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Figure 6: Normalized droplet height (H/Hy) as a

function of Eo (6.= 60°).

0.01

3.1.2.2 Spreading dynamics

To investigate the dynamic wetting process,
we turn from planar to axisymmetric simulations
and compare the time dependent results with
experimental data of Zosel [10]. In the
experiment, the instantaneous base radius of
droplets composed of a PIB solution was
recorded during their spreading process on a
PTFE surface. All the droplets exhibit almost the
same equilibrium contact angle (6. = 58° — 60°).
Their radii are in the range between 1.2—-1.5 mm.
Under such conditions, gravity and inertial
forces are assumed negligible. Thus, the
density difference between the droplet and
ambient fluid can be neglected; the density ratio
is assumed to 1 in the simulations.
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In the experiment, the viscosity ratio, A,
between the ambient fluid and droplet ranges
from 103 to 10°. We set i, = 0.05 in our
simulations to avoid numerical instability and to
save computational effort. A sensitivity study on
A shows that a further decrease does not affect
the results significantly. The simulation results
are compared with the experimental data in
Figure 7, where good agreement is achieved,
especially at the later spreading stage. It is
observed that when Pe, is getting smaller, the
spreading radius is changing faster, and the
result is getting slightly closer to experimental
data. This is reasonable since motion of moving
contact line in phase field method is governed
by diffusion. Thus, a stronger diffusion by
setting a smaller Pe, leads to a faster spreading.

0.9
0.8 1
0.7 1
0.6
051
0.4 r
0.3
02

O'B.O1 1
t[-

Figure 7: Temporal evolution of droplet's base
radius; 2D axisymmetric simulations with Re 1.0,
Ca=0.94, Cn=0.01, Eo =0, o= 170°, 8.= 58°, A,= 0.05;
Experimental data from Zosel [10].

Experimental =
Simulated, Pe,. = 200
Simulated, Pe,.= 1000
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3.2 3D adaptive mesh simulations

A key element to achieve high numerical
accuracy with a moderate computational cost in
3D is the use of local adaptive mesh refinement
(AMR), allowing to provide significantly higher
mesh densities where it is most needed — at the
interface. This is particularly important for
diffuse interface simulation, since the interface
must be thin enough to converge to
sharp-interface limit yet adequately resolved for
interfacial effects to be computed accurately
[11]. In this section, we demonstrate the
capabilities of our method with 3D AMR for
interface region. The adaptive mesh refinement
is handled by the class dynamicRefineFvMesh
in the OpenFOAM® C++ library. Here we define
the interface region where -0.9 < C < 0.9 [4]. In
simulations, we set a two level mesh refinement
for the interface region compared with the bulk
region (see Figure 8). The mesh refinement is
made adaptively at each time step.
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Figure 8: A
hexahedral
mesh with two
level AMR for
interface region.

3.2.1 Droplet wetting on flat substrate

Figure 9 depicts a 3D AMR simulation of
droplet spreading on a flat substrate with
equilibrium contact angle 6. = 75°. We neglect
gravity so the spreading is driven by capillary
force alone. We start with a spherical droplet
with initial contact angle of 170° (Figure 9a). As
time proceeds, the droplet is spreading out
(Figure 9b and Figure 9c) and approaching to
the final state with the prescribed equilibrium
contact angle 6, = 75° (Figure 9d).

Figure 9: 3D AMR simulation of droplet spreading
(one-quarter geometry) on a flat substrate from initial
state (a) to equilibrium state (d). 6y = 170°, 6. = 75°,
Re=1.0, Ca=0.94, Pe,= 1000, Cn =0.01, Eo =0, 4,=0.1.

To validate the 3D AMR simulations, we
compare their results against those from 2D
static-mesh axisymmetric simulations with the
same physical and numerical parameters and
interface mesh resolutions. Figure 10 shows a
close agreement, both for the case 0, = 75° and
6. =90°. In addition, Figure 10 demonstrates the
effect of the substrate wettability expressed in
terms of 6. on the spreading process: the
droplet on a substrate of higher wettability (i.e.,
smaller 6.) is spreading faster from the very
beginning. This can be rationalized by the fact
that a mismatch between 6y and 6. serves as a
driving force for droplet spreading. Therefore, a
larger difference between them leads to a faster
spreading.
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Figure 10: Temporal evolution of droplet’s base
radius from 2D static-mesh axisymmetric and 3D AMR
simulations, Re = 1.0, Ca = 0.94, Pe. = 1000, Cn = 0.01,

Eo=0,00=170° A,=0.1.

3.2.2 Droplet wetting on inclined plane

A 3D AMR simulation of a droplet wetting on
an inclined substrate is plotted in Figure 11. At
first, due to the combined capillary and gravity
forces, the droplet starts to spread and deforms
to the inclination direction (Figure 11a and
Figure 11b). Then, driven by gravity, it slides
down the substrate at a constant velocity and
keeps the deformed shape (Figure 11c). The
contact angle hysteresis phenomenon (i.e.,
different advancing and receding apparent
contact angles) is successfully reproduced in
the simulation.

side view

3D view

(@) t=0
(b) £=0.5
(c) t=20

Figure 11: 3D AMR simulation of a droplet (one half
geometry) on an inclined plane (inclination angle
a = 45°) from initial state (a) to constantly-sliding state
(€). 6o = 6. = 90° Re = 1.0, Ca = 0.94, Pex = 1000,
Cn=0.01,E0=35,24,=0.1.

Figure 12 depicts the simulated temporal
evolution of the position of the droplet front s, for
different values of Pe,. Like in the previous
simulation of droplet spreading on flat surface,
the motion of contact line is driven by diffusion.
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Therefore, the droplet is sliding down faster at a
smaller Pe,. From the slope in Figure 12, one
can compute the droplet sliding speed.
Obviously, this speed depends critically on the
Peclet number, respectively the mobility, which
itself relates to a slip length. Thus, we have to
note that the method is currently not predictive
for the speed of a droplet on an inclined plane,
since it is not clear a priori which value to
choose for the mobility.
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Figure 12: Instantaneous position of droplet front s.
6o = 6. = 90°, Re = 1.0, Ca = 1.42, Cn = 0.01, Eo = 11,
Ju=1, 0 =28°, droplet volume V= 77.8 mm?.

4. Conclusions and outlook

In this paper, we have investigated wetting
phenomena numerically with a phase-field
method. Both, for capillary rise between parallel
plates and droplet wetting on flat substrates,
computed steady geometrical parameters agree

well with the relevant analytical solutions.
Concerning droplet spreading, the time
dependent simulation results are in good

agreement with experimental data of Zosel.
Furthermore, the method’s ability of 3D
adaptive mesh refinement simulations has been
demonstrated for two cases, namely droplet
wetting on a flat substrate and a droplet running
down an inclined plane. For the latter cases, we
found that the dynamics of the simulated
wetting process (motion of contact line, sliding
speed of the droplet) are strongly influenced by
the Peclet number Pe,, respectively the mobility.
In diffuse interface methods, the mobility can be
related to the slip length in sharp interface
methods [12]. In ongoing work, we are
continuing to study the effect of Pe, on dynamic
wetting processes in order to validate the
method and make it predictive.

As next steps, we are developing a
volume-conservative and bounded phase field
framework incorporating both Cahn-Hilliard and
Allen-Cahn equations, where a relative density
flux in momentum equation is introduced to
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guarantee volume conservation for two-phase
flows with large density ratios [13]. Up to now,
we have employed the wall energy formulation
accounting for equilibrium contact angle alone;
next, we will develop a wall energy relaxation
model for dynamic contact angle. Furthermore,
we will investigate wetting phenomena on
chemically and geometrically heterogeneous
surfaces.
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