KIT | KIT-Bibliothek | Impressum | Datenschutz

Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scales

Wacker, Irene; Curticean, Ronald; Ryklin, Daniel; Weidinger, Britta; Mayer, Frederik 1,2; Huang, Li-Yu 3; Hoffmann, Julian ORCID iD icon 3; Islam, Monsur 4,5; von Coelln, Nadine; Schmitt, Tanja; Huck, Christian; Tegeder, Petra; Feist, Florian ORCID iD icon 2,4; Kammerer, Jochen A.; Barner-Kowollik, Christopher 2,4; Wegener, Martin 2,4; Blasco, Eva; Gengenbach, Ulrich 3; Schröder, Rasmus R.
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
4 3D Matter Made to Order (3DMM2O), Karlsruher Institut für Technologie (KIT)
5 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Based on the rapid advances in additive manufacturing, micro-patterned heterostructures of soft materials have become available that need to be characterized down to the nanoscale. Advanced function-structure relationships are designed by direct 3D structuring of the object and – in the future – fine control over material functionality in 3D will produce complex functional objects. To control their design, fabrication and final structure, morphological and spectroscopical imaging in 3D at nanometer resolution are critically required. With examples of carbon-based objects, it is demonstrated how serial ultramicrotomy, that is, cutting a large number of successive ultrathin sections, can be utilized to gain access to the interior of 3D objects. Array tomography, hierarchical imaging and correlative light and electron microscopy can bridge length scales over several orders of magnitude and provide multimodal information of the sample's inner structure. Morphology data derived from scanning electron microscopy are correlated with spectroscopy in analytical transmission electron microscopy and probe microscopy at nanometer resolution, using TEM-electron energy loss spectroscopy and infrared-scanning-near-field microscopy. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160929
Veröffentlicht am 25.07.2023
Originalveröffentlichung
DOI: 10.1002/adfm.202302025
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT 3D Matter Made to Order (3DMM2O)
Institut für Angewandte Physik (APH)
Institut für Automation und angewandte Informatik (IAI)
Institut für Mikrostrukturtechnik (IMT)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000160929
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Weitere HGF-Programme 43.32.01 (POF IV, LK 01) Molecular Materials Basis for Optics & Photonics
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 34
Heft 20
Seiten Art.-Nr.: 2302025
Vorab online veröffentlicht am 08.07.2023
Schlagwörter 3D microscopy, array tomography, correlative light and electron microscopy, probe microscopy, spectroscopy, structured materials, ultramicrotomy
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page