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Abstract
Airborne laser scanning (ALS) data are increasingly being used to estimate forest above-
ground biomass (AGB). However, AGB information cannot be directly derived from ALS
data. Instead, regression models are built to link metrics describing the ALS point clouds
to field-measured AGB estimates. Therefore, the use of ALS data for estimating AGB is
limited by the availability of field data, which are time-consuming and costly to collect.
One potential solution for overcoming this limitation is the use of synthetic data generated
by computer simulations.
This thesis aims to evaluate the potential of synthetic data for training AGB models that
can subsequently be applied to real ALS data. The workflow for generating the synthetic
data involves a forest simulator, realistic tree models, and a laser scanning simulator. Three-
dimensional forest scenes are created based on forest stand information generated using the
forest simulator Forest Factory 2.0 and point clouds of individual trees extracted from real
laser scanning data acquired by an unoccupied aerial vehicle (UAV). The lidar simulator
HELIOS++ is then used to simulate airborne laser scanning of these forest scenes. Based
on three studies, this thesis evaluates the synthetic data in terms of their performance as
training data for AGB models.
The first study investigates whether applying HELIOS++ on forest scenes composed of real
tree point clouds can generate realistic ALS data. The scenes are created based on the stand
composition of real forest plots located in southwestern Germany and laser scanning is
simulated with the same parameters as in the real acquisitions. This allows for comparison
between the simulated and real ALS data from the same plots. In addition to the real tree
point clouds, simplified tree point clouds with cylindrical stems and spheroidal crowns
are used as tree models to assess the influence of tree model complexity on the usability
of the synthetic data. The analysis reveals that using simplified tree models results in
more accurate values for canopy cover, while the height distribution of the returns is better
represented by the simulated data based on real tree models for most study sites. Training
AGB models on point cloud metrics derived from the simulated data shows that using real
tree models results in an overprediction of AGB when applied to real ALS data, whereas
using simplified tree models results in an underprediction of AGB. In both cases, the
prediction accuracy in terms of root mean squared error (RMSE) is slightly worse than for
models trained on metrics derived from real data.
While the first study demonstrates that AGB models perform better when trained on real
data than on synthetic data, the question remains as to whether synthetic data could still
be valuable in situations where little to no real data are available. Consequently, the second
study aims to determine if the prediction performance of AGB models, trained on a limited
sample of real data, can be enhanced by extending the training dataset with synthetic data.
Additionally, the study compares models trained solely on synthetic data to models trained
on real ex situ data, i.e. data collected from different study sites than the one where the
model is applied. Four real datasets from study sites in Poland, the Czech Republic (2×),
and Canada are used for the experiments. Synthetic datasets comprising of AGB estimates
and ALS point cloud metrics for 2 500 plots are created using Forest Factory 2.0 and HE-
LIOS++ with the identical ALS settings as the real acquisitions. The analysis demonstrates
that extending the training dataset with synthetic data can improve the accuracy of AGB
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predictions in terms of RMSE and squared Pearson correlation coefficient (r2), as long as
a limited number of real training samples is available (12 to 346, depending on the study
site). However, using synthetic data for model training consistently results in a strong
underprediction of AGB. For three of the four study sites, training models on real ex situ
data yields prediction accuracies comparable to models trained on data from the respective
sites. AGB models trained on synthetic data only outperform models trained on real ex situ
data in case of the Polish dataset.
The second study confirms that using real data to train AGB models results in higher
prediction accuracies compared to using synthetic data and reveals that this is in most cases
true even when the real data are collected from different sites. The advantage of using
synthetic data only becomes apparent when there is a very limited amount of real training
data available. This rises the question of whether applications with an extremely high
demand for training data, such as deep learning methods, can particularly benefit from
the utilization of synthetic data. A novel approach is developed for predicting AGB from
ALS point clouds: three-dimensional convolutional neural networks (CNNs) are trained
to predict AGB based on sequences of images derived from cross sections of the point
clouds. The initial weights of the CNNs are transferred from a 2D CNN pre-trained on
ImageNet data. The CNNs are compared to random forest regression models based on
typical point cloud metrics, using the same real datasets as in the second study. Further, the
study investigates whether the predictive performance can be improved by additionally
pre-training the CNNs on cross section images derived from synthetic data. As in the
previous studies, the results vary across study sites and depend on the number of real
samples available for model training. In most cases, the CNNs perform slightly worse
than the random forest models. Pre-training on synthetic data only improves the CNN
predictions when the number of real training samples is extremely limited.

This thesis demonstrates that synthetic data cannot yet substitute real data in AGB models
without a noticeable decrease in prediction accuracy. It appears that the synthetic data
differ from real data in a way that affects their suitability as training data. The generation of
synthetic data needs to be improved in terms of the realism of laser scanning simulations,
forest stand composition, tree models, and the placement of tree models. Furthermore,
this work shows that making real datasets publicly available could be a more promising
solution for addressing the issue of limited training data in ALS-based predictions, rather
than using synthetic data. Nevertheless, synthetic data still hold potential in applications
that necessitate precise information on individual trees and the ability to test different laser
scanning acquisition settings and field sampling methods, such as sensitivity analyses or
the development of methods at the individual tree level.
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Kurzfassung

Airborne (luftgestütztes) Laserscanning (ALS) wird zunehmend für die Schätzung der ober-
irdischen Biomasse (AGB) von Wäldern verwendet. AGB-Informationen lassen sich jedoch
nicht direkt aus ALS-Daten ableiten. Daher werden Regressionsmodelle erstellt, die von den
ALS-Punktwolken abgeleitete Metriken mit im Feld erhobenen AGB-Schätzungen verknüp-
fen. Dementsprechend ist die Verwendung von ALS-Daten zur Schätzung der AGB limitiert
durch die Verfügbarkeit der Felddaten, deren Erhebung zeitaufwändig und kostspielig ist.
Ein Ansatz, diese Limitierung zu umgehen, ist die Verwendung von durch Computersimu-
lationen erzeugten synthetischen Daten. Ziel dieser Arbeit ist es, das Potenzial synthetischer
Daten für das Training von AGB-Modellen, die auf realen Daten angewendet werden, zu
bewerten. Der Ansatz zur Erzeugung der synthetischen Daten umfasst den Waldsimulator
Forest Factory 2.0, realistische Baummodelle und den Laserscanning-Simulator HELIOS++.
Dreidimensionale Waldszenen werden auf der Grundlage von simulierten Waldbestandes-
informationen und Punktwolken einzelner Bäume, die aus realen Laserscanning-Daten
extrahiert wurden, erstellt. ALS dieser Waldszenen wird mit HELIOS++ simuliert. Auf
Grundlage von drei Studien evaluiert diese Arbeit die synthetischen Daten hinsichtlich
ihrer Eignung als Trainingsdaten für AGB-Modelle.
In der ersten Studie wird untersucht, ob die Anwendung von HELIOS++ auf Waldszenen,
die aus echten Baumpunktwolken bestehen, realistische ALS-Daten erzeugen kann. Die
Waldszenen werden entsprechend der Zusammensetzung echter Waldbestände in Südwest-
deutschland erstellt und das Laserscanning wird mit den selben Einstellungen wie in den
echten Aufnahmen simuliert. Dies ermöglicht einen Vergleich zwischen simulierten und
echten ALS-Daten derselben Flächen. Neben den realen Baumpunktwolken (RTM) werden
vereinfachte Baumpunktwolken (STM) mit zylindrischen Stämmen und Kronen in Form
von Rotationsellipsoiden als Baummodelle verwendet, um den Einfluss der Komplexität
der Baummodelle auf das Anwendungspotential der synthetischen Daten zu erfassen. Die
Analyse ergibt, dass mit den STM ein realistischerer Kronenschlussgrad erzeugt werden
kann, wohingegen die Höhenverteilung der Reflexionen für die meisten Untersuchungs-
gebiete besser über die RTM reproduziert werden kann. Wenn AGB-Modelle mit von
simulierten ALS-Punktwolken abgeleiteten Metriken trainiert und danach auf echten Da-
ten angewendet werden zeigt sich, dass die Verwendung der RTM zu einer Überschätzung
der AGB führt, während die Verwendung der STM zu einer Unterschätzung führt. In
beiden Fällen ist die über den Root Mean Squared Error (RMSE) erfasste Modellgüte etwas
schlechter als bei Modellen, die auf echten Daten trainiert wurden.
Während die erste Studie zeigt, dass AGB-Modelle eine höhere Modellgüte aufweisen,
wenn sie mit echten Daten trainiert werden, blieb die Frage offen, ob synthetische Daten
einen Mehrwert liefern können, wenn wenige oder gar keine realen Daten verfügbar sind.
Daher wird in der zweiten Studie untersucht, ob die Modellgüte von AGB-Modellen, die
auf einer begrenzten Anzahl echter Daten trainiert wurden, durch die Ergänzung des
Trainingsdatensatzes mit synthetischen Daten verbessert werden kann. Darüber hinaus
werden Modelle, die ausschließlich auf synthetischen Daten trainiert wurden, mit solchen
verglichen, die auf Ex-situ-Daten trainiert wurden. Letztere umfassen Daten, die in an-
deren Untersuchungsgebieten erhoben wurden als dem, in dem das Modell angewendet
wurde. Für die Experimente werden vier reale Datensätze aus Untersuchungsgebieten in
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Polen, Tschechien (2×) und Kanada verwendet. Synthetische Datensätze bestehend aus
AGB-Werten und ALS-Punktwolkenmetriken von 2 500 Plots werden mit Forest Factory 2.0
und HELIOS++ unter Verwendung derselben ALS-Aufnahmeparameter wie bei den realen
Aufnahmen erstellt. Die Analyse zeigt, dass die Ergänzung des Trainingsdatensatzes mit
synthetischen Daten die Modellgüte der AGB-Schätzungen in Bezug auf den RMSE und
den quadrierten Pearson-Korrelationskoeffizienten (r2) verbessern kann, solange wenig
reale Trainingsdaten zur Verfügung stehen (12 bis 346 je nach Untersuchungsgebiet). Die
Verwendung synthetischer Daten für das Modelltraining führt jedoch durchweg zu einer
signifikanten Unterschätzung der AGB. Bei drei der vier Untersuchungsgebiete erreichen
Modelle, die mit echten Ex-situ-Daten trainiert wurden, eine ähnliche Modellgüte wie mit
In-situ-Daten trainierte Modelle. Nur für den polnischen Datensatz erzielen AGB-Modelle,
die mit synthetischen Daten trainiert wurden, höhere Modellgüten als Ex-situ-Modelle.
Die zweite Studie bestätigt die Ergebnisse der ersten Studie: Die Verwendung realer Daten
für das Training von AGB-Modellen führt zu einer höheren Modellgüte als die Verwendung
synthetischer Daten, und das in den meisten Fällen auch dann, wenn die Daten in ande-
ren Gebieten erhoben wurden. Ein Nutzen der synthetischer Daten zeigt sich nur, wenn
nur sehr wenige reale Trainingsdaten verfügbar sind. Dadurch ergibt sich die Frage, ob
Anwendungen mit einem extrem hohen Bedarf an Trainingsdaten, wie z. B. Deep-Learning-
Methoden, insbesondere von der Verwendung synthetischer Daten profitieren könnten.
Die dritte Studie befasst sich daher mit einem neuartigen Ansatz zur Schätzung von AGB
aus ALS-Punktwolken, bei dem mit dreidimensionalen Convolutional Neural Networks
(CNNs) AGB aus Bildsequenzen von Querschnitten der Punktwolken abgeleitet wird. Die
initialen Gewichte der CNNs werden transferiert von einem mit dem ImageNet-Datensatz
vortrainierten 2D-CNN. Die Schätzgüte der CNNs wird mit der eines auf Punktwolken-
metriken basierenden Random-Forest-Modells verglichen. Außerdem wird untersucht, ob
die Modellgüte durch zusätzliches Vortraining der CNNs auf Querschnittsbildern von
synthetischen Daten verbessert werden kann. Die Ergebnisse variieren zwischen den Un-
tersuchungsgebieten und hängen von der Anzahl der verwendeten realen Trainingsdaten
ab. Zumeist schneiden die CNNs etwas schlechter ab als die Random-Forest-Modelle. Das
Vortraining auf synthetischen Daten verbessert die CNN-Schätzungen nur dann, wenn die
Anzahl der realen Trainingsdaten sehr klein ist (10 bis 40).
Diese Arbeit zeigt, dass synthetische Daten reale Daten in AGB-Modellen noch nicht
ersetzen können, ohne die Schätzgenauigkeit zu verringern. Die synthetischen Daten wei-
sen im Vergleich zu realen Daten Diskrepanzen auf, die ihre Eignung als Trainingsdaten
beeinträchtigen. Die Methode zur Erzeugung synthetischer Daten muss daher in Bezug
auf die Realitätsnähe der Laserscanning-Simulationen, der Zusammensetzung des Wald-
bestands, der Baummodelle und der Platzierung der Baummodelle verbessert werden.
Darüber hinaus hat diese Arbeit gezeigt, dass die Veröffentlichung realer Datensätze eine
vielversprechendere Lösung für das Problem der begrenzten Trainingsdaten bei ALS-
basierten AGB-Schätzungen ist als die Verwendung synthetischer Daten. Nichtsdestoweni-
ger haben synthetische Daten großes Potenzial für Anwendungen, die genaue Informa-
tionen über einzelne Bäume und die Möglichkeit zum Testen verschiedener Laserscanner-
Aufnahmeparameter und Feldaufnahmemethoden erfordern, wie beispielsweise Sensitivi-
tätsanalysen oder die Entwicklung von Einzelbaum-basierten Methoden.
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Fabian Ewald Fassnacht (submitted). CNN-based transfer-learning for aboveground
biomass prediction from ALS point cloud tomography. Submitted to European Journal
of Remote Sensing.

The content and structure of Chapter 2, Chapter 3, and Chapter 4 were kept in the form of
the original publications or submission, respectively.

xvii





Acronyms and Abbreviations

AGB Aboveground biomass
ALS Airborne laser scanning
cd Crown diameter
CNN Convolutional neural network
d1.3, D1.3 Diameter at breast height (measured at 1.3 m above ground)
DAP Digital aerial photogrammetry
DBH Diameter at breast height
DGNSS Differential global navigation satellite system
DN DendroNET sites
DTM Digital terrain model
lidar Light detection and ranging
FAO Food and Agriculture Organization of the United Nations
GNSS Global navigation satellite system
IMU Inertial measurement unit
IPCC Intergovernmental Panel on Climate Change
ME Mean error
MF Milicz Forest
PRF Petawawa Research Forest
QSM Quantitative structure model
radar Radio detection and ranging
RMSE Root mean squared error
RTK Real-time kinematic positioning
RTM Real tree models
SB Silesian Beskids
STM Simplified tree models
TLS Terrestrial laser scanning
UAV Unoccupied aerial vehicle
ULS UAV-borne laser scanning

xix





1
Chapter 1

INTRODUCTION

1



1 I N T R O D U C T I O N

1.1 IMPORTANCE OF FORESTS

Forests provide a wide range of ecosystem services (Bologna & Aquino, 2020; FAO, 2018b;
Favero et al., 2020; Turner-Skoff & Cavender, 2019): They produce oxygen, store carbon,
and regulate the water cycle. They also prevent soil erosion and filter air and water. Fur-
thermore, they are habitats for humans and animals, and provide food, medicine, fuel, and
building materials. The presence of trees has positive effects on the mental and physical
health of people (Turner-Skoff & Cavender, 2019). Forested areas affect the climate by de-
creasing temperature due to evapotranspiration, increasing temperature due to an decrease
in surface albedo, and increasing rainfall due to an increase in evaporation (Alkama &
Cescatti, 2016; Spracklen et al., 2012). Forests contribute significantly to terrestrial biodiver-
sity and 80% of all known amphibian species, 75% of bird species, and 68% of mammal
species find habitat in forests. Tropical forests alone contain 60% of all vascular plants (FAO
and UNEP, 2020).

The FAO defines forests as "land spanning more than 0.5 hectares with trees higher than 5
meters and a canopy cover of more than 10%", including areas with trees that have not yet
but are expected to reach these thresholds (FAO, 2018a). In 2020, the global forest area was
approximately 4.1× 1012 ha, covering 31% of the global land area. Tropical forests account
for 45% of the global forest area, 27% of forests are in boreal regions, 16% in temperate
regions, and 11% in subtropical regions. In total, 54% of the global forest area is located in
only five countries, namely Russia, Brazil, Canada, the USA, and China (FAO and UNEP,
2020).

While climate change impacts the structure and functioning of forest ecosystems (Achim
et al., 2022), forest loss is also in turn one of the main drivers of climate change. Forests
can be both a source and a sink of greenhouse gases. Forest-related greenhouse gas
emissions are caused by deforestation and forest degradation due to land-use change,
droughts, wildfires, and insect infestations (Pan et al., 2011). The dominant greenhouse gas
emitted from these actions is CO2 (Harris et al., 2021). Carbon sequestration is increased
by increasing forest area due to afforestation and reforestation, by forest recovery and
growth following the abandonment of agricultural use, grazing or harvesting, a change
in forest management strategies, and CO2 fertilization and N deposition (Pan et al., 2011).
Overall, global forests are considered a net carbon sink; however, its size is subject to
large uncertainties and estimates range from 1.1± 0.8 Pg CO2eq year−1 (Pan et al., 2011) to
7.6± 49 Pg CO2eq year−1 (Harris et al., 2021).

According to the IPCC, reducing deforestation and forest degradation has the highest eco-
nomic potential for the short-term mitigation of carbon emissions (IPCC, 2022). Although
the global deforestation rate has decreased since 1990, approximately 178 million hectares
of forest area have been lost in the following 30 years, mainly due to land-use change to
agriculture (FAO, 2020).

Accurate estimation of carbon stocks and fluxes is important to support actions to mitigate
climate change (Pan et al., 2011). Annex I parties of the United Nations Framework
Convention for Climate Change (industrialised countries and countries with economies
in transition) are obliged to annually report on their emissions and removals of direct
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1 . 2 F O R E S T I N V E N T O R I E S

greenhouse gases from five sectors, including the sector land-use change and forestry (decision
24/CP.19), while non-Annex I parties (mostly developing coutries) have to submit biennial
reports on their national greenhouse gas inventories (Annex III of decision 2/CP.17).
National forest inventories are a primary source of information for these reports (Tomppo
& Schadauer, 2012).
The direct measurement of forest carbon stocks is not feasible. Instead, forest biomass
is used as a proxy for forest carbon. Carbon estimates are derived by multiplying the
biomass estimates with the C fraction, i.e. the woody tissue carbon concentration. The
carbon fraction of aboveground biomass (AGB) is often assumed to be 50% (Doraisami
et al., 2022). However, it should be noted that using simplified conversion factors can
introduce significant bias to forest carbon estimates, as wood carbon concentration varies
among tree species and forest biomes (Martin et al., 2018). In most forests, the main carbon
pools are AGB and soil organic matter. Additionally, carbon is also stored in root biomass,
woody debris, and the forest floor. Monitoring approaches for forest carbon pools typically
focus on AGB, because it is the most dynamic pool and at the same time the easiest to
measure (Fahey et al., 2010).

AGB refers to the dry mass of all tree elements above ground, including stems, branches,
and leaves, and is commonly reported in megagrams per hectare (White et al., 2013a).
The actual measurement of AGB is costly and destructive, as trees must be harvested to
be dried and weighed (Andersson et al., 2009). As a result, AGB is usually estimated
using species-specific allometric equations based on measurements of diameter at breast
height (DBH) and additional parameters such as upper stem diameter or tree height (White
et al., 2013a). When information on individual tree dimensions is not available, species-
specific biomass expansion factors (BEFs) can be used to derive biomass estimates from
volume information at the stand level (Brown, 2002). However, these estimates may be
significantly biased because the relationship between volume and biomass depends not
only on tree species but also on factors such as age and site characteristics (Ameztegui
et al., 2022). Furthermore, estimates derived from allometric equations are also subject to
high uncertainty. Ameztegui et al. (2022) showed that using different allometric equations
resulted in significant discrepancies in biomass estimates, especially for large trees.

1.2 FOREST INVENTORIES

The primary objective of forest inventories is to gather information about forest area and
forest attributes such as age, species distribution, and the growing stock volume, including
the amount of timber (Ilvessalo, 1927, as cited in McRoberts et al., 2010). With growing
interest in sustainable forest management beyond timber supply, the scope of forest in-
ventories has been broadened to encompass the estimation of carbon stocks and fluxes, as
well as information on forest health and biodiversity (Corona et al., 2011; McRoberts et al.,
2010). For example, the Austrian national forest inventory collects additional data on the
volume of standing and lying deadwood, the abundance and occurrence of shrubs, the
stand structure, unusual tree shapes, and rare tree and shrub species (Tomppo et al., 2010).
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In Sweden, forest inventories also assess the presence of bent trees, the height of stumps,
and damage caused by grazing elk (Fridman et al., 2014).

The first forest inventories were conducted at the end of the Middle Ages, when forest
planning became necessary in areas where wood was scarce due to increasing demand
for forest resources (Loetsch & Haller, 1973; Gabler & Schadauer 2007, both as cited in
McRoberts et al., 2010). Arguments for the need to collect data on forest conditions as
part of sustainable forest management, as well as instructions on how to carry out these
surveys, can be found in publications by German forest scientists at the end of the 18th

and beginning of the 19th century (Cotta, 1804; Hartig, 1795). Systematic forest inventories
based on statistical sampling have been conducted since the early 20th century. Norway
was the first country to conduct a systematic forest inventory at a national level (1919–1930),
followed by Finland (1921–1924) and Sweden (1923–1929). Today, most North American
and European countries, as well as other countries such as China and South Korea, regularly
conduct systematic forest inventories at the national level. Typical inventory cycles are 5 or
10 years (Tomppo et al., 2010). Due to different inventory traditions, forest conditions, and
information needs, inventory methods vary from country to country (Gschwantner et al.,
2022).

Due to time and cost constraints, it is impossible to measure all trees in all forested areas
(McRoberts & Tomppo, 2007). It is therefore common to use sample-based inventory
designs. In the 1980s, the first countries (Austria, Switzerland, Sweden, Germany, Norway,
and Spain) established permanent plots, making it easier to monitor changes (Gschwantner
et al., 2022). Plot positions are in many countries determined using systematic sampling
based on a two-dimensional grid (Tomppo et al., 2010). In Europe, the grid sizes range
from 1.0 km× 0.5 km to 5.0 km× 5.0 km and 20.0 km× 20.0 km (Gschwantner et al., 2022).

More than 90% of national forest inventories use circular plots, but data are also collected
from square and rectangular plots, along transects, and using angle count sampling (Bitter-
lich, 1952) resulting in variable radius plots (Tomppo et al., 2010). Circular plots have the
advantage of having the smallest ratio of plot boundary to plot area, reducing the number
of boundary trees, and their position can be marked with only one marker at the plot centre
(Gschwantner et al., 2022). To reduce workload, it is common to not measure all trees in
a plot but to sample a subset of trees based on their DBH. This is often done in nested
concentric circles, where small trees are only measured in the smallest circle, and trees with
a larger DBH are measured in a larger radius. Alternatively, an angle count sampling can
be applied. Variables recorded for sampled trees include species, DBH, height, crown base
height, and upper stem diameter (Tomppo et al., 2010). The minimum DBH of trees to
be recorded varies from 0.0–12.7 cm, depending on the country (McRoberts et al., 2010).
While the measurement of DBH is comparatively fast and precise, other measurements
such as of tree height and upper diameters are more time-consuming and subject to larger
uncertainties. These variables are therefore often measured only for a randomly or sys-
tematically selected subsample (10–35%) of the DBH-measured trees. Missing values can
then be estimated from species-specific regression models based on the DBH (Gschwantner
et al., 2022; White et al., 2013a). The measurements of individual trees are aggregated
to derive plot level metrics such as stem number, basal area, mean tree height, Lorey’s

4



1 . 3 R E M O T E S E N S I N G T E C H N I Q U E S F O R F O R E S T I N V E N T O R I E S

height (the average stand height weighted by the basal area of the trees), dominant height,
growing stock volume, and AGB (White et al., 2013a).

Field plots are geolocated using global navigation satellite system (GNSS) receivers. For
the sampling of trees and the measurement of diameters, Bitterlich relascopes, callipers,
and diameter tapes are used, while electronic devices such as (in)clinometers coupled with
ultrasonic distance meters are frequently used to measure distances and heights (Tomppo
et al., 2010). In the future, terrestrial or mobile sensors for light detection and ranging
(lidar) might also be used for these measurements (Bauwens et al., 2016; Ghimire et al.,
2017).

The number of variables recorded in forest inventories has increased with rising interest
in forest information. In European national forest inventories, it is common to collect
data on 100–400 variables. Accordingly, these inventories are becoming more complex,
time-consuming, and expensive to conduct. The implementation of remote sensing data in
forest inventories can reduce related costs and increase the speed, precision, and timeliness
of data collection, while improving the accuracy and spatial resolution of resulting map
products (McRoberts & Tomppo, 2007).

1.3 REMOTE SENSING TECHNIQUES FOR FOREST IN-
VENTORIES

The implementation of remote sensing data in forest inventories has evolved from using
hand-drawn maps and aerial photographs on paper to satellite imagery with initially
coarse and later increasingly fine spatial resolution. Time series of remote sensing data,
such as multi-temporal satellite data, enable change analysis over time. Additionally,
technologies like stereophotogrammetry, radio detection and ranging (radar), and lidar
provide information on forest structure, specifically canopy height (Coops et al., 2021;
Lister et al., 2020). The increasing availability of remote sensing data, along with advances
in processing technologies and cloud computing systems, has greatly improved the ability
to monitor forests (Lister et al., 2020). Therefore, the use of remote sensing data is becoming
more and more common in operational programs of many countries.

Remote sensing data used to support forest inventories are collected with both passive and
active sensors. Passive sensors detect and measure naturally occurring electromagnetic
radiation that has been emitted or reflected from a body. Active sensors emit radiation
and measure the amount of radiation that is reflected or backscattered to the sensor. Most
commonly, sensors are mounted on aircraft (airborne sensors) or satellites (spaceborne
sensors), but in recent years, they have also been increasingly mounted on unoccupied
aerial vehicles (UAVs). Platforms can also be terrestrial (i.e. tripods) and mobile (i.e.
harvesters or humans). However, due to occlusion effects, sensors mounted on these
platforms cannot be used for large-scale data collection in forests.

The only common passive remote sensing data type used in forest inventories is optical
imagery. In contrast to active techniques, optical remote sensing relies on solar illumination
and is therefore sensitive to cloud cover and daylight. Sensors collecting optical imagery
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differ in their spatial and spectral resolution, spatial extent, coverage, temporal resolution,
and operational period (Andersson et al., 2009).

Aerial photography acquired by multispectral cameras is the most common remote sensing
data source that is operationally used in national forest inventories, in some countries
already for more than 50 years (Barrett et al., 2016). Its primary application is for planning
forest inventories, i.e. to classify forest and non-forest plots and to design the stratified
sampling of field plots. The often very high spatial resolution of these data (below 0.25 m)
allows estimation of the cover, development stage, species, and density of trees in forest
plots and grouping them accordingly into strata (Barrett et al., 2016; McRoberts et al., 2010).
Given sufficient overlap between adjacent images, multiple view-points, and homologous
points identifiable in the images and texture, 3D models can be generated from the optical
imagery. The digitisation of aerial photography and the development of image matching
algorithms have facilitated the generation of aerial photogrammetric point clouds. With
many countries regularly acquiring aerial photographs, there is a growing interest in using
digital aerial photogrammetry (DAP) products for forest inventory purposes (Stepper et al.,
2017). At a countrywide level, DAP has been used, for example, in Switzerland for deriving
canopy heights and for the automated mapping of forest cover (Ginzler & Hobi, 2015;
Waser et al., 2015). A significant disadvantage of DAP is that information can only be
derived from the canopy envelope (White et al., 2013b).

The opening of the Landsat archive in 2008 and the launch of the Sentinel satellites resulted
in an increasing use of satellite data to obtain forest information (Gschwantner et al., 2022),
progressively replacing aerial photography (McRoberts et al., 2010). In the early 2010s,
the most frequently used satellite data in national forest inventories were medium spatial
resolution (10–30 m) multispectral data collected from the Landsat and SPOT satellites.
Only a few countries used ultrahigh resolution (< 5 m) imagery such as collected from
Quickbird and WorldView-2 (Barrett et al., 2016). The temporal resolution of most satellite
data is sufficient for forest monitoring; however, the spatial resolution of commonly used
satellite sensors is too coarse for some forest inventory requirements (Falkowski et al.,
2009). The primary application of satellite data is the prediction of forest attributes over
large areas based on field-measured data. Satellite data are also visually interpreted by
experts to define areas with similar forest properties, sometimes following an automated
segmentation, for example in Canada. One of the first countries to use satellite data in an
operational way for forest inventories was Finland, starting in the late 1980s (Barrett et al.,
2016).

Active remote sensing techniques such as radar or lidar measure the time between emission
and return of a signal to determine the distance to a reflecting/backscattering object. They
differ in the wavelength of the emitted electromagnetic radiation (centimeter to meter for
radar, micrometer for lidar), causing different scattering mechanisms. Both radar and lidar
allow obtaining information on the vertical structure of forests (McRoberts & Tomppo,
2007).

Since its first applications in the late 1990s, ALS has become an increasingly popular
remote sensing technology for deriving structural forest information. Until the late 2000s,
it had only been applied for inventories at the level of individual stands. The increasing
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efficiency of ALS sensors has enabled the collection of data at larger scales and higher
point density. Therefore, the integration of ALS data in forest inventories is becoming
more frequent (Gschwantner et al., 2022). For example, Denmark started the periodic
nationwide mapping of forest attributes based on ALS data in combination with forest
inventory data, resulting in maps for the years 2006–2007 and 2014–2015 (Kangas et al.,
2018). ALS data are twice to three times more expensive than optical imagery and more
difficult to handle due to their large size and the inherent property of being unstructured.
Hence, extensive pre-processing is required for further analysis (Lister et al., 2020; White
et al., 2013b). While optical imagery provides spectral information, multispectral ALS is
still in its infancy and rarely used (Kukkonen et al., 2019). However, in comparison to
DAP, ALS has the advantage that it can penetrate forest canopies through small gaps, and
thus it also provides information from the sub-canopy layers. The information contained
in the three-dimensional point clouds that can be generated by laser scanning is of high
value for deriving attributes that are related to the forest structure. It is therefore expected
that ALS data will become even more important in future forest inventories (Lister et al.,
2020). A comprehensive description of the functioning of ALS and its application in forest
inventories is provided in Chapter 1.4.

In contrast to the notable increase in ALS acquisitions in recent decades, there have been
only a few spaceborne lidar missions to date, such as ICESat with the Geoscience Laser
Altimeter System (GLAS) and ICESat-2 with the Advanced Topographic Laser Altimeter
System (ATLAS). The topographic measurements of these sensors can be used to derive
vegetation canopy heights in footprints of approximately 50–100 m diameter (Abdalati
et al., 2010; Abshire et al., 2005; Schutz et al., 2005). In 2018, the Global Ecosystem Dynamics
Investigation (GEDI) was launched, providing data since March 2019. GEDI is the first
spaceborne lidar mission specifically designed to map ecosystem structures (Dubayah et al.,
2020). The instrument which is attached to the International Space Station (ISS) collects
full-waveform lidar data for footprints of 25 m diameter. The openly available data include
raw waveforms and information on canopy height, biomass, canopy cover, leaf area index,
and topography. However, a drawback of all spaceborne lidar missions to date is that they
sample along transects rather than collecting area-wide data, making it difficult to conduct
wall-to-wall mapping of forest attributes. Therefore, spaceborne lidar data are usually
combined with optical or radar satellite data to extend the derived forest attributes over
larger areas (Coops et al., 2021).

Radar techniques such as synthetic aperture radar (SAR) and interferometric SAR (InSAR)
allow for the collection of spatially exhaustive data regardless of weather and daylight
conditions. The wavelength of the outgoing signal determines the penetration depth into
the vegetation cover. The most commonly used SAR in forest remote sensing is L-band
SAR (e.g. PALSAR), which is particularly suitable for detecting changes in biomass. Shorter
wavelengths such as C-band and X-band (e.g. Sentinel-1 and Tandem X mission) are
also used but only provide information from the outer canopy (Coops et al., 2021). The
backscatter signals are affected not only by canopy structure but also by other factors
such as incident angle and soil moisture, making the interpretation of the signal more
complex than, for example, of optical imagery and lidar point clouds (Bae et al., 2019).
Many studies have demonstrated the usability of SAR and InSAR data for estimating forest
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attributes, often in combination with other remote sensing data types (Coops et al., 2021;
McRoberts & Tomppo, 2007). However, according to a survey presented by Barrett et al.
(2016), radar data have not been used operationally in national forest inventories in any of
the 45 countries included in the study.

Forest inventories are originally aimed at answering questions about the quantity of forest
resources. Remote sensing data enable to answer questions about the spatial distribution of
these resources (McRoberts & Tomppo, 2007). Due to the sample-based approaches applied
in forest inventories, it is not possible to derive wall-to-wall maps of forest attributes based
on forest inventory data alone. However, in combination with remote sensing data covering
the whole area of interest, it is possible to create full coverage maps (Fridman et al., 2014).

The implementation of remote sensing data can reduce the cost of forest inventories in
several ways: (1) the data can be used to select plots to be sampled, i.e. using stratified sam-
pling approaches based on information derived from remote sensing data, also excluding
plots in non-forested areas, (2) when plots are difficult to access, interpretation of remote
sensing data can replace field measurements, (3) the efficiency of wall-to-wall estimates
can be significantly increased. McRoberts and Tomppo (2007) reported that for eight forest
areas in eastern Finland, the sampling intensity could be decreased from 500 field plots
per 10 000 ha to 35 field plots per 10 000 ha when using Landsat imagery as an additional
data source for estimating growing stock volume. For two large forest sites in Minnesota,
USA, they estimated that field plot selection based on stratified sampling could save costs
of about US $12.4 million compared to simple random sampling.

While remote sensing has proven to be a valuable data source for deriving information
on forest attributes, field data collection remains essential for forest inventories. Field
measurements are required to develop and train predictive models and to validate the
information derived from remote sensing data (Coops et al., 2021). In the future, it may be
possible to replace field measurements by collecting spectral information and generating
high-density laser scanning point clouds with UAVs. Depending on the data quality and
forest type, these data enable the segmentation of individual trees, the identification of
tree species, and the determination of DBH and height (Puliti et al., 2020). When linking
remote sensing data to field observations, accurate information on plot positions is crucial,
especially in diverse and fragmented forests. Time lags between field data collection
and remote sensing data acquisition can also contribute to prediction errors when forest
characteristics have changed due to harvesting or natural damages such as fire, wind throw,
drought, or insect infestations (Barrett et al., 2016). Uncertainties in the field reference data,
for example resulting from errors in tree measurements, plot localisation, and modelling
of tree attributes, not only affect the quality of prediction models but can also negatively
impact the evaluation of remote sensing-based predictions. This means that predictions
derived from remote sensing data may be more accurate than suggested by validation
based on field data (Persson et al., 2022). Accordingly, the application and development
of new methods for using remote sensing data in forestry are highly dependent on the
availability of accurate field data.
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1.4 AIRBORNE LASER SCANNING FOR FOREST INVEN-
TORIES

Laser scanning is an active remote sensing technology based on electro-optical measure-
ments. Shortly after its development in the early 1960s, land surveyors started using
light amplification by stimulated emission of radiation (laser) for distance measurements.
The first airborne applications were laser profilers in the 1970s and 1980s, followed by
laser scanning in the 1990s, when new technologies enabled direct georeferencing of the
measurements (Shan & Toth, 2018).

A laser scanning system consists of a laser scanner, an inertial measurement unit (IMU),
an integrated differential GNSS (DGNSS), and a control unit. Laser scanning utilises
lidar to collect 3D data of a target surface. It involves emitting a laser beam that is then
backscattered by a surface, with the returned signal being received. For continuous wave
lasers, the distance between sensor and surface is determined by the phase difference of
both signals using amplitude modulation. In ALS, pulse lasers are commonly used, where
a short laser pulse of high energy is emitted and the system measures the time-of-flight (∆t)
until the backscattered pulse is received. By knowing the speed of light (c), the distance
to the surface (R) can be calculated as: R = 1

2 c∆t. Combining the distance measurement
with information on the orientation of the laser beam allows for determining the vector to
the backscattering surface. The orientation of the laser beam is defined by two angles. To
create a scanning pattern, a moving mirror is used to change the angle of the laser beam
in one direction. A third dimension of scanning can be achieved by moving the platform
on which the scanning system is mounted. Different mirror movements result in various
ground patterns, e.g. an oscillating mirror creates a zigzag-line, while a rotating polygon
mirror creates parallel lines. The IMU and DGNSS provide information on the position and
orientation of the laser scanning system, i.e. the origin and direction of the laser beam in a
global coordinate frame, which are necessary for computing the coordinates of the point
from which the laser beam is returned (Wehr & Lohr, 1999).

According to the mechanism for detecting the returned signal, laser systems are categorised
into full waveform, discrete return, or photon counting systems (Shan & Toth, 2018). Full
waveform systems digitise the received analogue signal with a high frequency (Hollaus
et al., 2014), while discrete return systems detect and record only the peaks in the analogue
signal that are above a given threshold (Shan & Toth, 2018). Photon counting systems
detect single photons arriving at the sensor, which means that the laser pulses can be of
lower energy. Photon counting enables lidar from high altitudes using high pulse repetition
frequencies, making the data collection more efficient, especially for larger areas (White
et al., 2021). However, due to the low number of available commercial systems, the use of
photon counting for forestry applications is still in its infancy.

The footprint size of a laser beam depends on the distance between the sensor and the
surface, i.e. the flying altitude, and the beam divergence (White et al., 2013a). The footprint
can be circular or elliptical. All surfaces that are within the illuminated footprint contribute
to the signal that is returned to the sensor, depending on the surface properties and the
respective fraction of the laser beam that interacts with the surfaces (Lefsky et al., 2002;
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Shan & Toth, 2018). Multiple reflections can be separated when the spatial distance of the
surfaces exceeds a threshold defined by the pulse width. In the case of ALS of forests, a
first return of the laser signal is often caused by the tree tops, while a fraction of the laser
beam may penetrate the canopy through small gaps, resulting in additional returns from
branches, stems, and the ground (Shan & Toth, 2018).

For ALS, the laser system is mounted on a fixed-wing aircraft or a helicopter. Helicopters
can fly in more complex terrain, at lower altitudes, and at lower speeds, resulting in higher
point densities, but helicopter-borne acquisitions are also more expensive. In the frame of
forest inventories, it is common to use discrete return laser systems that operate with short
laser pulses (3–10 ns) in the near infrared (800–1550 nm). Pulse repetition frequencies are
commonly in the range of 50–200 kHz and the scan angle is typically restricted to be < 25◦

off nadir. At flying altitudes of 500–3 000 m, the resulting pulse density is 0.5–20 pulses/m2.
It is recommended to conduct the acquisitions with a swath overlap of at least 50% to
ensure good ground coverage and the option for precise alignment in post-processing, i.e.
strip-adjustment (White et al., 2013a).

The usability of ALS for forest inventories has been proven in numerous studies and
operational applications. In the most commonly used approach, known as the area-based
approach (Næsset, 2002), field inventory measurements of forest attributes are linked to
metrics derived from ALS data of the same plots. These metrics are then used to develop
predictive models, both parametric and non-parametric, with the forest attributes as the
response variable and the ALS metrics as predictors. The resulting models can be applied
to the entire area of interest for which ALS data are available (White et al., 2013a). To derive
wall-to-wall ALS metrics and corresponding predictions, a grid with a cell size similar to
the field plot size is utilised. The predictors used in the models include descriptive statistics
of the ALS point coordinates, such as mean height, height percentiles, and cumulated
densities (White et al., 2013a), or metrics derived from a canopy height model (Chirici
et al., 2016). Metrics can be calculated from first returns, last returns, intermediate returns,
or all returns, with many studies applying a height threshold to exclude returns from
understorey vegetation (White et al., 2013a).

It has been shown that estimates derived from ALS data can even be more accurate than
using traditional methods, such as stand-wise field inventories (Holmgren & Jonsson,
2004; Holopainen et al., 2014). Numerous studies have demonstrated that typical forest
inventory attributes, such as top height, Lorey’s mean tree height, dominant height, mean
stem diameter, stem number, basal area, and growing stock volume can be accurately
predicted from ALS data (Holmgren & Jonsson, 2004; McRoberts et al., 2013; Næsset, 2004,
2007; Nord-Larsen & Schumacher, 2012; Sheridan et al., 2015; White et al., 2021). ALS
has also been shown to be a valuable data source for estimating stocks and changes in
forest AGB (Cao et al., 2016; Chirici et al., 2016; McRoberts et al., 2015; Nord-Larsen &
Schumacher, 2012; Sheridan et al., 2015). AGB predictions based on ALS data are more
accurate than those based on spaceborne lidar, radar, or passive optical data (Zolkos et al.,
2013). Additionally, ALS data can be used to predict forest attributes of high ecological
importance, such as understory cover and structure (Korpela et al., 2012; Maltamo et
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al., 2005; Wing et al., 2012), forest stand age (Racine et al., 2014), forest edge structure
(Bruggisser et al., 2024), and the presence of snags and shrubs (Martinuzzi et al., 2009).
Furthermore, ALS data provide information that is difficult to assess in traditional forest
inventories, such as estimates of leaf area index (Pope & Treitz, 2013) and soil carbon pools
(Strîmbu et al., 2023).

In addition to demonstrating the use cases of ALS data for forest inventories, there has
also been extensive research on factors that influence ALS-based predictions of these
attributes. Multiple studies have investigated how field plot size and shape, field inventory
design, georeferencing errors, and sampling of field plots affect prediction accuracies (Deo
et al., 2016; Ene et al., 2017; Frazer et al., 2011; Gobakken & Næsset, 2009; Hawbaker
et al., 2009; Maltamo et al., 2007; Packalen et al., 2023; Zhao et al., 2009). When planning
ALS campaigns, it is important to know which acquisition settings are best for forest
inventory purposes. Therefore, several studies have examined the effects of flying altitude,
scanning mode, scan angle, beam divergence, footprint size, pulse repetition frequency,
and point density on ALS-based estimates (Chasmer et al., 2006; Gobakken & Næsset, 2008;
Goodwin et al., 2006; Hopkinson, 2007; Keränen et al., 2016; Lim et al., 2008; Montaghi,
2013; Morsdorf et al., 2008). Furthermore, as models are needed to derive estimates of
forest attributes from ALS data, studies have also compared different prediction methods
(e.g. parametric vs. non-parametric models, deep learning approaches vs. traditional
machine learning approaches, single tree-based methods vs. area-based methods) and
tested various sets of ALS metrics (Bouvier et al., 2015; Chirici et al., 2016; Latifi et al., 2015;
Y. Li et al., 2008; Oehmcke et al., 2022; Pearse et al., 2019).

A critical consideration for evaluating methods to derive forest information from ALS data,
as well as for the informative value of sensitivity analyses, is the quality of the underlying
reference data. This includes their accuracy and representativeness. Additionally, the
data requirements for method development and sensitivity analyses can exceed what is
typically collected in forest inventories. For instance, information regarding individual
tree positions, both within and outside of the field plots, may be necessary to develop new
methods or analyse the effects of geolocation errors and the shapes and sizes of field plots.
Moreover, conducting sensitivity analyses of ALS acquisition settings may necessitate
multiple surveys, which is rarely possible due to high acquisition costs. Simulations
offer a cost- and time-efficient alternative to acquiring real data. They also provide the
added benefit of allowing for control over all conditions (White et al., 2016). Therefore,
synthetic data generated through simulations have significant potential for enhancing the
understanding of the relationships between statistical attributes of ALS data and forest
characteristics. This understanding is crucial for planning ALS acquisitions as well as for
improving existing methods and developing new ones (White et al., 2016).

1.5 SYNTHETIC DATA

Generating synthetic ALS data of forests requires a method to simulate laser scanning and
three-dimensional forest scenes that the laser scanning simulation is applied to. To create
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the forest scenes, information on the forest composition is needed, including the positions
of individual trees and their properties such as species, height, and crown diameter. Tree
models can then be created and arranged based on this forest information to build three-
dimensional representations of forests. The laser scanning simulation approach, the method
for generating forest composition, and the tree models utilised all impact the realism of the
synthetic data and their potential applications.

Synthetic data have been used for calibrating and comparing models (Nelson, 1997; Palace
et al., 2015) as well as for selecting the most suitable predictors for ALS-based predictions
of forest attributes (Fischer et al., 2019; Knapp et al., 2018). They can also be employed
for lookup table approaches, e.g. for linking stand diameter distributions to lidar return
height distributions (Spriggs et al., 2015) or gross primary productivity to GEDI waveforms
(Bauer et al., 2021). Data simulations are highly valuable for sensitivity analyses, where the
influence of laser scanning acquisition settings and resulting point density, field plot size,
geolocalization errors, edge effects, and forest structure on various ALS-derived estimates,
including AGB, canopy closure, and other forest attributes, as well as the retrieval of
forest foliage profiles and the accuracy of tree delineation, can be assessed individually
and without cross-correlation effects (Disney et al., 2010; Fassnacht et al., 2018; Frazer
et al., 2011; Holmgren et al., 2003; Knapp et al., 2021; Qin et al., 2017; Stocker et al., 2023;
Wang et al., 2013). Synthetic data also contribute to the comprehension of the relationships
between forest structure, laser scanning settings, and the resulting characteristics of ALS
data (Bruening et al., 2021; Fischer et al., 2019; Goodwin et al., 2007).

The simulation approaches that have been applied in studies using synthetic ALS data
of forests differ in complexity. A few studies used real field inventory data to create
forest stands (e.g. Knapp et al., 2021; Nelson et al., 1997; Spriggs et al., 2015). However,
most studies used randomly generated stand compositions, with random or regularly
distributed tree locations and tree sizes drawn from bounded random distributions. These
studies often assumed fixed values or fixed ratios for crown diameters and crown heights
(e.g. Goodwin et al., 2007; Holmgren et al., 2003; Kukko & Hyyppä, 2009; Palace et al.,
2015; Qin et al., 2017; Stocker et al., 2023; Wang et al., 2013). More complex forest models
offer the potential to generate more realistic forest stand compositions. These models
must be individual-based and provide spatially explicit output to be suitable for creating
three-dimensional forest scenes that are required for laser scanning simulations. Forest
growth models simulate the development of forest structure under different environmental
conditions and/or forest management strategies. They consider the growth and mortality
of individual trees and the competition among them. The forest models that have been
used for generating synthetic ALS data of forests include FORMIND (Köhler & Huth,
1998), SILVA (Pretzsch et al., 2002), and Forest Factory (Bohn & Huth, 2017). FORMIND
is an individual-based forest gap model. Gap models simulate forest growth on small
patches, assuming that the horizontal competition among individual trees is the same for
all trees within the area (Shugart et al., 2018). Therefore, they do not explicitly model the
positions of individual trees. In studies using FORMIND (Bauer et al., 2021; Fischer et al.,
2019; Knapp et al., 2018), tree positions have been randomly assigned within a 20 m× 20 m
patch. SILVA has been used by Fassnacht et al. (2018) to generate synthetic ALS point
clouds of forest stands. Unlike gap models, SILVA includes three-dimensional competition
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among neighbouring trees (Pretzsch et al., 2002). As a result, the simulation output is
spatially explicit at an individual tree level. While FORMIND and SILVA enable long-term
simulations of forest stands, Forest Factory is a forest model that does not simulate the
development of forest stands over time. Instead, it generates realistic forest states based
on the competition and productivity processes implemented in FORMIND. By omitting
the time component, Forest Factory is significantly faster than FORMIND, allowing for
the generation of a large number of different forest stand compositions in a short time. A
first study using Forest Factory to generate synthetic forest lidar data was presented by
Bruening et al. (2021).

For generating three-dimensional forest representations, simple geometric objects are
often used as tree models. Tree crowns are assumed to be cylindrical (Knapp et al., 2018),
spheroidal (Knapp et al., 2021), sinusoidal (Kukko & Hyyppä, 2009), ellipsoidal (Palace et al.,
2015; Wang et al., 2013), paraboloid (Frazer et al., 2011), or hemi-ellipsoidal (Goodwin et al.,
2007; Holmgren et al., 2003; Nelson et al., 1997). Tree stems are either not explicitly modelled
or modelled as cones (Frazer et al., 2011) or cylinders (Wang et al., 2013). A common
alternative to these primitive-based tree models are voxel models, which also simplify the
data processing. Voxel sizes range from 0.25 m× 0.25 m× 0.25 m (Goodwin et al., 2007)
to 0.5 m× 0.5 m× 1.0 m (Bauer et al., 2021; Knapp et al., 2018), and 1.0 m× 1.0 m× 1.0 m
(Knapp et al., 2021). Some studies use solid tree models that laser beams cannot penetrate
(Holmgren et al., 2003), others assume the same penetration properties for stems and
crowns (Wang et al., 2013) or solid stems but penetrable crowns, e.g. by modelling the tree
crown as a turbid medium (Knapp et al., 2018) or by using different densities of voxels to
simulate a clumped foliage distribution (Goodwin et al., 2007). Much more detailed models
with representations of individual needles and leaves have been used by Disney et al. (2010)
and Qin et al. (2017). While those tree models were artificially generated, Stocker et al.
(2023) used tree models of high detail that were reconstructed from real TLS data using
L-Architect (Côté et al., 2009). A different approach of using real data was presented by
Fassnacht et al. (2018), who used individual tree point clouds extracted from real ALS data
without any further modification but scaling and rotation.

The complexity of the laser scanning simulation approach determines the potential use
cases of the synthetic data. Simplistic approaches can generate data that are sufficient
for model calibration or the analysis of field plot effects on ALS-based estimations of
forest attributes. In contrast, sensitivity analyses of ALS acquisition settings require a
methodology that allows for the simulation of different settings. Simplified approaches
were, for example, applied by Nelson et al. (1997), who derived airborne laser profiles from
the canopy shape of the synthetic stands in a height array of 0.25 m× 0.25 m (with added
noise to create surface texture). Fassnacht et al. (2018) calculated canopy height models
directly from the transformed real ALS point clouds of all trees arranged as a forest stand
without applying any laser scanning simulation. Frazer et al. (2011) created ALS point
clouds based on real laser scanning xy-return coordinates that were used to extract z-values
from the synthetic forest stands. The lidar simulation model implemented in FORMIND
applies a probabilistic approach: lidar pulses are represented by vertical voxel columns,
and the probability of returns is calculated using an exponential decay function based on
the Beer-Lambert law of light extinction (Knapp et al., 2018). A probabilistic approach was
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also applied by Wang et al. (2013): out of a defined number of lidar footprints per unit
area, they randomly sampled which of these footprints resulted in valid returns. A random
offset in the xy-direction was added to the footprint coordinates and the height of the
returns was determined from the synthetic forest height at that location with an additional
random negative offset to simulate penetration to the canopy. A more realistic simulation
of laser scanning can be achieved via ray tracing. Holmgren et al. (2003) and Goodwin et al.
(2007) applied ray tracing approaches with no beam divergence to analyse the effect of scan
angle on the estimation of canopy closure and mean tree height, and on beam interception,
respectively. Disney et al. (2010) used Monte Carlo ray tracing of canopy scattering for a
sensitivity analysis of multiple scanning settings. Kukko and Hyyppä (2009) presented a
simulator for small footprint ALS that incorporates platform movement (including wind-
caused drift), includes beam divergence and the modelling of intensity, and allows for the
simulation of different scanning patterns, pulse frequencies, and scan angles. A physically
based model that has been shown to reproduce small footprint ALS discrete return metrics
with high accuracy and precision (Roberts et al., 2020) is the Discrete Anisotropic Radiative
Transfer (DART) model (Gastellu-Etchegorry et al., 2015, 2016). DART has for example
been applied by Qin et al. (2017) to analyse the effects of ALS acquisition settings on the
retrieval of forest foliage profiles. Stocker et al. (2023) used the laser scanning operations
simulator HELIOS++ (Winiwarter et al., 2022) to analyse the influence of point density
on the performance of semantic segmentations. HELIOS++ is particularly suitable for
laser scanning simulations focusing less on the physical accuracy of individual beams
but on the laser scanning survey in general. In a comparison of DART and HELIOS++,
Winiwarter et al. (2022) found that loading scenes in HELIOS++ takes approximately ten
times longer than in DART (55 min vs. 4.4 min), whereas the beam simulations are much
faster (200,000 beams/s in HELIOS++ vs. 0.64 beams/s in DART). HELIOS++ allows for
the easy configuration of acquisition settings such as movement of the platform, pulse
repetition frequency, scan frequency, and scan angle, enabling the reproduction of real laser
scanning campaigns and the testing of different settings with low effort.

To summarize, the elements that are required for generating realistic synthetic ALS data of
forests, namely tree models reflecting the appearance of real trees, a method for generating
forest stand compositions resembling real-world conditions, and a framework for complex
laser scanning simulations, have already been developed and applied in multiple studies.
However, an approach that combines all of these elements and explores their potential for
supporting forest inventories is still missing.
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1.6 RESEARCH NEEDS AND THESIS OUTLINE

Ideally, an approach for generating synthetic data should fulfil the following requirements:

1. Realistic lidar simulations: The simulation approach should include beam diver-
gence and the generation of multiple returns.

2. Variation of acquisition settings: The simulation approach should allow for the
definition of platform movement and the scanning parameters.

3. Realistic forest composition: The species, locations, and size distribution of trees
within a forest stand should resemble real-world conditions.

4. Variability of forest stands: The simulation approach should enable the generation
of a wide range of differently composed forest stands in short time.

5. Realistic tree models: Tree models should represent the inter- and intraspecific
variability of real trees. The simulated laser beams should be able to penetrate tree
canopies through gaps but not tree stems.

Such an approach enables comprehensive sensitivity analyses, and realistic synthetic data
ensure the transferability of methods and findings derived from synthetic data to the real
world. For example, a tree segmentation algorithm trained on synthetic data is probably
more suitable for application on real data when synthetic forest stands are composed of
realistic tree models rather than simple geometric objects. The ability to define and tune
acquisition settings allows for the reproduction of real laser scanning campaigns. If the
synthetic stands represent the full range of forest composition at a study site, the simulated
data can be used to train models that can then be applied on real data.

However, none of the approaches for generating synthetic ALS data of forests presented in
Chapter 1.5 fulfils all of these requirements. These approaches include simplified methods
for generating ALS point clouds that do not allow for variations in acquisition settings, they
use simplified tree models of limited variability, or they are based on randomly generated
forest stand compositions that do not necessarily reflect real-world conditions. Therefore,
I have developed a new approach for generating synthetic laser scanning data of forests:
based on the approach presented by Fassnacht et al. (2018), three-dimensional forest stands
are created using a forest simulator to generate realistic stand compositions, and individual
tree point clouds extracted from real laser scanning data are used as tree models. Laser
scanning simulations of the voxelised 3D scenes are conducted with HELIOS++.

As presented in Chapter 1.4, ALS data have been shown to be a reliable source for estimating
AGB. However, a major limitation for widespread use of ALS data in deriving AGB
estimates is the need for reference data to train ALS-based regression models. Therefore,
this thesis aims to determine whether the presented approach can generate synthetic
ALS data that are realistic enough to be used as training data for AGB models and thus
help to overcome or at least reduce the need for field data collection. This question
is addressed in three studies, two of which have been published in international peer-
reviewed scientific journals, while the third is currently under review. An overview of the
data and methodologies employed in the studies is depicted in Figure 1.1.
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Figure 1.1: Overview of data and methods used in the three studies included in this
thesis.

In the first study (Chapter 2), I validate the workflow for simulating ALS data by comparing
simulated and real ALS point clouds of mixed forest stands located in the southwest of
Germany. The individual tree point clouds that are used as tree models have been extracted
from UAV-borne laser scanning data of the same area. I create the synthetic forest stands
using forest inventory data from the real forest stands instead of using simulated forest
stand compositions, allowing for a direct comparison of simulated and real ALS data. I
then apply HELIOS++ on voxelised stand models composed of individual tree point clouds
and the resulting simulated point clouds are compared to the real ones based on their
height distribution and derived canopy cover. In addition to the real tree point clouds,
I use simplified tree models in the form of artificially generated tree point clouds with
cylindrical stems and spheroidal crowns to investigate the influence of tree model shape on
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the simulated ALS point clouds. AGB models are trained on point cloud metrics derived
from both simulated and real ALS data to assess how the differences between real and
simulated point clouds affect the accuracy of AGB predictions. The research questions
addressed in this study are as follows:

1. Can the combination of HELIOS++ and a forest stand point cloud be used to generate
realistic synthetic ALS data?

2. To what extent do the simulated laser scanning data differ when simplified tree
models are used instead of real tree point clouds?

3. Can simulated laser scanning data be used to accurately predict forest AGB based on
real ALS data?

In the second study (Chapter 3), I investigate the use of fully simulated data for training
AGB models. In contrast to the first study, where real forest inventory data are used to
generate the synthetic stands, the second study includes the implementation of a forest
simulator to generate forest stand compositions. I use Forest Factory 2.0 (Henniger et
al., 2023) to simulate a large number of forest stands, which are subsequently used to
generate synthetic ALS datasets. Laser scanning simulations are conducted according to
the respective acquisition settings of four real laser scanning campaigns located in Poland,
the Czech Republic (2×) and Canada. Datasets of field reference data and ALS point
clouds from these four acquisitions are used as test data for AGB models trained on the
synthetic data. Point clouds of the same trees as in the first study are used as tree models,
making the synthetic data completely independent of the real data used for testing. I
assess the performance of AGB models trained on these synthetic data compared to models
trained on real data derived from the three other sites respectively, and models trained
on real data derived from the respective site where they are applied. I also investigate
how the training sample size affects model accuracy and whether model accuracy can be
increased by extending small datasets of real training data with additional synthetic data.
The following research questions are answered in this study:

1. How accurately can random forest regression models trained on simulated forest in-
ventory and virtual laser scanning data predict the AGB of real forest sites compared
to models trained on real data collected at the same site or at different sites?

2. When there are limited real training data available, can model accuracy be improved
by extending real training datasets with synthetic data?

3. If model accuracy can be improved by extending real training datasets with synthetic
data, up to what number of real training samples does a model trained on additional
synthetic data outperform a model trained on real data only?

In the third study (Chapter 4), I present a new method for predicting AGB from ALS point
clouds. Most existing approaches for ALS-based AGB predictions rely on metrics that
describe the vertical distribution of lidar returns as predictor variables. Accordingly, these
approaches often omit information provided by the x- and y-coordinates of the returns. For
instance, this information could be valuable for determining the number of trees within
a plot. In this study, I propose a completely different approach: I use a deep learning
algorithm to predict AGB from images depicting cross sections through the ALS point
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clouds. Since deep learning methods require a large amount of training data, I further
investigate whether synthetic data can be used to address this problem when real data are
limited. Accordingly, this final study explores two research questions:

1. To what extent can AGB of forest stands be estimated from stacked cross section
images derived from ALS point clouds using a 3D version of the VGG16 convolu-
tional neural network (CNN) with initial weights transferred from the 2D VGG16
pre-trained on the ImageNet dataset?

2. How does additional pre-training on synthetic data influence the prediction perfor-
mance of the CNN?
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ABSTRACT

Airborne laser scanning (ALS) data are routinely used to estimate and map structure-
related forest inventory variables. The further development, refinement, and evaluation
of methods to derive forest inventory variables from ALS data require extensive datasets
of forest stand information on an individual tree-level and corresponding ALS data. A
cost-efficient method to obtain such datasets is the combination of virtual forest stands
with a laser scanning simulator.
We present an approach to simulate ALS data of forest stands by combining forest inventory
information, a tree point cloud database and the laser scanning simulation framework
HELIOS++. ALS data of six 1-ha plots were simulated and compared to real ALS data of
these plots. The synthetic 3D representations of the forest stands were composed of real
laser scanning point clouds of individual trees that were acquired by an uncrewed aerial
vehicle (UAV), and, for comparison, simplified tree models with cylindrical stems and
spheroidal crowns. The simulated ALS point clouds of the six plots were compared to the
real point clouds based on canopy cover, height distribution of returns, and several other
point cloud metrics. In addition, the performance of biomass models trained using these
synthetic data was evaluated.
The comparison revealed that, in general, both the real tree models and the simplified
tree models can be used to generate synthetic data. The results differed for the different
study sites and depending on whether all returns or only first returns were considered.
The measure of canopy cover was better represented by the data of the simplified tree
models, while the height distribution of the returns was – for most of the study sites – better
represented by the real tree model data. Training biomass models with metrics derived
from the real tree model data led to an overestimation of biomass, while using metrics of
the simplified tree model data resulted in an underestimation of biomass. Still, the accuracy
of models trained with simulated data was only slightly lower compared to models trained
with real ALS data.
Our results suggest that the presented approach can be used to generate ALS data that are
sufficiently realistic for many applications. The synthetic data may be used to develop new
or refine existing ALS-based forest inventory methods, to systematically investigate the
relationship between point cloud metrics and forest inventory variables, and to analyse
how this relationship is affected by laser scanning acquisition settings and field reference
data characteristics.

2.1 INTRODUCTION

Airborne laser scanning (ALS) data of forests enable a variety of applications. They can be
used to estimate, for example, canopy cover (Arumäe & Lang, 2018; Hopkinson & Chasmer,
2009; Smith et al., 2009), leaf area index (Pope & Treitz, 2013), crown base height (Popescu
& Zhao, 2008), stand density (Næsset, 2002; Pearse et al., 2019), basal area (Bouvier et al.,
2015; Næsset, 2002; Pearse et al., 2019), canopy height (Næsset, 2002; Pearse et al., 2019),
stem volume (Bouvier et al., 2015; Pearse et al., 2019), aboveground biomass (Ahmed et al.,
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2013; Bouvier et al., 2015; Fassnacht et al., 2014; Næsset et al., 2011; Tsui et al., 2012), and
habitat suitability (Graf et al., 2009; Hagar et al., 2014; Johnston & Moskal, 2017). When
measured repeatedly, some of these variables can help track forest growth or decline and
thus changes in forest carbon stocks (e.g. Ene et al., 2017; McRoberts et al., 2015).

Such forest inventory variables are typically not derived from ALS point clouds directly, but
rather with the help of empirical models. In the commonly applied area-based approach,
the variable of interest is measured in field reference plots and linked to point cloud metrics
calculated from ALS data of the same plots (Næsset, 2002; White et al., 2013a). Using
the field- and the ALS data, a parametric or nonparametric regression model can be built
that can be used to predict the variable of interest for the entire area for which point
cloud metrics are available (Frazer et al., 2011). The collection of field reference data is
labour-intensive and costly, so the number of field samples is often limited (Fassnacht
et al., 2014; Wulder et al., 2012). Accordingly, the development and evaluation of methods
to derive forest inventory variables from ALS data is hampered by the small amount of
reference data in most studies (Fassnacht et al., 2018). To better understand the relationship
between point cloud metrics and forest characteristics, and to give recommendations for
data acquisition and modelling, extensive datasets of ALS data and corresponding field
data are needed (Fassnacht et al., 2018; Knapp et al., 2018; White et al., 2016). However,
acquisition costs are typically a major obstacle to obtain such datasets.

Simulated laser scanning of virtual forest stands can be a cost-effective alternative method
to real acquisitions (White et al., 2016). The key idea is that, based on detailed forest stand
information, i.e. species, size and position of every tree in the forest stand, a matching laser
scanning point cloud is simulated, resulting in a dataset where both laser scanning data
and tree information are available for the entire area. While this might be of limited interest
when using real forest stand information (which is rarely available at the required indi-
vidual tree-level), it offers great potential when combined with synthetic forest inventory
data. Realistic, spatially explicit forest stand compositions with varying age structures and
species compositions can be simulated using individual tree-based forest growth simula-
tors, such as SILVA (Pretzsch et al., 2002) or FORMIND (Fischer et al., 2016). Simulating
laser scanning point clouds of synthetic forest stands can help to overcome the bottlenecks
related to limited reference data for forest ALS datasets. In the ideal case, these synthetic
datasets can be built for any forest stand composition and laser scanning sensor type and
acquisition settings.

Related approaches for simulating airborne laser scanning have been suggested in earlier
studies and were for example used to test new methods for tree delineation (Wang et al.,
2013) and for the estimation of the effective leaf area index (Zhu et al., 2020), or to identify
the best ALS-based predictors for forest biomass estimations (Knapp et al., 2018). Because
locations and properties of all trees in the virtual forest are known, the synthetic data also
enable to analyse certain effects which are hard to examine with real data. These include for
example the influence of plot size and co-registration error between ALS and field reference
data on the estimation of forest inventory variables (Frazer et al., 2011) or the effects of
different sampling strategies and plot designs. The simulation of the laser scanning process
makes it possible to additionally investigate how different sensors and acquisition settings
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influence the ALS-based estimation of forest characteristics (Disney et al., 2010; Holmgren
et al., 2003).

Synthetic data can also be used to calibrate models which can thereafter be applied to real
ALS data to predict forest parameters. For example, ALS point cloud height characteristics
can be simulated for a variety of forest stand compositions and stored in a look-up table,
along with the related forest stand information. By comparing the height characteristics
of the real ALS data with the simulated data in the look-up table, an estimate for the
stand information of the real data can be derived (Palace et al., 2015; Spriggs et al., 2017).
Alternatively, predictive equations can be derived from the synthetic data and can then be
used to infer forest stand composition from the real ALS data. For example, Nelson et al.
(1997) developed regression models between simulated canopy height profiles and forest
inventory metrics, such as basal area, tree volume and aboveground biomass, and then
applied the models to real data.

The success of any workflow using synthetic ALS data naturally depends on the realism
of the synthetic datasets. One key component for simulating ALS data of forests on
an individual tree-level is the 3D representation of trees implemented in the simulation
approach. In earlier studies, tree models of virtual stands were often composed of simple
geometric shapes, such as cones, ellipsoids, spheres, paraboloids, and cylinders (e.g. Frazer
et al., 2011; Holmgren et al., 2003; Knapp et al., 2018; Milodowski et al., 2021; Nelson, 1997;
Palace et al., 2015; Wang et al., 2013). The usage of more complex tree models, e.g. created
by the tree generation algorithm of Weber and Penn (1995) as implemented in the Arbaro
software or by the OnyxTree software (http://www.onyxtree.com/index.html), is less
common, and the studies that followed such an approach often used only a small number
of distinct tree models (e.g. Disney et al., 2010; Zhu et al., 2020). One exception is a study
by Roberts et al. (2020) who used 700 tree models generated by the OnyxTree software
for creating virtual forest scenes. Instead of creating artificial tree models, Fassnacht et al.
(2018) proposed the use of real tree representations in their approach to create synthetic
forest remote sensing data. The presented GeForse approach uses real laser scanning point
clouds of individual trees to create virtual forest stands and simulate canopy height models.
In contrast to simple geometric shaped tree models, these tree point clouds reflect the inter-
and intraspecific variability in crown structure and habit of real trees. However, a major
limitation of the original GeForse approach is the lack of options to actually simulate ALS
acquisitions, as in this approach, the generated forest stands’ point clouds are merely a
rearrangement of the available tree point clouds.

Methods for simulating laser scanning data differ in terms of complexity and computational
effort. Simple approaches to simulate ALS data of forests do not model single returns
but only the vertical distribution of returns (e.g. Nelson, 1997; Palace et al., 2015; Spriggs
et al., 2015). Single returns have been simulated by modelling the statistical probability
of returns from the virtual forest stands (e.g. Knapp et al., 2018; Wang et al., 2013) or by
intersecting (x, y)-return coordinates of real laser scanning data with canopy heights of
the virtual forest (Frazer et al., 2011). The mentioned approaches are suitable to create
simplified synthetic ALS data. However, in order to analyse, for example, the effects
of different scanner acquisition settings, not only the laser scanning output but also the
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scanning process itself must be modelled. Therefore, more complex simulation approaches
are required. In this context, Holmgren et al. (2003) presented a laser scanning simulation
approach that allows to vary flight and scanning parameters but does not include the
modelling of beam divergence or multiple returns, which are especially important in
vegetation contexts (Arumäe & Lang, 2018; Grau et al., 2017). More complex simulations
of laser scanning have been accomplished via Monte Carlo ray tracing (e.g. Disney et al.,
2010), the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry
et al., 2015, 2016; Yin et al., 2016), and the open-source laser scanning simulation framework
HELIOS (S. Bechtold & Höfle, 2016) and its successor HELIOS++ (Winiwarter et al., 2022).
HELIOS++ supports virtual laser scanning of 3D scenes with various scanners on various
platforms, allows a flexible configuration of acquisition settings, and enables reasonably
realistic full-waveform laser scanning simulations (Winiwarter et al., 2022).

Up until now, there are few studies that combine realistic tree models with realistic laser
scanning simulations to create large, realistic ALS datasets that represent a variety of stand
conditions and also mirror the variability in tree habit on the individual tree level (e.g.
Roberts et al., 2020). Many studies are limited to simplified tree models, a simplified laser
scanning simulation approach, or homogeneous or small-sized forest stands. This paper
proposes a new workflow for generating such large amounts of synthetic data that enables
complex laser scanning simulations of realistic virtual forest stands with comparatively
little computational effort by combining the GeForse approach of Fassnacht et al. (2018)
with HELIOS++. 3D representations of forest stands were created based on forest inventory
information and matching tree point clouds. The tree point clouds had been extracted from
real laser scanning data acquired by an uncrewed aerial vehicle (UAV) and were fed into
the workflow from a database of individual trees. Laser scanning of the virtual stand was
simulated using HELIOS++.

With this new approach, we attempt to provide highly realistic ALS datasets of forests
for which a complete forest inventory dataset is available. In this study, we present this
new workflow, and investigate the generated simulated point clouds with respect to their
resemblance to real ALS point clouds. The workflow was validated by simulating laser
scanning point clouds of six complex temperate forest plots in southwestern Germany of
1 ha size each, for which forest inventory data on individual tree-level and data of real
airborne laser scanning had been collected.

We investigate both the quality of the laser scanning simulation itself and the added value
of the detailed tree models in comparison to simple geometric objects by comparing canopy
cover, the height distribution of returns, and several more point cloud metrics. In addition,
we compare the accuracy of biomass models calibrated with the simulated and the real ALS
data to evaluate how the simulated data perform in a potential forest inventory application.
Three main research questions are addressed in this study:

1. Can the combination of HELIOS++ and a forest stand point cloud be used to generate
realistic synthetic ALS data?

2. To what extent do the simulated laser scanning data differ when simplified tree
models are used instead of real tree point clouds?
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3. Can simulated laser scanning data be used to train models to accurately predict
forest aboveground biomass from real ALS data?

2.2 METHODS

2.2.1 Synthetic data generation

The GeForse approach presented by Fassnacht et al. (2018) combines the output of the
individual tree-based forest growth simulator SILVA (Pretzsch et al., 2002) with tree point
clouds extracted from laser scanning data to create virtual forest stands. Here, we extended
the GeForse approach with a laser scanning simulation component by adding the open-
source laser scanning simulation framework HELIOS++ (Winiwarter et al., 2022). Figure 2.1
shows the adapted workflow.

The first component for creating the virtual forest scenes is forest stand information on an
individual tree-level, including position, species, and size of every tree in the forest stand.
These data can, for example, be obtained from forest inventories conducted in the field. An
alternative source for these data are individual tree-based forest growth simulators, such
as SILVA (Pretzsch et al., 2002). By taking into account site characteristics, competition
for resources, and species-specific growth patterns, forest growth simulators can generate
realistic forest stand compositions which can then be used to create virtual forest stands.

The second element of the approach is a database of tree models, i.e. individual tree point
clouds which were extracted from real laser scanning data. The database contains both the
point clouds and additional information such as the species and the point cloud-derived
height and crown diameter of the tree models. For each tree in the forest stand, the database
is queried for the best matching tree point cloud and the point cloud is inserted at the
corresponding location of the tree. All inserted individual tree point clouds together
compose the virtual stand.

In a third step, laser scanning of the virtual stand is simulated with HELIOS++. Since
points have no volume or surface and therefore cannot interact with simulated laser beams,
the merged point cloud is converted into opaque voxels (Weiser et al., 2021). Then, the laser
scanning simulation of the voxelised scene is conducted, according to the defined scanner
settings and taking into account occlusion effects within the forest stand. The simulation
output is a point cloud of the virtual stand, including information on the number of returns
of each beam.

HELIOS++ enables simulating laser scanning point clouds for a variety of acquisition
settings. Figure 2.2 shows an example of different simulation outputs of simulations with
differing pulse repetition frequencies and different trajectories. The cross sections through
the simulated point clouds illustrate how both parameters affect the representation of tree
stems in the simulated laser scanning data.
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Figure 2.1: Workflow for generating synthetic laser scanning data.

2.2.2 Case study

The performance of the presented laser scanning simulation approach was validated
by comparing canopy cover, the height distribution, and other point cloud metrics of the
simulated and real ALS point clouds of six real forest plots. In order to investigate the added
benefit of detailed tree models, virtual stands were created using both real tree models
(RTM) extracted from real UAV-borne laser scanning (ULS) point clouds, and simplified
tree models (STM) with spheroidal crowns and cylindrical stems. We additionally wanted
to evaluate how the synthetic data perform in a potential application by comparing the
performance of biomass models trained with simulated and with real ALS data.

2.2.2.1 Study sites

We selected six study sites from the dataset published by Weiser et al. (2022b). They are
located in a temperate forest region in the federal state of Baden-Württemberg, southwest-
ern Germany. The sites were named according to their location: KA09, KA10, and KA11
are located in the Hardtwald forest in the north of Karlsruhe (49◦ 02’ 04" N, 8◦ 25’ 40" E),
and BR01, BR03, and BR05 are located in the city forest south of Bretten (49◦ 00’ 36" N, 8◦

41’ 35" E). The IDs correspond to the IDs used in Weiser et al. (2022b). The Karlsruhe sites
are characterised by flat terrain. They consist of mixed stands dominated by Scots pine
(Pinus sylvestris L.), red oak (Quercus rubra L.), European hornbeam (Carpinus betulus L.),
and European beech (Fagus sylvatica L.). Black cherry (Prunus serotina Ehrh.) and sycamore
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Figure 2.2: Exemplary output of laser scanning simulations for an 80-year-old Douglas
fir stand. The stand information was generated with SILVA. The stand was initialised
with a random planting pattern of 1 500 trees. Selective thinning with weak intensity
was applied in the forest growth simulation. The laser scanning simulations were
conducted with two different pulse repetition frequencies: 250 kHz and 500 kHz. The
flight pattern was defined as a straight line in north-south direction with an altitude of
650 m above ground. Two different trajectories were applied: one crossing the centre
of the forest stand and one located 200 m outside of the forest stand (distance to the
centre: 250 m). The simulated point clouds are shown for a section of 100 m× 20 m.
Colours of the simulated points indicate the return number of each point.
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maple (Acer pseudoplatanus L.) are the most frequent tree species in the understorey layer.
The Bretten sites show moderate to steep slopes. Dominant tree species in these stands are
European beech, Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), sessile oak (Quercus
petraea (Matt.) Liebl.), Norway spruce (Picea abies (L.) H. Karst.), silver fir (Abies alba Mill.),
and common walnut (Juglans regia L.).

All six forest sites are characterised by high within-site heterogeneity in stand structure and
species composition. Both mixed and pure, single-layered and multi-layered, even-aged
and uneven-aged stands occur. At each site, field data, ULS data, and ALS data were
collected.

2.2.2.2 Field data acquisition

Field data were collected from May to October 2019 in six 100 m× 100 m (1 ha) plots. For
each tree within these plots with a diameter at breast height (d1.3) ≥ 5 cm, species, state
(dead or alive), location, d1.3, and crown diameter (CD) were recorded. The d1.3 was
measured with a measuring tape at 1.3 m above ground. The CD was measured in two
orthogonal directions from the estimated projected crown extent onto the ground. The
mean CD was calculated as the mean value of these two measurements. We measured the
height (h) of 34% of the trees, mainly trees in the subcanopy layer, where the tree tops were
visible from the ground. Height values were additionally extracted from the laser scanning
data, if the tree could be identified in the point cloud. Missing height values were estimated
by a d1.3-based prediction using a Näslund’s function, which was found to be suitable for
plot-specific height models (Mehtätalo et al., 2015). Models were built based on d1.3 and
height values of all trees of a species and then used to predict the missing height values
for trees of that species. If there were less than three height values for a species, a height
model based on all broad-leaved or coniferous trees was used instead of a species-specific
model. The plot characteristics are summarised in Table 2.1.

For the measurement of tree locations, plots were divided in 20 m× 20 m subplots. Tree
locations were determined relative to one of the subplot corners by measuring the distance
and the direction between corners and tree stems. RTK GNSS measurements of some of the
plot corners were used to transform relative coordinates to geographic coordinates. For all
height and distance measurements, a Haglöf Vertex-IV hypsometer was used. Directions
were measured with a magnetic compass.

2.2.2.3 Laser scanning data acquisition and preprocessing

Airborne and UAV-borne laser scanning data were collected in July, August and September
2019 under leaf-on conditions. ALS data were acquired with a RIEGL VQ-780i airborne
laser scanner (RIEGL Laser Measurement Systems, 2019). The flight altitude was around
650 m above ground, the flight speed was approximately 51 m/s and the swath overlap
was 76%. Laser scanning was performed with a pulse repetition frequency of 1 000 kHz
and a scan frequency of 225 lines per second, resulting in a mean point spacing of 28 cm. A
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Table 2.1: Stand characteristics of the six 1-ha plots. d1.3 is the stem diameter at breast
height (1.3 m). σ is the population standard deviation.

Plot
Number

of trees
d1.3

[cm]
Height

[m]
Biomass

[t/ha]
Most frequent

species

BR01 728 Min: 5.0 Min: 2.4 241.4 30% Fagus sylvatica,
Max: 86.7 Max: 46.4 22% Picea abies,

Mean: 18.6 Mean: 15.6 16% Carpinus betulus,
σ: 14.2 σ: 8.2 16% Quercus petraea

BR03 442 Min: 5.0 Min: 2.3 299.3 37% Pseudotsuga menziesii,
Max: 99.4 Max: 42.0 26% Carpinus betulus,

Mean: 29.3 Mean: 22.8 10% Fagus sylvatica,
σ: 18.7 σ: 11.5 6% Abies alba

BR05 331 Min: 5.0 Min: 4.0 284.8 45% Fagus sylvatica,
Max: 85.7 Max: 45.8 13% Pseudotsuga menziesii,

Mean: 30.5 Mean: 23.5 13% Picea abies,
σ: 18.7 σ: 10.5 10% Juglans regia

KA09 272 Min: 5.0 Min: 2.6 170.8 37% Fagus sylvatica,
Max: 79.0 Max: 43.4 24% Pinus sylvestris,

Mean: 28.2 Mean: 18.8 12% Picea abies,
σ: 19.6 σ: 10.2 6% Carpinus betulus

KA10 426 Min: 5.0 Min: 2.2 161.9 33% Prunus serotina,
Max: 99.4 Max: 40.6 25% Carpinus betulus,

Mean: 19.9 Mean: 14.2 21% Quercus rubra,
σ: 17.1 σ: 8.0 7% Acer pseudoplatanus

KA11 787 Min: 5.0 Min: 1.8 172.0 39% Fagus sylvatica,
Max: 73.5 Max: 30.7 28% Quercus rubra,

Mean: 18.6 Mean: 16.3 15% Prunus serotina,
σ: 10.9 σ: 6.7 12% Pinus sylvestris

digital terrain model (DTM) with a spatial resolution of 0.5 m was calculated from the ALS
data for each study site using the TreesVis software system (Weinacker et al., 2004). The
DTM was then used to normalise the height of the point cloud data.

ULS data were collected using a RIEGL miniVUX-1UAV sensor mounted on a DJI Matrice
600 Pro Hexacopter. The device was operated with a pulse frequency of 100 kHz. The
flights were conducted following a pattern of two overlapping double grids with an offset
of 45◦ in orientation. ALS and ULS acquisition parameters are listed in Table 2.2. A detailed
description of the data acquisition and preprocessing can be found in Weiser et al. (2022a).
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Table 2.2: Acquisition settings of the real laser scanning campaigns.

ALS ULS

Sensor RIEGL VQ-780i RIEGL miniVUX-1UAV
Laser beam divergence 0.25 mrada 1.6 mrad× 0.5 mradb

Pulse repetition frequency 1 000 kHz 100 kHz
Scan frequency 225 lines per second 33.4/100 lines per second
Scan angle off nadir ±30◦ ±90◦

Altitude above ground 641–728 m 60–80 m
Flight speed 100 kn (≈ 51 m/s) 3.0–5.0 m/s
Flight line distance 175 m 25–30 m
Mean pulse density 70–78 pulses/m2 797–1554 pulses/m2

Flight pattern Parallel flight strips Two overlapping double grids

a Measured at the 1/e2 points.
b Measured at 50% peak intensity (≈̂ 2.72 mrad × 0.85 mrad measured at the 1/e2

points).

2.2.2.4 Creation of real tree model forest stands

A 3D model of each plot was created using the field data and matching tree models, i.e.
point clouds of real trees. The real tree models (RTM) were derived from the ULS data by
manually extracting point clouds belonging to individual trees in the 3D point cloud and
mesh processing software CloudCompare (CloudCompare, 2019). Tree metrics including
height and crown diameter were estimated from the tree point clouds. Tree species of
the tree models were determined based on the field data and additional field surveys.
Each tree model was subjectively assigned a quality score from high (q1) to low (q6) by
the extracting person, indicating the probability of segmentation and extraction errors. A
dataset containing all tree point clouds has been published by Weiser et al. (2022b). A
detailed description of the tree models can be found in Weiser et al. (2022a). For the creation
of virtual forest stands, only tree models of high to medium quality (q1-q3) were used. In
total, 1 245 tree models of 19 different tree species with these quality tags were available.

The habit of dead trees can differ significantly from that of living trees of the same species.
As there were only few tree models of dead trees available, dead trees were omitted when
creating the synthetic stands. For each living tree within the six study plots, a tree model of
the same species, and similar height and crown diameter was selected by filtering all tree
models according to the following procedure:

1. Exclude all tree models extracted from the same plot.

2. Include only tree models with matching tree species. If there is no tree model of that
species available, include only tree models of the matching species group (broad-
leaved or coniferous).

3. Calculate the Euclidean distance d in terms of tree height and crown diameter for all
remaining tree models with respect to the query tree (Equation 2.1) and randomly
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select a tree model with d < 4 m. If there is no tree model with d < 4 m, select the
tree model with the minimum d to the query tree.

d =
√
(Htree model − Hquery tree)2 + (CDtree model − CDquery tree)2 [m] (2.1)

The selected tree point cloud is scaled along the X-, Y-, and Z-axes so that the CD and
H value of the point cloud fit the crown diameter and height of the queried tree. The
tree model is randomly rotated around the Z-axis and then placed at the location of the
query tree in the forest stand. This way, a 3D geometry model of each plot is created as a
composite of multiple tree point clouds.

For 86% of the trees in the six 1-ha plots, tree point clouds of the same species were selected.
Tree point clouds were partly missing for tree species which were only extracted from the
laser scanning data of one of the plots, i.e. black cherry, common walnut and silver fir, and
for some rarely occurring species. For these trees, corresponding tree point clouds from
other species were inserted following the process described above.

2.2.2.5 Creation of synthetic simplified tree model forest stands

In order to investigate how the complexity of the tree models affects the simulated ALS
point clouds, the laser scanning simulations (see next section) were also applied to addi-
tional 3D representations of the six plots that were created using point clouds of simplified
tree models (STM) composed of spheroidal crowns and cylindrical stems. This shape
is similar to that used by Knapp et al. (2018), who created tree models with cylindrical
crowns and cylindrical stems. The STMs have a simplified shape but a realistic structure in
the sense that the laser beams are not completely reflected by the outer canopy but may
penetrate the crown through gaps, whereas the tree stem is impenetrable to the laser beams.
For each tree in a plot, a matching STM was generated. The horizontal semi-axes of the
spheroidal crown were defined with a length matching the required crown radius, the
length of the vertical semi-axis was fixed as half of the crown height, which was calculated
as the difference of tree height and the height of the lowest green branch as measured in the
field. The stem cylinder was defined with a diameter matching the d1.3 and a height equal
to the crown base height. As the simulation is based on voxelised point clouds, we needed
to create a point cloud representing the STM shape. To achieve this, points were randomly
sampled from a uniform 3D distribution spanning the bounding box of a tree defined by
tree height and crown radius. The planar point density was set to 1 500 pts/m2, which is
approximately the mean point density of the ULS point clouds of the six plots when ground
hits were excluded, as ground is not included in the tree models. The spheroid tree crown
was then derived by removing all points which were not within the region bounded by
the spheroidal surface. For the tree stem, additional points were created on the cylindrical
surface of the stem in a way that the maximum distance of neighbouring points in X-, Y-,
and Z-directions was limited to 2 cm, ensuring that a voxelisation with a voxel size of 3 cm
would convert the stem point clouds to opaque objects, impenetrable for the laser beams.
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2.2.2.6 HELIOS++ laser scanning simulations

Airborne laser scanning data of the synthetic forest stands were simulated with the open-
source Heidelberg LiDAR operations simulator HELIOS++ (Winiwarter et al., 2022). The
HELIOS++ simulations require definitions of the scene to be scanned, the laser scanner, and
the platform on which the scanner is mounted, e.g. an airplane. In addition, the position
and movement of the platform and the scanner settings must be defined (Winiwarter et al.,
2022). The scene is specified as a spatial arrangement of different 3D objects which can be
polygon meshes, terrain models, or voxel models. The scene can also include objects in
the form of point clouds, which are converted to impenetrable voxels on-the-fly. For each
voxel containing at least one point, an opaque cube is created, providing 3D surfaces to be
virtually scanned. HELIOS++ simulates the movement of the scanner along the defined
trajectories according to the specified flight speed and starting position of the platform.
The scan pattern is determined by the laser beam deflector type, the scan angle, the scan
speed in lines per second, the pulse repetition frequency, and the aircraft speed. Laser
beam divergence is simulated by subrays that are regularly distributed around a central
ray. The base intensity of each subray is calculated according to a 2D Gaussian power
distribution. A return is generated when a subray hits an object. Additional parameters
allow to define the number of subrays, the pulse shape in time, and the detection of local
maxima in the waveform, which are used to fit Gaussians. A comprehensive description of
the functioning and possible settings of HELIOS++ can be found in Winiwarter et al. (2022)
and in the HELIOS++ documentation on GitHub (https://github.com/3dgeo-heidelberg/
helios/wiki).

For the presented approach for synthetic data generation, it is of particular importance
whether HELIOS++ can reproduce real laser scanning data, therefore the simulations were
designed to replicate the acquisition parameters of the real ALS campaigns, including flight
speed, trajectories, and mean flight height above terrain (Table 2.3).

The optimal values for the parameters defining the size of the temporal window for local
maxima detection and the voxel size were determined iteratively using a subset of the
data. Laser scanning was simulated for a subset of the height-normalised real ALS point
cloud covering an area of 22 m× 24 m in site BR01. The simulations were performed with
temporal window sizes of 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 ns for the maximum detection and
voxel sizes of 0.02, 0.03, 0.04, 0.05 m. The simulated point clouds were compared to the real
point cloud based on the absolute and relative height distribution of first and all returns
(see next section). The analysis revealed that no parameter combination results in a good
match for all of the four cases: "all returns", "first returns", "absolute" and "relative height
distribution" (see Appendix, Chapter 2.7). Based on the good results for the relative height
distribution, a window size of 1.0 ns and a voxel resolution of 0.03 m were selected. For
parameters not listed in Table 2.3, the default settings of HELIOS++ version 1.1.0 were
used.

The laser scanning simulation was then performed for each forest stand using the identified
settings and the 3D forest scenes. The 3D scenes were composed of the point clouds
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representing the inserted tree models and a ground layer in form of a horizontal plane
matching the horizontal plot extents.

To avoid problems with hardware memory limitations, the point clouds were split into
multiple parts. The memory footprint of HELIOS++ simulations depends, among other
factors, on the number of primitives in the simulation. In the case of a voxel-based scene
derived from a point cloud, this corresponds to the volume of space occupied by the input
point cloud, i.e. it does not directly depend on the number of points. Splitting the point
clouds into multiple scene parts can reduce the size of the bounding boxes around the
scene parts and thus the number of primitives. In our study, the maximum bounding box
volume of the scene parts was 519 204 m3. It took 58 minutes to simulate laser scanning
of this scene using HELIOS++ version 1.1.0 on an Intel Xeon CPU E5-2630 v3 @ 2.40 GHz
with 256 GB of RAM, resulting in 1 677 666 simulated points.

Table 2.3: Acquisition settings of the laser scanning simulations.

Sensor RIEGL VQ-780i
Altitude 641–728 m
Flight speed 51 m/s
Pulse repetition frequency 1 000 kHz
Scan frequency 225 Hz
Laser beam deflector rotating mirror
Scan Angle ±45°
Effective scan angle ±30°
Accuracy 0.02 m
Beam divergence 0.25 mrad
Pulse length 4 ns
Maximum number of returns per pulse 5
Voxel size 0.03 m
Window size for echo detection 1.0 ns

2.2.3 Validation of simulated laser scanning data

The objective of our approach is not to exactly reproduce the existing real laser scanning
point cloud of a forest stand, but to generate a point cloud that could potentially be
derived from laser scanning of an imaginary forest stand with a similar composition. To
judge whether this objective was met, the similarity between simulated and real data was
evaluated using an area-based approach, by quantitatively comparing canopy cover and
the return height distribution of the 1-ha plots, and point cloud metrics calculated for
20 m× 20 m subplots. In addition, it was tested how biomass models trained with synthetic
data perform in comparison to models trained with real data.
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A visual comparison between simulated and real point clouds can give a first impression
of how well the structural characteristics of a forest stand are represented in the synthetic
data. We extracted vertical cross sections, which are particularly suitable for this, since they
reveal tree locations and the structure of individual trees.

The canopy cover of each plot was derived from canopy height models with a spatial
resolution of 0.2 m× 0.2 m. It was calculated as the proportion of pixels with a value > 2 m
to the total number of pixels (Ma et al., 2017).

The difference in return height distribution provides information on how well the overall
height structure of the stands is reproduced. Point clouds consisting of all returns and point
clouds filtered for only first returns were analysed separately. In general, reflections at the
top of canopies produce first returns, while reflections within the crowns or reflections from
the understorey and ground vegetation are often intermediate and last returns (Fassnacht
et al., 2014). Points with a normalised height ≤ 2 m were not included in the calculations to
eliminate potential effects of missing ground vegetation in the synthetic stands.

Vertical profiles of the point distribution were derived by plotting the absolute and relative
numbers of returns per 1 m height bin against the height. Following Spriggs et al. (2015)
and Knapp et al. (2018), the root mean squared error (RMSE) between simulated and
observed relative proportions of returns per height bin, and the relative overlap of the
height profiles, i.e. the quotient of intersection area and union area (IoU), were calculated.

For training and evaluation of the biomass models, the six 1-ha plots were split into
20 m× 20 m subplots. Point cloud metrics were calculated from the returns within a
subplot, both from all returns and from first returns only. Following van Lier et al. (2021),
we selected metrics describing the canopy height, the vertical structure, the density of
the point clouds, and the canopy cover. As canopy height metrics, the maximum height
of the returns (Hmax), the mean height (Hmean), the 10th–90th (in steps of 10) height
percentiles (H10–H90), and 98th height percentile (H98) were computed. The vertical
structure metrics included the standard deviation (SD) and the coefficient of variation
(CV) of height, the skewness and kurtosis of the return height profile of each subplot,
and the vertical complexity index (VCI) developed by van Ewijk et al. (2011), which was
calculated as implemented in the R package "lidR" (Roussel & Auty, 2021; Roussel et al.,
2020). Point cloud density metrics were calculated as the proportion of returns above the
10th–90th height percentiles to the total number of returns (D1–D9) (Næsset, 2002). As a
measure of canopy cover, the ratio of the number of returns above 2 m height to the total
number of returns (Pgr2) was used (Smith et al., 2009). In addition, the total number of
returns (NP) and the ratio of returns above the mean height to the total number of returns
(Pgrmean) were calculated. Similar to the return height profiles, all metrics except Pgr2
were calculated from returns above 2 m height.

Biomass reference data of the subplots were the summed aboveground biomass of all trees
within a subplot divided by the area of the subplot. The biomass of a tree was calculated
based on DBH and tree height according to the species-specific equations developed for
the German national forest inventory, available in the R package "rBDAT" (Vonderach et al.,
2021).
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The random forests algorithm (Breiman, 2001) was used to predict biomass from the point
cloud metrics. The models were trained with 500 trees to grow (ntree) and the optimal
number of variables considered at each split (mtry) was identified for each model using the
function "tuneRF" of the R package "randomForest" (Liaw & Wiener, 2002). Each model was
built from point cloud metrics and corresponding biomass data of 135 randomly selected
subplots and it was tested on the remaining 15 subplots. The models were trained with a)
the point cloud metrics derived from the original data, b) the point cloud metrics derived
from the simulated RTM data, and c) the point cloud metrics derived from the simulated
STM data. For testing, only the original data were used. The same split between training
and testing was used throughout the experiment. The process of model building and
testing was repeated 500 times for each training data type.

The performance of the biomass models was assessed by calculating the RMSE and the
mean error (ME) between predicted and reference biomass values for each test sample.
Data processing, analysis and visualisation were carried out in R 4.0.4 (R Core Team, 2021)
within the RStudio interface (RStudio Team, 2016) using the packages "data.table" (Dowle
& Srinivasan, 2021) and "ggplot2" (Wickham, 2016).

2.3 RESULTS

2.3.1 Cross sections

Cross sections through the simulated laser scanning point clouds and the original ALS
point clouds illustrate that the habit of individual trees and the structural variety was better
represented in the RTM point clouds than in the STM point clouds. The highlighted parts
in Figure 2.3 reveal mismatches between cross sections of RTM and original ALS point
clouds that indicate some challenges in the creation of the virtual stands. These mismatches
include differences in the crown structure (Figure 2.3 d), differences in the canopy closure
(Figure 2.3 e), and differences in the subcanopy layers (Figures 2.3 f, g, h).

2.3.2 Canopy cover

The canopy cover was 80% for plot KA09 and between 94% and 97% for the other plots.
The computed canopy cover of the simulated RTM data was significantly lower. It was
66% for KA09 and ranged from 76% to 89% for the other plots. The canopy cover of the
simulated STM data was in between the values derived from the STM data and the values
derived from the real ALS data (Table 2.4).
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Figure 2.3: Cross sections through the simulated STM (top), the simulated RTM
(centre), and the original (bottom) point clouds (thickness = 4 m). The cross sections
a-c show a good match between original and RTM point clouds. The highlighted parts
in cross sections d-h reveal some problems in the composition of the virtual stands
compared to the real forest data: false tree model species (d), artificial canopy gaps (e),
different tree habit of same species (f), missing undergrowth (g), and differences in
crown base height (h).
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Table 2.4: Canopy cover of the 1-ha plots calculated from canopy height models of the
original ALS data and the simulated RTM and STM data.

original RTM STM

BR01 97% 83% 93%
BR03 97% 86% 95%
BR05 94% 84% 92%
KA09 80% 66% 78%
KA10 95% 76% 91%
KA11 96% 89% 95%

2.3.3 Profiles of the return height distribution

The similarity of the return height distribution between simulated and real laser scanning
data differed for the six plots and depended on whether all or only first returns were
considered. In most cases, the laser scanning simulations of the RTM stands generated
fewer returns than the real airborne laser scanning (Table 2.5). The simulated point clouds
of the STM stands had quite similar numbers of first returns as in the real data, but much
higher numbers of all returns.

A comparison of the relative frequencies of returns per 1 m height bins between simulated
and original data revealed that it depends on the study site, whether the RTM or the STM
data better represented the vertical return distribution of all returns. The relative overlap
of the return height profiles using all returns of the simulated and the original data was
higher for the RTM data than for the STM data for plots BR01, BR03, BR05 and KA11, and
lower for plots KA09 and KA10. When investigating first returns only, the relative overlap
of the RTM height profiles with the original data was higher than with the STM data in
most cases, the only exception was the height profile of plot KA11 with a relative overlap of
71% for the RTM point cloud and a relative overlap of 80% for the STM point cloud (Table
2.5).

Figure 2.4 shows the return height profiles of all plots. For most of the plots, the shape
of the profiles of the simulated and the original data matched well, even if some of them
were slightly shifted. There were large divergences between the return height profiles of all
returns for plots KA09, KA10, and KA11. These divergences were less pronounced for the
first return height profiles of these plots. In most cases, the height distributions of the RTM
and the STM point clouds were quite similar, but there were also significant differences, e.g.
for all returns of plots KA09 and KA10, as well as for the first returns of BR03. The mean
relative overlap of the relative height distribution profiles was 79% for RTM stands (for
both all returns and first returns) and 79% and 75% for STM stands (all returns and first
returns, respectively). When aggregating the return distribution over all plots, the relative
overlap increased to 87% and 90% (all returns and first returns, respectively) for the RTM
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Figure 2.4: Relative frequencies of returns per 1 m height bins for all returns and first
returns of original and simulated point clouds for all plots. The height distribution of
the original point clouds is depicted in grey. The relative overlap between simulated
and original height profiles is given in the text boxes.
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Table 2.5: Comparison of the total number of returns and the relative height distri-
bution of returns (> 2 m) of original and simulated data. mean is the mean value
calculated from the plot specific results. all is the value for the returns summed across
all plots. Percentages are given relative to the number of returns in the original dataset.

Returns Plot Total number of returns (×106) Overlap RMSE
Original RTM STM RTM STM RTM STM

all BR01 1.52 1.19 (78%) 2.28 (189%) 0.91 0.86 0.0024 0.0048
BR03 1.39 1.36 (98%) 2.54 (182%) 0.77 0.72 0.0078 0.0104
BR05 1.32 1.37 (104%) 2.84 (215%) 0.90 0.85 0.0035 0.0054
KA09 1.19 0.86 (72%) 2.23 (188%) 0.60 0.80 0.0176 0.0085
KA10 1.37 1.02 (74%) 3.02 (221%) 0.78 0.81 0.0118 0.0087
KA11 1.54 1.36 (88%) 3.26 (211%) 0.80 0.73 0.0087 0.0152
mean 1.39 1.19 2.79 0.79 0.79 0.0086 0.0088
all 8.33 7.16 (86%) 16.76 (201%) 0.87 0.85 0.0041 0.0048

first BR01 0.78 0.61 (78%) 0.68 (88%) 0.87 0.81 0.0041 0.0061
BR03 0.75 0.64 (86%) 0.69 (93%) 0.70 0.51 0.0105 0.0248
BR05 0.71 0.63 (89%) 0.68 (96%) 0.85 0.83 0.0047 0.0057
KA09 0.58 0.48 (83%) 0.58 (100%) 0.77 0.73 0.0096 0.0115
KA10 0.72 0.58 (81%) 0.71 (99%) 0.86 0.82 0.0071 0.0088
KA11 0.74 0.70 (95%) 0.75 (101%) 0.71 0.80 0.0181 0.0112
mean 0.71 0.61 0.68 0.79 0.75 0.0090 0.0114
all 4.27 3.64 (85%) 4.09 (96%) 0.90 0.83 0.0031 0.0051

stands and to 85% and 83% for the STM stands. The comparison of the RMSE values led to
the same results as the comparison of the relative overlap.

2.3.4 Point cloud metrics

Point cloud metrics were calculated from all returns and from first returns of the original
and simulated data for 20 m× 20 m subplots. Figure 2.5 shows the deviation of metrics
calculated from the simulated point clouds compared to those calculated from the original
point clouds of the same subplots. For most metrics calculated from all returns, the
difference from the original data was similar for both simulated data types. The median
absolute difference of the height percentiles of original and simulated data was not higher
than 1.13 m. In general, the median deviation from the STM data to the original data was
smaller than the median deviation from the RTM data to the original data. For the height
percentiles and the density metrics, the median deviation of the RTM data was always
negative, corresponding to higher values derived from the RTM data than derived from
the original data. The total number of returns (NP) and the point cloud-derived measure of
canopy cover (Pgr2) were the only two metrics for which large differences between RTM
and STM data could be observed. NP was always higher for the STM data than for the
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original data. In contrast, in the RTM point clouds, there were – in general – fewer returns
than in the original point clouds. Pgr2 calculated from the original data was lower than
when calculated from the STM data and higher than when calculated from the RTM data.

The comparison of metrics calculated from first returns showed a different pattern than
when all returns were considered. The lower height percentiles (H10–H50) and the interme-
diate density metrics (D3–D7) were smaller when calculated from the RTM data than from
the original data. In contrast, most metrics of the STM data showed slightly higher values
than the same metrics of the original data, leading to negative differences. The median
difference in the number of first returns was close to zero for the STM data, whereas there
were fewer first returns in the RTM data than in the original data.

2.3.5 Biomass models

The six study sites showed high heterogeneity in terms of tree species composition, number
of trees, and age structure, and consequently also in biomass values (see Table 2.1). The
total aboveground biomass of all trees was lowest for plot KA10 (161.9 t/ha) and highest
for plot BR03 (299.3 t/ha). The mean biomass values per individual tree ranged from
218.6 kg to 860.5 kg (plot KA11 and plot BR05, respectively). The aggregated biomass of the
20 m× 20 m subplots ranged from 37.6 t/ha (in plot BR05) to 483.9 t/ha (also in plot BR05),
the mean biomass was 217.1 t/ha and the standard deviation was 101.3 t/ha. Biomass
models were trained with metrics derived from the original point clouds as well as with
metrics derived from the simulated RTM and STM point clouds. The models were tested
by predicting biomass from point cloud metrics derived from the original point clouds.
Figure 2.6 shows the reference biomass plotted against the mean predicted biomass of each
subplot for each type of training data. All models overestimated the biomass of subplots
with very low biomass and underestimated the biomass of subplots with high biomass. The
RMSE and the mean error between reference and predicted biomass for each test dataset
are illustrated in Figure 2.7. They reveal that the type of training data had only a small
effect on the model accuracy. The median RMSE of the predictions from models trained
with all return metrics of the original data was 67.1 t/ha. It was slightly higher for the RTM
models at 72.4 t/ha and highest for the STM models at 76.2 t/ha. The differences in model
accuracy were even smaller if only first returns were used in the metrics calculation: the
median RMSE of the models trained with original data was 66.5 t/ha, it was 70.6 t/ha for
the RTM models, and 71.7 t/ha for the STM models. On average, the prediction accuracy
of models trained with original data was the highest, while it was lowest for STM models.
However, the lowest RMSE of all predictions based on all return metrics was achieved by a
model trained with STM data. As an indicator of bias, the mean error (ME) of reference
and predicted biomass was calculated. The median ME of the models trained with the
original data was close to zero (i.e. no evident bias). In contrast, the RTM models tended
to overestimate biomass (median ME -9.1 t/ha for all returns, -18.9 t/ha for first returns),
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Figure 2.5: Difference of metrics calculated from the original point clouds and the
same metrics of the same subplots calculated from the simulated point clouds for
all returns (left) and first returns (right). For illustrative purposes, the metrics were
grouped by value range.

while the STM models underestimated the biomass (median ME 29.5 t/ha for all returns,
17.2 t/ha for first returns).
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2.4 DISCUSSION

In this study, we present a new approach for generating synthetic laser scanning datasets
that combines forest inventory data, detailed individual tree models and the laser scanning
simulation framework HELIOS++. The approach was evaluated with regard to its ability
to generate realistic laser scanning point clouds and its usability for calibrating biomass
models. Furthermore, the added value of the detailed tree models compared to simple
geometric objects was investigated.

2.4.1 Laser scanning simulations

The application of HELIOS++ allowed us to simulate exactly the same flight trajectories and
ALS acquisition settings (scanning system, scan angle, scan frequency, etc.) used to acquire
the real ALS dataset to which our simulations were compared. At the same time, HELIOS++
can be used to simulate alternative acquisition settings and hence allows to specifically
assess the influence of acquisition settings on point cloud characteristics and subsequent
modelling exercises using sensitivity analyses. Furthermore, the HELIOS++ approach
provides a compromise between computational demand and an accurate simulation of the
geometric and physical scanning process. For example, laser beams are represented by
multiple subrays in HELIOS++ to simulate the illuminated area of the conical real laser
beams (Winiwarter et al., 2022). In this way, the simulation of a single beam can result in
multiple returns, comparable to a full-waveform laser scanning system. This is particularly
relevant in forest canopies which form semi-permeable volumes where multiple returns are
very common (Fassnacht et al., 2014). In theory, our workflow could also be coupled with
other approaches for virtual laser scanning, e.g. the photon tracing approach implemented
in the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al.,
2015).

Apart from laser scanner type, flight trajectories and other acquisition settings that were
adopted from the real ALS acquisitions, HELIOS++ requires the definition of the voxel
size for modelling the trees and the window size in the local maxima detection. Both
parameters particularly influence the number of returns and the height distribution of
returns: the smaller the voxel size and the window size, the more likely are multiple returns.
A comparison of real ALS data and simulated data with different combinations of voxel
size values and window size values revealed that the optimal values differ depending on
what is analysed: the number of returns or the height distribution of returns, all returns or
first returns only. The optimal parameters of the voxel size and the window size further
depend on the point density of the virtual scene, the pulse density of the laser scanning
simulation, and the footprint size of the simulated laser beam.

Airborne laser scanning data often contain not only information on the location of the
returns but also on the intensity of the backscattered light (Wehr & Lohr, 1999). The return
intensity can contribute valuable information for classifying tree species (Ørka et al., 2009),
discriminating vegetation strata (Morsdorf et al., 2010), or estimating aboveground biomass
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of forests (García et al., 2010). The simulation of intensities requires information on the
reflectivity of the concerned surfaces and a much more complex ray-scene interaction
model than what is required for simulating the location of returns. As reliable information
on reflectivity was not available for our tree model dataset, we opted to exclude any
intensity-based aspects from our analysis, instead focusing on geometric features of the
point clouds. Simulating realistic return intensities of forest scenes should be part of future
research.

2.4.2 Synthetic forest stands

Synthetic forest stands should ideally reflect the structural characteristics of real forest
stands, which are determined not only by the average traits of the forest stands, but also
by the variety of individual habits and crown structure of each tree. Therefore, we used
individual tree point clouds extracted from real ULS data as tree models in our approach.
In this way, the 3D representations of the forest stand scenes adequately represent the inter-
and intraspecific variability in tree growth forms.

The visual comparison of cross sections through simulated and real point clouds showed
a high similarity between both data types in some cases. However, there are also clear
differences visible, which indicate problems in the composition of virtual stands (see
highlighted parts in Figure 2.3). The silver fir stand in plot BR03 (Figure 2.3 d) is not well
represented in the virtual RTM stand, because there were no silver fir tree models available.
The selected Scots pine tree models have a different habit than the original silver fir trees,
which is clearly visible in the cross section. In the highlighted parts in Figure 2.3 f and
Figure 2.3 h, tree models of the same species as in the original data were selected. Still,
the habit of the individual trees in the virtual and the real stands differ significantly. The
tree growth form does not only depend on the species, but also on stand structure, the
social class of a tree (e.g. dominant or suppressed tree (Assman, 1961)) and other growth
conditions. In this study, tree models were selected based on species, tree height and crown
diameter. If crown diameter measurements are not available for a forest stand, the synthetic
stand can either be created based solely on tree position, tree species, and height, or crown
diameter values can be estimated from stem diameters (W. A. Bechtold, 2003). Additional
filtering criteria such as d1.3, crown base height and social class could improve the tree
model selection, if these data are available for both tree models and the forest stand or
if they could be deduced from available stand data. Further research might explore the
matching between tree models and real trees depending on the applied filtering criteria
and available data.

Two main characteristics of natural forests are currently not taken into account in the
creation of virtual stands: canopy closure and undergrowth. In natural forests in central
Europe, trees usually grow in a way that enables them to maximise the amount of absorbed
incoming solar radiation (Getzin & Wiegand, 2007), which normally leads to a closed
canopy. By randomly rotating the tree models at their designated position, without taking
into account the growth form of neighbouring trees, artificial gaps are introduced in the
canopy of the virtual stands (see Figure 2.3 e). This issue is also reflected in the lower
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canopy cover of the synthetic stands compared to the canopy cover values derived from the
real data. It could be solved by taking into account the crown shape of neighbouring trees
when placing a new tree model. In addition to canopy closure, undergrowth elements are
not yet implemented in the virtual stands (Figure 2.3 g). The incorporation of undergrowth
requires both information on where undergrowth occurs and 3D models or point clouds
representing this vegetation. The latter can be easily extracted from laser scanning point
clouds of forest stands, but as undergrowth is typically not recorded in forest inventories
and it is not included in the synthetic stands generated by forest growth simulators, there
is no information on where undergrowth elements should be placed. Since undergrowth
characteristics, such as height, cover and biomass, have been shown to be correlated to
overstory light transmission (Bartemucci et al., 2006; Vales, 1985; Zavitkovski, 1976), possi-
ble undergrowth occurrences could be predicted from the point cloud of the synthetic stand.
However, this would require more empirical studies to derive models or rules enabling
a sound allocation of undergrowth elements in the forest scene. Here, we addressed the
problem of lack of undergrowth in the synthetic data in a pragmatic way. To make the
simulated point clouds of the synthetic stands (without undergrowth) comparable to the
original ALS point clouds of the real forest stands (with undergrowth), returns from the
undergrowth in the original data were excluded by dropping points below 2 m normalised
height. Those were assumed to be representing ground vegetation (McRoberts et al., 2013;
Næsset, 2002). However, it is clear that in most forest stands, especially those with high
structural diversity, a fixed height threshold will not be sufficient to properly distinguish
between undergrowth returns and returns from trees.

Apart from tree models and undergrowth, topography is a relevant element of forest scenes
which can influence point cloud characteristics. In this study, we did not examine how
topography affects the simulation process. However, in theory, height information in the
form of digital terrain models can be included in the synthetic stands and hence the laser
scanning simulation (Winiwarter et al., 2022). The tree models would then be inserted on a
3D surface representing the topography instead of on a flat surface.

The neighbourhood of a forest stand might also affect the laser scanning point cloud of that
stand. Shadowing effects of neighbouring forest stands will reduce the number of incoming
laser beams and decrease the number of returns in the subcanopy layers. For simplicity,
virtual forest stands in this study were simulated as isolated, without neighbouring stands.
Dummy scene parts composed of transmissive voxels could be inserted around the virtual
stands to emulate the effects of neighbouring forest stands.

2.4.3 Tree models

In addition to the real tree models extracted from ULS data, simplified tree models were
used to create the virtual scenes in order to investigate whether the level of detail and
the accompanying added computational complexity provided by the real tree models is
required to generate realistic synthetic laser scanning data. As expected, the added benefit
of the individual tree point clouds as detailed tree models compared to the simplified
spheroid tree models became clear in the visual comparison. In contrast to the simplified
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tree models, the real tree models are all different in their crown structure and even single
branches are visible. While this may be of limited value for analyses following area-based
approaches, it is intuitively clear that such datasets offer advantages for example in the
context of creating benchmark datasets for individual tree detection algorithms or other
applications where fine-scale structures matter (e.g. individual tree delineation, tree species
classification, predicting light availability on the ground, mapping habitat structures, etc.).

The quantitative analysis showed small differences between the simulated RTM and STM
data. Depending on the purpose of a study, the simplified tree models could be an
easy-to-create alternative to the real tree models. They could further be improved with
comparatively low effort, e.g. by adjusting the point density of the tree crown, or by
changing the spheroid crown shape to other geometric shapes, such as cones, depending
on the tree species.

The real tree models were extracted manually from high density ULS point clouds. Tree
models extracted from terrestrial laser scanning (TLS) or high density ALS point clouds
could also be used, if the tree structure is well represented in the data. Because of the
sensitivity of the optimal HELIOS++ parameters to the point density of the input data, we
deduce that only tree models of similar point density should be used in a virtual scene. In
addition, the point density of the tree models should not be lower than the resulting point
density of the laser scanning simulations.

It is important to mention that the quality of the synthetic ALS data produced with the
presented workflow depends on the availability of a sufficient number of high quality
tree models for all relevant species and a good coverage of within-species variability. The
manual extraction of tree models is a rather time-demanding yet feasible approach, as the
tree models – once extracted – can serve for many simulations and scenarios. With the
further development of tree segmentation algorithms (e.g. Ayrey et al., 2017; Burt et al.,
2019; Krisanski et al., 2021; Luo et al., 2022; Vega et al., 2014; Windrim & Bryson, 2020), it
may also be possible to extract tree models from less complex forest stands automatically.
A limitation of this approach is that high resolution laser scanning datasets are not yet
available for many parts of the world. Furthermore, the extraction of individual trees
directly from the data may become more challenging when focusing on forests with very
complex structures and a high diversity in tree species, such as in the tropics. In such
situations, it might be more suitable to summarise tree models of several species into
physiognomic types. Making tree point cloud datasets publicly available (e.g. Seidel et al.,
2021; Weiser et al., 2022b, https ://3dforecotech.eu), is a promising way to solve the
problem of limited tree model availability in the future.

2.4.4 Quantitative comparison of the point clouds and biomass models

The simulation process was evaluated with regard to its ability to generate realistic ALS
data of forests. This could only be done by comparing the simulated point clouds to real
ALS point clouds, even if the objective of the presented approach is not to replicate existing
point clouds but to generate simulated point clouds of (synthetic) forest stands for which
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no laser scanning data are available. The comparison was thus not conducted point-wise
but on a plot and subplot level. We thereby omit small scale differences between trees and
selected tree models, because it is not expected (and also not envisaged) that the inserted
tree point clouds perfectly match the real trees of the original ALS data. In addition, a
plot-wise comparison can reduce the influence of spatial mismatch between the datasets
that occurs due to errors in the field measurement of tree positions. A drawback of the plot-
wise comparison of the point distribution is that it disregards individual tree structures,
which can lead to compensation effects of false present and false missing returns.

The canopy cover of the synthetic forest stands was always lower than the canopy cover
of the real forest plots. As already discussed, this can be explained by the missing imple-
mentation of canopy closure in the creation of synthetic stands. Unlike the simplified tree
models, the real tree models may have unevenly shaped crowns or lean in one direction,
the canopy cover of the RTM stands is therefore lower than the canopy cover of the STM
stands. Consequently, as long as canopy closure is not considered in the creation of syn-
thetic stands, the simplified tree models are more suitable for simulating realistic values for
canopy cover. In the real forest sites, neighbouring trees with their stem positions outside
of the 1-ha plots also contribute to the canopy cover. The fact that these edge effects are
missing in the synthetic data further contributes to the lower canopy cover of the synthetic
stands.
The height distribution profiles (Figure 2.4) of the returns demonstrate that it is possible
to simulate ALS point clouds with a realistic return height distribution. Furthermore,
they also reveal that the accuracy differs between study sites. Differences in the return
height profiles of the RTM and STM data show that the tree habit affects the return height
distribution. In some plots (e.g. BR01), the use of species specific real tree models resulted
in a better matching return height distribution than the simplified ones, whereas in others
(e.g. KA09), the simplified tree models led to better results. Where the simplified tree
models performed better, this was probably because the trees there had a different growth
form, e.g. a different crown base height, than the available real tree models of these species,
a fact that underlines the importance of accounting for within-species variability. A larger
number and diversity of available tree models and the addition of further filter criteria
in the tree model selection procedure could solve these problems. Some of the visible
differences in the shape of the return height profiles of the simulated and the original data
can again be explained by the missing implementation of undergrowth and canopy closure
in the synthetic stands. For example, the high canopy cover at plot KA11 led to a small
number of first returns in the subcanopy layers. Because the canopy cover was lower in
the simulated RTM stand than in reality (see Table 2.4), there were fewer first returns from
the canopy layer and more first returns from the layers below (see Figure 2.4 l). High
deviations in the height distribution of all returns, visible in the profiles of the RTM stands
of plot KA09 and plot KA10 (see Figure 2.4 g & Figure 2.4 i), indicate that the subcanopy
layers were not well represented in the simulated data.

The comparison of point cloud metrics derived from the original and the simulated data
supports the previous findings that the height distribution of the returns was not equally
well represented in the simulated point clouds of all (sub-) plots. Still, the median deviation
of the metrics was small. Accordingly, the differences in the point cloud metrics of the
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original and simulated data had only minor effects on the RMSE of the biomass predictions.
Both the RTM and the STM data were shown to be suitable for calibrating biomass models.
The significant differences in the mean error of reference and predicted biomass of the
RTM and STM models indicate that the metrics that clearly differed between the RTM and
STM datasets (e.g. Pgr2 and NP) had a strong influence on the predictions. Adjusting
the parameters of the HELIOS++ simulations so that the total number of returns and the
percentage of returns above 2 m of the simulated data better match the original data could
potentially increase the model accuracy.

2.4.5 Outlook

The idea of creating synthetic laser scanning datasets is to generate extensive amounts
of data which can be used for method development and sensitivity analyses. The pre-
sented approach requires stand information on an individual tree-level, which is rarely
available from common forest inventories. Roberts et al. (2020) presented an approach to
reconstruct 400 m2 forest plots based on forest inventory data by estimating tree positions
and properties through Monte Carlo simulations. An alternative method for generating
such data is the use of forest growth simulators. They enable to simulate realistic forest
stand data for different species compositions, management practices and environmental
conditions. Examples for such growth simulators are FORMIND (Fischer et al., 2016)
and SILVA (Pretzsch et al., 2002). FORMIND was developed for simulating dynamics in
tropical rain forests, but there is also an adapted version for European temperate zones
including eight tree species (Bohn et al., 2014). SILVA was developed based on long-term
forest growth experiments in Germany and Switzerland. It is parameterised for Norway
spruce, silver fir, Scots pine, European beech, and sessile oak (Pretzsch et al., 2002). Even if
these forest growth simulators have a limited number of species and do not incorporate all
processes occurring in natural forests, they allow to easily generate realistic data of forest
stands with low complexity. A big advantage of these synthetic data is that tree positions
and properties are known, thus effects of measurement errors do not need to be considered
in further analyses.

Coupling forest stand information (from real forest inventories or forest growth simulators)
with real tree models and the laser scanning simulation approach HELIOS++ enables
generating laser scanning point clouds for varying laser scanning acquisition settings and
forest stand compositions with full information on every individual tree. This approach
can therefore be used for sensitivity analyses, e.g. to investigate how laser scanning pulse
density, geolocation errors, border effects, or methods for field reference data collection
affect the laser scanning-based estimations of forest attributes. Coupling the laser scanning
simulation approach with a forest growth simulator allows for analyses of the effects of
temporal discrepancy between field data collection and laser scanning acquisition, by
simulating the forest stand composition and corresponding laser scanning data of two
consecutive time steps. Methods for the identification and removal of statistical outliers
could be developed by artificially introducing outliers to the synthetic data. In addition, the
created data are suitable for the development and testing of methods for the detection and
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segmentation of individual trees (e.g. Hamraz et al., 2017; Maltamo et al., 2004; Morsdorf
et al., 2004) and tree species classification (e.g. Brandtberg, 2007).

As it has been shown in this study, simulated laser scanning data can be used for the
calibration of regression models which can then be applied on real data. The synthetic data
also have high potential as training data for deep learning applications, e.g. convolutional
neural networks (CNNs), which are increasingly used to segment individual trees and to
derive forest characteristics from airborne and UAV-borne laser scanning data (e.g. Ayrey
& Hayes, 2018; Balazs et al., 2022; Briechle et al., 2021; Luo et al., 2022; Windrim & Bryson,
2020). The high demand for labeled training data, which is rarely available for ALS (Kölle
et al., 2021), can be satisfied with virtual laser scanning datasets.

2.5 CONCLUSIONS

This study shows that combining forest stand information, real tree point clouds and
the laser scanning simulation framework HELIOS++ can generate synthetic ALS point
clouds of complex forest scenes that are sufficiently realistic for many applications. The
laser scanning simulation approach could reproduce the relative height distribution of
first and multiple returns, but the workflow did not work equally well for all forest stand
compositions, mainly because undergrowth, canopy closure and tree interaction are not
yet implemented in the creation of virtual stands. Training biomass models with point
cloud metrics derived from simulated data instead of real ALS data only slightly decreased
the model accuracy. The synthetic data therefore seem suitable for use in commonly-used
area-based approaches.

Our analyses could not confirm the hypothesis that real tree point clouds add significant
value over simplified penetrable spheroid tree models for area-based approaches, when
using opaque voxels to represent the trees. Both tree model types can be used for creating
synthetic point cloud data suitable to train empirical models. Which type of tree model
is more suitable differs depending on the use case and on the forest stand composition.
Canopy cover was better represented by the simplified tree model stands, whereas using
the real tree models led to slightly better biomass models, in terms of their RMSE and
ME. The real tree model approach would likely benefit from a larger number of available
tree point clouds and additional criteria for the selection of tree models, enhancing the
fit between real trees and tree models with regard to the within-species variability. For
applications for which fine scale structure and diversity of tree growth forms are less
important, the simplified tree models are an adequate and easy to generate alternative to
the real tree models.

Future studies should explore further applications of the synthetic data, e.g. sensitivity
analyses, or method development for individual tree detection and segmentation.
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2.7 APPENDIX

All returns
Relative return height frequency

First returns
Relative return height frequency

2 cm

3 cm

4 cm

5 cm

Voxel size

1.0 ns

1.1 ns

1.3 ns

1.5 ns

1.2 ns

1.4 ns

Window size

Figure 2.8: Root mean square error between simulated and observed return frequen-
cies per 1 m height bins for different combinations of voxel size and window size
applied in the HELIOS++ simulations. The red box highlights the selected parameter
combination.
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Figure 2.8 (cont.): Root mean square error between simulated and observed return
frequencies per 1 m height bins for different combinations of voxel size and window
size applied in the HELIOS++ simulations. The red box highlights the selected
parameter combination.
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ABSTRACT

Airborne laser scanning (ALS) data are increasingly used to predict forest biomass over
large areas. Biomass information cannot be derived directly from ALS data, therefore
field measurements of forest plots are required to build regression models. We tested
whether simulated laser scanning data of virtual forest plots could be used to train biomass
models and thereby reduce the amount of field measurements required. We compared
the performance of models that were trained with a) simulated data only, b) a combina-
tion of simulated and real data, c) real data collected from different study sites, and d)
real data collected from the same study site the model was applied to. We additionally
investigated whether using a subset of the simulated data instead of using all simulated
data improved model performance. The best matching subset of the simulated data was
sampled by selecting the simulated forest plot with the highest correlation of the return
height distribution profile for each real forest plot. For comparison, a randomly selected
subset was evaluated. Models were tested on four forest sites located in Poland, the Czech
Republic, and Canada. Model performance was assessed by root mean squared error
(RMSE), squared Pearson correlation coefficient (r2), and mean error (ME) of observed
and predicted biomass. We found that models trained solely with simulated data did
not achieve the accuracy of models trained with real data (RMSE increase of 52–122%, r2

decrease of 4–18%). However, model performance improved when only a subset of the
simulated data was used (RMSE increase of 21–118%, r2 decrease of 5–14% compared to the
real data model), albeit differences in model performance when using the best matching
subset compared to using a randomly selected subset were small. Using simulated data
for model training always resulted in a strong underprediction of biomass. Extending
sparse real training datasets with simulated data decreased RMSE and increased r2, as
long as no more than 12–346 real training samples were available, depending on the study
site. For three of the four study sites, models trained with real data collected from other
sites outperformed models trained with simulated data and RMSE and r2 were similar to
models trained with data from the respective sites. Our results indicate that simulated data
cannot yet replace real data but they can be helpful in some sites to extend training datasets
when only a limited amount of real data is available.

3.1 INTRODUCTION

The accurate estimation of forest biomass is essential for quantifying carbon stocks and
fluxes at local to global scales (Dixon et al., 1994). One data source for predicting above-
ground biomass across larger areas is airborne laser scanning (ALS) (McRoberts et al., 2015).
ALS is increasingly used for forest inventories (Achim et al., 2022), including biomass
inventories, because it allows the collection of forest structure information in large areas
(Moudrý et al., 2023). ALS cannot measure biomass directly, but metrics derived from
ALS point clouds can be used as predictors in empirical models with biomass as response.
Accordingly, additional biomass reference data are required to train often applied super-
vised machine-learning models (Hawbaker et al., 2009). In the area-based approach (ABA),
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plot-based field measurements of biomass are linked to metrics derived from ALS point
clouds extracted from the same plots to build a model that can then be used to predict
biomass of the entire area covered by ALS data, resulting in a wall-to-wall map of biomass
predictions (White et al., 2013a). The number, size, shape, and geolocation accuracy of
the field plots affect the accuracy of the biomass predictions. According to earlier studies,
the accuracy increases with a greater number of field plots, larger plot sizes, plot shapes
with a smaller perimeter-to-area ratio, and smaller geolocation errors (Frazer et al., 2011;
Gobakken & Næsset, 2008; Lisańczuk et al., 2020; Packalen et al., 2023). However, field
measurements are time consuming and costly, especially when field plots are remote or
difficult to access (Hawbaker et al., 2009; Rana et al., 2016), and dense canopy and complex
topography can reduce Global Navigation Satellite System (GNSS) positioning accuracy
(Dalponte et al., 2011; Næsset & Gjevestad, 2008). For cost reasons it is hence of interest
to keep the number of field plots small (Dalponte et al., 2011; Gobakken & Næsset, 2009;
Stereńczak et al., 2018). At the same time, it is important to ensure that the field plots
represent the full range of biomass values and corresponding ALS metrics of the study area
to minimise extrapolation (Dalponte et al., 2011; Fekety et al., 2015; Maltamo et al., 2011).

There are several approaches to optimising the number of field plots and the associated
workload of field measurements. One option is the re-use of field and ALS data that have
been collected at an earlier (or later) time or in a different location. If both field and ALS
data from one time are available for the study area, these can be used to build a model
that can be applied to the ALS data acquired at another time, provided the distribution
of the extracted metrics is the same. Alternatively, if field and ALS data are available
from different times, growth models can be used to project the field data to the year of the
ALS data (de Lera Garrido et al., 2020; Domingo et al., 2019). Temporal transferability of
ALS-based biomass models has been demonstrated in several studies (de Lera Garrido
et al., 2020; Domingo et al., 2019; Fekety et al., 2015; Zhao et al., 2018). However, the
temporally transferred models often performed worse than models trained with field and
ALS data acquired at the same time (de Lera Garrido et al., 2020; Domingo et al., 2019).

Spatial model transfer requires similar forest conditions in the region where the model was
trained and in the region where it is to be applied, as the relationship between ALS-derived
metrics and biomass may differ between regions (Næsset & Gobakken, 2008; Tompalski
et al., 2019). Studies evaluating the performance of models trained with data collected
over a larger area (e.g. national models) to predict local forest parameters have found that
additional model calibration with a small set of local data improves model performance
for local predictions (Breidenbach et al., 2008; Kotivuori et al., 2016; van Ewijk et al., 2020)
and that even models trained with only 50 local training sample plots can perform better
than models trained with many more training data collected from other areas (Suvanto &
Maltamo, 2010).

A major drawback of the spatial and the temporal model transfers is that, although they
reduce the number of new field observations, they still require data of a forest with a
similar structure, or of the same area at different times. Such data may not always be
available. Another promising approach to minimise field work is to reduce the number
of field plots by using a stratified sampling method to select plots (Goodbody et al.,
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2023). When comparing stratified sampling with random sampling, several studies have
shown that stratified sampling based on ALS-derived metrics gives more stable results and
higher model accuracy than random sampling of field plot locations (Dalponte et al., 2011;
Hawbaker et al., 2009; Maltamo et al., 2011). Stratified sampling can be used to find the
minimum number of field plots that still cover the full range of forest structural variability
that can be inferred from ALS data. For example, Dalponte et al. (2011) obtained almost
the same accuracy for the prediction of stem volume when using 53 field plots that had
been selected based on the mean height of the ALS returns, compared to a model using all
available 534 field plots.

The easiest way around the need for field measurements would be to generate training
data simply by computer simulation. For simulating ALS data of forests, a laser scanning
simulation approach can be applied to a 3D model of a virtual forest. Existing methods
differ in terms of the complexity of both the forest representation and the laser scanning
simulation approach. Trees can either be represented by simple geometric objects, such
as cones, spheres, and cylinders (e.g. Frazer et al., 2011; Knapp et al., 2018; Nelson, 1997;
Palace et al., 2015), by more detailed, realistically rendered tree models as created by
the OnyxTREE software (https://www.onyxtree.com, e.g. Disney et al., 2010), or by
tree models extracted from high-resolution real laser scanning data (e.g. Fassnacht et al.,
2018; Schäfer et al., 2023a). Laser scanning can be simulated using simplified statistical
models (e.g. Knapp et al., 2018; Nelson, 1997; Palace et al., 2015; Spriggs et al., 2015; Wang
et al., 2013), or using computationally more intensive approaches (e.g. Disney et al., 2010;
Holmgren et al., 2003; Roberts et al., 2020; Schäfer et al., 2023a; Zhu et al., 2020) which
allow the simulation of the scanning process itself and thus the effects of different laser
scanning acquisition settings. The latter include for example the Discrete Anisotropic
Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 2016; Yin et al., 2016) and the
Heidelberg LiDAR Operations Simulator (HELIOS++, Winiwarter et al., 2022).

Computer simulations are a time- and cost-efficient way to generate large amounts of laser
scanning data and associated field data. They allow control of both the laser scanning
acquisition settings and the forest composition (Frazer et al., 2011). In addition, the location
and properties of each tree in the virtual forest are known. These data offer therefore plenty
of opportunities for sensitivity analyses as well as method development that are much
more difficult to perform with real data (Disney et al., 2010). Accordingly, simulated ALS
data of forests have been used for a variety of applications, e.g. to assess the influence of
laser scanning acquisition settings on ALS-derived structural parameters, such as canopy
height and canopy closure (Disney et al., 2010; Holmgren et al., 2003; Roberts et al., 2020),
or to analyse the influence of field plot size and co-registration error on ALS-based biomass
predictions (Fassnacht et al., 2018; Frazer et al., 2011). Simulated ALS data have also been
used to validate methods for tree delineation (Wang et al., 2013) and effective leaf area
index estimation (Zhu et al., 2020), and to find the best ALS-derived metrics for biomass
predictions (Knapp et al., 2018). Some studies also explored the potential of simulated data
to derive predictive equations or look-up tables for relating forest structural parameters to
ALS data (Nelson et al., 1997; Palace et al., 2015; Spriggs et al., 2015).
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Schäfer et al. (2023a) demonstrated that HELIOS++ laser scanning simulations of virtual
stands composed of real laser scanning tree point clouds can produce data that are suffi-
ciently realistic for training biomass models, even if the prediction accuracy was lower
than for models trained with real data. They used real forest inventory data to gener-
ate the virtual stands, which strongly limits the number of the synthetic forest plots. In
this study, we overcome this limitation by creating the virtual stands based on simulated
forest compositions. Our main aim was to explore the potential of such synthetic ALS
and forest inventory datasets to reduce the amount of field reference data required for
the laser scanning-based prediction of forest aboveground biomass. We conducted three
experiments. In the first two experiments, we trained biomass models with a) simulated
data only, and b) mixed sets of simulated and real data. In the third experiment, we tested
a spatial model transfer and trained biomass models with real ex situ data, i.e. real ALS
and field data collected from other sites. Model performance was always evaluated on real
data, and compared with models trained with real in situ data that were excluded from the
evaluation. Our objective was to answer the following research questions using datasets
obtained from study sites located in Poland, the Czech Republic, and Canada:

1. How accurately can random forest models that have been trained with simulated
forest inventory and virtual laser scanning data predict biomass of real forest sites
compared to models that have been trained with real data collected at the same site
(Experiment 1) or at different sites (Experiment 3)?

2. When there are little real training data available, can model accuracy be improved by
extending real training datasets with synthetic data? If so, up to what number of real
training samples does a model trained with additional synthetic data outperform a
model trained with real data only (Experiment 2)?

3.2 MATERIALS AND METHODS

3.2.1 Study sites

We tested our approach using a total of four real datasets obtained from the Milicz forest
district in Poland, the Silesian Beskids (Těšínské Beskydy) forest in the Czech Republic, the
DendroNET sites in the Czech Republic, and the Petawawa Research Forest in Canada.

The Milicz forest district is located in the south-west of Poland. The dominant tree species
is Scots pine (Pinus sylvestris L.), accompanied by European beech (Fagus sylvatica L.) and
oaks (Quercus spp. L.). Approximately 70% of the forest stands are pure pine stands
(Stereńczak et al., 2018). Field reference data were collected in summer 2015 for 500 circular
plots (Stereńczak et al., 2018). ALS data were acquired at the same time under leaf-on
conditions.

The Silesian Beskids are a mountain range in southern Poland and eastern Czech Republic.
Data were collected in the Czech part. The forest there is dominated by Norway spruce
(Picea abies (L.) H. Karst) and European beech. ALS data and field data were collected in
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July 2019 for 130 plots. Study site and data have been described in more detail by Brovkina
et al. (2022).

The DendroNET (http://dendronet.cz) is a network of small forest sites located across the
Czech Republic. 47 plots were used in this study, 22 of them are located in spruce forest, 10
in pine forest, 12 in beech forest, and 3 in mixed forest. Field data were collected for each
tree within a 30 m× 30 m square. ALS data were acquired in October 2021.

The Petawawa Research Forest is located in the Great Lakes–St. Lawrence Forest region
in southern Ontario, Canada. The most frequent tree species are white pine (Pinus strobus
L.), trembling aspen (Populus tremuloides Michx.), red oak (Quercus rubra L.), red pine
(Pinus resinosa Ait.), white birch (Betula papyrifera Marsh), maple (Acer spp.), and white
spruce (Picea glauca (Moench) Voss) (Wetzel et al., 2011). Several remotely sensed and
ancillary datasets are available for this remote sensing supersite (https://opendata.nfis.
org/mapserver/PRF.html). A summary of the open-access datasets can be found in White
et al. (2019). Here, we used the ALS data of 2012. Field measurements were conducted in
2014 in 223 circular plots (White et al., 2019). The field data collection is described in the
Field Procedures Manual which is provided with the data. Table 3.1 gives an overview of
the laser scanning acquisition settings and resulting mean pulse densities and mean planar
point densities of all study sites.

3.2.2 Simulated data

Simulated data were generated by applying the HELIOS++ laser scanning simulator to
simulated forest stands. For simulating forest compositions, we used Forest Factory 2.0, a
forest generator based on the forest gap model FORMIND (Bohn & Huth, 2017; Henniger et
al., 2023). Forest Factory generates virtual forest stands with different species composition
and structure, without taking into account the forest development over time. This reduces
the computational time compared to forest growth simulators such as FORMIND (Fischer
et al., 2016) or SILVA (Pretzsch et al., 2002). Forest Factory is initialised with a region-specific
parameterisation, i.e. species pool and productivity. Additionally, an initial minimum
and maximum tree height and an initial maximum stand density is set. Each forest stand
is created tree by tree. First, a stand-specific height range and species pool is randomly
selected from the initial height range and species pool. Then, for each tree that is to be
placed in the forest stand, tree species and height are randomly sampled from the stand-
specific species pool and height range. Trees are added until no tree with a positive annual
productivity (photosynthetic production is higher than respiration) can be placed, or until
there is no canopy space for the tree that is to be placed. Stands are limited to a size of
20 m× 20 m (Henniger et al., 2023).

In our study, we used Forest Factory to simulate 2 500 plots of 400 m2 each with different
compositions of pine, spruce, beech, and oaks. Forest Factory has also been calibrated for
more tree species and plant functional types (Bohn & Huth, 2017; Bruening et al., 2021;
Henniger et al., 2023), but we excluded these from forest simulations because there were
only few or no tree point clouds of these species available (see next paragraph). The
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maximum tree height of each species was set to be 5 m higher than the maximum height of
the available tree point clouds of this species.

Virtual 3D representations of the Forest Factory stands were created by making use of
individual tree point clouds that had been extracted from laser scanning data acquired
by an uncrewed aerial vehicle (UAV) under leaf-on conditions in temperate forests in
southwestern Germany. These individual tree point clouds have been published by Weiser
et al. (2022b), they can be downloaded from https://pytreedb.geog.uni-heidelberg.de/. A
description of the tree point cloud dataset can be found in Weiser et al. (2022a). Here, we
only used tree point clouds having a high to medium segmentation quality (q1–q3). The
segmentation quality score ranges from high (q1) to low (q6). It is a subjective measure of
the probability of segmentation and extraction errors that was assigned by the person who
manually extracted the tree point cloud. After applying the filtering criteria, there were 102
tree point clouds for pine, 191 tree point clouds for spruce, 345 tree point clouds for beech,
and 154 tree point clouds for oaks available.

For each tree in the Forest Factory stands, a point cloud of a tree was selected randomly
from all tree point clouds of that species with a height ± 4 m the height specified by Forest
Factory. If there was no point cloud of a tree of matching height available, the point cloud
of the tree with the smallest height difference was selected. This filtering procedure is
similar to the one applied in Schäfer et al. (2023a) except that we omit the crown diameter
filter here. The tree point cloud was scaled along the Z-axis so that the height of the point
cloud matched the height of the Forest Factory tree. It was randomly rotated around the
Z-axis and placed at the location of the tree in the Forest Factory stand. For simulating
laser scanning, the 20 m× 20 m Forest Factory stands were arranged to larger scenes of
100 m× 100 m (1 ha). To prevent border effects of tree crowns reaching into neighbouring
stands, the composite of the tree point clouds of a stand was clipped to the stand boundaries.
The resulting forest point clouds were converted into opaque voxels with 3 cm side length
to create 3D voxel scenes as input for the simulations. A horizontal plane was added as
ground layer.

HELIOS++ has been validated with DART (Winiwarter et al., 2022) and was already
successfully applied to simulate ALS data of synthetic forest stands composed of real ULS
tree point clouds (Schäfer et al., 2023a), which is why we used HELIOS++ for the laser
scanning simulations. HELIOS++ allows simulating full waveform and discrete return laser
scanning. Beam divergence is modelled by subrays of different base power. The returned
waveforms of all subrays are binned and summed up to generate the full waveform. On
this waveform, a local maximum filter is employed to detect return points. The simulations
are configured by the scene to be scanned, the scanner parameters and the position and
movement of the platform on which the virtual scanner is mounted. Additional parameters
such as the temporal window size for echo detection, and the number of generated subrays
can be defined (Winiwarter et al., 2022). We conducted laser scanning simulations with the
same acquisition settings as in the real acquisitions (Table 3.1), resulting in four different
simulated laser scanning datasets. In case of unknown acquisition settings, different values
were tested, and the best approximation was selected based on comparisons of the resulting
point patterns of simulated and real point clouds. The simulations were performed with a
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temporal window size of 1 ns in the local maximum filter, for the number of subrays the
default values was used (beamSampleQuality = 3). As full waveform data from the real
study sites were not available, we simulated only discrete, albeit multiple return point
clouds and not full waveform data for the virtual forest stands.

3.2.3 Extraction of biomass reference data and predictor variables

Biomass reference data and ALS metrics were extracted from the real-world datasets
and the Forest Factory datasets. The available data from the four study sites and the
simulated data differed in plot shape and size, sampling strategy (measurement of all trees
or DBH-based sampling), and whether individual tree positions were included in the data.
Therefore, data were extracted in ways specific to the study sites (Figure 3.1).

Individual tree biomass values of the Forest Factory stands were calculated based on D1.3
and height using species-specific allometric equations that were developed for the German
National Forest Inventory, available in the R package "rBDAT" (Vonderach et al., 2021).

The Milicz Forest field data included information on species, D1.3, height, and location of
every tree within a radius of 12.62 m from the plot centre. Biomass values of the individual
trees were also calculated using the allometric equations of the German National Forest
Inventory, assuming that the allometry of trees in Poland and Germany does not differ
significantly. As the Forest Factory plots are squares of 20 m side length, the Milicz Forest
field plots and the Forest Factory plots do not overlap perfectly. Therefore, simulated
and real data were extracted from the largest square area that fits into both plot shapes
(17.8 m× 17.8 m). The biomass of all trees located within this subplot was summed and
divided by the area to derive estimates in t/ha.

In the Silesian Beskids, field data had been collected in nested plots with a maximum radius
of 12.62 m. Due to the D1.3-dependent sampling design, data had not been recorded for all
trees within the plots. Accordingly, only plot-based estimates of biomass were available.
Because of the smaller plot size of the simulated data, these could not be cropped to the
plot shape of the real data. For simplicity, it was assumed that the provided biomass
estimates (in t/ha) of the 500 m2 circular Silesian Beskids plots were also representative for
20 m× 20 m square plots. For these plots, ALS metrics were extracted from the real and
simulated data, and biomass reference values were derived from the Forest Factory stand
information.

The DendroNET dataset included individual tree locations and biomass values derived
from species-specific allometric equations. The data were cropped to 20 m× 20 m square
plots. This allowed biomass reference values and ALS metrics to be derived from plots of
the same shape and size for both the real and simulated data.

For the Petawawa Research Forest, individual tree biomass predictions were available,
but not tree locations, so biomass could only be calculated for the entire 625 m2 plots. As
for the Silesian Beskids dataset, we assumed these area-based biomass estimates to be
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Figure 3.1: Schematic overview of field plot sizes and shapes of the four study sites in
comparison to the Forest Factory plots (left). Areas from which biomass reference data
were collected and areas from which ALS metrics were extracted are highlighted by
colour and stripe pattern, respectively, for the real-world data (centre) and the Forest
Factory data (right).
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representative for the forest stands at the plot locations and extracted ALS metrics and the
Forest Factory biomass reference values from 20 m× 20 m square plots.

ALS metrics were calculated for each plot using the R package "lidR" (Roussel & Auty,
2021; Roussel et al., 2020). The point clouds were cropped to the plot extents and the
height values were normalised using the normalize_height() function included in the "lidR"
package. For both all returns and first returns, the following metrics were calculated
from the return heights: the maximum height, the mean height, the standard deviation,
the skewness, the kurtosis, and the entropy of the height distribution, the percentage
of returns above the mean height, the percentage of returns above 2 m, the 5th–95th (in
steps of 5) height percentiles, and the cumulative percentage of returns in the 1st–9th layer.
In addition, the number of returns, the percentage of 1st–5th returns, the percentage of
ground returns, the sum of intensities of the returns, the maximum intensity, the standard
deviation of intensity, the skewness and kurtosis of the intensity distribution, the percentage
of intensity of ground returns, and the percentage of intensity returned below the 10th–90th
(in steps of 10) percentile of height were computed. Because the number of returns and
the intensity-related metrics differed significantly between simulated and real data, these
metrics were excluded from models trained with simulated data. To ensure comparability
of the models, we did not perform any feature selection (e.g. based on feature importance)
during modelling.

3.2.4 Subsampling of simulated training data

The Forest Factory stands covered a wide range of forest structures, with stem numbers
ranging from 1 to 585 trees per 20 m× 20 m plot and biomass values ranging from 0.26 t/ha
to 1 323.81 t/ha, including plots with low tree numbers and low biomass, low tree numbers
and high biomass, high tree numbers and low biomass, and high tree numbers and high
biomass. The use of all 2 500 Forest Factory plots as training data may hence result in less
appropriate biomass models for study sites with less structural diversity. In addition, using
all data leads to increased computing times. Therefore, we tested a sampling approach to
reduce the amount of simulated training data while maintaining or even improving model
performance when applied to real data.

For this, in each study site, the simulated data were filtered for the Forest Factory plots
that were best matching the real data, assuming that only ALS-derived information were
available. For both the real plots and the simulated plots, the relative number of ALS
returns per 1 m height bin for the height of 0–50 m above ground was calculated to derive
height distribution profiles of the returns. Adapting a waveform matching approach that
was developed to compare simulated and real full-waveform light detection and ranging
(LiDAR) data (Blair & Hofton, 1999; Hancock et al., 2019; Lang et al., 2022), the Pearson
correlation coefficients between all simulated and all real height distribution profiles were
calculated. For each real plot, the Forest Factory plot with the highest Pearson correlation
coefficient was selected. This resulted in a subset of simulated data equal in size to the
number of real plots, or smaller if a simulated plot was the best match for several real plots.
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Figure 3.2 shows two examples of the return height distributions of real forest plots and
the corresponding Forest Factory plots.

3.2.5 Biomass prediction models

The random forest algorithm (Breiman, 2001) as implemented in the R package "random-
Forest" (Liaw & Wiener, 2002) was used to build regression models for the prediction of
biomass from ALS metrics. We conducted three experiments in which we compared how
different training datasets affect the model performance. In all experiments, the perfor-
mance of the models was assessed by comparing the predicted and observed biomass
values of the real forest plots. For this, 30% of the real data were randomly sampled for
model testing. The experiments were performed separately for each study site. Each
experiment was repeated 500 times, i.e. the model performance was assessed for 500
(partially overlapping) test datasets per study site. The root mean squared error (RMSE),
the squared Pearson correlation coefficient (r2), and – as a measure of bias – the mean error
(ME) between observed and predicted biomass values were calculated.

The first experiment tested whether simulated data alone could be used to train biomass
models. For this purpose, models were trained using a) all simulated data, b) a randomly
selected subset of the simulated data, and c) the best matching subset of the simulated data
filtered by the waveform matching approach. As a benchmark, models were also trained
with the remaining 70% of the real data that were not used for model testing. The size
of the randomly selected subset (b) was chosen to be equal to the size of the real training
dataset.

In the second experiment, we tested whether simulated data can be used to extend the
training dataset if only limited real training data are available. Again, the real dataset
was randomly divided into 30% test data and 70% training data in each of the 500 runs.
We trained models with mixed sets of simulated and real data, gradually increasing the
number of real samples from two plots to the maximum number of training data available,
to investigate whether and up to which number of real training data the model benefits
from supplementary simulated data. To reduce computation time, only the randomly
selected subset (b) and the best matching subset of the simulated data (c) were used in this
experiment. In case of the random selection, the number of randomly selected data was
adjusted such that the total number of training data (simulated plus real data) was always
equal to the maximum number of real training data. In contrast, the best matching subset
was always used in its entirety, i.e. in this case the total number of training data was equal
to the number of best-matching simulated data plus the number of real data used in each
increment.

In the first two experiments, we investigated the potential of simulated training data in
comparison to real data collected from the same study site that the biomass models were
being applied to. In the third experiment, we tested a spatial model transfer. We assumed
that only real data from the other real sites were available and evaluated how biomass
models perform when trained with these data. For each study site, we trained biomass
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Figure 3.2: Two examples of the applied waveform matching approach for selecting
the best matching Forest Factory plot for each real plot. The left images show vertical
sections of real ALS point clouds of plots located in the Milicz Forest, the right images
show the simulated ALS point clouds of the best matching Forest Factory plots, and
the centre images show the derived return height distribution ("waveform") profiles
of both. While the Pearson correlation coefficient of the height distribution profiles
is very high (r = 0.998) for both examples, the biomass of the real and the selected
simulated plot are very similar for the upper example (123.44 t/ha and 123.83 t/ha),
but have a higher difference for the lower example (237.98 t/ha and 273.59 t/ha).
Points are coloured according to their position in Y-direction.
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models using all available data from the three other sites, irrespective of the fact that plot
sizes and ALS acquisition settings differed between the datasets.

The data were processed, analysed, and visualised in R version 4.0.4 (R Core Team, 2021)
within the RStudio interface (RStudio Team, 2016) making use of the packages "data.table"
(Dowle & Srinivasan, 2021), "rgdal" (Bivand et al., 2022), "DescTools" (Signorell et al., 2021),
"ggplot2" (Wickham, 2016), "viridis" (Garnier et al., 2021), "ggpubr" (Kassambara, 2020),
and their dependencies.

3.3 RESULTS

3.3.1 Comparison of real and simulated data

The biomass values of the real plots ranged from 0.98 t/ha to 583.20 t/ha. This range
was completely covered and exceeded by the Forest Factory plots (0.26–1 323.81 t/ha for
20 m× 20 m plots, 0.00–1 488.57 t/ha for 17.8 m× 17.8 m plots). The mean biomass was
highest for the DendroNET sites (268.38 t/ha) and lowest for the Petawawa Research
Forest (157.70 t/ha). The mean biomass of the simulated forest plots was significantly
lower (136.16 t/ha for 20 m× 20 m plots, 137.67 t/ha for 17.8 m× 17.8 m plots). The stand
density ranged from 0 trees/ha to 14 897 trees/ha in the Forest Factory plots, with a mean
value of 499 trees/ha. The Petawawa Research Forest plots had a similar range of stand
density (32–13 024 trees/ha), but the mean was significantly higher (2 500 trees/ha). The
DendroNet sites had the smallest mean stand density (846 trees/ha) and also the smallest
range (89–1 600 trees/ha). The stand density of the Milicz Forest plots ranged from 32
trees/ha to 4 261 trees/ha, with a mean of 951 trees/ha. Information on the stand density
of the Silesian Beskids plots was not available. Figure 3.3 shows histograms of biomass,
stand density, and the maximum and mean height of the real and simulated forest plots.
The maximum and mean height were calculated from the ALS point clouds, because
information on individual tree heights was only available for the Milicz Forest and the
Petawawa Research Forest. The simulated data contained proportionally more plots with a
maximum height ≥ 30 m than the real-world data, especially when compared to the Milicz
Forest and the DendroNET sites. The mean height of returns was on average higher for the
real plots than for the simulated plots (except for the Petawawa Research Forest). The best
matching subsets of the simulated data fit slightly better to the real data than all simulated
data, but there are still large differences in the distribution of biomass, stand density and
maximum and mean height of returns.

The mean height of returns (Hmean) was highly correlated with plot biomass (Pearson
correlation coefficient > 0.86 for the real data and > 0.73 for the simulated data). Scatter
plots of biomass and the Hmean show that the simulated data covered a wider range of
structural diversity as expressed by these two metrics (Figure 3.4). Compared to the real
data, the simulated data show lower biomass values in relation to Hmean (Figure 3.4, left
column). This trend is less pronounced but still visible in the best matching subset of the
simulated data (Figure 3.4, centre column). Especially for the DendroNET sites, there are
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large deviations in the ratio of biomass and Hmean between simulated and real data. In
contrast, the real data from the different sites have more similar ranges (Figure 3.4, right
column).

3.3.2 Biomass models

3.3.2.1 Experiment 1 (using only simulated data for model training)

In the first experiment, we tested how biomass models perform when trained with simu-
lated data compared to models trained with real data from the same study site the model
was applied to. Figure 3.5 shows scatter plots of the predicted and observed biomass values
of all field plots. The predicted values were calculated as the mean of all predictions for
one field plot. Since the data were randomly divided into training and test data in the 500
model iterations, the number of predictions varied slightly per field plot, depending on
how often this plot was sampled for the test dataset. Model performance metrics (RMSE,
ME, r2) were calculated based on the mean predicted and the observed values. The "all
real" models that were trained with all data from the respective study site (excluding the
test data) served as benchmark for evaluating the performance of models trained with
other data. The first experiment revealed that for all study sites, models trained with real
in situ data outperformed models trained with simulated data. The difference in model
performance was most clearly expressed by the mean error, which was negligible for mod-
els trained with real data and significantly higher (6.22–118.90 t/ha) for models trained
with all simulated data (Figure 3.5, second column). Accordingly, the models trained with
simulated data underpredicted the biomass values of the real plots. With regard to RMSE,
differences in model performance were most pronounced for the DendroNET sites (DN)
and the Petawawa Research Forest (PRF). Here, the RMSE of the models trained with all
simulated data was about twice as high as for models trained with real data (136.15 t/ha vs.
61.36 t/ha for DN, 73.65 t/ha vs. 37.16 t/ha for PRF). For the Milicz Forest (MF) and the
Silesian Beskids (SB), the relative difference in RMSE was slightly smaller (40.86 t/ha vs.
26.94 t/ha for MF, 101.08 t/ha vs. 63.88 t/ha for SB). The difference in r2 was highest for
the Petawawa Research Forest (simulated data: 0.68, real data: 0.83), and smallest for the
DendroNET sites (simulated data: 0.69, real data: 0.72).

Using a randomly selected subset of the simulated data instead of using all simulated
data for model training increased the model performance in most cases (Figure 3.5, third
column). An exception were the predictions for the Silesian Beskids, where the models
trained with all simulated data strongly overpredicted the biomass of three plots (cf. outliers
in Figure 3.5, second row, second column). This led to a very low ME between observed and
predicted biomass values compared to the models trained with a randomly selected subset
of the simulated data (all simulated: 6.22 t/ha, randomly selected simulated: 32.37 t/ha),
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Forest Factory plots. Information on stand density was not available for the Silesian
Beskids.
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while the RMSE was much higher (all simulated: 101.08 t/ha, randomly selected simulated:
77.17 t/ha) and the r2 was much lower (all simulated: 0.67, randomly selected simulated:
0.74).

The performance of models trained with the best matching subset of the simulated data
was similar to the performance of models trained with a randomly selected subset (Figure
3.5, fourth column), but differed between study sites. While the difference in RMSE for
the Milicz Forest and the Silesian Beskids was < 1 t/ha, for the DendroNET sites and the
Petawawa Research Forest, the RMSE was lower for the models trained with randomly
selected simulated data than for models trained with the best matching data (127.15 t/ha
vs. 133.58 t/ha for DN, 67.83 t/ha vs. 72.92 t/ha for PRF). The difference in the ME was
negligible for the Milicz Forest (16.48 t/ha vs. 17.38 t/ha). For the Silesian Beskids, the
absolute ME was higher when the models were trained with a randomly selected subset
than when they were trained with the best matching subset (32.37 t/ha vs. 18.01 t/ha). In
contrast, for the DendroNET sites and the Petawawa Research Forest, using a randomly
selected subset for model training resulted in a slightly lower absolute ME than using the
best matching subset (103.63 t/ha vs. 114.85 t/ha for DN, 49.19 t/ha vs. 53.74 t/ha for PRF).
The absolute difference in r2 was 0.2 for all study sites, with a higher r2 for the randomly
selected subset for the Silesian Beskids and the Petawawa Research Forest, and a higher r2

for the best matching subset for the Milicz Forest and the DendroNET sites.

Figure 3.6 shows the mean performance metrics calculated from each of the 500 model
iterations for each study site and training data type, including the results for models that
were trained with different numbers of real training samples. Because of the random
sampling of field plots for the test datasets, the model performance metrics differ slightly
from the values presented in Figure 3.5. Models that were trained with simulated data
resulted, in most cases, in higher prediction accuracies, as expressed by RMSE and r2, than
models that were trained with real data when the number of real training samples was
very low. Table 3.2 and the dashed vertical lines in Figure 3.6 show up to which number of
real training samples models that were trained with simulated data only, or with real data
collected from other sites (Experiment 3), performed better than models that were trained
with real data collected from the same site the models were applied to.
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Figure 3.5: Mean predicted biomass and observed biomass of all field plots by study
site and training data type. Model building and predictions were repeated 500 times
for each training data type. In each of the 500 iterations, the real data were randomly
split into 30% test data and 70% training data, i.e. each plot was included in the test
and training data several times. The mean predicted biomass was calculated as the
mean of all predictions for one field plot. The squared Pearson correlation coefficient
(r2), the mean error (ME) and the root mean squared error (RMSE) are given.
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Figure 3.6: Mean root mean squared error (RMSE), mean squared Pearson correlation
coefficient (r2), and mean error (ME) of the biomass predictions for different training
data types. Model building and predictions were repeated 500 times for each training
data type and each number of real training samples. Dashed vertical lines show at
which number of real training samples the "only real" model performed better than
the other models, as indicated by colour.
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Table 3.2: Number of training samples up to which models trained with real in situ
data perform worse than models trained with other data (as specified in column
Training data type).

Study Site Training data type Number of real
training samples
measured by
RMSE r2

Milicz Forest all simulated ≤ 14 ≤ 32
randomly selected simulated ≤ 20 ≤ 10
best matching simulated ≤ 22 ≤ 40
real data from other sites ≤ 4 ≤ 22
real + randomly selected simulated ≤ 56 ≤ 70
real + best matching simulated ≤ 134 ≤ 346

Silesian Beskids all simulated ≤ 6 ≤ 10
randomly selected simulated ≤ 10 ≤ 16
best matching simulated ≤ 14 ≤ 16
real data from other sites > 90 > 90
real + randomly selected simulated > 90 > 90
real + best matching simulated > 90 > 90

DendroNET sites all simulated ≤ 2 ≤ 24
randomly selected simulated ≤ 2 ≤ 6
best matching simulated ≤ 2 ≤ 6
real data from other sites ≤ 12 >32
real + randomly selected simulated ≤ 24 ≤ 12
real + best matching simulated ≤ 8 ≤ 14

Petawawa Research Forest all simulated ≤ 6 ≤ 10
randomly selected simulated ≤ 6 ≤ 14
best matching simulated ≤ 6 ≤ 14
real data from other sites ≤ 80 ≤ 68
real + randomly selected simulated ≤ 36 ≤ 36
real + best matching simulated ≤ 50 ≤ 60

3.3.2.2 Experiment 2 (extending the real training dataset with simulated data)

In the second experiment, we tested whether the accuracy of biomass models could be
increased by extending a small real dataset with additional simulated data for model
training. For all study sites, model accuracy in terms of RMSE and r2 improved by adding
simulated training data to a small number of real training data (Figure 3.6). However, as
the amount of real training data increased, the positive effect of additional training data
decreased and eventually disappeared. In contrast to RMSE and r2, the absolute ME of
the models was always lowest when only real data were used for model training. As
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the number of real training samples increased, the accuracies of models trained with real
data only and those trained with additional randomly selected simulated data converged
because the number of additional simulated samples decreased when more real samples
were used. The numbers of real training samples up to which the addition of simulated
data resulted in higher model accuracies in terms of RMSE and r2 are given in Table 3.2.

3.3.2.3 Experiment 3 (using real data from other study sites for model training)

Using data collected from other sites (ex situ data) for training biomass models resulted in
high model accuracies for all sites but Milicz Forest (Figure 3.5, last column). Compared
to models that were trained with real data collected from the Silesian Beskids and the
Petawawa Research Forest, respectively, the RMSE increased by only 0.54 t/ha and 2.70 t/ha
when models were trained with data from the other sites. The increase in RMSE was slightly
higher for the DendroNET sites (17.79 t/ha), but still much lower than when models
were trained with simulated data (increase in RMSE: ≥ 65.79 t/ha). The ME indicated an
overprediction of biomass for the Silesian Beskids (-17.95 t/ha), and an underprediction of
biomass for the DendroNET sites (54.61 t/ha) and the Petawawa Research Forest (5.20 t/ha).
The r2 value of models trained with real data collected from other sites decreased by 0.03 for
the Petawawa Research Forest, and even increased by 0.02 and 0.04 for the Silesian Beskids
and the DendroNET sites, compared to models trained with real data collected from the
respective sites. For three of the study sites, the Silesian Beskids, the DendroNET sites, and
the Petawawa Research Forest, using real data collected from other sites for model training
resulted in significantly higher model accuracies than using simulated data, regardless of
whether all simulated data or a subset were used. In contrast, for the Milicz Forest, the
accuracy was much higher for models trained with simulated data, especially when only
a subset of the simulated data was used. Compared to the models trained with the best
matching subset, the RMSE of models trained with real data from other sites increased by
21.26 t/ha, and r2 decreased by 0.05. Training models with real data collected from other
sites resulted in a significant overprediction of biomass for the Milicz Forest, with a ME of
-44.51 t/ha.

3.4 DISCUSSION

3.4.1 Experiment 1

The results of the first experiment suggest that models trained only with simulated data
do not reach the performance of models trained with real data, as long as a sufficient
amount of real data is available. The gap in model accuracy when simulated data were
used for model training instead of real data differed between study sites. Regardless of the
study site, all models trained exclusively or additionally (see Experiment 2) with simulated
data significantly underpredicted the biomass of the real plots, whereas models trained
with real data (collected from the same site the model was applied to) did not show any
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bias (Figure 3.6). The underprediction was highest for the DendroNET sites (mean error
103.63–118.90 t/ha) and the Petawawa Research Forest (mean error 49.19–53.74 t/ha). We
suppose that there are several reasons why the difference in model performance between
models trained with simulated data and models trained with real data was highest for
these two study sites (also with regard to RMSE and r2). Most of the DendroNET sites
are located in single species forest with only one layer. The plots there have high biomass
values but low maximum and mean heights of return compared to the Forest Factory plots,
but also compared to the other real forest plots (Figures 3.3 and 3.4). As the stand density
at the DendroNET sites is also rather low, the high plot biomass is probably the result of
a specific silvicultural strategy which is not captured by the other real datasets and by
the growth simulator. In contrast to the DendroNET sites, the Petawawa Research Forest
has a high structural diversity resulting from diverse species compositions and complex
management histories (White et al., 2021), and the stand density is comparatively high.
Multiple forest layers and the occurrence of undergrowth shift the relative return height
metrics toward the lower heights, resulting in an underprediction of biomass when models
are trained with less complex data. In addition, forest plots with a high stand density may
have a similar return height distribution as plots with a lower stand density but similar
tree sizes, resulting in a much higher plot biomass. It is therefore also possible that the
high stand density is a reason for the underprediction of biomass by models trained with
simulated data. An in-depth analysis of why the models trained with the simulated data
performed differently for the four study sites was not possible, as this would have required
detailed information on individual trees (e.g. tree height and location), which was only
available for the Milicz Forest.

Differences in the feature space can cause problems in model transferability (Meyer &
Pebesma, 2021). If simulated data are to replace real data in model training, it needs to
be ensured that they cover all the features of real-world data. Even if the simulated data
covered the whole range of biomass values of the real forest plots, they did not cover the
complete range of all predictors and the relation between LiDAR metrics and biomass was
not the same. For example, the extremely high overprediction of biomass for three of the
Silesian Beskids plots when using all simulated data for model training (Figure 3.5, second
row, second column) can be explained by the fact that the Silesian Beskids plots with higher
mean return heights have much lower biomass values than the Forest Factory plots (Figure
3.4, second row, first column). The observed differences between the simulated and the
real data can be caused by several factors, that are related to either a) the simulation of
the forest stand composition or b) the simulation of the laser scanning. First of all, the
forest composition differs between simulated and real forests. Forest Factory uses the
region-specific parameterisations implemented in the FORMIND model, which do not yet
include all tree species that occur at our study sites (Henniger et al., 2023). In addition,
the availability of tree point clouds that are needed to create the 3D representations of the
Forest Factory stands further limits the number and size range of tree species included
in the Forest Factory simulations. Therefore, the simulated forest stands only include
four tree species. They also lack understorey elements such as shrubs and small trees,
resulting in a lower structural complexity than real forests (Bruening et al., 2021). The goal
of Forest Factory is to generate as many potential forest states as possible. The resulting
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large variability of the generated stands, as reflected by the wide range of biomass values in
relation to the mean height of returns, indicates that the underlying stem size distributions
of the simulations include extremes that do not occur in our study sites. However, there will
also be real forest compositions that are not captured by the Forest Factory simulations. A
drawback of using Forest Factory to simulate forest stand composition is that tree positions
are randomly assigned within the plot area. As a result, trees may be placed unrealistically
close together. Compared to Forest Factory 2.0, other forest simulators such as SILVA
(Pretzsch et al., 2002) have the disadvantage that parameterisation and simulations take
much longer, which means that significantly fewer stands can be generated in a reasonable
time. On the other hand, SILVA has the ability to apply different management strategies
and takes into account competition from neighbouring trees. It is therefore likely that
the stands that are generated will be more similar to real forest stands. Further research
should investigate how the use of different forest simulators affects the quality (in terms of
usability) of the simulated data.

Another factor that can lead to differences between the simulated and real data is the
simulation of laser scanning. Both the pulse densities and the resulting planar point
densities differed between simulated and real datasets (Table 3.1). Because some of the
acquisition settings of the real laser scanning campaigns were unknown, it was not possible
to exactly reproduce the acquisitions. Furthermore, the laser scanning simulation process
implemented in HELIOS++ is sensitive to other parameters, such as the size of the voxels
that are used to convert the forest point clouds into scannable objects, the point density
of the tree point clouds, and the temporal window size for echo detection (Winiwarter
et al., 2022). Consequently, the parameterisation of HELIOS++ and the implemented
laser scanning simulation approach should be further optimised, also with regard to more
realistic intensity values and numbers of returns, so that metrics related to these point cloud
characteristics could also be derived from the simulated data. However, when models were
trained with the real in situ data, we did not observe significant differences when these
metrics were included or excluded from model training.

Including understorey elements in the simulated forest stands and choosing a different
voxel size and temporal window size could contribute to shifting the distribution of
simulated returns to lower heights, and thus better fit the relation between biomass and
mean return height of the simulated data to the real data. Furthermore, this relation could
also be affected by the method for calculating the individual tree biomass values. Allometric
equations are commonly applied for predicting biomass from stem diameters and in some
cases tree height, and different equations can result in different biomass predictions for
the same tree (Ameztegui et al., 2022; Zianis et al., 2005). In cases where no allometries
are available for a specific location and its site conditions, existing equations developed
for a similar site are used. However, these equations were not necessarily developed with
trees that fully match the range of diameters present in the studied site or in few cases
even several matching equations may available which, however, differ in their predictions.
The resulting uncertainty in the biomass reference values additionally affects the model
performance. To exclude potential effects of allometric equations, it would be best to use
the same equations for predicting biomass for all study sites. Here, we only used the same
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set of equations for calculating biomass of the Forest Factory trees and the trees in the
Milicz Forest, for the other sites, the provided biomass estimates were used.

One disadvantage of the Forest Factory simulations is that the forest stands are limited to a
fixed size of 20 m× 20 m. In case of larger field plots in the real data acquisitions it was
therefore not possible to extract data from plots of the same size and shape in the Forest
Factory stands. We decided to keep the plot size and shape the same for the extraction of
laser scanning data from the simulated and from the real forest stands. For the Silesian
Beskids and the Petawawa Research Forest, no information on individual tree positions
was available, and thus the biomass could not be calculated for the same plot that was
used for the laser scanning data extraction and the extraction of both biomass information
and simulated laser scanning data from the Forest Factory stands. Hayashi et al. (2015)
analysed how the plot radius for the LiDAR metrics extraction affects biomass prediction
in the Acadian Forest using biomass reference data obtained from nested circular and
variable radius plots, and found little influence on model performance. Zhao et al. (2009)
found no differences in parametric regression performance between models trained with
squared or circular plots, but notable differences when comparing models trained with
plot sizes from 0.01 to 1 ha (for the extraction of both LiDAR metrics and biomass reference
data). However, their results also indicate that model performances are very comparable
if differences between plot sizes are as small as in our study. We therefore expect that the
differences in plot size had only a minor impact on our results. Especially since in the
simulated data models that performed worst, i.e. those for the DendroNET sites, biomass
values and ALS metrics were collected and extracted from the same sized plots for both
the simulated training data and the real test data. Nevertheless, we acknowledge that with
the experimental setup presented, it is not possible to fully disentangle the effects of the
simulated data from the effects of different plot shapes and sizes, especially since random
forest has also been found to decrease its performance when applied to datasets that are
not fully comparable to the training data (Hayashi et al., 2015).

One explanation for the slight increase in model performance when a randomly selected
subset of the simulated data was used for model training instead of all data could be that
the random sample is less likely to include the extreme values in the simulated data that
are out of the range of the real data, resulting in better fitting models. Surprisingly, the best
matching samples did not provide the expected additional benefit compared to random
samples. This is probably because the shift in the relation between biomass and return
heights that was observed between simulated and real datasets is still present in the best
matching samples (Figure 3.4). Unlike stratified sampling approaches relying on one or
more ALS-derived metrics, our sampling was based on the overall height distribution.
Bruening et al. (2021) applied a similar approach based on the relative overlap of the height
distribution profiles to match simulated GEDI waveforms of Forest Factory stands and real
forest stands. In contrast to our results, they found a good fit in the biomass distribution
of the selected simulated data and the real data. Since they eliminated potential effects of
different allometry models, differences in real and simulated lidar data, and influences
of understorey elements in their study, this may be an indicator that the observed shift
in our simulated datasets compared to the real datasets might be related to one or more
of these factors. Apart from that, the study by Bruening et al. (2021) provides another

77



3 P O T E N T I A L O F S Y N T H E T I C A N D E X S I T U D ATA

possible explanation why the best matching approach for the training data selection did
not significantly improve our model accuracies. They explored the non-uniqueness of lidar
signals, which was also described by Zolkos et al. (2013), and showed that forest stands of
different composition can produce similar lidar waveforms but have a different biomass,
and vice versa. Accordingly, one lidar waveform should be associated with a range of
biomass values. These findings can be transferred to discrete return laser scanning data.
This might explain why Forest Factory plots with the same mean height of returns have
a wide range of biomass values and also why the best matching simulated data did not
greatly improve the model accuracy compared to randomly selected simulated data. A
high correlation of the height distribution profiles of two plots is not necessarily related to
similar biomass values of these plots (see Figure 3.2) and it is imaginable that the biomass
value of the second best matching plot would fit much better. It should be investigated
whether a sampling approach based on other ALS metrics would result in a better match
between the biomass values of the selected simulated and real forest plots. Auxiliary data,
such as information on the forest structure (e.g. tree density), could also be helpful for
solving this issue.

3.4.2 Experiment 2

The second experiment showed that simulated data can be used to extend sparse real
training datasets. However, the positive effect of additional training data on model accuracy
decreased as the number of real training samples increased, and even with relatively low
quantities of real training data, the increase in model accuracy was small. Our findings
with respect to up to which number of real training samples the model accuracy increased
when additional simulated data were used differed between the study sites, making a
generalised statement difficult. The models for the DendroNET sites benefited the least
from the additional training data, which is probably because the simulated data did not fit
well to the real data of these sites. Future works could expand the presented analysis with
more datasets to better understand which combination of plots of different forest structures
benefits in which way from the additional simulated data.

Models that were trained with mixed datasets composed of real and the best matching
simulated data performed slightly better in most cases than models that were trained with
mixed datasets composed of real and randomly selected simulated data, but this could also
be an effect of the different compositions and sizes of the training datasets (fixed number
of simulated data in case of the best matching subset, varying number of simulated data in
case of the randomly selected subset).

Stereńczak et al. (2018) analysed how many field samples are required for the accurate
prediction of growing stock volume in the Milicz Forest using an ordinary least square
multiple regression and found that model performance did not change much when at
least 200 samples were used for model training, except for relative bias, which was lowest
when at least 500 samples were used. Using synthetic forest data, Fassnacht et al. (2018)
observed an increase in the accuracy of random forest models for biomass prediction
with increasing sample size, particularly for small sample sizes, using 50–500 samples.
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Nevertheless, according to a review by Fassnacht et al. (2014), 73% of the reviewed studies
on remote sensing-based forest biomass predictions had sample sizes smaller than 100,
and 53% had sample sizes smaller than 50. Synthetic data could therefore be of great
value if they could improve model performance when limited real-world training data are
available. While RMSE and r2 did indeed improve by training models on mixed datasets
of real and simulated data (up to 12–346 real training samples depending on the study
site), the increase in bias whenever simulated data were included in the training dataset
is a major concern. In this study, we used the random forest algorithm as prediction
method because it has been shown to outperform other commonly used methods for
ALS-based forest biomass prediction (Fassnacht et al., 2014). However, Yang et al. (2019)
found that compared to other prediction methods, random forest models resulted in a
high overprediction of forest volume when combined with variable probability selection
methods. Hayashi et al. (2015) tested a spatial transfer of biomass models and found that
the performance of random forest models decreased when applied to an ex situ dataset,
while the performance of non-linear mixed effects models did not change when applied to
in situ or ex situ data. Accordingly, the random forest algorithm might not be the best choice
for our study. In addition, random forests are not designed to handle multiple training
datasets and treat them differently, e.g. by giving them different weights. Instead of simply
merging simulated and real data into one training dataset, as we did for the random forest
models, one could also use the simulated data to pre-train a model and then use the real
data to fine-tune it. This transfer learning approach is often used in deep learning, where
large amounts of labelled training data are required (Hamedianfar et al., 2022). Transfer
learning has also been implemented for linear regression under covariate shift, reducing
the amount of required target data (Wu et al., 2022). Future work should explore whether
model accuracies could further be improved by using transfer learning methods.

3.4.3 Experiment 3

Training biomass models with data that were collected from other study sites (ex situ)
resulted in surprisingly high prediction accuracies for the Silesian Beskids, the DendroNET
sites and the Petawawa Research Forest. Although the study sites had different species
compositions (and in case of the Petawawa Research Forest even completely different tree
species), different allometric equations were used for calculating the biomass, the ALS
point clouds characteristics such as point density differed, and the data were extracted
from differently shaped and sized plots, the merged datasets were well suited for model
training, and the spatially transferred models resulted in RMSE values and squared Pearson
correlation coefficients similar to models that were trained with real data collected from the
same site the model was applied to. These results indicate that the aforementioned factors
are less likely the reason for the decrease in model accuracies when simulated data were
used for model training. Suvanto and Maltamo (2010) compared models for predicting
forest characteristics that were trained with local data only to models that were trained
with a mixed dataset of local and additional ex situ data, and found that the local model
outperformed the mixed model already at sample sizes below 50. In our study, we could
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only partially confirm these observations. Even if we did not use mixed datasets but only
data collected from other sites, for the Silesian Beskids, model training with data from
other sites resulted in higher prediction accuracies in terms of RMSE and r2 than the model
training with local data, even when the maximum of 90 training samples was used. Our
observations that the absolute mean error of models trained with other simulated or real
data was always higher than of models trained with real data from the site the model is
applied to are in line with the observations made by Suvanto and Maltamo (2010).

Regarding RMSE and r2, using training data collected from other sites worked best for the
Silesian Beskids and the Petawawa Research Forest. For these sites, the ranges in biomass
and mean height of returns of the on-site data and of the other data fit very well, apart from
the higher ranges of the mean height of returns in the Silesian Beskids and the lower ranges
of the maximum height of returns in the Petawawa Research Forest that were not covered
by the data from the other sites. Compared to the DendroNET sites, the other real field
plots had lower biomass values at the same mean return heights, which probably led to the
strong underprediction when these data were used to predict biomass of the DendroNET
sites.

The Milicz Forest was the only study site for which models that were trained with real
data collected from the other sites performed worse than models trained with simulated
data. From the information that was available for the study sites, we are unable to explain
why the results for the Milicz Forest differ from the results for the other study sites. We
assume that the low performance of the spatial model transfer is related to the fact that the
range of associated biomass values in relation to the mean height of returns (and other ALS
metrics) is much wider for the other sites (1.0–583.2 t/ha biomass at mean return heights
of 0.0–32.7 m) than for the Milicz Forest (8.9–454.3 t/ha biomass at mean return heights
of 1.0–23.0 m) but we do not know which characteristics of the study sites lead to these
differences.

As the second experiment showed that prediction accuracies can be improved when sparse
training datasets are extended by additional simulated data, it should be tested if similar
results can be observed when real data collected from other sites are used to extend the
training datasets. Taking into account that for three of the four study sites, models trained
with with real data collected from other sites performed better than models trained with
simulated data, we would expect even better results from mixing the real local and non-
local datasets than from mixing simulated and real data. This would also be in line with
the findings of Breidenbach et al. (2008), Kotivuori et al. (2016), and van Ewijk et al. (2020)
who demonstrated that calibrating models with a small local dataset in combination with
a larger dataset collected from other sites improves prediction accuracies compared to
models that were only calibrated based on the larger dataset.

3.5 CONCLUSIONS

This study investigated the potential of simulated data for training biomass models for
real forest plots. Our experiments revealed that simulated data generated by applying the
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HELIOS++ laser scanning simulator to Forest Factory 2.0 forest plots cannot yet compete
with real data. Models can be trained using simulated data only, but we observed a strong
underprediction of biomass for three of the four study sites, and the model performance
generally improves when real data are included in the training dataset. However, when
only a limited number of real training samples is available, simulated data can be used to
extend the training dataset. It depends on the study site and the measure of model perfor-
mance up to which number of real training samples the model accuracy can be increased
by the additional simulated data. While the prediction accuracy of models trained with
simulated data may be satisfactory for various applications, the significant underprediction
of biomass presents a challenge. Therefore, the workflow for generating simulated data
needs improvement in order to achieve a better match between the simulated data and the
real data in terms of the relation of biomass to ALS metrics. In addition, future research
should explore alternative methods for selecting the samples of the simulated data that
best match the real data (using only ALS-derived information) and investigate transfer
learning methods.

Our experiments also demonstrate that real data collected from different locations can be
very suitable for training biomass models, even if the laser scanning acquisition settings,
the plot design, the forest composition, and the method to calculate biomass values differ
from the site the model is applied to. It would therefore be beneficial for the research
community, but also for forest practitioners, if reference data were made more widely
available to others. These data may still be useful even if they do not include ALS data, as
laser scanning point clouds could be generated with our simulation approach, at least if
information on all trees in the field plots is provided, and not only summarised information
on a plot level.
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4
Chapter 4

AGB PREDICTION FROM ALS
POINT CLOUD TOMOGRAPHY

This chapter is based on a journal article submitted to European Journal of Remote Sensing:

Jannika Schäfer, Lukas Winiwarter, Hannah Weiser, Bernhard Höfle, Sebastian Schmidtlein,
Jan Novotný, Grzegorz Krok, Krzysztof Stereńczak, Markus Hollaus, Fabian Ewald Fass-
nacht. CNN-based transfer-learning for aboveground biomass prediction from ALS
point cloud tomography.
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ABSTRACT

Airborne laser scanning (ALS) can provide information on the three-dimensional structure
of forests over large areas. ALS data are therefore increasingly being used for the predic-
tion of forest aboveground biomass (AGB). In the area-based approach, it is common to
build regression models from metrics describing the ALS point cloud distribution and
corresponding AGB reference data. With this study, we present an alternative method: We
predicted AGB from sequences of images depicting vertical cross sections through the ALS
point clouds using convolutional neural networks (CNN). We used a 3D version of the
VGG16 CNN with initial weights derived from pre-training on the ImageNet dataset. We
tested the approach on four datasets collected in Canada, Poland, and the Czech Republic.
The models were trained on differently sized samples ranging from 10 up to 375 ground
plots (including validation data), depending on the study site. We compared the predictive
performance of the CNNs with random forest models (RF) that were trained on traditional
point cloud metrics and found that in most cases, the CNNs performed slightly worse
at small training sizes and slightly better at the maximum number of training samples.
At the maximum number of training samples, the difference in root mean squared error
between observed and predicted AGB of CNNs and RFs ranged from -2 t/ha to 5 t/ha,
and the difference in squared Pearson correlation coefficient ranged from -0.05 to 0.06.
The absolute mean error was 2–6 t/ha larger for the CNNs compared to the RFs. We
investigated whether additional pre-training on synthetic data derived from virtual laser
scanning of simulated forest stands could improve the prediction performance of the CNNs,
which was the case when very few real training samples (10–40, depending on the study
site) were available. For larger training sample sizes, no benefit was observed. While
the 3D CNNs trained on cross section images derived from real data showed promising
results, RF models based on point cloud metrics remain a competitive alternative with
lower computational requirements and faster model training times.

4.1 INTRODUCTION

Forests play an important role in the global carbon cycle, being the main terrestrial carbon
sink (Pan et al., 2011). Deforestation and forest degradation contribute to anthropogenic
carbon emissions, while carbon is sequestered through forest growth and the expansion of
forest areas (Dixon et al., 1994). To effectively monitor forests, and to investigate the effects
of anthropogenic and non-anthropogenic influences on forest status, large-scale data on for-
est structure is required. Airborne laser scanning (ALS) allows to non-destructively obtain
information on the three-dimensional structure of forests over large areas. It is therefore
increasingly used for estimating stocks and changes of forest aboveground biomass (AGB)
(Strîmbu et al., 2023).

In the most commonly applied area-based approach (Næsset, 2002), ground measurements
of AGB are linked to metrics describing the distribution of the spatially co-located laser
scanning returns. Regression models can subsequently be employed for wall-to-wall
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AGB prediction from the ALS data. Both linear models and non-parametric machine
learning methods, such as nearest neighbour interpolation, support vector machines, and
random forest (RF), are frequently applied for relating the point cloud metrics to the
AGB observations (Fassnacht et al., 2014). While many studies have shown that AGB
can be predicted from point cloud metrics (e. g. Bouvier et al., 2015; Sheridan et al., 2015;
Zhao et al., 2009), it remains an open question whether AGB estimates could be further
improved by using information from individual returns, i. e. the xyz-coordinates of the
returns inherent in discrete return ALS data, rather than aggregated point cloud metrics.
Depending on the point density, information about individual trees (e.g. their location,
height, and volume) may be present in the raw point cloud data that is lost when using
aggregated metrics at the plot level. Deep learning algorithms offer the potential to test this
hypothesis without the need to specifically detect the individual trees as done in earlier
studies (e.g. Dalponte et al., 2018; Jucker et al., 2017), as they do not require handcrafted
and pre-extracted features. They can process raw data such as images or point clouds,
thereby learning a latent representation of the data during the model optimization (LeCun
et al., 2015).

Previous studies demonstrated that deep learning on ALS data can be used to classify tree
species, coniferous and deciduous trees, as well as dead trees and snags (Briechle et al., 2021;
Hamraz et al., 2019; Hell et al., 2022), and to estimate forest attributes such as growing stock
volume and AGB (Ayrey & Hayes, 2018; Ayrey et al., 2019; Balazs et al., 2022; Oehmcke
et al., 2022). The applied methods include 2D convolutional neural networks (CNNs) that
are applied on 2D projections of the point clouds (Balazs et al., 2022; Briechle et al., 2021;
Hamraz et al., 2019), 3D CNNs for which the point clouds are binned into a voxel space
(Ayrey & Hayes, 2018; Ayrey et al., 2019; Balazs et al., 2022; Oehmcke et al., 2022), and deep
learning algorithms that take the raw point clouds as input, such as PointNet, KPConv,
3DmFV-Net, or PointCNN (Hell et al., 2022; Oehmcke et al., 2022).

The limiting factor for the development of deep learning applications for inferring forest
attributes from ALS data is the high demand for labelled training data (Hamedianfar et al.,
2022). In the aforementioned studies that predicted forest attributes on a plot level, 1 044–
17 432 plots were used for model training, an additional 225–1 000 plots for model validation
and 225–3 000 plots for model testing. Such large sample sizes are rarely available in forestry
applications. In a review on remote sensing-based forest AGB estimations, Fassnacht et al.
(2014) reported that only 9 of 90 reviewed studies had a sample size between 200 and 500
plots, and 66 of 90 studies had a sample size smaller than 100 plots.

Common techniques for dealing with limited data availability are data augmentation
and transfer learning (Hamedianfar et al., 2022). Data augmentation can increase the
number of training data, for example by flipping, rotating, and cropping images (Shorten
& Khoshgoftaar, 2019), or rotating, scaling, jittering, and point-wise displacement of
point clouds (R. Li et al., 2020). As the neural network learns how to represent the data
in the optimization process, these examples show transformations of the data that are
invariate with respect to the output. However, many of these methods were developed
for classification or object detection but not for regression tasks and may not be directly
applicable for some datasets, for example if the scales in the image are related to the
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response variable (Hwang & Whang, 2022). In transfer learning, models pre-trained on
other data are further trained on a small sample of the target data, reducing the amount of
labelled target data required (Hamedianfar et al., 2022). A lot of training efforts are required
to recognize basic shapes like edges and corners, and these efforts can be transferred across
domains. Transfer is generally more successful the closer the target and the source domain
are, but it has been shown to work even across quite contrasting domain pairs (Niu et al.,
2021). There are many predefined CNN architectures available with weights derived
from training on large image datasets, such as those from the ImageNet database (Deng
et al., 2009; Kattenborn et al., 2021). In contrast, pre-trained models do not yet exist for
point-based deep learning methods for vegetation analysis (Winiwarter et al., 2022).

Pre-trained CNNs have been successfully applied for forestry applications, e.g. Briechle et
al. (2021) used ResNet-18 models with pre-trained ImageNet weights for the classification
of tree species and standing dead trees. However, there is a domain gap between the
ImageNet images and those images that can be derived from laser scanning or other remote
sensing techniques of forest. Accordingly, Fuller et al. (2022) found that pre-training on
satellite images instead of ImageNet images improved the performance of land-cover
classification from satellite images when using a vision transformer architecture. Another
possibility for model pre-training is the use of simulated data (Winiwarter et al., 2022).
Data simulation is a cost- and time-efficient way to generate large amounts of labelled
training data. Luo et al. (2022) used synthetic forest scenes composed of randomly placed
individual tree point clouds to train a deep learning model for tree detection in forest laser
scanning point clouds acquired by an unoccupied aerial vehicle (UAV) and Sun et al. (2022)
trained a deep learning model on synthetic images generated by Generative Adversarial
Networks to segment individual tree crowns from ALS canopy height models.

In this study, we investigated whether deep learning can be applied to predict AGB from
point clouds when the size of the training dataset is rather small. To compensate for the
limited amount of training data, we used a transfer learning approach. We employed a
CNN architecture developed by Solovyev et al. (2022) that is fed with sequences of 2D
frames. Solovyev et al. (2022) created 3D versions of popular 2D CNNs that have been
pre-trained on ImageNET images. These 3D CNNs have been successfully used to detect
stalled brain capillaries in stacks of mouse brain images. Here, we apply this method to
predict AGB from ALS tomography, i.e. sequences of images derived from vertical cross
sections through ALS point clouds. Since the cross section images look quite different
from the ImageNet images, we tested whether implementing an additional pre-training
step with cross section images derived from simulated laser scanning point clouds can
help in the domain transfer and increase prediction performance. These synthetic data
were generated by combining virtual forest stands and a laser scanning simulator. The
performance of the 3D CNNs was evaluated based on datasets obtained from four study
sites, using 10–375 ground plots for training and validation. As a benchmark of model
performance, AGB was also predicted from point cloud metrics using a random forest
model. The research questions we addressed in this study were:
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1. To what extent can AGB of forest stands be estimated from stacked cross section
images derived from ALS point clouds using a 3D version of the VGG16 CNN
pre-trained on the ImageNet dataset?

2. How does additional pre-training on synthetic data influence prediction performance
of the CNN?

4.2 MATERIAL AND METHODS

4.2.1 Study sites

We used ALS point clouds and corresponding forest inventory data from four sites that
were collected 1) in the Petawawa Research Forest (PRF) in Ontario, Canada, 2) in the
Milicz forest district (MF) in the south-west of Poland, 3) in the Silesian Beskids (SB) in
the east of the Czech Republic, and 4) in the DendroNET sites (DN) that are spread across
the Czech Republic. Table 4.1 provides an overview on ground data including main tree
species and ALS data acquisitions at the four sites. For MF, individual tree information
(species, diameter at breast height (D1.3), and tree height) was available and AGB was
estimated using the same models as for the synthetic data (see next section). For the other
sites, we used the AGB reference values that were provided by the original data owners.

PRF is a remote sensing supersite that covers approximately 10 000 ha of mixed-wood
forests. The open-access data of PRF have been described in detail by White et al. (2019).
The stand density in the 223 circular ground plots ranged from 32–13 024 trees/ha, with a
mean value of 2 500 trees/ha (Figure 4.1). AGB ranged from 1–529 t/ha, with a mean value
of 158 t/ha.

In MF, 70% of the 500 circular ground plots were located in pure stands of Pinus sylvestris L.
(Stereńczak et al., 2018). The stand density ranged from 20–3 957 trees/ha and AGB ranged
from 15-368 t/ha, with mean values of 952 trees/ha and 160 t/ha, respectively.

For SB, ground data of 130 plots were available. Tree data were collected in nested circular
plots. Trees with a D1.3 > 7 cm were sampled within a radius of 3 m, whereas trees with a
D1.3 > 12 cm were sampled within a radius of 12.62 m. Information on stand density was
not available. The average AGB was 198 t/ha, ranging from 2–583 t/ha. More information
on the SB data can be found in Brovkina et al. (2022).

The 47 DN plots were mostly located in pure forest stands. Ground data were collected in
square plots of 30 m× 30 m. ALS data were available for 20 m× 20 m plots, therefore plot
AGB values have been estimated from trees within these smaller plots based on individual
tree positions. The stand density (measured in 30 m× 30 m) ranged from 89–1 600 trees/ha,
with a mean value of 846 trees/ha. AGB ranged from 1–528 t/ha, with a mean value of
268 t/ha.
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4.2.2 Synthetic data

Four datasets of synthetic forest inventory information and corresponding simulated ALS
point clouds were generated, one for each study site. Forest stand compositions were
simulated using Forest Factory 2.0 (Henniger et al., 2023), a software that makes use of the
individual-based forest gap model FORMIND (Köhler & Huth, 1998). The original Forest
Factory 2.0 version is calibrated to generate square forest plots of 20 m× 20 m. Because
the ground plots of the real data exceeded this size, we used a modified version of Forest
Factory 2.0 that enables to generate forest plots of 30 m× 30 m. The virtual forest stands
were composed of Pinus sylvestris L., Picea abies (L.) H. Karst, Fagus sylvatica L., and Quercus
spp. L.. Tree biomass was estimated using species-specific allometric models of the German
National Forest Inventory that are implemented in the R package "rBDAT" (Vonderach
et al., 2021). By default, Forest Factory 2.0 generates many more small AGB plots than large
AGB plots (Schäfer et al., 2023b). To avoid effects of unbalanced training data, we sought to
simulate data with AGB values equally distributed over the range of the real datasets. We
therefore simulated a large number of forest stands (4 565 200). Of these virtual stands, all
stands with an AGB of 0–600 t/ha were grouped into 12 bins, each bin with an AGB range
of 50 t/ha. We then randomly sampled 200 stands per bin, resulting in a selection of 2 400
forest stands in total. Forest Factory 2.0 randomly assigns tree locations within a forest
stand, which means that trees can be located unrealistically close together. We therefore
implemented a workflow to generate new tree locations: For each forest stand, we created
a grid of possible tree locations with an Euclidean distance of 1 cm between the locations
and a minimum distance of 20 cm to the plot borders. We randomly selected one of these
possible locations and assigned it to the first tree in the plot. All locations that were within
the crown radius of that tree were then excluded from the remaining possible locations.
This allowed for partial overlaps of trees, as the stem of the second tree could be placed
directly at the edge of the first tree’s crown. This procedure was continued for all trees
within the plot.

Laser scanning of the virtual stands was simulated with the open-source laser scanning
simulation framework HELIOS++ version 1.1.2 (Winiwarter et al., 2022). 3D representations
of the virtual forest stands were created using tree point clouds that were extracted from
real laser scanning data of temperate forests in the south-west of Germany. These data
were acquired by a RIEGL miniVUX-1UAV mounted on a UAV during leaf-on conditions.
The dataset of tree point clouds and corresponding tree metrics has been published by
Weiser et al. (2022b) and described in detail by Weiser et al. (2022a). For each tree in the
virtual forest stands, a tree point cloud of matching tree species and a tree height within
±4 m of the virtual tree’s height was randomly selected and placed at the location of the
virtual tree. If no tree point cloud was available in the specified height range, the one with
the smallest difference in height was selected. The tree point clouds were randomly rotated
around the Z-axis and uniformly scaled in all three dimensions such that the height of the
point cloud matched the height of the virtual tree. All points outside of the 30 m× 30 m
stands were removed. Laser scanning was simulated for scenes of 90 m× 90 m composed
of nine virtual forest stands. The forest point clouds were voxelized with a voxel size of
3 cm. Filled voxels (with at least one point) were set to be opaque, and empty voxels were

91



4 A G B P R E D I C T I O N F R O M A L S P O I N T C L O U D T O M O G R A P H Y

transparent for the simulation (following Weiser et al., 2021). The ground was represented
by a horizontal plane. Airborne laser scanning of the virtual forest scenes was simulated
according to the acquisition settings of the real campaigns (Table 4.1), i.e. four different
ALS simulations were conducted over the same scenes.

The virtual forest stands and simulated ALS point clouds were cropped to match the real
ground plots (circular plots with radii of 12.62 m or 14.1 m, and square plots with side
lengths of 20 m, depending on the dataset used, see Table 4.1). When there was no tree
located within the cropped plot area, the synthetic forest stand was removed from the
dataset. This resulted in 2 379 synthetic plots for PRF, 2 362 for SB, and 2 340 for DN. Due
to an error in the sampling of the virtual forest stands, the dataset for MF consisted of
2 426 synthetic plots (of which 2 362 resulted from the sampling with regards to a uniform
AGB distribution). Since the distribution was barely influenced by the additional 64 plots,
the sampling was not repeated. Plot AGB was calculated as the sum of AGB of all trees
within a plot divided by the plot area. The characteristics of the synthetic forest stands
differed slightly depending on plot size and shape. The stand density ranged from 16–9414
trees/ha and the AGB ranged from 1–1 028 t/ha, with mean values of 377 trees/ha and
298 t/ha, respectively (Figure 4.1).

4.2.3 Cross section images

In order to feed point cloud data into a CNN, a rasterisation is required. Therefore, vertical
cross section images were extracted from real and simulated ALS point clouds. To that end,
the point clouds were height normalized using the "normalize_height" function of the R
package "lidR" (Roussel & Auty, 2021; Roussel et al., 2020), and cut into 1 m thick vertical
non-overlapping slices, both in x-direction and in y-direction. The slices were 45 m high
(corresponding to the tallest trees) and the width corresponded to the respective plot extent
(20–28.2 m). A binary image of 128 (width) × 256 (height) pixels was generated from each
slice. Pixel values were set to black (0) if the volume represented by the pixel contained
at least one ALS return, and to white (1) otherwise. Preliminary experiments on the MF
dataset revealed that using RGB-images with a height-related colour map (viridis) did not
improve the results. Figure 4.2 shows exemplary cross section images for one MF ground
plot.

4.2.4 Experimental set-up

All experiments were conducted individually for each of the four study sites. The real data
were split into 25% test and 75% training data using a stratified sampling approach, so that
both test and training datasets covered the full range of AGB values of the respective study
site. This resulted in 56, 125, 33, and 12 test plots for PRF, MF, SB, and DN, respectively.
The remaining plots were used for model training and validation.
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Figure 4.1: Stand density and aboveground biomass (AGB) of the real and simulated
forest plots for the four study areas of Petawawa Research Forest (PRF), Milicz Forest
(MF), Silesian Beskids (SB), and DendroNET sites (DN). Mean values are indicated
by the dashed vertical lines. Information on stand density was not available for the
Silesian Beskids (SB).

We evaluated the performance of CNNs trained only on cross sections derived from real
data, compared to CNNs pre-trained on cross sections derived from synthetic data. As a
benchmark, we used random forest models (RFs) (Breiman, 2001) with point cloud metrics
as AGB predictors. Both CNNs and RFs were trained on the entire training datasets of each
study site and, additionally, on randomly selected subsamples of different sizes. The size
ranged from 10–100 (in increments of 10) training plots for PRF and MF, 10–90 plots for
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Figure 4.2: Generation of cross section images from an ALS point cloud of a ground
plot located in the Milicz Forest. For better visualisation, the black pixels in the cross
section images have been enlarged compared to the actual images and only a selection
of images is shown. The vertical and horizontal black lines indicate the borders of the
transects extracted from each plot point cloud.

SB, and 10–30 plots for DN (due to the different numbers of available plots for each study
site). CNNs and RFs were furthermore trained on synthetic data only. For each sample size,
training data sampling and subsequent model training were repeated 10 times. For the
CNNs, the training datasets were further randomly split into 80% actual training data and
20% validation data, used for optimizing the model hyperparameters. Model performance
was assessed using the root mean squared error (RMSE), the squared Pearson correlation
coefficient (r2) and, as a measure of systematic error, the mean error (ME) of observed and
predicted AGB values for the test datasets.

The CNNs were conducted on a system with an NVIDIA RTX A4000 GPU, 16 GB VRAM,
256 GB RAM, and an Intel® Xeon(R) Silver 4210R CPU @ 2.40GHz × 40. The RFs were
conducted on a system with 256 GB RAM, an Intel® Xeon(R) CPU E5-2630 v3 @ 2.40GHz ×
16, and no dedicated GPU. We did not systematically assess the run time of the models.
CNN training took between 4 minutes and 6 hours, depending on the training sample size
and the number of epochs before early stopping. Because of the large training data size,
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pre-training on the synthetic data took more than a day. In contrast, the RF training took
only a few seconds for each run.

4.2.5 Neural network architecture

The backbone of our method is a VGG16 2D CNN (Simonyan & Zisserman, 2015) pre-
trained on the ImageNet dataset (Deng et al., 2009). In order to apply it on 3D data, we
used a re-designed architecture by Solovyev et al. (2022) in which all 2D convolutions are
replaced by 3D convolutions. Thereby, the convolutions are not only applied on a single
image but on a stack of images. The initial weights of the 3D kernel were transferred from
the weights of the pre-trained VGG16. We fed the cross sections, ordered by depth, in both
x- and y-directions separately through the CNN and concatenated the two feature vectors
resulting from the two directions. We then passed the concatenated vector through a dense
layer to obtain a scalar AGB value. The network architecture is shown in Figure 4.3. For
optimisation of the weights, we used the Adam algorithm (Kingma & Ba, 2017), employing
an exponentially decaying learning rate (initial learning rate = 10−7, decay steps = 100 000,
decay rate = 0.96, staircase = TRUE). Because of the limited GPU memory, the batch size
was set to 1. Training was carried out for up to 600 epochs using the mean squared error
as loss metric. After each epoch, the validation RMSE was evaluated and early stopping
was applied if it did not decline over 20 consecutive epochs. For the pre-training on the
synthetic data, the same neural network architecture was first applied on cross section
images derived from the simulated point clouds. The weights of the best model according
to the validation on the synthetic dataset were then used as initial weights in the further
training on the real data cross section images.

4.2.6 Random forest models

For the benchmark models, point cloud metrics were derived from all returns, first returns,
and all returns with a normalized height > 2 m. We used a subset of the pre-defined
standard metrics from the "cloud_metrics" function implemented in the R package "lidR"
(Roussel et al., 2020), precisely: the mean and the maximum of return heights, the standard
deviation, the entropy, the kurtosis, and the skewness of the height distribution, the
percentage of returns with a height > 2 m, the percentage of returns above the mean height,
the percentage of the 1st–5th returns, the percentage of ground returns, the 5th to 95th
height percentiles in increments of 5%, the cumulative percentage of returns in each of nine
equally spaced height layers, and the total number of returns.

The point cloud metrics served as predictors in a random forest regression. The function
"tuneRF" of the "randomForest" package (Liaw & Wiener, 2002) in R was employed to
search for the optimal number of predictors to sample at each split. The number of trees
was set to 500.
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Figure 4.3: Neural network architecture. For a single data point, a block of images in
x- and y-directions are fed through the 3D-VGG16 separately, but with shared weights
between the networks. The output is flattened and concatenated, before being fed
through a dense layer, further reducing the dimensionality to 1, i.e. the scalar AGB
value as the regression target. Initial weights were always derived from pre-training
on the ImageNet database. In case of the "CNNs pre-trained on synthetic data", an
additional pre-training step on synthetic forest data was performed.

4.3 RESULTS

4.3.1 Model performance of CNNs compared to random forest models

The difference between CNN and RF performance varied between the study sites. Perfor-
mance metrics were aggregated by taking the median over 10 repetitions, for each of which
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the training/test split was randomized. Figure 4.4 shows the performance metrics for the
different models and training sample sizes (tables of the accuracy metrics can be found
in the Appendix, Chapter 4.7). When using the maximum number of training samples,
differences in prediction performance and systematic error between CNNs and RFs were
small. The RMSE was 20–71 t/ha for RFs and 24–70 t/ha for CNNs, and r2 was 0.77–0.87
for RFs and 0.78–0.88 for CNNs, depending on the study site. The ME of the CNNs ranged
from -23 t/ha for DN (indicating an overprediction of AGB) to +18 t/ha for SB (indicating
an underprediction of AGB), and from -21 t/ha to +12 t/ha when using RFs. The absolute
ME of the RFs was 2–6 t/ha smaller than of the CNNs. For PRF, SB, and DN, the CNNs
performed similarly or slightly better than the RFs with regards to RMSE and r2, whereas
they performed slightly worse for MF.

The prediction performance of both CNNs and RFs depended on the number of samples
that were used for model training. When training sample sizes were small, the CNNs had
– in most cases – a slightly smaller prediction performance than RFs, but the predictive
performance of CNNs and RFs tended to converge as the training sample size increased.
For PRF and MF, the RFs performed better than the CNNs when trained on 10–100 samples.
The difference in model performance was more pronounced in r2 than in RMSE. For both
model types, the systematic error was rather small, especially for MF. Only at a training
sample size of 10, the CNNs showed a much larger mean error than the RFs did.

For SB, the RFs outperformed the CNNs when trained on 10–20 samples. At larger sample
sizes, the difference in prediction performance between both model types was small. At
some sample sizes, the CNNs resulted in a higher prediction performance, at other sample
sizes, the RF predictions were better. The systematic error was in most cases slightly smaller
for the RFs than for the CNNs.

The results for the DN dataset differed the most from the other study sites. Because of the
small number of ground plots, models could only be trained on 10–35 samples (including
validation data). The RMSE of the CNNs and the RFs were similar for sample sizes > 10,
while it was slightly higher for the CNNs at a sample size of 10. The systematic error of the
CNNs was much smaller than of the RFs for sample sizes of 10–20 (ME of -3 to -2 t/ha for
the CNNs, -23 to -21 t/ha for the RFs), and similar for sample sizes of 30–35. With regard
to the r2, CNNs did not reach the prediction performance of RFs when trained on 10–20
samples, but outperformed RFs when trained on 30 and 35 samples.

4.3.2 Pre-training on synthetic data

Using CNNs that were pre-trained on synthetic data only improved the prediction per-
formance when the number of real training samples was very small (Figure 4.4, blue and
red cross marks). For PRF and SB, the performance of the CNNs in terms of RMSE and
r2 only improved by pre-training when no more than 10 and 20 samples were used for
model training, respectively. A positive effect of pre-training on the systematic error could
be observed when using 10–30 training samples for PRF, and 10–40 samples for MF. For
SB, RMSE and r2 of the predictions could be improved by pre-training on synthetic data
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for 10–20 and 10–30 training samples, respectively. Pre-training could only reduce the
systematic error at a sample size of 10.

The results for MF, PRF, and SB datasets showed that pre-training often not only failed to
improve the models, but rather substantially worsened them. At larger sample sizes, pre-
training strongly increased the RMSE for PRF, decreased r2 for PRF and MF, and increased
the underprediction of AGB for SB. The most positive effect of pre-training on synthetic
data was observed for the DN dataset. Here, pre-training decreased the RMSE by 4–29 t/ha
and increased r2 by 0.13–0.28 for training sample sizes of 10–30 and 10–20, respectively.
For larger training sample sizes, the pre-trained CNNs performed slightly worse than the
non-pre-trained models, but the differences were small (0.5 t/ha for RMSE, 0.02-0.03 for
r2). In contrast, pre-training strongly increased the overprediction of the CNNs for 10–30
training samples.

When models were trained only on synthetic data, RFs performed better than the CNNs
for PRF and SB (Figure 4.4, values for 0 real training samples). For MF, CNNs and RFs
performed similarly in terms of RMSE, while r2 was better for the RFs and the ME was
better for the CNNs. For DN, the CNNs outperformed the RFs when no real data were
used for model training.

4.3.3 Model stability

Figure 4.5 shows scatter plots of predicted and observed AGB of the four study sites
resulting from the best and worst models for each model type (CNN pre-trained on
ImageNet data, CNN pre-trained on synthetic forest data, and RF) and the minimum (10)
and maximum (dependent on the study site) number of training samples. Differences in
the prediction performance between the best and the worst of the randomized repetitions
of models indicate how the models were influenced by the selection of training data and
random processes within the models. The samples that were used for model training
were randomly sampled from the training datasets. In case of the CNNs (both ImageNet
pre-trained and synthetic forest pre-trained), 20% of these data were further removed to
serve as validation data. Hence, when 10 training samples were available, eight were used
as actual training samples and two as validation samples. When comparing models trained
and validated on 10 samples, it is striking that in case of the CNNs that were not pre-trained
on synthetic data, the worst models resulted in a very narrow range of predicted AGB
values, albeit not the mean value of the training data AGB (Figure 4.5, top left panel of
each study site: red markers appearing in an approximate vertical line). For example, for
PRF, the worst CNN trained on 10 samples predicted AGB values of 43–66 t/ha while the
reference was in the range of 1–399 t/ha. This effect did not occur for the largest sample
size nor for CNNs that were pre-trained on synthetic data. We could not find a direct
relation between prediction range and training data samples, as the AGB range of the
training data of these models was much wider than the predicted AGB. However, using
only two samples for validation could also have negatively affected model performance if
validation accuracy lead to stopping model training too early.
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Figure 4.4: Median root mean squared error (RMSE), mean error (ME) and squared
Pearson correlation coefficient (r2) of the AGB predictions for different model types
and sample sizes. Training sample count included 20% validation data for the CNNs.
Model training and testing was repeated 10 times for each training sample size, except
for the CNNs that were only trained on synthetic data. For these models, model
training and testing was not repeated due to the long computing times.

In most cases, the difference in performance between best and worst prediction was highest
for the ImageNet pre-trained CNNs and smallest for the synthetic forest pre-trained CNNs.
Accordingly, pre-training on synthetic data had a stabilizing effect on the CNNs. The
positive effect of the pre-training diminishes with increasing training sample size.

4.4 DISCUSSION

In our study, CNNs using images of ALS point cloud cross sections performed similar to
RFs using traditional point cloud metrics in the prediction of AGB on plot level, but there
were differences in model performance between study sites and depending on how many
samples were used for model training. In an attempt to identify patterns of when CNNs
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Figure 4.5: Predicted and observed AGB of the ground plots in the test datasets of each
study site. Results are shown for models trained on 10 real training samples and on
the maximum number of available training samples. Model training and prediction
were repeated 10 times for each model type and training sample size, resulting in 10
predictions per ground observation. The training datasets consisting of 10 samples
were randomly selected from the total training data in each run. Only the best and the
worst predictions (in terms of RMSE) of the 10 model iterations are depicted.

100



4 . 4 D I S C U S S I O N

CNN pre-trained 
on ImageNet data

CNN pre-trained 
on ImageNet data

CNN pre-trained 
on synthetic data RF

10 real 
trainin

g sam
ple

s
35 real 

trainin
g sam

ple
s

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0

100

200

300

400

0

100

200

300

400

Predicted biomass [t/ha]

O
bs

er
ve

d 
bi

om
as

s 
[t/

ha
]

DendroNET

CNN pre-trained 
on synthetic data RF

10 real 
trainin

g sam
ple

s
375 rea

l 
trainin

g sam
ple

s

100 200 300 100 200 300 100 200 300

100

200

300

100

200

300

Predicted biomass [t/ha]

O
bs

er
ve

d 
bi

om
as

s 
[t/

ha
]

Milicz Forest

r2: 0.80|0.85
ME: 53|-18 t/ha

RMSE: 84|58 t/ha

r2: 0.50|0.77
ME: 38|-1 t/ha

RMSE: 109|73 t/ha

r2: 0.32|0.89
ME: 59|-17 t/ha

RMSE: 120|49 t/ha

r2: 0.84|0.85
ME: -27|-20 t/ha

RMSE: 66|62 t/ha

r2: 0.81|0.86
ME: -20|-19 t/ha

RMSE: 65|60 t/ha

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0

100

200

300

400

0

100

200

300

400

Predicted biomass [t/ha]

O
bs

er
ve

d 
bi

om
as

s 
[t/

ha
]

DendroNET

r2: 0.22|0.58
ME: 61|-7 t/ha

RMSE: 128|79 t/ha

r2: 0.47|0.67
ME: 55|15 t/ha

RMSE: 73|35 t/ha

RMSE: 53|33 t/ha
ME: -25|-4 t/ha
r2: 0.29|0.70

RMSE: 41|36 t/ha
ME: 17|-7 t/ha
r2: 0.56|0.61

r2: 0.78|0.82
ME: 4|1 t/ha

RMSE: 26|24 t/ha

r2: 0.75|0.77
ME: 4|4 t/ha

RMSE: 27|26 t/ha

r2: 0.85|0.86
ME: 3|3 t/ha

RMSE: 26|26 t/ha

best of ten models
worst of ten models

Figure 4.5 (cont.): Predicted and observed AGB of the ground plots in the test datasets
of each study site. Results are shown for models trained on 10 real training samples
and on the maximum number of available training samples. Model training and
prediction were repeated 10 times for each model type and training sample size,
resulting in 10 predictions per ground observation. The training datasets consisting
of 10 samples were randomly selected from the total training data in each run. Only
the best and the worst predictions (in terms of RMSE) of the 10 model iterations are
depicted.
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performed substantially better or worse than RFs, we visually examined point clouds
of some of the test plots. However, there were no obvious connections of performance
difference and forest structure type, e.g. clearings, stand density, and subcanopy layers.

Regarding the use of pre-trained CNNs, our results showed that the use of simulated
data for additional pre-training (on top of the ImageNet weights) did not improve model
performance with the exception of cases of extremely limited training data availability. In
all other cases, performance was actually decreased by the addition of the pre-training
step with simulated data, suggesting that the CNN finds patterns in the synthetic data
that do not exist in a similar way in the real data. This effect may be caused by either the
synthetic forest stands or by the simulation of laser scanning. The simulated forest stands
that were selected for the synthetic training datasets differ in their composition from the
real forest stands at our study sites: They have a different species composition and they
have on average larger AGB values but a smaller number of trees per hectare than the real
stands (cf. Figure 4.1). In addition, they lack understorey elements, and the crowns of
neighbouring trees may overlap unrealistically due to our simple approach of assigning tree
positions. It should be tested whether synthetic datasets generated using alternative forest
growth simulators, such as SILVA (Pretzsch et al., 2002), which incorporate competition
between neighbouring trees at the individual tree level, output actual realistic tree positions,
and allow the simulation of different forest management strategies, would improve the
performance of the pre-trained CNNs. The differences between simulated and real pulse
density and planar point density (cf. Table 4.1) indicate that our simulations could not
exactly replicate the real laser scanning of the four study sites with our simulations, which
can in part be explained by the missing understorey. In a previous study, we also observed
that the height distribution of the simulated laser scanning returns can differ substantially
from the real one, depending on the stand characteristics (Schäfer et al., 2023a). Other
studies using HELIOS++ for virtual laser scanning have found that the quality of the
generated point cloud is also subject to the representation of the 3D scene and can be
improved either by precise fine-tuning of the voxelisation model (Weiser et al., 2021) or by
the use of procedurally generated, highly-detailed mesh models of trees (Esmorís et al.,
2024). In the latter study, a successful transfer of a deep-learning model trained on purely
synthetic data to a real dataset was shown for the case of leaf-wood separation. We conclude
that more effort is needed to fine-tune the scene model (e.g. use a different representation,
such as high-detail mesh models of trees) and the parameters for the HELIOS++ simulations
to make the resulting point clouds more realistic. To investigate whether the poor results
for the pre-training on synthetic data are more affected by the forest stand simulations or
the laser scanning simulations, two potential pathways exist: 1) the use of virtual laser
scanning based on real forest inventory data, thereby excluding effects from the forest
stand synthetization, and 2) the use of real laser scanning point clouds of trees stitched
together based on the compositions given from the synthetic forest stands, excluding the
laser scanning simulation. For the latter case, the flight- and sensor-parameters of the
available tree point cloud database would have to match the ones of the real training and
test data, which was not the case in our study.

To precisely evaluate model performance, accurate reference values (i.e. AGB) are necessary.
AGB values in this study were calculated using allometric models, which have been shown
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to contain significant uncertainty (Vorster et al., 2020). Additionally, tree crowns reaching
out of or into the ground plots contribute to errors in the reference AGB (Knapp et al., 2021),
as the plot AGB is estimated as the total AGB of all trees with a stem position within the
plot. While these sources of uncertainty can only be removed by extensive and potentially
destructive fieldwork with real data, the use of 3D mesh models for synthetic data allows
the accurate quantification of wood volume and thus the derivation of AGB estimates that
are not affected by allometric errors. Synthetic data also include information on tree parts
exceeding or reaching into the plot, making it easy to precisely quantify the amount of
AGB that is within the plot area. Accounting for these boundary effects in real data is much
more difficult as it requires detailed tree information and is subject to uncertainties due
to assumptions about tree shape and crown projection area that need to be made (Kleinn
et al., 2020).

In a previous study on ALS-based AGB predictions that solely investigated RFs and their
response to simulated training data using the same real-world ALS and ground data, we
also observed that results differed substantially between the four study sites (Schäfer et al.,
2023a). We note that these differences partially result from different AGB distributions,
which are not represented equally well by the simulated data. Most substantially, in the
current study, the mean AGB value of the simulated data of DN was much closer to the
one of the real data than for the other study sites (cf. Figure 4.1). This was also the dataset
for which pre-training of the CNNs on synthetic data was most successful.

While the metrics used in the RF models usually describe the vertical distribution of the
returns, and the horizontal distribution is less frequently taken into account (Bouvier et al.,
2015), the CNNs are able to consider both vertical and horizontal distributions in the
convolutions. Limited data augmentation was carried out to achieve larger training sets
but could be exploited more in the future, e.g. by mirroring images or by extracting cross
sections in other directions. As this would not solve any issues related to the domain of
AGB values present in the training data, the effect of such efforts may, however, be limited.

Although the predictive performance of CNNs and RFs was similar, there are several
reasons to use RFs rather than CNNs, both in terms of data pre-processing and the modeling
itself. Generating images of point cloud cross sections is much more complicated, takes
more time and needs more disk space than extracting point cloud metrics. In addition,
CNNs require a high performance GPU to satisfy the computational demands and still
take much longer to train than RFs. A drawback of using CNNs is also the "black box"
characteristic of the approach that makes it more difficult to interpret the results, e.g. to
explain why the pre-trained CNNs sometimes predicted negative AGB values for one plot
in PRF (cf. Figure 4.5).

Other studies comparing deep learning methods to traditional machine learning models
for AGB predictions from ALS data often found that deep learning results in higher pre-
diction performance. Ayrey and Hayes (2018) adapted several 2D CNNs (LeNet, AlexNet,
GoogLenet, Inception-V3, and ResNet-50) to run on 3D voxel representations of the ALS
point clouds and compared the model performance to RF and linear mixed models trained
on point cloud metrics. In their study, all deep learning models except for AlexNet resulted
in smaller RMSE but larger or similar systematic error compared to RF and linear mixed
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models. Oehmcke et al. (2022) applied PointNet, the kernel point convolution (KPConv)
approach, and the Minkowski CNN in comparison to linear regression and power re-
gression models for ALS-based AGB predictions and found that their adaptations of the
Minkowski CNN and KPConv clearly surpassed the linear regression and power regres-
sion, while PointNet performed worse. When comparing RF to an Octree CNN-HRNet
and a Dynamic Graph CNN, Seely et al. (2023) showed that AGB predictions with RF
had a slightly smaller R2 and a slightly larger RMSE than the deep learning predictions.
In contrast to our study, Ayrey and Hayes (2018) used 15 373 samples for model training
and 1 000 samples for validation, Oehmcke et al. (2022) used 4 271 and 919 samples, and
Seely et al. (2023) used 1 635 and 350, respectively. Compared to our sample sizes of up
to 35–375 plots (including 20% validation samples), these datasets are much better suited
for deep learning approaches. We expect that the performance of the AGB prediction on
cross section images with CNNs could be improved when using more training samples.
While we hypothesized that synthetic data could be used to extend training datasets when
limited data are available, our results did not support that claim.

Finally, we see potential for future research in multiple directions:

• Improvement of a) the synthetic forest stand composition and the positions of the
individual trees within a plot, b) the 3D models of individual trees, and c) the laser
scanning simulation parameters.

• Systematic investigations on how the CNN performance is affected by forest structure
as well as by ground plot and point cloud characteristics (e.g. stand density, tree
species, plot size and shape, point density, and penetration into subcanopy layers).

• Experiments with hyperparameter tuning and different deep learning network ar-
chitectures for which pre-trained ImageNet weights are available (e.g. ResNet,
EfficientNet, DenseNet), as well as investigation of the effect of these pre-training
efforts by running models on randomly initialized weights using the same model
architecture for comparison.

• Additional data augmentation by rotation, mirroring, and random jittering of points,
as shown in previous studies using CNNs for point cloud tasks (Briechle et al., 2021;
H. Li et al., 2020; Oehmcke et al., 2022).

4.5 CONCLUSION

This study demonstrated that CNNs can predict AGB from cross section images and
achieve similar accuracies as RFs trained on traditional point cloud metrics. When the
maximum number of available training samples was used, the CNN performance slightly
surpassed the performance of the RFs for three of the four study sites, indicating that the
CNN performance could be further improved by increasing the training sample size. We
investigated whether the need of deep learning models for large amounts of training data
could be satisfied by data simulations but found that pre-training on synthetic data did
only improve model performance when very little training data were available. Notably,
pre-training on synthetic data even decreased model performance at larger training sample
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sizes. Since the use of simulated data has been shown to provide a benefit in other
applications, even in the domain of forestry remote sensing, there is reason to believe
that a gap between real and simulated data needs to be closed before such transfer can be
successful for our use-case. For the time being, RF remains a competitive alternative to
data-hungry deep learning models.
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4.7 APPENDIX

Table 4.2: Model accuracies for DendroNET sites (DN). N is the number of real training
samples used for model training, RMSE is the median root mean squared error, ME is
the median mean error, and r2 is the median squared Pearson correlation coefficient.
A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 93.72 -2.24 0.56
CNN pre-trained on ImageNet data 20 74.08 -2.86 0.71
CNN pre-trained on ImageNet data 30 68.31 -21.08 0.87
CNN pre-trained on ImageNet data 35 63.87 -22.58 0.88
CNN pre-trained on synthetic data 0 97.3 70.4 0.78
CNN pre-trained on synthetic data 10 65.01 -17.12 0.84
CNN pre-trained on synthetic data 20 66.54 -21.13 0.84
CNN pre-trained on synthetic data 30 64.65 -27.11 0.85
CNN pre-trained on synthetic data 35 64.37 -21.65 0.85
RF trained on real data 10 88.4 -11.32 0.66
RF trained on real data 20 74.05 -28.69 0.77
RF trained on real data 30 67.96 -20.27 0.8
RF trained on real data 35 63.64 -20.64 0.83
RF trained on syntetic data 0 128.92 99.71 0.58
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Table 4.3: Model accuracies for Petawawa Research Forest (PRF). N is the number of
real training samples used for model training, RMSE is the median root mean squared
error, ME is the median mean error, and r2 is the median squared Pearson correlation
coefficient. A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 82.82 25.97 0.39
CNN pre-trained on ImageNet data 20 54.41 6.76 0.73
CNN pre-trained on ImageNet data 30 56.53 9.64 0.68
CNN pre-trained on ImageNet data 40 45.04 0.30 0.78
CNN pre-trained on ImageNet data 50 41.06 -1.84 0.80
CNN pre-trained on ImageNet data 60 38.94 0.75 0.83
CNN pre-trained on ImageNet data 70 38.76 2.34 0.83
CNN pre-trained on ImageNet data 80 39.46 5.52 0.82
CNN pre-trained on ImageNet data 90 37.00 1.46 0.84
CNN pre-trained on ImageNet data 100 39.30 0.52 0.82
CNN pre-trained on ImageNet data 167 34.62 8.90 0.87
CNN pre-trained on synthetic data 0 108.00 89.53 0.56
CNN pre-trained on synthetic data 10 60.65 25.35 0.60
CNN pre-trained on synthetic data 20 54.80 4.75 0.65
CNN pre-trained on synthetic data 30 55.30 5.06 0.64
CNN pre-trained on synthetic data 40 53.05 4.38 0.67
CNN pre-trained on synthetic data 50 54.34 1.80 0.67
CNN pre-trained on synthetic data 60 51.02 2.85 0.71
CNN pre-trained on synthetic data 70 49.65 6.74 0.72
CNN pre-trained on synthetic data 80 50.78 8.18 0.71
CNN pre-trained on synthetic data 90 49.30 8.00 0.72
CNN pre-trained on synthetic data 100 48.25 5.95 0.73
CNN pre-trained on synthetic data 167 45.90 11.15 0.77
RF trained on real data 10 62.50 6.74 0.71
RF trained on real data 20 50.20 9.54 0.76
RF trained on real data 30 42.84 6.19 0.81
RF trained on real data 40 39.50 5.80 0.83
RF trained on real data 50 37.65 6.76 0.85
RF trained on real data 60 36.17 5.79 0.85
RF trained on real data 70 35.86 5.60 0.86
RF trained on real data 80 35.28 6.39 0.86
RF trained on real data 90 35.74 5.01 0.85
RF trained on real data 100 35.59 6.47 0.86
RF trained on real data 167 36.61 7.13 0.85
RF trained on syntetic data 0 77.70 59.60 0.71
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Table 4.4: Model accuracies for Milicz Forest (MF). N is the number of real training
samples used for model training, RMSE is the median root mean squared error, ME is
the median mean error, and r2 is the median squared Pearson correlation coefficient.
A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 44.42 13.22 0.59
CNN pre-trained on ImageNet data 20 36.21 8.28 0.65
CNN pre-trained on ImageNet data 30 32.42 6.43 0.68
CNN pre-trained on ImageNet data 40 30.44 4.21 0.71
CNN pre-trained on ImageNet data 50 29.44 2.20 0.74
CNN pre-trained on ImageNet data 60 27.74 2.52 0.75
CNN pre-trained on ImageNet data 70 26.87 1.99 0.77
CNN pre-trained on ImageNet data 80 25.94 -0.48 0.78
CNN pre-trained on ImageNet data 90 26.19 -0.02 0.78
CNN pre-trained on ImageNet data 100 26.61 0.42 0.78
CNN pre-trained on ImageNet data 375 24.48 2.63 0.81
CNN pre-trained on synthetic data 0 38.10 -10.41 0.57
CNN pre-trained on synthetic data 10 37.04 -2.76 0.58
CNN pre-trained on synthetic data 20 33.82 -0.37 0.65
CNN pre-trained on synthetic data 30 33.35 -0.29 0.64
CNN pre-trained on synthetic data 40 32.67 2.23 0.65
CNN pre-trained on synthetic data 50 31.59 1.74 0.68
CNN pre-trained on synthetic data 60 31.40 1.83 0.69
CNN pre-trained on synthetic data 70 29.91 -1.32 0.71
CNN pre-trained on synthetic data 80 29.15 -1.60 0.73
CNN pre-trained on synthetic data 90 29.31 0.82 0.72
CNN pre-trained on synthetic data 100 29.31 0.61 0.73
CNN pre-trained on synthetic data 375 26.91 3.67 0.77
RF trained on real data 10 41.59 3.33 0.63
RF trained on real data 20 33.54 3.35 0.69
RF trained on real data 30 28.79 4.21 0.75
RF trained on real data 40 26.96 2.95 0.77
RF trained on real data 50 25.94 3.22 0.79
RF trained on real data 60 24.75 2.43 0.81
RF trained on real data 70 24.05 2.03 0.82
RF trained on real data 80 23.71 2.07 0.82
RF trained on real data 90 23.45 2.50 0.83
RF trained on real data 100 22.40 1.61 0.83
RF trained on real data 375 19.57 1.05 0.87
RF trained on syntetic data 0 35.57 20.72 0.74
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Table 4.5: Model accuracies for Silesian Beskids (SB). N is the number of real training
samples used for model training, RMSE is the median root mean squared error, ME is
the median mean error, and r2 is the median squared Pearson correlation coefficient.
A positive mean error indicates an underprediction of biomass.

ModelType N RMSE ME r2

CNN pre-trained on ImageNet data 10 124.36 50.13 0.58
CNN pre-trained on ImageNet data 20 84.80 11.55 0.71
CNN pre-trained on ImageNet data 30 77.05 9.30 0.74
CNN pre-trained on ImageNet data 40 74.68 15.13 0.77
CNN pre-trained on ImageNet data 50 73.50 16.06 0.77
CNN pre-trained on ImageNet data 60 70.69 12.97 0.78
CNN pre-trained on ImageNet data 70 68.58 17.70 0.79
CNN pre-trained on ImageNet data 80 71.93 18.57 0.76
CNN pre-trained on ImageNet data 90 70.12 14.52 0.78
CNN pre-trained on ImageNet data 97 70.16 18.29 0.78
CNN pre-trained on synthetic data 0 101.48 74.49 0.77
CNN pre-trained on synthetic data 10 74.34 26.40 0.77
CNN pre-trained on synthetic data 20 76.89 23.39 0.76
CNN pre-trained on synthetic data 30 79.44 31.60 0.77
CNN pre-trained on synthetic data 40 76.38 30.41 0.76
CNN pre-trained on synthetic data 50 77.17 28.84 0.76
CNN pre-trained on synthetic data 60 76.76 29.97 0.77
CNN pre-trained on synthetic data 70 77.01 27.41 0.76
CNN pre-trained on synthetic data 80 76.95 28.08 0.76
CNN pre-trained on synthetic data 90 76.89 27.44 0.76
CNN pre-trained on synthetic data 97 76.13 25.76 0.76
RF trained on real data 10 91.81 3.70 0.70
RF trained on real data 20 77.67 3.30 0.75
RF trained on real data 30 74.89 9.49 0.75
RF trained on real data 40 71.25 13.49 0.76
RF trained on real data 50 72.06 12.87 0.77
RF trained on real data 60 71.00 12.52 0.77
RF trained on real data 70 72.52 11.30 0.76
RF trained on real data 80 71.60 10.57 0.77
RF trained on real data 90 72.31 12.58 0.76
RF trained on real data 97 71.34 12.34 0.77
RF trained on syntetic data 0 89.86 60.07 0.79
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The backbone of this thesis is a novel approach to produce realistic synthetic datasets of
ALS point clouds and underlying forest stand information. The three studies incorporated
in this thesis have demonstrated that the data generated by this approach can be utilised
to train models for predicting AGB from real ALS point clouds. However, they have also
revealed that the prediction accuracy of models trained on synthetic data is typically lower
than of models trained on real data, and the prediction accuracy depends on the study
site where the model is applied. Consequently, there are general but also site-dependent
disparities between synthetic and real data that impact the quality of the models. When
assessing an approach for generating realistic synthetic data, three key questions should be
considered:

1. What defines data as realistic?

2. How can the realism of data be assessed?

3. What degree of realism is necessary?

To answer the first question, one can state that synthetic ALS data of forests are considered
realistic if they could have hypothetically been derived from a real acquisition of a real
forest. Answering the second question is much more complex and is related to the third one.
A measure of realism could be that synthetic data cannot at all be distinguished from real
data. Synthetic and real data could be presented to a human expert, a traditional machine
learning model or a deep learning model, and they could be asked to classify the data as
"synthetic" or "real". Considering the vast amount of information contained within ALS
datasets, I anticipate that both humans and computer models would struggle to complete
this task without narrowing it down to specific features upon which the classification
should be based. These features could be related to the ALS point clouds, e.g. return height
metrics, as well as to the forest stand characteristics, e.g. the number of trees, tree locations,
and the distribution of tree sizes. While this might be a simple solution to determine
whether generated data are realistic, the information content of such a validation method
is questionable. Even if an expert or algorithm fails to distinguish between synthetic and
real data, one could argue that the expert or algorithm is merely not good enough and
discrimination would be possible with further training. A related approach would be to
test whether the feature space of the synthetic data falls within the feature space of real
data. However, a significant drawback of this method is that the validation results rely
heavily on the available real data for comparison. For example, if the stand density in the
real dataset ranges from 100 to 1 500 trees/ha, a synthetic stand with a stand density of
2 000 trees/ha would be classified as unrealistic, even if there are many forest stands with
that stand density in the real world—they are just not included in the sample provided by
the real data. Consequently, a dataset covering all possible real-world conditions would
be necessary for a comprehensive validation following this approach. However, if such
data were available, it would be more practical to generate forest stands using the inherent
information on forest composition rather than using a forest simulator.

To evaluate the laser scanning simulations themselves, they could be applied to real forest
stands for which real laser scanning data are available. The quality of the simulations could
be assessed based on the difference between simulated and real point clouds or metrics
derived from the point clouds. This approach is particularly useful for fine-tuning the
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simulation parameters; for example, it has been applied by Weiser et al. (2022a) to determine
the optimum voxel resolution for HELIOS++ ALS simulations of tree groups represented
by TLS point clouds. Nevertheless, when using the difference between synthetic and real
point clouds or metrics as a measure of realism, it is necessary to define a threshold that
indicates when the difference or deviation is too large, suggesting that the simulated data
differ too much from the real data to be considered realistic. This leads to the third question:
to what degree do synthetic data have to be realistic?

A fixed threshold to distinguish between what is realistic and what is not realistic will
always be somewhat arbitrary. For example, if the mean height of simulated returns differs
from the mean height of real returns by just 2 cm, we would likely consider the simulated
data to be realistic. However, if the difference in mean point height is 2 m, the answer to
whether the simulated data are realistic becomes more complex. This difference could be
due to a systematic height offset, meaning that the height values of the simulated points are
consistently 2 m higher than the real points. In this case, the absolute height values would
not be considered realistic, but the height distribution of the simulated returns would be
identical to that of the real data, and would therefore be considered realistic. Accordingly,
whether synthetic data can be considered realistic or not depends on their potential use
case. Synthetic data are always generated with a specific purpose. Therefore, instead of
asking whether synthetic data are realistic or not, it is more appropriate to ask whether
they are realistic enough for a potential application.

In this thesis, the presented approach for creating synthetic ALS data was evaluated based
on its ability to generate data that are realistic enough for the training of AGB regression
models. To be more specific, the accuracy of models trained on synthetic data was assessed
and compared to models trained on real data. However, no final judgement was made
regarding whether the achieved level of accuracy is sufficient to consider the data realistic
enough, i.e. suitable for this purpose.

The studies included in this thesis have shown that the generated synthetic data can be
used to train models for predicting AGB from real ALS point clouds. They have revealed
that the accuracy of the models depends on the dataset, i.e. the study site to which the
models are applied. In general, models trained on synthetic data did not achieve as high
accuracies as models trained on real-world data. This leads to the conclusion that the data
are not yet realistic enough to adequately replace real-world data for training AGB models.
Therefore, there is still room for improvement in the approach for generating synthetic
data. In accordance with the results of the presented studies, all three components of the
approach, i.e. the laser scanning simulations, the tree models, and the forest simulations,
affect the realism of the generated data. These components will be discussed separately in
the following sections.
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5.1 LASER SCANNING SIMULATIONS

Realistic laser scanning simulations are necessary for replicating actual laser scanning
acquisitions and for conducting sensitivity analyses of acquisition settings. To assess the
accuracy of laser scanning simulations independent of tree models and forest simulations,
the laser scanning simulations must be performed on real forest scenes. In the first study
(Chapter 2), a real forest laser scanning point cloud was used as input for the HELIOS++
simulations to determine the optimal parameters for the temporal window size for local
maxima detection and the voxel resolution. The simulated and real point clouds were
compared based on their height distributions. The analysis revealed that the optimal values
varied depending on whether all returns or only first returns were considered, as well
as whether the absolute or relative height distribution was taken into account. Although
this examination was limited to a small forest patch covering an area of 22 m× 24 m and
focused solely on the point height distribution, it demonstrated that HELIOS++ was not
able to perfectly reproduce the point cloud characteristics of real ALS data.

A systematic investigation of the influence of HELIOS++ parameters and forest scene
characteristics (i.e. the stand structure and the density of the tree point clouds) on the
resulting simulated point clouds could offer insights into how the simulations could be
improved. Such an analysis should be focused on a voxel level, specifically comparing
the number of returns in small-scale voxels, rather than relying on point cloud metrics
or the point height distribution. I anticipate that in order to enhance the realism of the
simulations, it will be necessary not only to fine-tune the simulation parameters but also to
improve the algorithms implemented in HELIOS++. Additionally, to expand the potential
use cases of the synthetic data, HELIOS++ should be further developed to simulate realistic
intensity values, which can provide valuable information for tree species identification, for
example.

One factor that was not explored in the presented studies but could contribute to the
simulated data being less realistic is the absence of shadowing effects at the edges of the
scene. The size of forest scenes that can be used as input for the HELIOS++ simulations
is limited by computer memory. At forest edges, the laser beams are not shadowed by
neighbouring trees, resulting in more returns from the subcanopy layers. It would be
worthwhile to investigate whether a wall composed of both opaque and penetrable voxels
could be implemented around the forest scenes to emulate shadowing effects.

When the synthetic data are generated for a specific purpose, such as training AGB models,
it would be sufficient to optimize the laser scanning simulation accordingly. A feature
selection process could be utilized to identify the most relevant features for the models.
This would allow for a focus on specific metrics when searching for the optimal HELIOS++
parameters, while non-relevant metrics could be excluded when comparing synthetic and
real data.
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5.2 TREE MODELS

The comparison of real tree point clouds and simplified tree point clouds in the first study
(Chapter 2) has shown that the type of tree model affects the characteristics of the simulated
point clouds. Real laser scanning point clouds of individual trees are inherently realistic and
capture the inter- and intraspecific variability of real trees. However, using real tree point
clouds as tree models also presents certain drawbacks. Firstly, the successful application of
this approach depends on the availability of tree point clouds for all species of interest and
for diversity of tree sizes, tree shapes, and social status (dominant or non-dominant). The
point clouds should have sufficient point density and be segmented with high quality to
accurately represent the tree habit. Information on tree species should also be provided with
the point clouds. However, some other metrics, such as tree height and crown diameter,
can be derived directly from the point clouds when they are not available from field
measurements. With advancements in automatic segmentation methods for individual
tree point clouds and the increasing use of UAVs for laser scanning data collection (Puliti
et al., 2020), as well as a general trend to open data policies driven by the open science
movement, tree model availability is expected to improve in the future.

The forest scenes composed of individual tree point clouds need to be voxelised for the
laser scanning simulations because the points themselves do not have a surface the laser
beams can interact with. The voxel size plays a crucial rule in the resulting simulated
laser scanning point clouds. Larger voxel sizes lead to unrealistic, "blocky" tree shapes
and an underestimation of returns from the subcanopy layers. This is due to the reduced
probability of returns penetrating the canopy as the voxel size increases. On the other
hand, smaller voxel sizes create unrealistic gaps, especially at the the tree stems, and can
result in an excessive number of laser beams reaching the ground without generating any
returns from the trees. When using laser scanning point clouds as input for laser scanning,
a double sampling is applied. This means that in the second scanning, returns can only be
generated from surfaces that already generated returns in the first scanning. One potential
solution to this issue would be to utilise tree point clouds with very high point density and
a small voxel size. However, the memory footprint of laser scanning simulations typically
increases as the voxel size decreases. Therefore, this approach is constrained by both
memory limitations and the availability of high-density tree point clouds. High-resolution
point clouds could be derived by fusing TLS and ULS data, ensuring that both the canopy
and non-canopy parts of the tree are represented well in the point cloud (Fekry et al., 2022).
If high-density tree point clouds are available, a voxel scaling approach as suggested by
Weiser et al. (2021) could be employed to reduce memory requirements. Alternatively,
quantitative structure models (QSMs) could be generated from the high-density tree point
clouds (Fekry et al., 2022). Using QSMs as tree models has the advantage of allowing
accurate estimation of AGB directly from the QSMs independent of allometric equations
(Disney et al., 2018), making the AGB estimates of the synthetic stands more reliable.

In the first study (Chapter 2), tree models were selected based on species, height, and
crown diameter of the trees in the real forest stands. In the other two studies (Chapter 3 and
Chapter 4), Forest Factory 2.0 was used to generate forest stand information. Therefore, the
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selection of tree point clouds was based only on species and height, as the crown diameter
of Forest Factory trees is fully determined by species and height. However, in reality, the
crown diameter is not solely determined by species and height but is also influenced by
other factors, such as the stand structure (Bragg, 2001; Holdaway, 1986; Krajicek et al.,
1961). Isolated or dominant trees tend to have a higher ratio of crown diameter to tree
height compared to non-dominant trees or trees in stands of high density. Additional
information such as crown base height or social status of a tree could also improve the
realism of the synthetic stands. The crown base height, in particular, affects the number of
returns from the subcanopy layers. The first study (Chapter 2) has shown that the simulated
return height distribution of some forest plots was more similar to the real one when using
simplified tree point clouds instead of real tree point clouds. This can be explained by
the fact that the simplified tree point clouds were created with a crown base height that
matched the crown base height measured in the field. Therefore, I recommend using
both crown diameter and crown base height as additional filter criteria when selecting
the tree point clouds. However, this requires a forest simulation approach that computes
realistic values for these metrics, considering the stand structure, which is not the case
for Forest Factory. Additionally, reliable values for these metrics must be available for
the tree point clouds. In the dataset used in this thesis, crown base height was defined as
the height of the lowest branch with a minimum length of 1 m (Weiser et al., 2022a). This
definition was chosen for practical reasons as it was easy to apply in field measurements
and automated extraction from the tree point clouds. However, in reality, there are many
trees with branches longer 1 m that are not part of the crown. Therefore, a more appropriate
definition of crown base height should be established before implementing this variable in
the selection process.

In summary, the quality and availability of tree models and tree information have a
significant impact on the synthetic laser scanning data. A larger number of tree point
clouds to select from, along with supplementary information on crown diameter, crown
base height, and social status that can be used to find the best matching tree point cloud,
and a high point density that allows for accurate reconstruction of the tree shape from the
point cloud, can contribute to making the synthetic data more realistic.

5.3 FOREST STANDS

Evaluating the synthetic forest stands is a more complex task than evaluating the quality
of the laser scanning simulations. Comparing the stand characteristics of synthetic and
real data can provide a general idea of the realism of the synthetic stands. However,
this approach offers limited insight into the realism of individual stands, particularly
in terms of tree positions and attributes. The second and third study (Chapter 3 and
Chapter 4) revealed notable disparities in stand density and biomass distribution between
forest plots simulated with Forest Factory 2.0 and the real datasets used for comparison.
Training AGB models using synthetic data based on Forest Factory plots resulted in an
underprediction of AGB for the test datasets of Milicz Forest (Poland), Silesian Beskids
(Czech Republic), DendroNET sites (Czech Republic), and Petawawa Research Forest
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(Canada). Conversely, when AGB models were trained on synthetic data based on real
forest inventory data, an overprediction of AGB was observed when testing the models with
data collected in southwestern Germany (first study, Chapter 2). It is important to interpret
the findings of this comparison cautiously, as the models were not tested on the same
datasets. Nevertheless, it appears that using Forest Factory stands for generating training
data introduces a significant bias to the AGB models, which surpasses biases resulting from
laser scanning simulations and tree models. Regarding the stand characteristics, it can be
hypothesised that Forest Factory simulates an unrealistically high number of forest plots
with high biomass but low stand density, at least when compared to the test datasets from
Poland, the Czech Republic, and Canada. This is a significant drawback when aiming to
substitute real data with synthetic data for training AGB models.

The decision to use Forest Factory instead of SILVA for creating the synthetic forest stands
was based on several factors. SILVA simulations are more time-consuming, necessitate
configuration through a graphical user interface, and require the definition of an initial
stand composition and management strategy. Consequently, generating a large number
of different forest stands becomes more labor-intensive and demands more knowledge of
forest management as opposed to when employing Forest Factory. However, if information
regarding the typical initial stand composition and management strategy is available for a
study site, SILVA provides the advantage of simulating forest stands accordingly. Future
studies should investigate whether SILVA produces synthetic data that are better suited for
training models to be applied to real data than Forest Factory.

Unrealistic features of the forest stands could also be observed at the individual plot level.
The synthetic stands lack understory and have a lower canopy cover compared to real
forest stands (first study, Chapter 2). Furthermore, in the Forest Factory stands, trees can
be located unrealistically close to each other. This issue is not present in SILVA stands, as
SILVA simulates explicit tree positions, taking into account three-dimensional competition
among neighbouring trees. However, due to the fact that real trees do not necessarily have
an axially symmetrical shape, the random rotation of tree point clouds around the z-axis
can cause overlapping placement of tree point clouds. Deep learning techniques could
potentially address this issue by improving the realism of the tree point cloud placement.
An algorithm could be trained using real forest point clouds to learn how to position
individual tree point clouds in a way that minimises overlap while maximising canopy
cover.

All three studies revealed that the performance of AGB models trained on synthetic data
strongly depends on the study site to which the models are applied. However, the outcomes
were not consistent across the different experiments (training models solely on synthetic
data, training models on mixed datasets comprised of synthetic and real data, and pre-
training models on synthetic data). For instance, in case of the DendroNET sites, pre-
training CNNs on synthetic data resulted in high prediction accuracies (third study, Chapter
4), whereas training random forest models on synthetic data resulted in low prediction
accuracies (second study, Chapter 3). More datasets are required to systematically analyse
the relationship between study site characteristics and the suitability of synthetic data for
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model training. This would provide valuable insights on how to improve the synthetic
data generation in order to make the data applicable to a wider range of study sites.

5.4 CONCLUSIONS AND OUTLOOK

The answer to the question of how realistic synthetic data must be depends on the specific
application and turns into a question of fitness for use. In the case of area-based approaches,
the realism of individual tree shapes and positions is less critical than the realism of forest
stand compositions. For sensitivity analyses, it is probably less important to use synthetic
data with realistic forest stand compositions compared to when the data are used to train
models for application on real data. Realistic laser scanning simulations are necessary for
sensitivity analyses aiming to identify optimal laser scanning acquisition settings. When
synthetic data are utilised for individual tree-based approaches, such as the development
of tree segmentation algorithms, ensuring a high level of realism in tree models and tree
placement is likely to be the most crucial factor for successful application on real-world
data.

My research has shown that synthetic data enable AGB predictions from ALS data without
the need for field reference data collection. However, models trained on synthetic data
do not reach the accuracy of models trained on real data. It appears that the quality of
the synthetic data as they are is not sufficient to substitute real data without a decrease
in model accuracy. The three studies have shown that when employing an area-based
approach, training AGB models on real data results in higher prediction accuracies than
training on synthetic data, often even if the real data were collected from different sites.
Therefore, instead of attempting to further improve the simulations, more effort could
be dedicated to collecting and sharing real data. A database could be established where
real ALS data and corresponding forest stand information can be uploaded and made
publicly accessible. Exemplary cases of data sharing are the openly available dataset of the
Petawawa Research Forest (White et al., 2019), which includes ALS and forest inventory
data from multiple years, and the pytreedb (https://pytreedb.geog.uni-heidelberg.de/), a
database of single-tree laser scanning and forest inventory data.

Given that forest inventory data often do not include information on tree positions, syn-
thetic data can still be highly valuable for approaches based on individual trees. For
instance, the data could be used to train a model that, in the first step, detects individual
trees in the ALS point clouds, identifies the tree species and estimates the tree size. In
the second step, the AGB of each tree could be predicted and then summed up to derive
plot-level predictions. Additionally, the presented approach for generating synthetic data
is well-suited for sensitivity analyses. In contrast to real-world acquisitions, it allows
for extensive testing of different laser scanning settings and field sampling designs. The
insights derived from such analyses are particularly useful for planning the operational use
of ALS in national forest inventories. For instance, they can help identify the most efficient
acquisition settings or establish acceptable precision tolerances for location measurements.
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Further research is required to explore the potential of the presented approach in relation
to these areas of application.
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