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A B S T R A C T

Water is a vital resource to human development and ecosystems.
Understanding water balances of river basins is key in water man-
agement decision-making, especially in regions facing water stress.
Besides water stress stemming from dry climate and rapid demo-
graphic development, some countries of the Global South suffer at
the same time from monitoring data limitations for lack of financial
resources. This thesis is centered around methods to tackle challenges
arising from limitations in hydrometeorological monitoring data that
are required to assess water balances as well as to calibrate and run
hydrological models.

In order to make predictions in ungauged basins, hydrological simi-
larity frameworks are a way to overcome the lack of discharge data.
The Budyko curve, a famous similarity framework connecting climate
and runoff similarity of catchments for mean annual time scales and
large-enough spatial scales, estimates a catchments’ mean annual wa-
ter balance (ETa/P) based on its climatic dryness (ETp/P). This widely
tested framework seemed a useful tool in an environment of scarce
and uncertain data, and is applied, tested and analyzed from different
angles throughout this thesis - in particular with respect to deviations
from the curve, Budyko offsets. While certain questions are approached
in a more theoretical way, the thesis is predominantly embedded
in the geographic context of catchments on the Western Flanks of
the Peruvian Andes, in particular the two river basins Chillón and
Lurín. The main study region presents a seasonal rainfall regime, total
rainfall amounts however varying considerably along steep elevation
gradients within the catchments.

As a basis for subsequent aridity and water balance assessment of
the Peruvian catchments as well as for hydrological modeling, meth-
ods are developed and applied to estimate areal precipitation and
potential evapotranspiration. CovVar, a simple and robust precipita-
tion regionalization method for data-scarce and mountainous regions,
solely based on rain gauge data, is introduced. The method exploits
long-term statistical relationships between elevation and rainfall on a
monthly basis and combines these monthly patterns with a weighted
regionalization of the fluctuation at a nearest reference station. CovVar
showed good performance metrics, also in comparison to the national
PISCO rainfall product. Differences in the catchment-average rainfall
became apparent at annual scales, mostly in the Lurín river basin
which lacked monitoring in the most humid headwater parts. For
potential evapotranspiration, the Hargreaves-Samani coefficient is cali-
brated for the region based on a short time series of fully equipped
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weather stations and applied to historical time series. Both datasets
were successfully implemented as forcing data in the hydrological
model.

Making use of hydrological similarity and the Budyko curve as
a water balance landmark in order to set up a hydrological model
(mHM) and derive a suitable parameter set for the poorly monitored
Lurín basin, a paired-catchment modeling approach is conducted.
The better monitored neighboring Chillón basin served as reference
and parameter donor catchment. The approach helped evaluate the
quality of different meteorological forcing datasets. The datasets had
a significant impact on observed and modeled water balances of
the Lurín. Compared to the PISCO rainfall dataset, CovVar yielded
aridity indexes and water balances in better agreement both with the
presumably similar neighboring catchment and the Budyko-based
estimate, suggesting more realistic estimates. The variability of the
different datasets outweighed by far the influence of the different
model parameter sets. The transfer of model parameters from Chillón
to Lurín did however yield reasonable model runs, comparable to
direct calibrations of Lurin’s short discharge records.

The analysis was widened to 17 similarly-arranged catchments in
the study region to explore their water balance similarity and Budyko
offsets. A linear correlation analysis was conducted to investigate the
influence of subscale climatic and catchment characteristics on water
balances and offsets from the Budyko curve. The analysis revealed
both a systematic overestimation by the Budyko curve as well as a
high variability between the catchments initially presumed more simi-
lar. The individual coefficients of determination remaining expectedly
low for the coarse correlation approach, it showed signals for climatic
heterogeneity, snowiness and discharge seasonality as proxy for all
catchment storage-related characteristics. While these influences are
discussed based on physical mechanisms and literature information,
the remainder of the variance as well as the systematic trend is pre-
sumed to be related to soil storage, potentially in combination with
seasonal effects.

Due to the rather inconsistent picture of water balances in the study
region as well as the steep Andean topography in combination with
the semi-arid climate, a model-based study explores the influence
of soil storage more in-depth. Its reported importance as a control
on the mean water balance conflicts with the difficulty to quantify
it at the catchment scale. Therefore, multiple catchments of varying
aridity, from the US, Germany and Peru, were selected as realistic
systems for a virtual experiment. Both storage capacity in terms of
free pore space as well as capillary storage fractions were varied in
the model and the resulting water balances analyzed with respect
to resulting Budyko offsets. The results corroborated the important
role of soil storage properties as a control on the mean annual water
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balance and potential Budyko offsets. Both total storage capacity
and capillary storage fraction turned out to be sensitive parameters.
Through variation of total storage, the Budyko curve was reached for
most cases, showing a certain degree of clustering at storage volumes
of around 5-15% of mean annual precipitation -corresponding to
values commonly found in nature- before the water balances level off
quasi-asymptotically.
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Z U S A M M E N FA S S U N G

Wasser in von essentieller Bedeutung für die menschliche Entwicklung
und Ökosysteme. Das Verstehen von Wasserbilanzen in Flusseinzugs-
gebieten ist eine Grundvoraussetzung für Entscheidungen im Wasser-
ressourcenmanagement, insbesondere in wasserknappen Regionen.
Neben der Wasserknappheit durch trockenes Klima sowie eine rasante
demographische Entwicklung, erschweren eine limitierte Datenlage
die Bedingungen in einigen Ländern des globalen Südens. Die vor-
liegende Arbeit konzentriert sich auf Methoden, die hydrometeorolo-
gische Datenlage zu verbessern, um Herausforderungen bei Wasser-
bilanzschätzungen sowie Modellkalibrierungen entgegenzutreten.

Um trotz des Mangels an Abflussdaten in nicht bepegelten Einzugs-
gebieten hydrologische Modelle zu kalibrieren, können Ähnlichkeits-
ansätze Abhilfe leisten. Die Budykokurve, ein verbreiteter Ähnlichkeit-
sansatz, der Klima- und Abflussähnlichkeit auf langen Zeitskalen
miteinander verbindet, schätzt die stationäre Wasserbilanz (ETa/P) als
Funktion der klimatischen Aridität (ETp/P). Dieser Ähnlichkeitsansatz
schien ein nützliches Tool in einer datenarmen Region und wird in der
vorliegenden Arbeit angewandt, getestet und analysiert- vor allem in
Bezug auf Abweichungen von der Budykokurve (sog. Budyko Offsets).
Während manche Fragen allgemeingültiger behandelt werden, liegt
der geografische Schwerpunkt dieser Arbeit auf Einzugsgebieten der
westperuanischen Anden, insbesondere des Chillón und Lurín. Das
Untersuchungsgebiet weist ein saisonales Kima auf, mit Jahresnieder-
schlägen, die entlang eines steilen topografischen Gradienten stark
abfallen innerhalb der Einzugsgebiete.

Als Basis für Ariditäts- und Wasserbilanzbetrachtungen in den
peruanischen Einzugsgebieten werden Methoden entwickelt und
angewandt, die Gebietsniederschlag sowie potentielle Verdunstung
schätzen. CovVar wird eingeführt, ein simpler und robuster Ansatz
zur Regionalisierung von punktuellen Niederschlagsmessungen in
datenarmen Gebirgsregionen. Die Methode basiert auf statistischen
Zusammenhängen zwischen Höhe und Monatsniederschlägen, in
Kombination mit einer gewichteten Regionalisierung der Fluktuation
an einer Bezugsstation. CovVar wies gute Performanzmetriken auf,
auch im direkten Vergleich mit dem landesweiten Niederschlagspro-
dukt PISCO. Unterschiede zeigten sich vor allem im Bereich des
Gebietsniederschlags im Lurín Einzugsgebiet, welches über kein
Niederlags-Monitoring in den feuchtesten Kopfeinzugsgebieten ver-
fügte. Um längere historische Zeitreihen für die potentielle Verdun-
stung zu generieren, wird der Hargreaves-Samani Koeffizient in der
Region kalibriert, auf Grundlage von kurzen Zeitreihen gut ausgestat-
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teter Wetterstationen. Beide Datensätze wurden erfolgreich in einem
hydrologischen Modell eingesetzt.

Ausgehend von hydrologischer Ähnlichkeit und der Budykokurve
als Wasserbilanz-Orientierungspunkt, wurde ein gekoppelter Einzugs-
gebiets -Modellieransatz angewandt, um ein hydrologisches Modell
(mHM) für den Lurín aufzusetzen und einen passenden Parameter-
satz abzuleiten. Dabei diente das benachbarte, besser beobachtete
Chillón Einzugsgebiet als Referenz und Parameter-Spender. Durch
die Einzugsgebiets-Kopplung konnte die Qualität der verschiede-
nen Forcing-Datensätze evaluiert werden. Diese hatten einen starken
Einfluss auf beobachtete und simulierte Wasserbilanzen im Lurín.
Im Vergleich zum PISCO-Datensatz, lieferte CovVar Ariditätsindizes
und Wasserbilanzen für den Lurín, die sowohl mit dem als ähnlich
angenommenen Nachbareinzugsgebiet als auch mit der Budykokurve
deutlich besser übereinstimmen, was auf realistischere Schätzun-
gen schließen lässt. Das Gewicht der Variabilität der verschiede-
nen Datensätze überstieg bei Weitem das der verschiedenen Modell-
Parametersätze. Der Parametertransfer lieferte dennoch funktionale
Parametersätze für den Lurín, die mit direkten Lurín-Kalibrierungen
vergleichbar waren.

Die Analyse wurde auf 17 ähnlich angeordnete Einzugsgebiete im
Untersuchungsgebiet erweitert, um deren Wasserbilanzähnlichkeit
und Budyko offsets zu untersuchen. Eine lineare Korrelationsanalyse
wurde durchgeführt, um den Einfluss von subskaligen klimatischen
und Einzugsgebietseigenschaften auf Wasserbilanz und Budyko off-
set zu beleuchten. Die Analyse zeigte sowohl eine systematische
Überschätzung der Budykokurve als auch eine enorm hohe Variabil-
ität zwischen den Einzugsgebieten, für die vor der Analyse mehr
Ähnlichkeit erwartet wurde. Die individuellen Bestimmtheitsmaße
blieben bei diesem recht einfachen, linearen Ansatz erwartungs-
gemäßig niedrig, dennoch gab es Signale für klimatische Heterogenität,
Schneebedeckung sowie Abflusssaisonalität als Proxy für sämtliche
Speichervorgänge im Einzugsgebiet. Während diese Einflüsse im
Hinblick auf physikalische Vorgänge sowie Literaturinformationen
diskutiert werden, werden Gründe für Restvarianz sowie den system-
atischen Trend bei Einflüssen wie dem Bodenspeicher, potentiell in
Kombination mit saisonalen Effekten, vermutet.

Aufgrund der inkonsistenten Wasserbilanzen in der Region sowie
der steilen andinen Topographie in Kombination mit dem semiari-
den Klima, untersucht eine Modellstudie gezielt den Einfluss des
Bodenspeichers. Der aus der Literatur bekannte Einfluss der Boden-
speicherkapazität auf die mittlere Wasserbilanz steht seiner schweren
Quantifizierbarkeit auf Einzugsgebietskale gegenüber. Aus diesem
Grund wurden mehrere Einzugsbebiete als realitätsnahe Systeme für
ein virtuelles Experiment ausgewählt. Sowohl Bodenspeicher in Form
von freiem Porenraum als auch ein kapillaritätsgesteuerter Anteil
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wurden im Modell variiert und die resultierenden Wasserbilanzen
analysiert. Die Ergebnisse bestätigen die bedeutende Rolle des Bo-
denspeichers für die mittlere Wasserbilanz und potentiellen Budyko
Offsets. Sowohl der Gesamtbodenspeicher als auch die kapillaritäts-
beeinflusste Teil erwiesen sich als sensitive Größen. Durch Variation
des Bodenspeichers erreichte fast jedes System die Budykokurve, mit
einem erkennbaren Clustering bei Speichergrößen von etwa 5-15%
des mittleren Jahresniederschlags -was in der Natur vorkommenden
Werten entspricht- bevor die Wasserbilanzen ein quasi-asymptotisches
Level erreichen.
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N O M E N C L AT U R E , A B B R E V I AT I O N S A N D
A C R O N Y M S

remarks on basin vs . catchment nomenclature

Chapter 5 treats the comparison and paired modeling of the two
river basins of Chillon and Lurin. However, the comparisons are done
primarily on the basis of stream gauge-imposed subcatchments of
the basins. For clarity, the entire river basins, which discharge into
the Pacific ocean, are referred to as "basins", and their subbasins as
"subcatchments" or just "catchments". While the lower subcatchments
(Puente Magdalena/Antapucro) are called "main (sub)catchments" of
the basins, the upper parts are referred to as "headwater catchments"
(Obrajillo/Santa Rosa). The headwater catchments are part of the
main catchments.

acronyms

bmbf Bundesministerium für Bildung und Forschung—
German Ministry for Education and Research)

dem Digital elevation model

enso El Nino Southern Oscillation, a global atmosphere-
ocean coupling phenomenon, leading to anomalies in
ocean temperature and atmospheric circulation pat-
terns

gis Geographic Information System, here often used to
refer to digital geographic datasets

hs Hargreaves-Samani, method to determine potential
evapotranspiration

ingemmet Instituto Geológico, Minero y Metalúrgico— Peruvian
state authority for geology and mining activities

nse Nash-Sutcliffe-Efficiency, common objective function
in hydrological modeling

oni Oceanic Niño Index

pm Penman-Monteith, method to determine potential eva-
potranspiration

rmse root mean square error
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sed / sedapal

"Servicio de Agua Potable y Alcantarillado de Lima"—
the drinking water supplier of Lima metropolitan area

sen / senamhi

"Servicio Nacional de Meteorología e Hidrología del
Perú" — the Peruvian national weather service

trust Trinkwasserversorung in Wassermangelregionen—
BMBF project, within the framework of which the
studies of this thesis were carried out

abbreviations

budyko offset

The deviation of the (mean annual) water balance (as
expressed by the evaporation ratio) of a catchment from
the Budyko curve

budyko position

The x- (dryness index ϕ) and y- (evaporation ratio EVR)
position in the Budyko space

chirilu The three catchments of Chillon, Rimac and Lurin

chilu The two catchments of Chillon and Lurin

etp-hs-calib

Potential evapotranspiration on the basis of a regionally
calibrated Hargreaves-Samani (HS) approach

evaporation

is used interchangeably with evapotranspiration

recurring latin variables

ETa actual evapotranspiration

ETp potential evapotranspiration

ETo FAO reference (potential) evapotranspiration

EV R evaporation ratio (mean annual actual evapotrans-
piration / mean annual precipitation)

H RD rel. air humidity (spanish: humedad relativa diaria)

KT Hargreaves-Samani coefficient

P precipitation

Q stream flow (discharge)
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R Pearson correlation coefficient

R2 coefficient of determination

R a extraterrestrial radiation

R s solar radiation

Tx temperature, the kind depending on its subscript

V V D wind velocity (spanish: velocidad del viento diaria)

recurring greek symbols

ϕ climatic dryness (aridity) index, ratio of mean annual
potential evapotranspiration to precipitation
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1
I N T R O D U C T I O N

1.1 water and data scarcity in the global south

Water is a critical resource for ecosystems and human development.
A river basin with less than 500 m3 of freshwater per capita and
year qualifies as very severe water stress according to UNESCO (2012).
Water stress, resulting from the combination of scarce physical water
resources and human presence and activity, is unevenly distributed in
the world, with major water stress regions appearing over Northern
and Eastern Africa, the Arabian Peninsula and Central Asia (UNESCO,
2012). Smaller spots are found for instance in the West of the United Water stress & water

management
challenges

States, Southern Africa as well as along a thin strip of land along the
West coast of South America. The latter is located in the tropics and
subtropics, and is part of the countries of Chile and Peru. As a result of
the massive Andes mountain range (the Cordillera), Peru’s geography
is extremely heterogeneous both in terms of water availability and
demography, receiving 97.3% of its freshwater in the Amazonian part
yielding 150.000 m3/capita/year and 2.2% in the Pacific watersheds,
which translates to 125 m3/capita/year in the river basins around
Lima, the latter thus suffering from very severe water stress (Bernex
et al., 2017; Sanchez, 2016).

A well-organized and precise management of the scarce water
resource is key in a region such as West Peru, and can only result from
a thorough understanding of the resource’s spatiotemporal occurrence.
Such understanding of hydro systems is generated through an inter-
play of monitoring and modeling. These two components allow for Tackling the lack of

observation datathe assessment of past and present situations, and provide a basis for
predicting future scenarios. Apart from advancing model approaches
and techniques, observation data are thus crucial to further system
understanding. Constant efforts are made to increase data availability,
both by developing new measuring techniques and by increasing data
coverage in formerly unobserved locations. The latter is provided
through the installation of new ground-based sensors as well as by
the deployment of new generations of satellites (e.g. ESA-Sentinel,
NASA-GPM, EUMETSAT-MTG). Depending on the environmental
variable of interest and relevant spatiotemporal scales, the types of
monitoring techniques differ in the degree of reliability and precision.
While satellites increasingly contribute to rainfall monitoring, for
precise quantitative measurements, especially at smaller spatial scales,
ground-based monitoring still remains indispensable (AghaKouchak

1
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et al., 2010).

In certain countries of the so-called Global South, such as Peru,
there is a particular need for a refined water management, whereasThree challenges for

the water
management

the ability to provide that remains limited. The water management
in such a region is confronted with the combination of three major
challenges:

• water scarcity, (semi-)arid climate: many parts of the Global
South tend to be comparably dry, or at least face pronounced
seasonal dryness which requires water storage infrastructure to
bridge the dry season (notably Northern and Southern Africa,
Arabian Peninsula, Western parts of South America, see global
aridity index in Trabucco and Zomer (2018)).

• rapidly evolving demographics: rural exodus (sometimes com-
bined with high birth rates) lead to fast-growing urban areas
and surrounding industries (Borsdorf, 1978) with increasing,
spatially concentrated freshwater demand.

• data scarcity and data quality limitations: insufficient hydrome-
teorological monitoring due to limited financial resources (short-
comings in monitoring network density, maintenance, data qual-
ity control).

This thesis started out in the framework of the TRUST project
(Leon et al., 2021). The BMBF-funded joint research project engaged inThe TRUST Project

the better understanding and improvement of the basis for decision-
making in an exemplary river basin in Peru: the Lurín. Apart from
organizational and institutional elements of the water management,
a major focus of TRUST was on the quantitative understanding of
the available water resources in the basin. The latter comprised of
hydrometeorological monitoring and hydrological modeling, in order
to characterize the spatiotemporal dynamics of relevant water fluxes
as well as the water balance at the catchment scale. The objectives
were centered around monthly and annual time scales that are of
importance to water resource management decisions.

The Lurín valley is located on the slopes of the western Andes in
Peru. The headwater streams originate in the high elevation zones ofThe Lurín river basin

the mountain range, and the catchment channels its stream waters to
and through the outskirts of Lima, eventually discharging into the
Pacific ocean. It is one of the three adjacent basins of Chillón, Rímac
and Lurín -abbreviated as Chirilu- that together sustain the freshwater
supply of the metropolitan area of Lima. The natural conditions,
from semi-arid climate with a pronounced precipitation seasonality
in medium and upper basin parts to hyper-arid climate at the coast,
pose enormous challenges to the water management, especially in the
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context of the rapidly growing megacity of Lima, Peru’s capital. The
Lurín river basin can be considered as nearly ungauged and poorly
monitored in terms of meteorological data. There is only one stream
gauge in the heterogeneous basin, with short data records of three
to four years. In addition, the highest and presumably most humid
part of the basin, lacked rainfall monitoring prior to the TRUST project.

1.2 hydrological predictions and assessments in data-
scarce environments

Fundamental hydrological tasks in water management include pre-
dicting floods, assessing the frequency of flood occurrence as well as
comprehending and predicting seasonal and annual water balances
across a basin for water availability assessments. Hydrological models Use of hydrological

modelsare used to accomplish these tasks. Such models are supposed to
represent the behavior of the catchment system by bringing moni-
toring data and knowledge of hydrological processes together in a
coherent picture. With models it is possible to estimate non-measured
water fluxes (e.g. evapotranspiration or individual runoff compo-
nents), gain information about inner-catchment heterogeneity in
the hydrologic response (e.g. ungauged subcatchments) and make
predictions of potential future scenarios (e.g. changing precipitation
regimes, anthropogenic interventions). Common hydrological models
are rainfall-runoff models which transform the meteorological forcing
data, rainfall and potential evapotranspiration, into streamflow. Inde-
pendent forcing or input data is thus required to run a rainfall-runoff
model, and needs to be known or estimated at the catchment scale.
In the case of spatially-explicit models, spatially-distributed data is
gained via a regionalization approach or directly taken from remotely
sensed areal products.

There is a great number of different hydrological models and
modeling approaches in hydrology, and the model type strongly
depends on the specific task, purpose and available data (Blöschl
et al., 2013). In operational hydrology and in general for intermediate Conceptual models

mesoscale or larger catchments (roughly above A0>500 km2), con-
ceptual hydrological models are commonly used. Depending on the
model’s particularities, conceptual models can account for a number
of hydrological processes. While all the processes are conceptual-
ized and parametrized, the type and degree of the representation
or approximation of the fundamental physical laws governing the
processes at smaller scales, varies (Berkowitz and Zehe, 2020; Beven,
1996). In such models, the hydrological behavior of a catchment is
represented by a specific set of model parameters. The catchment-
specific parametrization is usually derived via model calibration, an
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optimization process fitting the model parameters to discharge time
series measured at a stream gauge, using one or several objective
functions.

There are model-inherent challenges that limit the ability to unam-
biguously derive a parameter set describing the realistic hydrological
behavior of a catchment because of the equifinality problem (Beven
and Binley, 1992). Equifinality implies that optimization over a varyingChallenges in

calibrating a
hydrological model

but potentially great number of degrees of freedom (parameters)
against the point-wise and aggregating discharge output, does not
necessarily have one unique solution that approximates the system
behavior at the outlet. The main challenge in data-scarce and un-
gauged basins however stems from insufficient hydrometeorological
monitoring data- both of meteorological forcing (model input) and
of discharge (model output), both in terms of quantity and quality.
While for potential evapotranspiration and in particular precipitation,
long data series are often available at point-wise weather stations
or rain gauges, the challenge consists in the regionalization across
the catchment domain. Shortcomings result from the monitoring
network’s density in relation to the spatial variability of the envi-
ronmental variables in question, which introduces uncertainty in
the catchment-wide estimates (Ly et al., 2013; Segond et al., 2007).
Discharge data on the other hand suffers from a lack of long data
records and from quality limitations because it is a high maintenance
variable, requiring reference flow measurements in order to develop
a rating curve. The rating curve has to be controlled and potentially
updated continuously since the monitoring cross section’s geometry
can change over time, especially in rivers with high sediment and bed
load dynamics.

Despite the shortcomings in data availability and quality as well as
their implications for hydrological models, predictions and decision-
making in terms of water management need to take place. Therefore,
alternative estimation methods and modeling approaches are devel-
oped as remedies to data limitations. Comparative hydrology andComparative

hydrology, similarity
vs. catchment

uniqueness

its underlying assumption of hydrological similarity across catch-
ments provides a variety of useful approaches in this context, an
extensive review of which is presented by Blöschl et al. (2013). As
opposed to other disciplines like meteorology, in hydrology it is
feasible to study spatial units (catchments) in an isolated manner
and come up with tailor-made and unique models, resulting in a
very fragmented and non-wholistic vision of hydrological processes
and their representation in models (Blöschl et al., 2013). While the
paradigm of catchment uniqueness is not completely unjustified
since no catchments in our diverse nature are perfectly equal in all
possible aspects, the Darwinian perspective on landscape and catch-
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ment co-evolution (Harman and Troch, 2014; Troch et al., 2015) looks
at the development of catchments and at similarities that have resulted.

Hydrological similarity in terms of similarity of hydrological pro-
cesses is hard to assess due to limited knowledge and measurability
(Blöschl et al., 2013). If we assume that runoff signatures result from Types of similarity

the interplay of climatic variability and physiographic-structural
catchment characteristics, the generic similarity notion can be subdi-
vided into three types: (i) Climate similarity that summarizes mean
meteorological conditions like mainly water and energy input (e.g.
Budyko, 1974; Köppen, 1936; Lvovich, 1979; Thornthwaite, 1931 ),
often described by the aridity or dryness index, or indexes at the
seasonal scale, (ii) Catchment similarity that describes structural char-
acteristics of the landscape such as for instance soil storage capacity,
stream network density, area, or the topographic wetness index. The
identification of structural similarity is in many cases limited since
subsurface structures are effectively unknown (Blöschl et al., 2013),
(iii) Runoff similarity is a signature of hydrologic functionality and
processes, resulting from the combination and complex interaction
of characteristics of the first two aspects. Depending on the temporal
scale of interest, for example the flow duration curve or mean annual
runoff coefficient can be used as similarity indexes (Patil and Stieglitz,
2012). Moreover, depending on the region, geographical proximity can
be used as a proxy for all three kinds of similarity (Patil and Stieglitz,
2012), then assuming that for instance climate as well as structural
aspects like geology to be similar over larger geographic extents.

While hydrological similarity can be exploited in several ways, it
usually serves the goal of obtaining hydrological model parameters
for an ungauged catchment. For catchments presumed to be similar in Use of similarity

their hydrological functioning, model parameters can be transferred
from a gauged donor catchment to ungauged receptor catchment
(Buytaert and Beven, 2009; Singh et al., 2014). Runoff signatures can
be used to constrain model parametrizations, such as the mean annual
water balance (Schaefli et al., 2011). The mean annual water balance is
of particular relevance in that regard since the Budyko curve (Budyko,
1974), an aridity-based similarity framework, attempts to predict it
by relating climate and runoff similarity for long-term steady-state
conditions.

1.3 mean annual water balance and budyko curve

Hydrological processes and dynamics occur and have different con-
trols at a wide range of spatiotemporal scales, from point-scale soil
water fluxes, dynamic small-scale overland-flow driven flood events,
to annual water balance dynamics and mean annual conditions of
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larger catchments (Blöschl and Sivapalan, 1995). In consequence, alsoSpatio-temporal
scales and similarity similarity characteristics are subject to scale dependence. While in

nature all processes and scales are part of a coherent picture, in
hydrological sciences, scales are often treated, analyzed and modeled
separately. Practical reasons such as computational limitations as
well as limited knowledge of small-scale structures and processes
condition the simplification and scale separation in modeling.

The mean annual water balance of a catchment is an aggregated
signature of dominant hydrological processes, both in time and
space. It describes the water partitioning of mean annual rainfall into
mean annual evapotranspiration and runoff in a catchment, while
storage effects are negligible at long-term steady-state conditions.
Reliable a priori estimates of the catchment water balance based
on minimum data requirements still represents the holy grail for
many hydrologists (Sivapalan, 2003). Budyko (1974) postulated a
framework to address this issue, based on a top-down estimate of
the steady state energy and water balance of hydrological systems.
By relating the normalized actual evapotranspiration to the corre-The Budyko curve

predicts the mean
annual water balance

sponding normalized atmospheric demand, using rainfall supply for
normalization, he observed a considerable degree of clustering around
his empirically-derived Budyko curve. The Budyko curve presents
a climate-based similarity framework that predicts the mean annual
water balance of catchments as a function only of their aridity, i.e. the
ratio of mean annual potential evaporation to precipitation. Ever since,
the Budyko framework has been successfully used for catchment
classification studies at the continental scale (Berghuijs et al., 2014b;
Wagener et al., 2007), for reducing equifinality in conceptual models
by constraining the catchment water balance (Gharari et al., 2014),
or for verifying uncalibrated predictions of the catchment water bal-
ance using thermodynamic optimality approaches (Porada et al., 2011).

In the quest of finding more universally applicable hydrological
frameworks that are invariant over space and time (Ehret et al., 2014;
Milly et al., 2008), the Budyko framework has regained attention in
recent years (e.g. Berghuijs et al., 2020; Daly et al., 2019; Reaver et al.,
2022; Sposito, 2017a; Yao et al., 2020). While the simple supply-demandApproaches to

develop Budyko
framework further

concept of the Budyko curve is able to explain much of the observed
geographic variance, there is considerable scatter around the curve,
including also large offsets (Padrón et al., 2017). Offsets from the
Budyko curve continue to be subject to research and can depend on
various influences, from sub-annual water and energy variability as
well as various landscape characteristics (Padrón et al., 2017). One
research approach regarding the Budyko offsets introduces a suppos-
edly catchment-specific parameter into the equation, constituting
the parametric versions of the Budyko framework (e.g. Choudhury,
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1999; Donohue et al., 2007; Fu, 1981; Roderick and Farquhar, 2011).
It is however difficult to tie all possible influences to one parameter.
Recently, Reaver et al. (2022) extensively revisited and criticized this
approach in former studies, stating that such fitted relationships are
underdeterminded and non-unique, and thus lack transferability.

Due to its widely reported success, its simplicity and its theoretical
underpinning (Wang et al., 2015; Westhoff et al., 2016), the Budyko
curve seemed a useful tool in an environment of scarce and uncertain
data like the study region of the TRUST project in West Peru. This
thesis is solely based on the non-parametric, original Budyko curve
by Budyko (1974) and understanding offsets from a physical point
of view. Soil storage capacity, serving as a necessary buffer for water Budyko offsets and

role of soil storagesupplying the evapotranspiration process, has been identified in
literature as an important control on the mean water balance (Daly
et al., 2019; Gentine et al., 2012; Milly, 1994). Conflicting however with
a limited ability to assess soil storage capacity at the catchment scale,
the present work focuses more in-depth on understanding the role of
soil storage in terms of Budyko offsets.

1.4 objectives and outline

The thesis is centered around the applicability of the Budyko curve
as well as the assessment and use of similarities between catchments.
While methods and approaches address issues both of more theoret-
ical character and with a focus on specific challenges in catchments
on the Western flanks of the Peruvian Andes. The present works
confront the challenges in the regionalization of precipitation and po-
tential evaporation in a data-scarce region, investigates region-specific
water balances and their relationship to the Budyko curve and uses
similarity in a hydrological modeling context. The particular role of
soil storage controls on the mean water balance and Budyko offsets
are addressed separately in a model-based approach. Methodologies
are thus conceived and implemented to answer the following main
research questions:

• How can we estimate precipitation and potential evapotrans-
piration in data-scarce and mountainous catchments?

• Can the Budyko framework and catchment similarity be useful
in the evaluation of measured and modeled water balances, in
reducing model uncertainty in data-scarce regions?

• Does the apparent geographic-structural similarity of catchments
along the Western slopes of the Peruvian Andes result in water
balance similarity? What are region-specific controls on the mean
water balance and related Budyko offsets?
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• How does soil water storage and the underlying controls deter-
mine offsets from the Budyko curve?

While all chapters are centered around the same goal and build on
one another, the structure of the thesis remains fairly modular, provid-
ing the four content chapters with its own, more specific introduction.

Chapter 2 provides a theoretical overview of the catchment waterStructure and
content balance and the Budyko framework and curve, the topic which the

subsequent studies are embedded in. Chapter 3 describes the main
study area in Peru and data from that region used in multiple chapters.
Chapter 4 focuses on the estimation of areal precipitation and potential
evapotranspiration, the two fluxes required to assess the catchment’s
aridity and Budyko estimate of the mean water balance as well as
to generate forcing data for the hydrological modeling approach in
chapter 5. The chapter’s main part consists of the development of a
robust precipitation regionalization method for data-scarce and moun-
tainous regions such as the study region in Peru. Chapter 5 adopts a
similarity-based paired-catchment modeling approach, comparing the
better monitored neighboring Chillón basin to the Lurín basin. Taking
into account water balances and Budyko offsets, a parameter transfer
is conducted, the Chillón serving as donor catchment. In chapter 6,
benefiting from the favorable topographic arrangement, the study
region in Peru is widened and water balances of multiple catchments
along the Western slopes of the Peruvian Andes are examined, looking
also at potential explanations for offsets from the Budyko curve in the
region. Chapter 7 presents a model-based study that explores the role
of soil storage capacity in the deviations from the Budyko curve. To
that end, multiple catchments of varying aridity, mostly from the US
and Germany, serve as study catchments in the virtual experiment
approach. Cross-chapter conclusions are drawn with respect to the
guiding research questions in chapter 8.
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C AT C H M E N T WAT E R B A L A N C E A N D B U D Y K O
F R A M E W O R K

This chapter provides a brief theoretical background to the natural
water and energy balance on continents, zooming in on river catch-
ments as main spatial unit of interest (sections 2.1). Temporal scales
are introduced to the water balance as well as the Budyko framework
and curve, which rely on steady-state conditions and were derived for
long-term catchment-averaged values (section 2.3). The third section
gives an overview of the nature of deviations from the Budyko curve.

2.1 water cycle and catchment water balance

At the global scale, the land-ocean-atmosphere continuum represents
the system and spatial envelope, in which the total water content
remains more or less constant (Marsily, 2009). In our Earth system, the
sun constitutes the primary source of energy. Its radiation serves as a
driver of atmospheric and oceanic movement, triggering a cascade of
complex meteorological and hydrological interaction and exchange
processes over a broad range of spatiotemporal scales. The global
water cycle is a mechanism where water moves within and between
different storage compartments (e.g. atmosphere, oceans, rivers, soils,
permeable rocks, glaciers) at varying paces and changing the state of
matter (water vapor, liquid water and as ice or snow). Evaporation
occurs both over the oceans and continents, and the water vapor
stored and transported in the atmosphere eventually falls back onto
the surface in the form of precipitation, replenishing oceanic and conti-
nental water resources. On the continents, hydrological transformation
and redistribution processes ultimately lead to evapotranspiring the
water back to the atmosphere or channeling it via stream flow and
groundwater flow back to the ocean (see Figure 2.1).

For more detailed hydrological analyses, the global perspective and
scale is generally not necessary nor appropriate (Hornberger et al.,
2014). The most fundamental and common spatial unit in hydrology
is a river catchment. It corresponds to an area of land that collects
precipitation and drains this water towards the same river system
and outlet. The outlet of a catchment can coincide with any point
along the stream (for water balancing purposes, the stream gauges
are important points of reference) or with the river mouth where the

9
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Figure 2.1: The water cycle within the land-ocean-atmosphere continuum
UCL, 2021

stream discharges into a higher-order stream or into the sea.

From a system theory perspective, a catchment can be considered an
open thermodynamic system (Kleidon and Schymanski, 2008), with
defined physical boundaries and exchanging both energy and mass
(water) with its surrounding. Complex processes govern the internal
system dynamics of a catchment. Its internal structure consists of
water storage compartments whose filling levels correspond to state
variables (e.g. groundwater level or soil moisture). Catchment-internal
fluxes represent water exchanges either within a compartment (e.g.
flow in the stream channel) or between compartments (e.g. melting
snow infiltrating into the soil).

Catchment water balance

In terms of the water balance, the scale of interest may extend to the
catchment as a whole, with catchment-averaged values for fluxes and
states. The mass exchanges of the catchment with its surrounding and
the integral catchment storage can be summarized as follows:

• inflows: Preciptiation (P) from the atmospheric environment
reaching the ground surface of the catchment, spatially averaged
to the extent of the catchment

• outflows:

– Actual evapotranspiration (ETa) from water bodies and
land surfaces in the catchment to the atmosphere, spatially
averaged to the catchment extent

– Total runoff Q (surface runoff and groundwater flow) dis-
charging at the system outlet into higher order (Strahler)
river system or the sea
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• Catchment storage: The integral storage term (S) combines and
spatially averages all catchment-internal water storage compart-
ments, i.e. canopy storage and water stored within the vegetation
system, root zone storage, soil water storage in the vadose zone,
groundwater storage in the saturated zone, snow pack, glaciers,
stream water, lakes and reservoirs. It represents the water vol-
ume stored within the system.

Figure 2.2: Fluxes of catchment water balance and mass exchange with catch-
ment environment and the time-dependent integral storage term
S(t) (adapted from Rinaldi et al. (2015))

Figure 2.2 illustrates the water exchanges of a catchment with its
surroundings. The catchment represents a contol volume that we can
apply the principle of mass conservation to: over a defined period
of time, catchment-internal storage changes equal the difference of
inflows and outflows of the control volume, as described by Eq. 2.1.

dS
dt

= I − O, (2.1)

with the integral catchment storage S, the inflows I and the outflows
O. The catchment water balance is thus described by Eq. 2.2.

dS
dt

= P − ETa − Q. (2.2)

Geographic catchment boundaries are delineated by the surface to-
pography. In the headwaters, the water divides correspond to the
mountain crests. The assumption, however, that surface catchment
boundaries coincide with the groundwater divides and that a catch-
ment thus represents a mass conservative system does not necessarily
hold true, since impermeable hydrogeological formations can dif-
fer from surface-topographical constraints (Hornberger et al., 2014).
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Such settings would allow intercatchment groundwater flows and
exchanges (e.g. Eakin (1966) and Goswami and O’Connor (2010)). The
assumption of equal surface and underground divides are however
commonly made for lack of better knowledge of subsurface structures.

2.2 energy balance and potential evapotranspiration

This section introduces the energy or heat balance at the surface of
a landscape and how it relates to the notion of potential evapotrans-
piration. Note that here, the term "energy balance" of a catchment
refers solely to the energy fluxes associated with and resulting from
the radiation budget, and not for instance the kinetic energy of rain-
drops that is transferred to the catchment or its soil structure during
the impact.

For convenience and simplification, we imagine as a control volume
a piece of landscape surface, vertically encompassing a few millimeters
of soil below it as well as the immediate surrounding air above it
(Hornberger et al., 2014). The definition of a control volume allows
us to consider a spatially confined sphere, in which the total energy
is conserved. Unlike the water balance, the catchment boundaries
are not directly relevant to the energy balance. However, they can be
used to calculate the total energy intake of the catchment system at its
surface.

Extraterrestrial solar radiation hitting the top of the atmosphere
undergoes diverse transformation and scattering processes both within
the different atmospheric layers and at the ground surface, which on
land mainly consists of vegetation, bare soil or a glacial/snow cover.
Figure 2.3 illustrates the different energy fluxes and processes.

Figure 2.3: Energy balance at the Earth’s surface
(Follett et al., 2011)
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Radiation interacting with matter usually splits into a reflected
(scattered) part and an absorbed part, the proportions depending
on its wavelength spectrum and the optical characteristics of the
target. The radiation budget in the atmosphere-ground continuum
has to be understood as a cycle of these energy exchange processes.
Atmospheric components like clouds, dust and greenhouse gases
absorb both direct solar radiation and outgoing longwave radiation
from the Earth’s surface, and re-emit the energy as longwave (thermal)
radiation. Likewise, the ground surface receives direct, mainly short-
wave solar radiation, a part of the scattered short-wave radiation from
the atmosphere (termed ’diffuse sky radiation’) as well as a fraction of
the downward atmospheric longwave radiation. The heating of the
soil as a result of the absorption of short-wave radiation provokes the
emission of thermal radiation from the ground surface, closing the
radiative cycle.

Apart from the radiative exchanges of energy, also other forms of
heat transfer occur at the ground surface. A fraction of the absorbed
energy is transformed to and released as sensible and latent heat
from the ground surface. While sensible heat (thermals) transfers
energy through convective heat transfer to the atmosphere, latent heat
is stored within the elevated molecular energy state of water vapor,
generated through the vaporization of liquid water at the ground
surface. The latter describes the evapotranspiration process, which
affects the water present in soils, vegetation, open water bodies as
well as snow or glacial covers. The word evapotranspiration combines
the evaporation of water from bare soils or water bodies (evaporation)
and through vegetation systems (transpiration), two vaporization
processes of which transpiration is additionally controlled by plant-
specific behavior.

With negligible net heat transfer between ground surface and soil
(soil heat flux) at daily or longer time scales (McMahon et al., 2013;
Sposito, 2017b), the energy balance at the ground surface is described
by Eq. 2.3.

Rn = λW ETa + H, (2.3)

with latent heat H, latent heat of vaporization of water λw and the mass
of the evaporated water, ET, as well as net radiation or the radiation
balance Rn, which represents the net energy intake at the ground
surface. Rn results from balancing net short-wave radiation, Rns, and
long-wave radiation Rnl , as given by Eq. 2.4 - each individual term
stemming from the balance of all incoming and outgoing radiation at
the surface for the two respective wavelength ranges.

Rn = Rns − Rnl . (2.4)
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Spatially averaging the components of the energy balance in Eq. 2.3
over the extent of a river catchment yields the energy balance of the
catchment.

When all radiative terms are balanced, it becomes apparent from
Eq. 2.3 that the maximum energy available to both other heat transfer
processes corresponds to the energy surplus, net radiation Rn. The
proportion between sensible and latent heat is called the Bowen ratio
and it is primarily conditioned by available soil moisture. When re-
garding evapotranspiration independently of available and potentially
limited soil moisture, net radiation emerges as maximum possible
evapotranspiration, the energy-imposed physical upper limit to this
water flux.

Apart from net radiation as maximum possible evaporation, the
notion of potential evapotranspiration has been introduced and used
in hydrology. Its definition varies however according to authors and
methods (Granger, 1989; McMahon et al., 2013). Rn being the major
term providing energy to the evaporation process, other potential evap-
oration methods also account for the vapor pressure deficit between
ground surface and the atmosphere (Monteith, 1965), reflecting atmo-
spheric transport conditions, which might further reduce potential
evaporation compared to net radiation Rn.

2.3 mean annual water balance and budyko curve

2.3.1 Steady state

A catchment is an open system, across whose boundaries water and
energy fluxes are exchanged. The two relevant climatic boundary
conditions are precipitation as mass input and net radiation (or, as
explained in section 2.2, potential evapotranspiration) as energy input
to the catchment. Apart from spatially averaging over a defined control
volume like a catchment, the temporal dimension of the fluxes and
storages are of importance, since dynamics depend on the time scale.
While the annual catchment water balance does undergo interannual
fluctuations -reflecting dry year-wet year cycles-, these dynamics can
be presumed to oscillate around a certain mean value which relates to
the aridity of a region or catchment. Catchment storage dynamics are
closely linked to these interannual variations, since wet years tend to
fill the storages, whereas dry years drain them.

In system theory, the steady-state or stationary state of a system
describes a state where there is no change of structure, states and net
fluxes both within the system and across its borders. Applied to a
catchment’s water balance, this translates to zero change of storage
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(dS/dt = 0) and constant fluxes across its boundaries. At steady-state,
the water balance in Eq. 2.2 would thus reduce to:

dS
dt

= P − ETa − Q |dS/dt = 0 (2.5)

0 = P − ETa − Q (2.6)

⇔ P = ETa + Q (2.7)

The catchment energy balance at steady state is provided by Eq.
2.3, in which energy storage terms have already been neglected. As
opposed to the water balance, there is no significant storage of energy
in the system between the years.

The steady state of a catchment system can be conceptualized and
approximated by long-term annual average conditions and time scales,
where catchment storage fluctuations average out over the years and
become effectively negligible compared to the fluxes. The question of
how many years are required to compute such long-term average or
mean water balances depends on the interannual variability of annual
totals of precipitation and potential evapotranspiration in a region.
For the derivation of a mean climate, it is often referred to a time span
of 30 years. In equations 2.6 and 2.7, P, Q and ETa thus represent
annual average fluxes. Such a climatic characterization of a region or
catchment is only valid as long as the climatic conditions, hence the
mean values of the two defining variables of annual P and ETp, are
stationary, i.e. do not evolve over time.

2.3.2 Budyko hypothesis and equation

The Budyko hypothesis is centered around the idea that the mean
catchment-scale water balance can be expressed and characterized by
a more generic formula including climate variables like precipitation
and potential evapotranspiration. While Schreiber (1904) empirically
developed a functional relationship for the dependence of mean actual
evaporation on precipitation and some "empirical constant", it was
Ol’dekop (1911) who rewrote the equation and explicitly introduced
the aridity index ϕ = ETp/P as independent variable to the function,
and by that the concept of maximum evaporation (Andréassian et al.,
2016). The works of Budyko (1974), a famous Soviet climatologist
(1920-2001), underlay these preliminary works with his deep insights
and knowledge of atmospheric processes and catchment systems
(Sposito, 2017b), and resulted in an equation that corresponds to the
geometric mean of the equations by Schreiber and Ol’Dekop. In the
following, individual contributions by the authors mentioned above
are not explicitly distinguished but together serve to give an overview
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of the Budyko framework.

The Budyko hypothesis relies on the steady-state water and energy
balance given by the equations introduced in sections 2.2 and 2.3.1,

P = ETa + Q (water balance) (2.8)

Rn = λW ETa + H (energy balance) (2.9)

It becomes apparent that the actual evaporation term ETa appears in
both equations, it is the flux that links the water with the surface energy
balance (Kleidon and Schymanski, 2008). Based on his collection of
catchment data, Budyko introduced two limiting conditions to the
steady-state water balance of a catchment,

1. ETa −→ ETp as P ↑ (wet condition)

2. ETa −→ P as ETp ↑ (dry condition).

Budyko concluded that for long-enough time scales, at steady-state,
a functional relationship exists between the mean annual evaporative
output of a catchment and its two climatic boundary conditions, P
and ETp:

ETa = f (ETp, P). (2.10)

Assuming that Eq. 2.10 is a homogeneous function of its argu-
ment and introducing the dryness index ϕ = ETp/P, Sposito (2017b)
mathematically shows the equivalence and transforms the functional
relationship to

EVR =
ETa

P
= f (ϕ), (2.11)

with EVR introduced here as mean annual evaporation ratio. By doing
so, Sposito (2017b) briefly demonstrated the assumption contained in
the Budyko hypothesis.

The limiting conditions thus transform to:

1. EVR = ETa/P −→ ϕ as ϕ −→ 0, system is energy-limited

2. EVR = ETa/P −→ 1 as ϕ −→ ∞, system is water-limited

These two limiting conditions present physical limits and span
the so-called Budyko space (Figure 2.4), which all mass-conservative
catchments at long-term, steady-state conditions theoretically plot in.
Catchments or their mean actual evaporation are thus either water- or
energy-limited. In other words, the Budyko framework is a supply-
demand concept, with the mean annual precipitation input on the
supply side and the atmospheric thirst for evaporation on the demand
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side.

Budyko proposed an explicit function for the relationship in Eq.
2.11, which corresponds to the geometric mean of the equations by
Schreiber (1904) and Ol’dekop (1911):

EVR =
ETa

P
=
√

ϕ · tanh(1/ϕ) · (1 − e−ϕ) (2.12)

Eq. 2.12 is today known as the Budyko equation or curve. Figure
2.4 shows the position of the curve within the Budyko space. Budyko
used net radiation Rn as energy input and termed Rn/P the „radiative
index of dryness“, whereas today ETp/P is used as energy input and
it is referred to as dryness or aridity index. If atmospheric transport
provides a constant humidity deficit (vapor pressure deficit), Rn is a
good approximation of potential evapotranspiration. Budyko (1974)
(p. 338) showed that for annual scales, Rn is in good agreement with
potential evaporation as calculated with the Penman-Monteith method
for his selection of catchments.

Figure 2.4: Budyko space and curve with catchments from MOPEX multi-
catchment dataset

The main reasoning behind the Budyko hypothesis is that climatic
dryness, or the relative availability of water and energy implied by it,
is a first-order estimator of the mean annual water partitioning in a
catchment. In Budyko (1974), Budyko thought in terms of geographic
zonality and biomes. He argued that landscape elements such as
vegetation and soils, which hydrological process-wise are relevant to
evaporation, are on the one hand interdependent and on the other
hand considerably conditioned by climatic dryness. In other words,
landscape elements evolve, driven by climatic boundary conditions,
towards a state where mean evaporation tends to approach a certain
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value - in his framework this value is represented by the Budyko
curve. The concept of interdependence and coevolution of catchment
characteristics has been studied and analyzed multiple times and
from different angles (Gentine et al., 2012; Schaefli et al., 2011; Troch
et al., 2015; Westhoff et al., 2016), and the Budyko curve is often
viewed as one of the few more universal trends and characterizations
of hydrological systems.

The Budyko curve thus adopts a Darwinian perspective on catch-
ments and landscapes, as opposed to Newtonian approaches (Harman
and Troch, 2014). The Darwinian perspective focuses on more funda-
mental relationships like the conservation of mass and energy, and
tries to find dominant controls that shape and condition a system (a
catchment) in an evolutionary sense, which ultimately results in the
fine-scale Newtonian processes describable by mechanistic equations.
In terms of the Budyko hypothesis and curve, it means that there are
no Newtonian constraints for catchments to fill the whole Budyko
space spanned by the water and energy limit. However, we observe
a clear clustering around the Budyko curve as demonstrated by a
large-scale catchment dataset in the USA in Figure 2.4, indicating that
climatic aridity is indeed a dominant first-order control of the mean
water balances across a variety of geographic zones and landscapes.

2.4 deviations from the budyko curve

While Figure 2.4 appears to corroborate the Budyko hypothesis that
climatic dryness serves as dominant first-order predictor for the
mean water balance, we also witness considerable spread around the
Budyko curve. The variance of the mean annual water balance can
be due to natural second-order controls, anthropogenic interference
or to estimation errors. The following three sections briefly elaborate
on these three influence mechanisms. The term "Budyko offset" here
refers to the deviation of the mean annual water balance from the
estimate by the Budyko curve - regardless of its causes. In the Budyko
space, an offset thus describes a vertical deviation along the y or
EVR-axis at the same dryness index.

2.4.1 Natural second-order controls

If the catchment’s climatic dryness index is considered a first-order
approximation, biogeophysical catchment characteristics as well as
finer-scale spatiotemporal characteristics of the climate are considered
and referred to as second-order controls on the mean water balance.
While the first-order control explains the most geographic variability
and is considered to be practically independent, second-order controls
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fulfill these two criteria to a lesser extent. Figure 2.5 illustrates how a
water balance-relevant second-order control would affect the Budyko
position in both directions from the curve.

Figure 2.5: Effects of natural 2nd order controls on mean annual catchment
water balance in the Budyko space

The attempt to explain in a more general manner offsets from
the Budyko curve by identifying the second-order controls has been
present in hydrological research for many years. A wide range of pos-
sible influences has been suggested and analyzed in studies, a broad
overview of which is provided by Padrón et al. (2017). Biogeophysical
characteristics include topographic controls (e.g. slope), vegetational
controls (e.g. NDVI) and soil-related controls (e.g. water holding ca-
pacity). The subscale climate variability-related second-order controls
comprise for example seasonality of rainfall and potential evaporation
as well as the phase lag between the two (Lavenne and Andréassian,
2018), mean storm depth or snowiness.

While certain studies are based on some form of hydrological or
water balance models (e.g. Milly, 1994), the approach of many others
rely on parametric versions of a Budyko-type model. Such paramet-
ric Budyko frameworks introduce a supposedly catchment-specific
parameter (n or w) into the Budyko-type equation. Various similar
parametric models were developed over the years by (Choudhury,
1999; Fu, 1981; Mezentsev, 1955; Tixeront, 1964; Turc, 1954). Numerous
studies use these parameterized equations, relating parameter values
to physiographic catchment characteristics by fitting the model to
observation data (e.g. Abatzoglou and Ficklin, 2017; Bai et al., 2020;
Li et al., 2018). Donohue et al. (2007) used the catchment-specific
parameter to incorporate vegetation information (e.g. leaf area, pho-
tosynthetic capacity and rooting depth) in the Budyko framework in



20 catchment water balance and budyko framework

order to explain and correct offsets from the original curve. Roderick
and Farquhar (2011) used the parametrized equation to investigate
changing of climate conditions and catchment characteristics.

However, physiographic catchment characteristics that affect the wa-
ter balance are manifold and interrelated, and it thus appears difficult
if not inappropriate to represent those by a single parameter. Recently,
Reaver et al. (2022) reexamined the frameworks and underlying as-
sumptions of parametric Budyko-type approaches. He concluded that
these parametric Budyko equations are under-determined and thus
non-unique, and that the parameters can change without biophysical
catchment characteristics changing and thus not be transferred to
other catchments. According to Reaver, such parametric frameworks
lack a physical foundation and correspond rather to the results of pa-
rameter fitting in limited datasets, resulting in a lack of predictive skill.

2.4.2 Anthropogenic influences

The general, non-parametric Budyko curve and the idea behind it
were developed on the basis of natural, anthropogenically unaltered
and widely non-managed catchments. Human intervention in natural
systems has its own logic, varies with the human intentions and
interests, and thus cannot be generically captured by a framework
based on water and energy availability. The following paragraphs
briefly describe the different ways, the position of a catchment in the
Budyko space can be altered by human activity and how they relate
to the meaning of the Budyko curve.

Climate change

Firstly, the hydroclimatic boundary condition of catchments (P/ETp)
can be altered through changes in the global or regional climate.
For instance, by releasing carbon dioxide stored in fossil fuels to the
atmosphere, mankind is provoking a global warming, a positive trend
in the mean atmospheric and oceanic temperature due to an altered
radiation balance. This global climatic trend affects regions differently,
atmospheric variables relevant both to potential evapotranspiration
(e.g. temperature, rel. air humidity) as well as mean precipitation
amounts and weather patterns can change (Masson-Delmotte et al.,
2021). Even without anthropogenic interference, climate has always
been subject to changes and variations, to which the human com-
ponent is increasingly contributing (Masson-Delmotte et al., 2021).
The Budyko curve can be interpreted as a more universal and con-
stant relationship, a perspective according to which all systems are
supposed to develop or strive towards the curve (e.g. Schaefli et al.,
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2011). In consequence, with a changing climatic boundary condition,
one of the quasi-independent drivers of catchment coevolution (Troch
et al., 2015), a catchment system would evolve over time towards a
new, changed state of mean hydrologic partitioning. Depending on
how far-reaching the climatic change is, it might entail adaptation
processes of catchment elements like soils and vegetation that take
decades and centuries. Hence, in terms of the Budyko framework and
of offsets from the Budyko curve, changes in the global climate due
to anthropogenic influences do not violate the basic assumption of
the framework, they merely alter or accelerate climatic evolution. In
that sense, catchment systems can be presumed to evolve along the
climatic changes in coherence with the Budyko idea.

Changes of catchment properties

A second way of altering the mean water balance of a catchment is
by directly imposing changes on the system’s elements: Changes in
vegetation or land use such as deforestation, afforestation, crop culti-
vation and all their interactive effects on the soil and microorganisms
or on the radiation balance (surface albedo changes). Furthermore,
rectifying rivers alters the sediment dynamics and might for example
deeply incise river beds which in turn can affect mean ground wa-
ter levels and humidity (e.g. the Rhine correction). There are many
human-made alterations to the natural properties of a landscape and
a river that can considerably change the mean water partitioning into
evaporation and runoff. The degree of change of the mean water
balance logically depends on the alteration’s magnitude, e.g. the
surface of altered land use, and its functional significance within the
complex catchment system. Such alterations of catchments usually do
not entail a feedback on the regional climate (Budyko, 1974), unless
perhaps vast spatial scales are affected (e.g. widespread deforestation
of the Amazonian rain forest). In consequence, regarding the Budyko
framework, anthropogenic interventions might alter the natural evolu-
tion of the landscape and catchment, which the framework is built on,
and introduce new second-order controls on the mean water balance,
as illustrated by Figure 2.6.

Infrastructure directly altering water fluxes

The third way how humans disturb the natural water balance is by
directly altering water fluxes. This form of disturbance is caused
by water management measures such as the construction of water
infrastructure like dams and reservoirs as well as of artificial channels
diverting and redistributing river water. Such measures are usually
taken to
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• provide water for agriculture (irrigation, livestock),

• provide water for industrial use,

• provide water for domestic use or

• aid in flood prevention.

In semiarid regions with a pronounced rainfall seasonality and re-
sulting stream flow seasonality like in the basins in West Peru, storing
water in reservoirs during the rainy season serves the purpose of
increasing the water availability and the baseflow during the dry sea-
son. Reservoirs, either strengthened natural lagoons or fully artificial
dam lakes, thus increase the storage capacity of the river basin. In the
semiarid region of Peru, ancient pre-Inca water management systems
were found that diverted water from headwater streams to mountain
slopes with higher infiltration capacities and a better connectivity to
aquifers, thus artificially increasing groundwater resources and the
water yield of natural springs during the dry season (Ochoa-Tocachi
et al., 2019). When water that has already ended up in the stream
channels, is stored and subsequently diverted and re-released onto
soils and crops (irrigation), it constitutes a re-transformation from
runoff water (generated by system-internal hydrological processes)
back to water available to (areal) evapotranspiration. In terms of the
mean water balance and the Budyko position, it has an ET enhancing
effect, thus causing a catchment to reach higher evaporation ratios in
the Budyko space (Figure 2.6).

Figure 2.6: Effects of anthropogenic disturbances on the mean annual catch-
ment water balance in the Budyko space

River water diverted to be used by households or industries, is
usually re-released to the drainage network, however of lower quality,
as greywater. Industries (especially mining) often require an onsite



2.4 deviations from the budyko curve 23

waste water treatment system to purify it before reintroducing it to
the natural system. Quantitatively speaking, it depends on how the
waste water is disposed of, if it alters the catchment’s water balance.
If polluted or partially-treated water is reintroduced in the streams, it
will still be part of and measured by the annual accumulated stream
flow or the derived mean evaporation of the catchment. If the water is
disposed of in evaporation ponds (Prosser et al., 2011), it will impact
the mean water balance in favor of evaporation. If water is withdrawn
from aquifers, on average depleting groundwater resources, it would
mobilize water from the otherwise passive groundwater storage and
add it to the active one, also altering the mean annual water balance -
towards more stream flow if released to the drainage network, or to
more evaporation if used on the fields or disposed of in evaporation
ponds.

In general, storing water in open reservoirs with potentially big
surfaces (for lack of depth) always entail more losses to ET than
would occur by river water flowing towards and discharging into the
ocean. In a semi-arid region, these losses can often not be neglected
(Friedrich et al., 2018).

If water infrastructure-based alterations of the natural water bal-
ance, are to be called or included as a Budyko offset is a question
of convention. The resulting water balance alteration and potentially
a (more pronounced) deviation from the Budyko curve, would at
least be measured as one. However, the general Budyko framework
can obviously not account for such human-dependent interventions
in the catchment system and water balance dynamics. Hence, if the
anthropogenic influence is significant at the mean annual level, it
would have to be taken into account when using or considering the
Budyko estimate for a catchment.

2.4.3 Effect of estimation errors and uncertainty in the Budyko space

It is difficult to put numbers on the uncertainties associated with
measurement errors. Depending on the equipment and maintenance
of a region’s monitoring network, combined with the challenges
arising from its natural setting, the uncertainties can be considerable.
However, the uncertainties have to be assessed and potentially taken
into account for each region or catchment individually. Figure 2.7 il-
lustrates schematically the effects of estimation errors for the different
catchment-averaged water and energy components in the Budyko
space. We assume for the Figure that the evaporation ratio is estimated
based on discharge data and the catchment water balance.
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Figure 2.7: Effects of errors in estimating/measuring the catchment water
balance components on mean annual catchment water balance in
the Budyko space

An estimation error of a component of the catchment water and en-
ergy balance, P, ETp and Q/ETa that yield the Budyko space variables,
aridity index ϕ and evaporation ratio EVR, result in a specific shift in
the Budyko space and relative to the Budyko curve. An error in the
ETp estimation produces a horizontal shift along the x-axis, towards
a falsely higher aridity index when ETp is overestimated (case 1a in
the figure), or vice versa (1b). An overestimation of mean discharge
entails an underestimation of actual evaporation, and results thus in
a vertical shift towards a falsely lower evaporation ratio EVR (case
2a), or vice versa (2b). Lastly, an error in the estimation of catch-
ment precipitation affects both Budyko space variables, the aridity
as well as the evaporation ratio EVR. Moreover, since ETa is usually
derived via the catchment water balance, ETa = P − Q, an error in
the precipitation estimate affects also the ETa estimate itself. Thus, an
overestimated catchment precipitation leads to a falsely assumed more
humid catchment (further left) and too high an evaporation ratio (case
3b). If the ETa estimate was derived otherwise and independently of
discharge measurements, an overestimated precipitation would result
in a lower EVR.

Evidently, there can be estimation errors in more than one compo-
nent at the same time, which would result in the superposition of two
or all three effects shown by Figure 2.7.



3
S T U D Y A R E A A N D D ATA

The first part of this chapter introduces the geographic region of Peru
that most of the research is based upon, zooming in on the Western
slopes of the Andes and the two basins of Chillón and Lurín. The
second part describes hydrometeorological and biogeophysical data
used in several chapters for the analyses and studies in this region.
Descriptions of additional data and more in-depth catchment analyses
are provided in the corresponding chapters themselves.

3.1 main study area : west peruvian andes

3.1.1 Peru’s geography

Peru is located at the western coast of the South American continent.
Due to massive Andes mountain range, the Cordillera (Figure 3.1a,b),
the country presents an interesting geographic setting. The North-
South extent and arrangement of the Cordillera form a division line
for climate and vegetation zones. The country’s landscape can thus be
subdivided into three main natural zones (Figure 3.1c): The humid
east is a tropical rain forest and part of the Amazon basin, character-
ized by abundant vegetation (greenish zone in the figure). Proceeding
East, elevation increases forming the mountain rain forest, presenting
a cooler, less humid and less vegetated natural zone (brownish zone).
The high mountaineous part then transitions into the increasingly dry
and sparsely vegetated Western slopes of the Peruvian Andes, ending
up in a coastal desert where the capital Lima is located (yellowish
zone).

3.1.2 Climate and meteorology

Climate in this region is strongly related to elevation. It varies from
extremely arid and semi-warm in the lower coastal parts (0-800 m)
to very humid and in parts icy in the highest elevations (4800-5000

m). The aridity of the coastal region results from a quasi-permanent
inversion of the lower atmosphere due to large-scale subsidence of
air masses. The inversion layer effectively inhibits convection and
thus rainfall in that region (Trachte et al., 2018). Precipitation on the
western slopes occurs mainly in the highlands, induced by moist air
masses arriving from the Amazon basin in the east (Trachte et al.,
2018). Temporal precipitation patterns show a distinct annual cycle

25
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Figure 3.1: (a) South America and Andes mountain range (WorldAtlas, 2018),
(b) topographic map of Peru (Wikipedia, 2021b) (c) resulting cli-
mate zones and landscape units: greenish tropical/mountain rain
forest, brownish: mountain grass and scrubs, yellowish: coastal
desert and scrubs (Wikipedia, 2021a)

with a rainy season during the austral summer months (DJF) and aPrecipitation and
seasonality dry season during the austral winter (JJA). Main rainy months are

from December through April, main dry months from June through
September, leaving the months in between as transitional phases. The
seasonality is induced by the migration of the intertropical conver-
gence zone (ITCZ), the convergence zone of the trade winds. During
the austral summer, the rainy season, the ITCZ is located south of
the equator and warm moist air from the Atlantic Ocean is trans-
ported by easterly trade winds over the Amazon basin to the high
central Andes (Trachte et al., 2018). However, the Andean mountains,
stretching along the western coast from the north to the far south
of South America, disrupt the atmospheric circulation in the region.
The height (mean peak elevations above 4000 m a.s.l.) and length
of the mountain range impose a strong contrast between its eastern
and western slopes (Garreaud, 2009). Most of the rainfall occurs on
the eastern side, as part of the tropical rainforest, while the western
slopes experience a rain shadow effect (Trachte et al., 2018). Leeward,
on the western slopes, precipitation decreases with lower elevations
due to sinking of arriving air masses and the stronger influence of the
convection-hindering inversion of the lower troposphere. During the
austral winter the region experiences its main dry season. The ITCZ,
now located further up north and the well-established South Pacific
High, associated with a subsidence inversion, suppresses convection.
In addition, during the austral winter, upper-level westerly flows
reduce the westward transport of moist air from the east and thus
amplify the rain-shadow effect (Trachte et al., 2018). As a result, there
is little to no precipitation on the western flanks of the central Andes
during the austral winter.



3.1 main study area : west peruvian andes 27

Like precipitation, temperature is also closely linked to the elevation.
In latitudes where Lima is located, daily maximum temperature in Temperature

the lower elevations is about 21 °C and drops down to 10 °C in the
highest parts, the seasonal fluctuations being more pronounced in the
lower parts (Observatorio del Agua, 2018).

In terms of interannual variability, the occurrence and influence
of the El Niño Southern Oscillation (ENSO) phenomenon is rele- ENSO anomalies

vant in the region. ENSO describes a complex coupled atmosphere-
ocean mechanism, leading to anomalies in the surface temperature in
the equatorial Pacific and in global atmospheric circulation patterns.
Anomalies in both directions from the mean temperature (alternations
between El Niño and La Niña periods as opposed to neutral situations)
occur in non-regular periodicity. Across the Pacific ocean, there are
different impact regions of ENSO (Sanabria, 2018) in terms of ocean
temperature anomalies (Figure 3.2). While a global Niño is related
to central Pacific temperature anomalies and causes global effects, a
Niño costero provokes more localized anomalies (Region 1+2 in Figure
3.2, directly in front of Peru’s west coast) (Ramírez and Briones, 2017;
Takahashi, 2017). The impacts of ENSO dynamics on smaller regions
in terms of weather patterns and rainfall events or other atmospheric
variables are non-trivial. The Niño costero in 2017 is supposed to have
led to heavy rainfall events and subsequent flooding in 2017 in the
region (Ramírez and Briones, 2017).

Figure 3.2: ENSO regions: Region 1+2 is adjacent to Peru’s coast (Sanabria,
2018)

3.1.3 Western slopes of Andes, Chillón and Lurín basin

The wider hydrological study area is located between the Andean
mountain range, the East-West water divides, and the Pacific ocean,
where numerous rivers basins have formed. In this thesis, this area is
referred to as Western slopes or Western flanks of the (Peruvian) Andes.
Most basins exhibit a steep topographic gradient, with headwaters
located in the Andean highlands at up to 4000-6800 m and the river
mouths at sea level, over short distances of around 75-150 km (Figure
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6.1).

Three of these basins, located in the wider area around Lima, supply
the capital with drinking water: Chillón, Rímac and Lurín (Figure 3.3).
Since runoff and water balance of the Rímac basin are altered by a
trans-andean tunnel transporting water from a basin on the side of the
mountain range (Alto Mantaro), more in-depth hydrological studies
were conducted only for Chillón and Lurín.

Figure 3.3: Overview map of Lima area and the adjacent Chirilu basins.

Figure 3.4 schematically presents a perceptual model of the Lurín
basin and its functional sections, which is in its essence also valid for
the Chillón basin. Most of the rainfall input occurs in the highest parts
of the basin, transitioning into zones where runoff is increasingly con-
centrated. In the area below the lower stream gauges (Antapucro in the
Lurín, Puente Magdelana in the Chillón), there is no more significant
rainfall input. In consequence, hydrologic transformation processes,
the partitioning of rainfall into evapotranspiration and runoff occurs
predominantly within those gauged subcatchments. Further down-
stream in the basin, the river water is merely routed through the main
channel, towards the coast, flowing across the increasingly urbanized
areas. In addition, in the valleys’ alluvial deposits in the flatter zones,
which form a sedimentary aquifer along the streams, river water infil-
trates into the ground and recharges the aquifer (see Figure 5.17). Both
for agricultural and drinking water purposes, significant amounts of
groundwater is pumped up through numerous wells in those sedimen-
tary layers. These surface-groundwater interactions concern a different
hydrologic and water management topic. Therefore, the research of
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this thesis is limited to the subcatchments of Puente Magdalena and
Antapucro.

Figure 3.4: Perceptual model of water resources in the Lurín catchment,
which are stem from and are replenished by the rainfall in the up-
per catchment. The zones are separated for illustration purposes,
whereas in reality they are transitional and overlapping (adapted
from Leon et al. (2021))

3.2 data

Table A.1 in appendix section A.1 provides a quick overview of all
external data and datasets used for studies and analyses in Peru, that
are described in the following.

3.2.1 Meteorological data

PISCO-P, national precipitation product

The PISCO-P dataset is a national gridded precipitation product pro-
vided by SENAMHI that covers the entire country of Peru at a spatial
resolution of 0.1°. Data is available at daily and monthly resolution.
The version “PISCO Prec v2p1 stable daily” (1981 to 2018) was used in
the study (Aybar et al., 2020). PISCO determines precipitation based
on data from three different sources: the national quality-controlled
and infilled rain gauge data set, climatologies based on the TRMM
data, and the Climate Hazards Group Infrared Precipitation (CHIRPS)
estimates. The merging algorithm uses different deterministic interpo-
lation methods for daily and monthly data, namely residual inverse
distance weighting for daily rainfall, and residual ordinary kriging
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for monthly rainfall. For further information, it is hereby referred to
Aybar et al. (2020).

PISCO-ETp, national potential evapotranspiration product

PISCO-ETp is a gridded national potential evapotranspiration product,
generated in the same project and research effort as the precipitation
product PISCO-P. However, this data product lacks proper documen-
tation. According to Llauca et al. (2021), the product relies on the
Hargreaves-Samani method (Samani, 2000). Given the wide spatial
extent (national) of the product and the general data scarcity in the
country, it seems reasonable to assume that it was generated on
the basis of interpolated or satellite-inferred Tmin and Tmax surface
temperature fields, as well as literature-based or otherwise derived
Hargreaves-Samani coefficients.

Rain gauges & weather stations in Chirilu basins

Daily precipitation data from a total of 67 rain gauges at various alti-
tudes were available (Figure 3.3). Some of the stations are additionally
equipped with monitoring devices for other atmospheric variables
such as temperature, wind speed, solar radiation, varying however in
the composition of devices. The whole rainfall dataset covers nearly 57

years, from August 1963 until January 2020. However, due to different
lengths of the time series as well as gaps, the individual records of
the stations varied in the number of valid data points. 16 stations
had records of at least 360 months (30 years), 50% of the remaining
stations covered at least 5 years, the other half less.

Most data were provided by the Peruvian Meteorological and Hy-
drological National Service SENAMHI (Servicio Nacional de Mete-
orología e Hidrología del Perú). Other stations are operated by the
power company “Enel Group Peru” or the drinking water supplier of
Lima metropolitan area, SEDAPAL. In addition, as part of the TRUST
project, the Karlsruhe Institute of Technology (KIT) set up five rain
gauges and one well-equipped weather station in the higher parts of
the Lurín basin (KIT stations represented by square symbols in Figure
3.3).

3.2.2 Streamflow data

Multiple catchments along Western Slopes of Peruvian Andes

For monthly streamflow data from multiple catchments along the West-
ern slopes of the Peruvian Andes, an online database by the Columbia
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university provided a collection of SENAMHI data (SENAMHI, 2020).
However, the streamflow data accessed in 2020 have in the meantime
been removed from the online portal.

Chillón and Lurín

Daily stream flow data for gauges in the Chillón and Lurín basin
were taken from the SENAMHI web database (SENAMHI, 2019).
In the Chillón basin, streamflow data was retrieved for the Puente
Magdalena and Obrajillo as headwater gauge. From the year 2002 on,
the two stream gauges have data records of around 16 years, with data
coverages of around 84% and 100%, respectively (Figure 3.5).

As depicted in Figure 3.3, prior to the TRUST project there had
only been one active stream gauge in the Lurín river (Antapucro). The
records of the Antapucro stream gauge effectively covered only 2,5
hydrological years, since the sensor broke down during an intense
flood event in March 2017. A new, contactless water level sensor was
installed in June 2018 at the Antapucro bridge, complementing the
discharge records with a data gap inbetween of around 15 months.

3.2.3 Biogeophysical data

Biogeophysical data used for the studies in the Peruvian region
comprise a variety of different datasets, generated from satellite data,
field data or their combination.

Topography and catchment delineations

Topographic information is derived from a global digital elevation
model (DEM) of 12 m spatial resoluton for the Lurín basin (German
Aerospace Center (DLR), 2016), and of 30 m resolution (NASA, 2001)
for all other basins. Upon that basis, catchments were delineated and
other topographic attributes (e.g. slopes) were derived.

Vegetation and land cover

Lastly, three kinds of vegetation and land use information were incor-
porated in our modeling and analysis datasets. Firstly, a national GIS
map, likely derived from satellite data, illustrates vegetation zones
(Figure 5.13). Secondly, NASA’s remote sensing MODIS product pro-
vided gridded leaf area index (LAI) data in 8 days time steps (Myneni
et al., 2015), which is a common indicator for seasonal vegetation
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dynamics reflected by the variations of the vegetation cover.

Snow cover

The MOD10A1 remote sensing product by NASA MODIS (Hall and
Riggs, 2021) was used to detect snow cover on the Western Andean
flanks. The NDSI snow cover index of that product ranges between 0

and 100, indicating the fraction of snow cover detected in a 500x500

m grid cell. It is based on the difference of visible reflectance (very
high for snow cover) and shortwave infrared reflectance (very low
for snow cover). 100 indicates a grid cell fully covered with snow, 0 a
completely snow-free grid cell.

Soils

With regard to soils, two different data sets were retrieved. On the
one hand, there is a national GIS map, likely originating from terrain
mapping, subdiving space into rather coarse groups of presumably
homogeneous soil types (Figure 5.11). On the other hand, a global
database with gridded soil texture and bulk density data for different
soil layers was used (Poggio et al., 2021). The soil data was generated
by a machine learning-based interpolation procedure, including cli-
mate, land cover and terrain morphology as auxiliary predictors for
the interpolation between measured soil profiles.

Hydrogeology

Information on hydrogeological units was obtained by a national
hydrogeological map (ANA, Autoridad Nacional del Agua, 2017). The
map was created from a geological map, which served as a basis to
categorize the different geological formations with regard to their
hydraulic conductivity, into groups of aquifers and aquitards as well
as the basic rock type (e.g. sedimentary or volcanic) it is composed
of. In addition to the hydrogeological formations, the location of
groundwater sources and wells were extracted from a GIS database
(ANA, Autoridad Nacional del Agua, 2017).
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Figure 3.5: Chillón and Lurín basins: discharge records of two Chillón gauges
(Puente Magdalena and Obrajillo), and one Lurín gauge (Antapu-
cro)



4
E S T I M AT I N G C AT C H M E N T WAT E R A N D E N E R G Y
B A L A N C E C O M P O N E N T S I N A D ATA - S C A R C E
E N V I R O N M E N T I N T H E P E R U V I A N A N D E S

This chapter presents methods regarding the estimation of water and
energy balance components in data-scarce and mountainous regions
like the Western slopes of the Peruvian Andes.

Primarily, a robust, statistical rainfall regionalization model named
CovVar model is introduced, responding to particular challenges arising
in poorly monitored regions, and subsequently applied to the two
basins of Lurín and Chillón. The works related to the development
and testing of the model were carried out by Alcamo (2019) in the
framework of a Master thesis, embedded in the research efforts of this
doctoral thesis. While the following section presents the most relevant
findings and the regionalization approach itself, for more details and
analyses it is hereby referred to Alcamo (2019).

For potential evapotranspiration, the Hargreaves-Samani method is
applied via a regional and seasonal calibration, using short potential
evapotranspiration time series based on the Penman-Monteith method
from recent monitoring data to produce long historic time series. The
data analysis and calibration works for this approach were conducted
by Oezgür (2020) in the framework of a study project.

4.1 covvar model development for precipitation region-
alization

Predictive skill and corresponding uncertainty of hydrological models
strongly relate to the accuracy of spatially distributed precipitation
input data (Arnaud et al., 2002; Das et al., 2008). In most hydrological
applications, estimates of spatially distributed precipitation are based
on a limited number of rain gauges spread across a river catchment
or region of interest. In order to obtain spatially distributed precipita-
tion estimates, an interpolation or regionalization of the point-wise
measurements is required. In general, the choice of the interpolation
method as well as its quality depend on the spatial scale, the density
of the observation network, the topography of the area, and the nature
of the variable to be interpolated (Herrera et al., 2019; Ly et al., 2013).

34
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Satellite-based remote sensing techniques today increasingly play
an in precipitation estimation, mainly due to their global coverage and
availability in data-scarce regions. While such data can be used well Increasing use of

remote sensingfor spatial patterns, especially in larger catchments, they come with
substantial shortcomings in terms of the reliability of quantitative
estimates (AghaKouchak et al., 2010). The quality of remotely sensed
precipitation also depends on the geographic setting, as it tends to be
more reliable in flat and humid areas (Anagnostou, 2004; Hu et al.,
2019).

Precipitation estimates, in particular in a mountainous region like
the Western slopes of the Peruvian Andes, thus still primarily rely
on the regionalization of point-wise rain gauge measurements. There Spatial covariance,

deterministic vs.
probabilistic
interpolation
approaches

is a wide range of different interpolation approaches proposed in
literature, which can coarsely be grouped into conventional deter-
ministic models as well as probabilistic geostatistical methods. Basic
univariate, deterministic interpolation models like Thiessen polygons
use only the value of the nearest station (nearest neighbor), and an
inverse-distance weighting (IDW) interpolates a value via a weighted
average of several neighboring stations, the weights being higher
with increasing proximity. Multiple regression interpolation models
incorporate in some way auxiliary data with predictive skill on spatial
trends of rainfall fields (Hu et al., 2019). However, statistical informa-
tion “hiding” in the datasets, for example the spatial variance of the
data (AghaKouchak et al., 2010; Zehe et al., 2005), is not exploited by
deterministic interpolation methods, as opposed to geostatistical or
kriging approaches. The basic Kriging interpolation procedure also
relies on a weighting. The weights are however determined on the Geostatistics and and

covariance structurebasis of a semivariogram, which describes the spatial covariance of
the variable of interest (rainfall) (Arnaud et al., 2002; Matheron et al.,
1962). When the underlying statistical assumptions are met, kriging
offers the advantages of minimized estimation variance and prediction
error estimates, but is computationally more demanding. However, if
for instance the spatial covariance structure stems from different types
of precipitation events -e.g. convective or frontal cyclonal- it can be
difficult to obtain representative variograms (Haberlandt, 2007; Ver-
worn and Haberlandt, 2011), plus kriging is both more challenging in
data-scarce regions (Aybar et al., 2020) and not always outperforming
simpler, deterministic methods (Ly et al. (2011), Dirks et al. (1998)).

If there are spatial trends or anisotropy in the dataset, the interpola-
tion will yield better results if accounted for in the approach. In many Accounting for

spatial trends like the
orography

cases, as well as in our study region in West Peru, the orography
has a significant influence on spatial rainfall patterns and statistics.
This topographic information can be included with different methods,
from pure regression techniques to multivariate cokriging. The linear
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regression approach in the PRISM model (Daly et al., 1994) uses
topographic facets with similar slope orientation, and was found to
produce less statistical error in the cross-validation than geostatistical
models. Buytaert et al. (2006) analyzed rainfall patterns in South
Euadorian Andes and found that the impact of including correlations
of rainfall patterns with topography outweighs the effects of different
interpolation methods.

The multitude of approaches used and tested in different regions
suggests that the choice of precipitation regionalization approaches
should result from an analysis of region-specific hydrometeorological
conditions and limitations of the monitoring network and data. TheContribution and

outline present work introduces a novel, robust alternative approach named
the “CovVar” model to regionalize precipitation data in data-scarce
regions where rainfall statistics correlate strongly with elevation. The
approach essentially relies on the regionalization of the monthly
precipitation mean in combination with the use of spatially correlated
temporal precipitation fluctuations. Initially, spatiotemporal rainfall
patterns and statistical relationships are analyzed. On that basis, the
CovVar modeling approach is developed and applied to the main
study basins, Lurín and Chillón. A model evaluation is performed by
means of a cross-validation, as well as a annual rainfall totals and a
qualitative evaluation of interpolated rainfall maps, comparing it to
the national gridded PISCO rainfall product (Aybar et al., 2020).

4.1.1 Methods

Data and preprocessing

For the analysis of rainfall patterns and statistical relationships as well
as for the interpolation model developed on that basis, rain gauge
data from the three catchments of Chillón, Rímac and Lurín were used.
For the derivation of statistical relationships, the method requires
sufficiently long, point-wise rainfall measurements. A threshold of 30

years was set to derive stationary mean values, resulting in 16 stations
fulfilling this criterion (see section 3.2.1 and Figure 3.3). The precipita-
tion data were aggregated to annual and monthly rainfall totals. The
national gridded precipitation product PISCO was employed in the
model evaluation, as a benchmark (section 3.2.1).

The 30 m DEM was used to infer elevations 3.2.3. For the rainfall
interpolation, a version aggregated to a resolution of 1000 m was
employed.
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Variogram analysis

A precondition for the applicability of kriging is a meaningful semi-
variogram, which essentially determines the explanatory quality of
any interpolation (Aidoo et al., 2015). In order to evaluate a potential
kriging approach, experimental semivariograms were computed and
analyzed, based on the classical Matheron estimator (Matheron et al.,
1962).

Model validation

In order to evaluate the performance and assess the predictive skill
of the CovVar interpolation model, the method was applied and
generated daily rainfall time series. By means of a leave-one-out cross
validation, the model was evaluated quantitatively. This method is
based on removing one data point from the set of N data points,
applying the interpolation to the reduced data set of N − 1 data
points and comparing the simulation result to the observed data at the
missing point. This procedure is applied to each data point (Marcotte,
1995).

The following criteria were applied to quantify and compare the
performance of the models:

• Root-Mean-Square Error (RMSE), normalized to standard devia-
tion

• Ratio of the mean precipitation accounted for by the model

• Ratio of the variance of the observed values accounted for by the
model

• Ratio of the annual peak precipitation accounted for by the
model

In the case of the RMSE, a lower value indicates more reliable
estimates of the respective model. For the other criteria a ratio of 1,
i.e. 100%, indicates a perfect model performance for the respective
criterion. As a simple measure for the representation of observed
daily peak precipitations in the model, the ‘annual peak precipitation”,
i.e., the highest observed daily precipitation value in a given year, is
compared to modeled precipitation on that same day.

4.1.2 Spatiotemporal rainfall patterns and statistics

Elevation dependence

Annual average precipitation ranges from 0 mm/a at lower alti-
tudes to around 700 mm/a for the highest stations (Figure 4.1a).
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For elevations between 0 m and around 1500 m, the annual average
precipitation totals are very small, approaching zero, and show no
discernible correlation with elevation. Above an elevation threshold
of approximately 1573 m, there is a near-linear increase of annual
average precipitation totals with elevation. A linear model containing
an automatically-derived breakpoint (Muggeo, 2003) was fitted to the
data, explaining 91% of its variance.

The variance of monthly precipitation shows a trend similar to that
of annual mean precipitation (Figure 4.1b). The variance in higher
elevation ranges increases with elevation, while for lower elevations
the variance is generally low and shows no dependence on elevation.
In addition, the variances of stations at higher elevations show a larger
spread than the lower ones. Again two linear functions were fitted
and a breakpoint was determined at 1976 m, in order to describe
the threshold-like relationship found in the elevation dependence of
the monthly precipitation variance. The linear model describing the
elevation-dependence of the variance in higher altitude reached an R2

of 89%.

(a) Elevation-dependency of mean annual
rainfall totals. Linear function fitted. 16

stations used with more than 30 years
of data

(b) Elevation-dependence of monthly pre-
cipitation variance, two fitted linear
functions with elevation threshold de-
termined at 1976 m

Figure 4.1: Elevation dependence of annual mean precipitation and variance
(Alcamo, 2019)

The elevation dependence of mean precipitation was also explored
at the monthly scale, separately for each month of the year. There is a
significant linear correlation between elevation and monthly average
precipitation for rain gauges above a certain elevation threshold (Fig-
ure 4.2), similar to the trend observed for annual average precipitation
(Figure 4.1a). While this trend exists throughout the whole year, the
difference in magnitude between above- and below-the-threshold
rainfall is considerably more pronounced during the rainy season. The
elevation threshold (breakpoint) itself varies significantly throughout
the year, reflecting the seasonality of the weather patterns in terms of
the thickness of the inversion layer that inhibits precipitation. While
the threshold is comparably low during the rainy season, ranging
from 1000 m to 2000 m with its minimum of approx. 1100 m in
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February and March, it rises up to around 4000 m during the dry
season. The movement of the breakpoint implies also the variation
in the fraction of the rainfed part of the region or the river basins.
Based on Muggeo (2003), two linear functions were fitted to describe
the threshold-like dependence for each month. For precipitation
below the elevation threshold, in the absence of a detectable pattern,
precipitation estimates were modeled as a horizontal linear function,
representing a constant average throughout this elevation range.
Monthly averages in the lower elevation range vary between 0 and
10-20 mm per month. Precipitation is highest and the breakpoint ist
lowest during the months December until March. The months with
lowest mean precipitation and highest breakpoints are go from May
through September. The variances explained by the linear models
for the higher elevation range are generally high, with a minimum
of 74% in October and a maximum of 93% in July, February and March.

Figure 4.2: Elevation dependence of monthly rainfall totals in the study area.
Linear functions fitted, only stations used with more than 30 years
of data for each plot, stations with 0 mm precipitation were not
considered to determine R2 (Alcamo, 2019)
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Variogram analysis

The variogram analysis based on monthly rainfall totals did not re-
veal consistent-enough covariance structures that would allow for a
meaningful application of kriging. As shown in Figure 4.1b, there is a
pronounced elevation trend in the variance of the precipitation data,
violating the second-order stationarity condition for variograms and
rendering a kriging-based interpolation unfeasible. An application
of kriging relies on the premise that the point-wise measurements
of rainfall result in a variogram in which the semivariance mono-
tonically increases with increasing lag distance, until the range is
reached and the spatial correlation fades. However, as demonstrated
by four variogram examples for the month of December (Figure 4.3)
-the onset of the rainy season-, there are meaningful ones (subFigures
4.3b and 4.3d), and others with an opposite, non-meaningful and
non-exploitable semivariance structure (subFigures 4.3a and 4.3c).

(a) December 1987 (b) December 1999

(c) December 2012 (d) December 1988

Figure 4.3: Selected variograms for monthly precipitation. Elevation-
dependent trend was removed beforehand and semivariance was
normalized to the respective max. Only stations above 1573 m
were taken into account, since no meaningful spatial correlation
was detected below that elevation threshold even at the annual
scale (max. lag = 50 km, estimator=”Matheron”) (Alcamo, 2019)

4.1.3 The CovVar model

The basic assumption of the linear model is that precipitation at a
certain point and time, P̂(⃗ri, t), can be expressed by the sum of the
elevation-dependent mean precipitation of the corresponding month,
P̄(z(⃗ri), m), and a time-dependent fluctuation, P̂′ (⃗ri, t), as described
by Eq. 4.1. The approach is called Reynolds decomposition, in which
the fluctuation’s mean is to be zero.
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P̂(⃗ri, t) = P̄(z(⃗ri), m) + P̂′ (⃗ri, t), (4.1)

where r⃗i is the geographic location of a point i and z(⃗ri) its elevation,
m the month of the year and t the time step.

The monthly elevation-dependent mean, P̄(z(⃗ri), m), is determined
using a linear regression model, exploiting the linear correlation
between elevation and the average monthly precipitation total for each
of the twelve months of the year. Resulting from the elevation-monthly
precipitation relationship, each geographic location is assigned a
monthly mean precipitation. If the model is applied at the daily
scale, an elevation-dependent mean daily precipitation is derived for
each day of the year, by dividing the monthly elevation-dependent
mean by the number of days of the respective month. Hence, also
at the daily scale the monthly statistics are decisive. To what degree
this uniform disaggregation of mean monthly to mean daily rainfall
depends mostly on the number of rainy days in a month.

The deviation of the precipitation at a specific location and time step
(month or day) from its elevation-dependent mean is calculated using
the deviation at the nearest available station (reference station) at this
time step from its own elevation-dependent mean, P′ (⃗rs, t), scaled
with a factor c which depends on the elevation difference between the
interpolation location and the nearest station, h:

P̂′ (⃗ri, t) = P′ (⃗rs, t) · c(h) (4.2)

P′ (⃗rs, t), reflecting the precipitation fluctuation at the nearest station,
is calculated by subtracting the monthly elevation-dependent mean
P̄(z(⃗rs), m) from the observed value at the respective time step. The
nearest station is determined on the basis of a Voronoi diagram.

As scaling factor c for the regionalization of the precipitation fluc-
tuation, the “CovVar coefficient” is introduced. It emerged from the
criteria that it is dimensionless and takes into account that stations at
higher elevations tend to have higher precipitation as well as a higher
variance. The CovVar coefficient equals the covariance of two stations,
normalized with the variance of one of the two. The CovVar coefficient
quantifies the temporal correlation between two random variables at
two different locations with elevations zi and zj. The scaling factors
are thus described by the matrix C whose elements are defined as:

cij(hij) =
Cov(Pzi , Pzj)

Var(Pzi)
, (4.3)



42 estimating catchment water and energy balance components

with Pzi as mean monthly precipitation of a reference station at ele-
vation zi and Pzj as mean monthly precipitation of an interpolation
location at elevation zj.

Unlike the correlation matrix, C it is not symmetrical, reflecting
the directional character of the elevation difference which is given as
hij = zj − zi (positive if zi < zj and negative if zi > zj), so hij ̸= hji.
That accounts for the two possibilities that the location r⃗i is either
higher or lower than its nearest reference station. The concept of the
CovVar coefficient combines the structure of both spatial covariance
and variance, both of which need to be strongly conditioned by
elevation for its applicability. Furthermore, cij can exceed the value 1,
avoiding a smoothing of the variance which the Pearson correlation
coefficient does when normalizing the covariance to the product of
the two standard deviations.

The CovVar coefficients are determined from monthly precipitation
totals of all available rain gauges in the area of interest. In order
to derive a continuous function for the dependence of the CovVar
coefficient on the elevation difference h = hij, a linear model for the
CovVar factor c(h) is fitted to the data. The linear model is confined
by the condition c(0) = 1, so that there is zero in- or deflation of the
variance if interpolation point and reference station are at the same
elevation.

4.1.4 Model application and validation

This section presents the results of the precipitation interpolation
obtained with the CovVar model when applied to the Chirilu study
region at daily time steps. The model application is based both on
the statistical relationships of rainfall shown in section 4.1.2 and on
the determination and fitting of the CovVar coefficient as described in
section 4.1.3.

The quantitative validation part contains on the one hand the
performance of the CovVar model individually and on the other hand
a comparison to the benchmark model PISCO. The quantitative evalu-
ation comprises a point-wise cross-validation as well as a comparison
of areal precipitation sums for the Lurín and Chillón catchments. The
quantitative validation distinguishes the two elevation ranges: lower
elevations below and higher elevations above the threshold deter-
mined at 1573 m, corresponding to the two separate linear functions
of annual precipitation to elevation (Figure 4.1a) that qualitatively
differ in precipitation statistics regarding an elevation dependence.
The primary focuses is however on the higher elevations since those
are the catchment domains where relevant precipitation amounts fall
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and runoff generation processes occur.

The second and rather qualitative part of the evaluation shows
an example of interpolated rainfall maps generated by the CovVar
model, the PISCO model as well as by the Thiessen polygons approach.

CovVar coefficient

The CovVar coefficient was computed for all stations with at least
360 monthly data points as a function of their directional elevation
difference. The steady increase with the directional elevation differ-
ence is approximated by a fitted linear function (Figure 4.4) that is
forced to go through the point (0, 1). The linear model explains 75%
of the data’s variance. The spread of the CovVar coefficient is however
higher for larger positive elevation differences, rendering the linear
model less accurate in that range.

Figure 4.4: CovVar coefficient as a function of the directional elevation differ-
ence with a fitted linear function through x = 0 and y = 1. Only
stations with at least 360 data pairs were taken into account.

Cross-validation

The lower elevation range shows both significantly higher RMSE
values between 0.8 to 3.6 (mean: 1.4), and a larger spread (Figure
4.5). The normalization of RMSE with the standard deviation cre-
ates artificially high values in case of small rainfall totals and small
variances at the low elevations. For higher elevations, the RMSE
ranges between 0.5 and 1.3, with an average of 0.9 (table 4.1). The
average long-term precipitation (ratio of simulated mean precipi-
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tation) is close to 100%, with a slight overestimation of 5.3%. In
contrast, the simulated variance is underestimated on average, with
a small bias of 7.3 %. However, the spread of simulated variance
is significant with a standard deviation of 40.0%, ranging from a
minimum of 15.7% to a maximum of 189.7%. The ratio of modeled
annual peak precipitation (Pmax) is around 46%, thus the modeled
yielded on average around half of the actual annual peak precipitation.

Figure 4.5: RMSE of daily precipitation values as a function of elevation
based cross-validation results, the dashed line indicating the
elevation threshold. The stations’ data records being different,
the evaluation is based on time series of potentially different
length and covering different time periods

Table 4.1: Results of the cross-validation of the CovVar model for stations
above 1573m. The abbreviation "% sim." indicates the ratio of e.g.
the observed mean simulated by the model on average"

Mean Std.dev. Min. Max.

norm. RMSE 0.9 0.2 0.5 1.3
% sim. mean 105.3 25.3 65.5 166.7
% sim. variance 92.7 40.0 15.7 189.7
% sim. ann. Pmax 46.3 15.6 24.4 80.5

Interpolated maps and catchment precipitation

Figure 4.6 shows the interpolation results as rainfall fields around the
Lurín basin for three different regionalization methods, here including
also a Thiessen polygon approach for the comparison. The maps
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show an example day, month and year (2018-01-09), in the middle of
the rainy season. Since the CovVar model was applied to a 1000m
digital elevation model, its resolution is finer than the 0.1° PISCO
grid. In general, the CovVar interpolation shows reasonable rainfall
fields. Sharp boundaries become visible, which is due to the fact
that only one station serves as reference for the weighting of the
fluctuation around the mean. The sharp boundaries correspond to
Thiessen polygons, as can be seen in the figure. Compared to Thiessen,
traces or influences of the (smoothed) orography can be recognized
in the finer distribution of precipitation in the respective polygons.
The rainfall fields of the PISCO model show sightly different rainfall
patterns, which may partly be due to a non-identical number of used
rain gauges. The influence of one station in PISCO can be strong
and produce a sharp peak in the grid, the spatial impact of such a
point-wise peak appears however more limited.

Figure 4.6: Comparison of interpolated rainfall fields of three regional-
ization approaches for an example date/time period in and
around the Lurín basin: CovVar (left), PISCO model (center) and
Thiessen polygons (right). Rainfall for three time scales: daily,
(top), monthly (middle), annual (bottom).

The CovVar model simulates annual areal precipitation totals at the
catchment scale comparable to the PISCO model. Figure 4.7 compares
the annual precipitation volumes for two similarly sized and oriented
subcatchments in the Lurín (Puente Antapucro subcatchment) and the
Chillón (Puente Magdalena subcatchment), which both cover the mid-
dle and upper parts of the basins where precipitation actually occurs.
In both cases, the CovVar model yields higher annual rainfall totals
compared to the PISCO model in all hydrological years. The average
difference between CovVar and PISCO is however more considerable
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in the Lurín basin: +116 mm/a (+35 %) and +47 mm/a (+10 %) in
the Lurín catchment and in the Chillón catchment, respectively, and a
particular difference of +60% for the hydrological year of 2019 in the
Lurín catchment.

Figure 4.7: Areal annual precipitation sums for Lurín basin (Antapucro sub-
catchment, right) and Chillón basin (Puente Magdalena subcatch-
ment, left)

4.1.5 Discussion of model performance

This section discusses the results and performance of the CovVar
model.

Cross validation

The cross-validation yielded reasonably good performance metrics,
comparable to the PISCO product (Alcamo, 2019). The validation
statistics in terms of reproduced mean and variance are comparable
and close to observed values (near 100%). The non-negligible standard
deviation of these statistical moments indicates however that the
quality of local rainfall predictions varies considerably. The coarse
measure of annual peak precipitation (Pmax) revealed that very high
observed daily precipitation totals are poorly represented by the
model. Presumably, this is due to the fact that heavy, convection-
driven rainfall events (Trachte et al., 2018) are likely to be more limited
in their spatial extent than other, more frequently occurring rainfall
events and therefore not or poorly captured by the nearest station’s
fluctuation. Applied at the daily scale, the uniform disaggregation of
monthly elevation-dependent mean precipitation into daily elevation-
dependent mean precipitation probably also has an influence on the
rainfall regionalization. The mean number of daily rainy per month
turned out to be 28 during the rainy season in the study region, which
puts the use of such a coarse assumption into perspective.
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There is thus a difference in the model performance between mean
water volume and peak events. In general, for all statistical moments
of the quantitative evaluation, the standard deviation is significant,
implying that the model performance varies with the validation
stations ("left out ones" in the cross-validation or the independent
stations in the comparative validation). Stations likely do not all have
the same (statistical) importance, which is an even more relevant
point in monitoring networks of low density. Depending on a station’s
location relative to the local station density and prevailing rainfall
events or their spatial extent statistics, it provides more or less infor-
mation, is more or less redundant or expendable in the interpolation
than others. The observed inconsistency of variograms for the same
month, with ranges or correlation lengths that are only in some cases
discernible, suggests that the spatial structure of rainfall events and
related weather patterns also vary between the years.

A comparison between the individual CovVar cross validation and
the validation based on the independent dataset, thus with fewer
available interpolation points/stations, showed that the representation
of mean precipitation and variance does not change significantly. This
is presumably due to the influence of the elevation-dependent monthly
climatology that mainly conditions the mean water volumes and to
the formulation of the CovVar coefficient that aims at preserving the
variance.

Annual catchment-averaged rainfall, water balance

Spatial averaging of distributed rainfall in the two subcatchments
of the Chillón and the Lurín river has shown that the CovVar re-
gionalization approach has a significant effect on annual rainfall, the
input of water volume to the catchment (Figure 4.7. In both cases,
CovVar yields higher annual catchment-averaged rainfall than the
PISCO model. The difference between the two models, however, is
more pronounced in the Lurín basin, which is probably due to the
elevation-imposed mean monthly rainfall that counterbalances the
lack of rain gauges in the highest and most humid areas of the upper
Lurín basin and generates on average more rainfall in that domain. In
particular, the difference between the CovVar and PISCO model in the
Lurín basin in 2019 is striking. CovVar simulates around 60% more
rainfall in the catchment. The TRUST project set up new research
rain gauges at high elevations in the Lurín basin, a region formerly
effectively not monitored, which appears to have had an impact on
mean areal rainfall. The considerably higher annual catchment rainfall
in 2019 (setup of new rain gauges happened mainly at the end of 2018)
in the Lurín river could indicate that this year, it was a particularly
humid year in the Lurín basin or at least in the headwaters. The



48 estimating catchment water and energy balance components

high rainfall amounts were able to be measured by the newly set up
rain gauges and then likely exceeded the mean elevation-dependent
rainfall statistics, generating high areal rainfall.

Rainfall fields

The CovVar model is in principle a nearest neighbor approach, using
elevation instead of euclidean distance and incorporating statistical
relationships of rainfall patterns and elevation. The example rainfall
fields generated by the CovVar model show the influence of the
nearest neighbor approach. This imposes sharp boundaries which do
obviously not correspond to actual spatial rainfall patterns, a phe-
nomenon which is known from other commonly used methods like
Thiessen polygons. Since the purpose of such regionalization methods
is to assess water balances or as forcing data for hydrological models,
this theoretical shortcoming is of minor importance. On the one hand,
hydrological models are not per se sensitive to meteorologically or
physically inconsistent rainfall structures and are on the other hand to
a certain degree capable of counterbalancing spatial input data biases
in the calibration process.

4.2 regionally calibrated hargreaves-samani approach

for potential evapotranspiration

As described in section 2.2, potential evapotranspiration is mainly
conditioned by the surface energy balance and the vapor pressure
deficit in the lower atmosphere. While there are numerous methods toMethods to estimate

pot. evaporation calculate ETp, the Penman-Monteith approach (Monteith, 1965) has
evolved as a standard in hydrology. Compared to the other methods,
Penman-Monteith explicitly accounts for most atmospheric variables
and surface resistance effects, making it the most complete but also
the most data-hungry one. The FAO56-reference evapotranspiration
(ETo) (Allen, 1998), builds on the Penman-Monteith formula, and
standardizes ETp to a short-cut green grass reference surface with
fixed resistance properties. Amongst other well-known approaches
such as instance Priestley-Taylor, Hargreaves-Samani or Turc (review
in McMahon et al. (2013)), the Hargreaves-Samani approach stands
out because of its simple and parsimonious approach, making it more
applicable in data-scarce regions. Even though the short cut green
grass reference surface in FAO-56 ET0 might not be the ideal reference
surface in semiarid regions, it still outperforms other approaches
in such regions (López-Urrea et al., 2006). Moreover, amongst other
methods, also Hargreaves-Samani yielded very reasonable estimates
(López-Urrea et al., 2006), despite its simplicity.
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Regionalization of potential evapotranspiration from weather sta- Regionalization of
ETption data is achieved either by interpolating the variables required for

the chosen method or by interpolating the point-wise calculated ETp

itself. Potential evapotranspiration depends on controls like latitude,
topography and land cover (albedo) or the resulting cloud cover and
distributions of temperature and relative humidity. Throughout the
year, it usually follows seasonal cycles and its interannual variability
is in general smaller than that of precipitation (Koster and Suarez,
1999).

In the main study region in Peru, the Chirilu basins, little data on
radiation and rel. humidity was available, let alone long time series. In Data-scarcity in

Peru and
Hargreaves-Samani
approach

such data-scarce regions, the comparably simple Hargreaves-Samani
(Samani, 2000) approach is often applied, since it is based only on daily
minimum, maximum and average temperature. It requires however
the adjustment of the Hargreaves-Samani coefficient to local condi-
tions (Samani, 2000), ranging roughly between 0.1 and 0.25. Given
the recent installation of well-equipped weather stations, these new
and short data records were used to calibrate the Hargreaves-Samani
coefficient (Shahidian et al., 2013) in the study region in order to
produce longer historic time series that could be used as forcing in
the hydrological model in chapter 5 and to estimate the catchments’
aridity for determination of their position in the Budyko space.

This section first introduces the Hargreaves-Samani approach. After
presenting an analysis of seasonal and spatial patterns of ETp and
method-dependent differences based the short period for which full
weather data sets are available, the Hargreaves-Samani coefficient is
calibrated on monthly basis, by linear regression and applied to the
study region via previously regionalized temperature fields.

4.2.1 Hargreaves-Samani method

The Hargreaves-Samani method only requires measurements of daily
minimum, maximum and average temperature as well as the latitude
for the estimation of extraterrestrial radiation. The approach is built
on the idea that at least 80% of ETo variability can be explained by
solar radiation and temperature. They proposed that daily incoming
solar radiation can be derived from extraterrestrial radiation and
the temperature difference within in the 24h-day, corrected only by
a coefficient accounting for regional conditions (Eq. 4.4). The idea
assumes that the heating of the ground surface and the overlying air
column is heated primarily by solar radiation and not by advective
transport of warm air masses.
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Rs = KT · Ra · TD0.5 (4.4)

with the Hargreaves-Samani coefficient KT, extraterrestrial radiation
Rs and the daily temperature difference TD = Tmax − Tmin. Potential
evaporation is then estimated based on equation 4.4:

ETP = 0.0135 · (T + 17.78) · KT · Ra · (Tmax − Tmin)
0.5 (4.5)

4.2.2 Data

The short data records for the estimation of FAO-reference evapotrans-
piration ET0 were based on the six weather stations spread across
the Chirilu basins at different elevations (Figure 4.8). Apart from the
Cullpe station that belongs to the TRUST-Project, the five other stations
are part of SEDAPAL’s monitoring network.

Figure 4.8: Map of new weather stations in Chirilu region, used to calibrate
Hargreaves-Samani coefficient

4.2.3 Spatiotemporal differences between reference evapotranspiration and
Hargreaves-Samani

The analysis of deviations of potential evapotranspiration as esti-
mated by Hargreaves-Samani from FAO-reference evapotranspiration
is based on an "uncalibrated" estimate using a fixed default HS-
coefficient of KT = 0.17 (Shahidian et al., 2013). The difference
between FAO-ET0 and Hargreaves-Samani-based estimates are related
both to the season and to elevation (Figure 4.9). For stations above 1000
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m, relative errors (RE) of the Hargreaves-Samani estimates decreased
with increasing elevation. For all stations (except for Bocatoma La
Atarjea), uncalibrated H-S estimates overestimated ET0 in the rainy
season, with a positive RE decreasing from 49.6% down to to 4.1%
for the highest station, Torococha. For stations above 3000 m, the H-S
method underestimated ETp in the dry season. For the lowest station,
Bocatoma La Atarjea, the H-S estimates were also too high, however,
with an inverse trend in the seasonality: while the rainy season was
almost in agreement with ETo, the estimates in the dry season were
far too high.

Figure 4.9: Seasonality and elevation dependence of the difference or relative
error of Hargreaves-Samani estimates as compared to the FAO
reference evapotranspiration, a positive relative error indicates
an overestimation by Hargreaves-Samani and vice versa (Oezgür,
2020)

Deviations of Hargreaves-Samani ETp estimates depend both on the
season and the elevation. In order to explore how atmospheric input
variables used in Penman-Monteith explain the between-method
differences, a correlation analysis was conducted on the basis of
monthly ETp estimates. High correlations were found consistently
for relative humidity (’HRD’ in the figure) and solar radiation Rs for
all stations, with the strongest correlations for the stations at high
elevations (Oezgür, 2020). Except for Cullpe, wind velocity shows
lower correlation values, especially for the lower stations. The error
being seasonal itself, it correlates well with all seasonally distributed
variables, that are thus also interrelated and do not allow for an
attribution of explained variance. There are two main sources why
Hargreaves-Samani ETp is off: It does not account for ET-limitation by
relative humidity, which may under humid conditions lead to an over-
estimation of ETp (Trajkovic, 2007). Secondly, the Hargreaves-Samani
default KT, that relates Rs to the temperature difference (see Eq. 4.4)
is not representative of the region and therefore the approach requires
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a regional optimization.

4.2.4 Calibration of Hargreaves-Samani coefficient

The analysis of spatiotemporal patterns of the differences between
uncalibrated Hargreaves-Samani and FAO reference evapotrans-
piration estimates showed a strong dependence of the performance of
Hargreaves-Samani on the season and elevation. In order to improve
the Hargreaves-Samani estimates and adapt the coefficent to the
region, KT was optimized as a linear function of elevation, separately
for each month of the year (Figure 4.11). The elevation dependence
is less pronounced during the rainy months (December through
March/April) than in the dry months, yielding less steep linear
functions. The linear trend is thus not as pronounced in the data in
the rainy season. For the six reference weather stations, the resulting
seasonality of their respective optimal KT coefficients is plotted in
Figure 4.10.

Figure 4.10: Seasonality of Hargreaves-Samani coefficients for the six hy-
drometeorological stations (Oezgür, 2020)
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Figure 4.11: Elevation-dependent linear fits of Hargreaves-Samani coefficient
for each month of the year. The month is indicated in the little
legend, the fitted function equation on top of each box (Oezgür,
2020)

4.2.5 Areal potential evapotranspiration

The calibrated Hargreaves-Samani model was applied to the Lurín
basin, and annual areal potential evapotranspiration time series were
estimated. For the regionalization, daily maximum and minimum tem-
perature fields were estimated from polynomial vertical atmospheric
temperature profiles that were fitted based on available monitoring
station data. Depending on the day, atmospheric conditions show the
existence of an inversion layer in the lower atmosphere, from ground
level up to around 1500m-2000m, as described by Trachte et al. (2018)
(see example profiles in Figure 4.12). The choice of the polynomial fit
function is supposed to account for this inversion, however without
overstating the position of the station with the highest measured
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temperature.

(a) Atmospheric profile showing tempera-
ture inversion (08.08.2001)

(b) Quasi-linear atmospheric temperature
profile (05.04.2000)

Figure 4.12: Examples of fitted vertical atmospheric profiles of daily Tmin
and Tmax temperature,

For the whole Lurín basin, mean annual ETp is 1111 mm/year
and ranges between 1041 mm and 1167 mm, thus with fairly small
variations as reflected by low standard deviations of 33 mm. For
the upper basin part, the standard deviation of 73 mm is higher
(Oezgür, 2020). Figure 4.13 shows the time series of annual potential
evapotranspiration for the upper basin part. Minimum annual ETp

is estimated in the upper Lurín basin at 885 mm/year. Season-wise,
mean ETp in the upper basin part during the rainy season reaches
353 mm as opposed to the double of 700 mm in the dry season. For
the lower basin, differences between the seasons are significantly less
pronounced (488 mm and 562 mm).

Figure 4.13: Yearly and seasonal sums of calibrated Hargreaves-Samani esti-
mates for the upper Lurín Basin (Oezgür, 2020)



5
PA I R E D C AT C H M E N T M O D E L I N G A P P R O A C H F O R
L U R Í N A N D C H I L L Ó N R I V E R

5.1 introduction

The Lurín river, case study basin of the TRUST project and one the
three neighboring catchments providing Lima with freshwater suffers
from a lack of adequate hydrometeorological monitoring. . There is Data limitations in

the Lurín basinonly one functioning stream gauge (Antapucro), at a lower to medium
elevation (1000 m a.s.l.) in the heterogeneous basin. The short stream
gauge’s data records of around 3-4 years suggest a considerable
interannual variability. In addition, the supposedly most humid area
of the basin, the headwater catchments, are not equipped with rain
gauges at all, making catchment rainfall estimates challenging. In
terms of data, the basis for the setup, calibration and validation of a
hydrological model is thus limited.

Runoff predictions in ungauged basins require a catchment-
characteristic model parameter set that cannot be obtained via
calibration. Parameters in ungauged basins can also be derived Obtaining model

parameter sets in
ungauged basins

from relationships between catchment characteristics and model
parameters established through statistical regression (Blöschl et al.,
2013; Samaniego et al., 2010) in gauged basins. These methods need
however large amounts of calibrated catchment model data, using
the same hydrological model structure and parameters (Buytaert and
Beven, 2009). Alternatively, for catchments presumed to be similar in
terms of hydrological processes, model parameters can be transferred
from gauged (donor) to ungauged (receptor) catchments (Buytaert
and Beven, 2009; Singh et al., 2014). Moreover, model parametrizations
can be constrained or oriented by runoff signatures such as the flow
duration curve or the mean water balance to further reduce parameter
uncertainty.

In order to tackle the data limitations for the development of a
hydrological model for the Lurín basin, a paired catchment modeling
approach is proposed. The neighboring Chillón basin, providing a Paired catchment

approach to develop
model for Lurin

more solid basis in terms of hydrometeorological monitoring and
suggesting similarity in terms of hydroclimate, size and topography to
the Lurín, serves as reference and parameter donor basin. Geographic
proximity of the basins should make for a comparable geological
setting, which in combination with a similar climate makes soil and
vegetation similarity likely (Patil and Stieglitz, 2012).

55
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The mesoscale hydrological model (mHM) (Samaniego et al., 2010)
was chosen for the modeling. Parameter regionalization in mHM ismHM model

based on a multiscale approach, using transfer functions (Hundecha
and Bárdossy, 2004) resulting from priori defined, empirically derived
functional relationships between measurable catchment characteristics
and effective model parameters. According to Samaniego et al. (2010),
the mHM regionalization approach makes for a higher transferability
of parameters across scales and locations.

Firstly, mHM is set up and calibrated for the Chillón basin, tak-
ing two stream gauges into account. Multiple model configurations,Outline

varying in meteorological input datasets, calibration time periods,
objective function and soil characteristics, are tested as suitable model
calibrations. Three selected model parameter sets are transferred to
a model of the Lurín basin. The Lurín model runs based on trans-
ferred parameters will be compared to the mHM default parameter
set and to runs directly calibrated against the few years of streamflow
observations in the Lurín itself. In order to improve meteorological
forcing estimates in the Lurín, the datasets developed in chapter 4 are
tested as alternative model input, evaluating their quality additionally
by means of hydrological modeling (Heistermann and Kneis, 2011).
Apart from Nash-Sutcliffe-based model evaluations, the selection of
the calibrated parameter set to be transferred as well as the goodness
of Lurín simulations are evaluated based on observed and simulated
water balances. The latter is based both on similarity of the two basins
in terms of the mean water balance and on the Budyko curve serving
as a water balance landmark.

5.2 data and preprocessing

Hydrometeorological data

For certain meteorological variables such as precipitation and potential
evapotranspriation, multiple datasets were used and tested:

Precipitation (P)

• PISCO-P: dataset described in section 3.2.1

• CovVar interpolation of rain gauge measurements: Spatial pre-
cipitation fields were generated by the method developed and
described in chapter 4.1.

Potential evapotranspiration (ETp)

• PISCO-ETp dataset described in section 3.2.1

• Calibrated Hargreaves-Samani method described in section 4.2
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Streamflow data
Streamflow data used in this study is described in section 3.2.2.

Temperature
Daily, spatially-distributed temperature fields (daily Tmin, Tmax, Tmean)
used both directly in the hydrological model and within in the afore-
mentioned calibrated Hargreaves-Samani-based potential evapotrans-
piration, were derived from weather station datasets by SENAMHI,
SEDAPAL and the TRUST project. The underlying procedure uses a
fitted vertical atmospheric temperature profile, estimated on the basis
of all temperature sensors in the Chirilu catchments, and regionalizes
the temperature based on elevations from an aggregated 1000 m
digital elevation model (see section 4.2.5).

5.3 methods

While the first part of this section provides an overview of the mHM
model, the second part describes the steps of the catchment pairing
approach.

5.3.1 Mesoscale Hydrological Model (mHM)

The following paragraphs present a summary of the structure, param-
eter regionalization and hydrological processes in mHM. For a more
detailed model description it is hereby referred to Kumar (2010) and
Samaniego et al. (2010), which served also as a basis to this overview.

mHM is a process-based, conceptual hydrological model, fully-
distributed in space using grid cells as elementary hydrological unit.
Based on parametrizations of dominant hydrological processes, mHM
accounts for the following ones: canopy interception, snow accumu-
lation and melting, vertical soil moisture dynamics, infiltration and
surface runoff, evapotranspiration, subsurface storage and runoff gen-
eration, deep percolation and baseflow, as well as discharge attenua-
tion and flood routing (Kumar, 2010). Doing justice to different spatial
scales relevant to different input and state variables, mHM operates
on three levels of spatial discretization:

• Level-0: This level is used to describe the sub-grid variability of
geomorphological properties of the basin, such as sub-surface
soil texture and geology classes, surface topography, leaf-area-
index and land-use classes

• Level-1 (and Level-11): The level used to numerically compute
all hydrological processes and interactions as well as the level
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at which output is generated. Level-11 describes the spatial
resolution for the routing module (mRM), and is usually set to
equal Level-1.

• Level-2: The level used to describe the variability of meteorolog-
ical forcings over the basin such as precipitation, temperature
and evapotranspiration.

Multiscale Parameter Regionalization

Parameter regionalization in mHM is achieved in two steps- a si-
multaneous regionalization and an upscaling step. mHM applies a
simultaneous regionalization based on functional relationships called
transfer functions (Samaniego et al., 2010). These a priori defined
transfer functions result from empirical evidence or process under-
standing, and describe the relationship between basin characteristics
and effective model parameters βi that are used to compute hydrological
processes at the L1 level (Samaniego et al., 2010). The transfer func-
tions themselves have parameters (degrees of freedom), constituting
the global parameters γi of the model, which are used to regionalize
effective model parameters based on spatially-explicit basin character-
istics, and are bound to supposedly physically meaningful parameter
ranges. Instead of directly calibrating effective model parameters of
each cell, in mHM’s calibration procedure only global parameters
are varied and optimized with respect to a defined objective criterion
for the resulting model simulation based on the simultaneously re-
gionalized effective parameters. To provide an explanatory example
for soil properties: spatially distributed soil texture data and land
use information (L0 level) as basin characteristics serve as input to
pedo-transfer functions that compute effective model parameters like
the van-Genuchten parameters for every L1 grid cell. Such a regional-
ization approach is computationally advantageous as it significantly
reduces the parameter search space.

Figure 5.1: Comparison between the Multiscale Parameter Regionalization
(MPR) in mHM model and Standard Regionalization (Samaniego
et al., 2010)
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The second step and particularity of the parameter regionalization
in mHM is its multiscale approach. While standard regionalization
(SR) relies on upscaling basin characteristics of higher spatial reso-
lution (LO) to the coarser spatial resolution of the model (L1) prior
to the transfer function-based regionalization, mHM performs the
regionalization at the L0-level itself and subsequently scales up the
regionalized effective parameters. In order to optimize the results,
the most suited upscaling operator is specifically selected for each
parameter. The multiscale regionalization approach better accounts for
sub-grid variability (Samaniego et al., 2010) of basin characeteristics.
Figure 5.1 depicts the differences between the standard regionalization
and the MPR approach.

Model structure and hydrological processes

This section provides a schematic overview of the hydrological pro-
cesses accounted for in mHM (Figure 5.2) and is based on Kumar
(2010). Descriptions of the model components shown in the Figure will
be limited to the subsurfaces processes of soil moisture storage (X3),
and upper and lower storage (X5, X6), as well as their associated fluxes.
As the first of the three subsurface layers, the soil moisture storage
layer (X3) represents the upper part of the root zone and controls the
responses to rainfall and evapotranspiration. This compartment and its
hydrological behavior correspond to the so-called β-store of the HBV
model described in section 7.2.4. The soil moisture zone can be further
subdivided, contingent on user preference, into an arbitrary number
l = 1, ..., l of horizons, with every subdivision l supplied with level
depth and soil texture properties. The ratio between influx and efflux
at the interface between every subdivision horizon is controlled by a
simplification of the Richards equation with soil water conductivity
based on the relationship from Brooks and Corey (Brooks, 1965). The
governing equation is:

I l(t)
I l−1(t)

=

(
xl

3(t − 1)/dl − θl
r

βl
6 − θl

r

)βl
7(t)

(5.1)

with xl
3/dl denoting the relative soil water content in the l-th root

zone horizon of any given cell and time point, dl (mm) describing
the depth of this soil horizon, and βl

6 (mm) and θl
r (mm) denot-

ing the limits within which soil moisture may fluctuate. The last
two respectively denote the maximum and the residual soil water
content. β7 (-) determines the relative, nonlinear contribution to runoff.
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In every root zone horizon l, actual evapotranspiration is computed
by reducing the potential rate (ETp) as a result of soil water-stress,
based on an ET-reduction factor, fSM, of the Feddes equation:

ETl(t) = βl
17 · f l

SM(t) · ETp(t), (5.2)

with βk
17 as fraction of roots in the k-th root zone layer and

f l
SM(t) =


0 xl

3(t − 1) ≤ βk
15

xl
3(t−1)−βk

15
βk

16−βk
15

βk
15 < xl

3(t − 1) ≤ βk
16

1 otherwise

(5.3)

with βk
15 as permanent wilting point, βk

16 as soil moisture threshold
above which the potential rate ETp is not limited.

In mHM, lateral flows of subsurface water from one cell to a neigh-
boring are considered to be negligible in contrast to the magnitude of
the vertical components I, C and K at scales and spatial resolutions
that conceptual hydrological models usually operate at. Once water
from the lowest root zone layer has percolated to the upper storage (X5),
it is no longer exposed to evapotranspiration in the model and part
of the domain where runoff is generated. The total runoff from a cell,
that is water that eventually reaches the stream network, is comprised
of four runoff components - direct runoff (q1), fast interflow (q2), slow
interflow (q3) and baseflow (q4).

Direct runoff is only generated in model cells declared impervious
in the model setup (e.g. urban areas), where water cannot infiltrate
into the soil. Fast interflow refers to the intermittent movement of
water from the vadose zone to the stream channel in a given cell.
This flow occurs only if the influx of water exceeds an input-data
and calibration-inferred maximum holding capacity β18 (mm) of the
upper reservoir (Kumar, 2010). It imitates temporarily saturated upper
soil conditions, producing fast surface and near-surface flow. For any
moment in time t, the fast interflow can be calculated as:

q2(t) = max{I(t) + x5(t − 1)− β18(z2 − z1), 0} · β19, (5.4)

with β19 (1/TS) as a fast-recession constant.
The slow interflow describes the almost permanent flow of water

from the unsaturated zone (x5) and is estimated as the outflow from a
non-linear reservoir:

q3(t) = β20(x5(t − 1))β21 , (5.5)
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with β20 (1/TS) as slow-recession constant and β21 (-) quantifying the
degree of nonlinearity of the cell response.

Groundwater recharge C (percolation rate, mm/TS) from the up-
per storage (x5) to the lower storage (groundwater reservoir, x6)) is
estimated as a simple linear reservoir with:

C(t) = β22x5(t − 1), (5.6)

with the percolation coefficient β22 (1/TS).

The lower storage (X6) represents the saturated groundwater zone
and controls the baseflow q4. This component can be conceptualized
as a leaking reservoir where a gain/loss flux K determines the perma-
nent loss (or gain) to the cell, either as a deep percolation or from a
neighboring catchment as inter-catchment flow. This can be the case
in karstic environments for example. The baseflow and K loss/gain
equations are given respectively by:

q4(t) = β23x6(t − 1) (5.7)

and

K(t) = β24C(t), (5.8)

with β23 (1/TS) as baseflow-recession constant and β24 (-) as frac-
tion of groundwater that might be lost as deep percolation or inter-
catchment groundwater flow.
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Figure 5.2: Schematic representation of different components accounted for
in mHM. Where, X state variable, E = actual evapotranspiration,
q = component of runoff, S = snow precipitation depth, R = rain
precipitation depth, F = throughfall, I = infiltration capacity, C =
percolation, K = gain/loss flux in a leaking cell, Qr = net runoff
produced at the outlet of a grid cell (Kumar, 2010)

5.3.2 Modeling and parameter transfer

The paired catchment approach, both in terms of data analysis and
modeling, is spatially limited to subcatchments of the two river basins:
The Puente Magdalena gauge catchment in the Chillón basin, and the
Antapucro gauge catchment in the Lurín basin. Both stream gauges
are located at around 1000 m a.s.l, downstream of the most relevant
part of the basins in terms of runoff generation, since below these
points annual precipitation approaches zero (Figure 5.6). In order
to differentiate the upper parts of the basins, the headwaters, the
Obrajillo catchment in the Chillón is compared to the Santa Rosa
de Quilquichaca (in short ’Santa Rosa’) catchment in the Lurín, a
subcatchment comparable in size and functional location. While the
Obrajillo headwater is actually gauged, the Santa Rosa one in the
Lurín only served as a spot for the potential setup of a new gauge
within the TRUST project.
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The methodology consists of the following three steps, which are
subsequently described in detail.

1. Comparative catchment analysis of Chillón and Lurín

2. Calibration and validation of Chillón model

3. Parameter transfer and simulations of Lurín model

Comparative catchment analysis

The comparisons of the two river basins of Chillón and Lurín, i.e. their
respective subcatchments, are drawn on the basis of mean climatic
forcing variables as well as on biogeophysical catchment characteristics.
Both spatial distributions and subcatchment averages are confronted
with one another. Apart a qualitative analysis based GIS maps, the
aspects listed in table 5.1 are analyzed quantitatively.

Table 5.1: Climatic forcing and biogeophyiscal characteristics compared be-
tween the subcatchments of the Chillon and Lurin basin

analyzed characteristic(s)

climatic

precipitation spatial distribution / mean annual
pot. evapotranspiration spatial distribution / mean annual

biogeophysical

topography hypsometric curve
soils soil types map, soil texture
hydrogeological formations GIS map
vegetation mean LAI dry/rainy season, GIS map

Calibration and validation of Chillón model

For the Chillón catchment, 23 different calibrations were carried out
with mHM. Multiple aspects were varied in order to analyze calibra-
tion differences and uncertainties as well as to obtain the most suitable
parameter sets. While table 5.2 shows the different configuration op-
tions for the model calibration , table 5.3 provides an overview of all
calibration runs.

As model forcing, P and ETp, the two datasets described in section
3.2.1 were tested. While most of the calibrations were conducted
based on both gauges in the Chillón river, assuming that such a
spatially more differentiated parameter optimization would result in
a better representation of the whole system’s dynamics, calibrations
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Table 5.2: Modeling aspects varied for the calibration of the Chillon river.

configuration options

precipitation PISCO-P dataset
CovVar dataset

pot. evapotranspiration PISCO-ETp dataset
calibrated Hargreaves-Samani (HS)
dataset

calibration gauges 2 gauges: Pte Magdalena and Obrajillo
("2")
only Puente Magdalena ("1_magda")
only Obrajillo ("1_obra")

calibration period 09.01.2003 - 30.08.2008

09.01.2008 - 30.08.2017

objective function Nash-Sutcliffe-Efficiency (NSE)
NSE_mix

against data from a single gauge were also conducted for compari-
son. The entire available modeling time period was subdivided into
two disjoint calibration periods. Lastly, three different NSE-based
objective functions were employed in the calibration- the common
Nash-Sutcliffe-Efficiency (NSE) (Nash and Sutcliffe, 1970) as well as
a logarithmic version of NSE (NSElog) and the average from both
(NSEmix), in order to put less weight on high flows and the rainy
season than common NSE (the latter two are described in Samaniego
et al. (2019)).



5.3 methods 65

Table 5.3: Overview of calibration and simulation runs for Chillón and Lurín models

Precip ETp Calib gauges Calib period Objective func Soil depth
No

chi1 PISCO HS-calib 2 2003-2008 NSE shallow
chi2 CovVar HS-calib 2 2003-2008 NSE shallow
chi3 PISCO PISCO 2 2003-2008 NSE shallow
chi4 PISCO HS-calib 2 2008-2017 NSE shallow
chi5 CovVar HS-calib 2 2008-2017 NSE shallow
chi6 PISCO PISCO 2 2008-2017 NSE shallow
chi7 PISCO HS-calib 2 2003-2008 NSE_log shallow
chi8 PISCO HS-calib 1_magda 2003-2008 NSE_log shallow
chi9 PISCO PISCO 2 2003-2008 NSE_log shallow
chi10 PISCO HS-calib 2 2008-2017 NSE_log shallow
chi11 CovVar HS-calib 2 2008-2017 NSE_log shallow
chi12 PISCO PISCO 2 2008-2017 NSE_log shallow
chi13 PISCO HS-calib 1_magda 2008-2017 NSE shallow
chi14 PISCO HS-calib 1_obra 2008-2017 NSE shallow
chi15 PISCO HS-calib 2 2008-2017 NSE thicker
chi16 PISCO HS-calib 2 2008-2017 NSE_log thicker
chi17 PISCO HS-calib 1_obra 2008-2017 NSE thicker
chi18 PISCO HS-calib 1_obra 2008-2017 NSE_log thicker
chi19 CovVar PISCO 1_obra 2003-2008 NSE shallow
chi20 CovVar PISCO 2 2003-2008 NSE shallow
chi21 CovVar PISCO 2 2003-2008 NSE thicker
chi22 CovVar PISCO 2 2003-2008 NSE_log shallow
chi23 CovVar HS-calib 2 2003-2008 NSE_log shallow
lu1 CovVar PISCO 1 2014-2019 NSE shallow
lu2 CovVar PISCO 1 2014-2019 NSE_mix shallow
lu3 CovVar PISCO 1 2014-2019 NSE_log shallow
lu5 CovVar HS-calib 1 2014-2019 NSE shallow
lu6 CovVar HS-calib 1 2014-2019 NSE thicker
lu7 CovVar HS-calib 1 2014-2019 NSE_log shallow
lu8 CovVar HS-calib 1 2014-2019 NSE_log thicker
lu9 PISCO HS-calib 1 2014-2019 NSE shallow
lu10 PISCO HS-calib 1 2014-2019 NSE_log shallow
lu5_def CovVar HS-calib 1 2014-2019 (no opti.) shallow
lu5_3 CovVar HS-calib 1 2014-2019 (transfer) shallow
lu5_21 CovVar HS-calib 1 2014-2019 (transfer) shallow
lu5_19 CovVar HS-calib 1 2014-2019 (transfer) shallow
lu11 CovVar HS-calib 1 2014-2019 NSE_mix shallow
lu12 CovVar HS-calib 1 2014-2019 NSE_mix thicker
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The evaluation of modeling results is done on the basis of the two
subcatchments, Obrajillo and Puente Magdalena. Both NSE criteria
and annual as well as mean annual water balances are considered, in
particular with respect to the Budyko curve estimate.

Parameter transfer and simulations of Lurín model

In order to find a global parameter set suited to represent the Lurín
river, three calibrated parameter sets obtained for the neighboring
Chillón catchment were transferred unaltered to the model of the
Lurín catchment. The choice of the three parameter sets was based
on a good model performance in terms of NSE, in terms of the mean
water balance with respect to the Budyko curve as well as to ensure
a certain variability in the parameters. For the comparisons between
optimized global parameter sets, only a subset of presumably most
relevant parameters were selected from the whole parameter set. The
selection of the subset resulted from a combination of a first-order
sensitivity analysis in the Chillón river and the findings of Höllering
et al. (2018) who conducted a more in-depth parameter sensitivity
study with mHM.

The Lurín simulations will be analyzed and evaluated on the basis
of short discharge observations at the Antapucro gauge. The simu-
lation results based on the parameter transfer are also compared to
direct calibrations of the Lurín, as well as to a run based on the mHM
default parameterization. Again, NSE-based as well water balance-
and Budyko-based criteria will serve as model goodness criteria.

Model configuration and input data

The models set up for the Chillón and Lurín river run at the following
spatial model scales: L2 - 1000m, L1/L11 - 1000m, L0 - 200m.

Stream networks were derived with the 30m DEM for the Chillón
and 12m DEM for the Lurín model (section 3.2.3). There are twoMorphological data

root zone soil layers in the model whose texture and bulk density
properties were taken from the soilgrids product described in section
5.4 and shown in the map in Figure 5.12. The soil layers depth are
homogeneous in all model cells, and was varied for the calibrations
(see section 5.3.2), with the shallow soil encompassing 15 cm, and the
thicker one 500 cm of depth. 8 geoclasses were set for the Chillón and
Lurín model according to the map in Figure 5.17. In terms of land
cover, all model cells were set to pervious, thus excluding the other
two options in the model, forest or impervious.
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Meteorological forcing data was taken from all data products de-
scribed in section 3.2.1. They were remapped to the respective model Forcing and

streamflow datagrids. Stream gauge data as described in section 5.4, with calibration
periods as listed in section 5.3.2). The models had a spin-up phase of
one year prior to the beginning of the calibration period.

The optimization was performed by means of the DDS (Dynamically Optimization

Dimensioned Search) algorithm with 1000 iterations.

5.4 comparative catchment analysis

This section describes and compares the two basins of Chillón and
Lurín, or rather their respective subcatchments. In terms of drainage
area, the entire Chillón basin covers 2179 km2, the Lurín 1569 km2, the
gauge catchments’ areas are listed in table 5.4. As visible in Figure 5.3,
the two delineated headwater catchments- Obrajillo, Santa Rosa- are
both part of the main catchments, Puente Magdalena and Antapucro.
The Santa Rosa catchment in the Lurín only served is not gauged, and
serves merely as a comparable headwater catchment to Obrajillo in
the Chillón.

Figure 5.3: Overview, DEM and rain gauges of Chillón, Rímac and Lurín
catchments ("Chirilu"). The highlighted subcatchments of the
Chillón and Lurín river basins constitute the study areas

Catchment arrangement and topography

The two study basins, Lurín and Chillón are separated by the Rímac
catchment, thus no immediate neighbors (Figure 5.3). All three catch-
ments extend from the Andean crest to the Pacific coast. The total
Chillón basin as well as its subcatchments are slightly bigger than the



68 paired catchment modeling approach lurín and chillón

Lurín and its subcatchments. The basins are similarly oriented, i.e.
their main axis is roughly perpendicular to the coast and the Andean
crest- imposing a similar exposition to moist air masses flowing in
from the east. The shapes of the two basins are comparable in terms of
width and length ratio. The hypsometric curves in Figure 5.4 show a
very similar elevation-to-area ratio for the two subcatchments Puente
Magdalena and Antapucro. The peaks in both subcatchments are
slightly above 5000 m, going down to the gauge elevation of around
1000 m. The Chillón subcatchment covers a bit more area in the higher
elevation range of 3400-4900 m.

Figure 5.4: Comparison of hypsometric curves of the two subcatchments of
Puente Magdalena and Antapucro

Precipitation

For precipitation, the two different datasets described in section 5.2
were used to assess the climatic conditions in the catchments and as
meteorological forcing for the hydrological models. Being intimately
linked to elevation in this region as described in section 4.1, mean
annual precipitation can be expected to be similar for both catchments.
Both precipitation datasets in Figures 5.5 and 5.6 show the elevation
dependence across all three Chirilu catchments. In the case of the
CovVar rainfall, elevation was a basic and explicit component of the
regionalization method, which is reflected by a finer mean rainfall
distribution following smoothed topographic structures. The range of
mean annual rainfall extends from 1100 mm (PISCO) and 1560 mm
(CovVar) in the highest elevation points of the Chirilu domain to 0

mm in the hyperarid coastal zone, presenting a pronounced spatial
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Table 5.4: Overview of average topographic and climatic characteristics of the
four subcatchments (dataset1 (ds1) indicates the PISCO-P/PISCO-
ETp, and dataset2 (ds2) the CovVar/ETp-HS-calib combination)

Puente
Mag-
dalena

Obrajillo Antapucro Santa
Rosa

characteristic

river basin Chillon Chillon Lurin Lurin
area (km2) 1267 362 951 252

elevation range (me-
dian)

864m
-5273m
(3704m)

2702m-
5273m
(4539m)

1024m-
5261m
(3588m)

2986m-
5261m
(4472m)

mean ann. P (mm/a) -
PISCO

495 739 351 543

mean ann. P (mm/a) -
CovVar

570 852 493 910

mean ann. ETp (mm/a)
- PISCO

817 620 973 848

mean ann. ETp (mm/a)
- HS-calib

1072 960 1087 967

rainfall seasonality (-)
- PISCO

0.94 0.86 1.14 1.11

rainfall seasonality (-)
- CovVar

0.81 0.72 0.8 0.7

dryness index ϕ (-) ds1 1.65 0.84 2.77 1.56

dryness index ϕ (-) -
ds2

1.88 1.13 2.2 1.06

gradient in mean annual rainfall over the short distance between
Andean crest and coast of about 70-100 km.

There are differences in terms of quantitative catchment-averaged
precipitation between the two datasets. While the two datasets are
more or less in agreement with respect to rainfall in the main catch-
ments, there are considerable differences for the headwater catch-
ments.

Both datasets indicate a higher mean annual rainfall in the main
catchment of the Chillón (Puente Magdalena) with an IQR of around
500-600 mm/a vs. 350-420 mm/a in the Lurín based on PISCO, and
the CovVar model approaching the two basins which results in an IQR
of approx. 550-650 mm/a vs. 450-550 mm/a in the Lurín (Figure 5.7a).
The higher mean annual rainfall in the Lurín main catchment in the
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Figure 5.5: Chillón and Lurín basins: mean annual precipitation (PISCO-P
dataset)

Figure 5.6: Chillón and Lurín basins: mean annual precipitation (CovVar
model)
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CovVar model stems from higher rainfall in its headwater catchment.

While PISCO shows higher mean annual precipitation in the Obra-
jillo headwater catchment of the Chillón, ranging from around 700 Difference in the

headwatersto 850 mm/a as opposed to 500-650 mm/a in the corresponding
Santa Rosa headwater catchment in the Lurín, this trend is inverse in
the CovVar dataset. CovVar predicts generally higher annual rainfall
totals for both headwater catchments than PISCO, however with the
mean annual rainfall in the Santa Rosa headwater catchment (910

mm/a) exceeding Obrajillo’s (852 mm/a) by 60 mm/a. Rainfall in
the semi-arid region of the Peruvian west coast is fairly seasonal.
Figure 5.10 illustrates the seasonality calculated on the basis of both Seasonality

available rainfall datasets for the main catchments and the headwater
catchments separately. The main rainy season takes place from De-
cember to March, the main dry season from May to August, leaving
August through November as well as April as transitional months.
The monthly rainfall peak is reached in the month of March across all
catchments and datasets. The difference between the datasets for the
headwaters noticed for mean annual rainfall, becomes visible in the
PISCO-based seasonality in the months of September until January,
where PISCO indicates less seasonality in the Obrajillo headwater,
i.e. higher monthly rainfall, than CovVar. This between-catchment
differences disappear when looking only at CovVar-based rainfall sea-
sonalities, which are fairly similar in the corresponding subcatchments.

In terms of subannual rainfall characteristics depicted in Figure
5.7 (c) and (d), there are also noticeable differences between the two
datasets. The PISCO dataset suggests significantly more rainy days Subannual rainfall

characteristicsfor the Chillón than for the Lurín subcatchments, whereas the CovVar
dataset shows a similar number of rainy days in the main catchments,
and considerably more in the Lurín headwater catchment Santa Rosa.
On the other hand, the rainfall depths of rainy days are lower in both
Lurín subcatchments according to the CovVar dataset, whereas they
are comparable in the PISCO one.

Potential evapotranspiration

For potential evapotranspiration, two datasets were compared (section
5.2) and used as meteorological forcing for the hydrological model.

The spatial distribution of mean annual potential evapotranspiration
of the two datasets exhibits distinct differences in the lowest basin Spatial distribution

differs in coastal
lowlands

parts (Figures 5.8 and 5.9). While the PISCO-ETp datasets peaks in
the coastal lowlands, the other dataset indicates highest values in the
medium-elevation zones of the basins. The lowlands are not part of
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Figure 5.7: Chillón and Lurín basins - meteorological forcing characteristics
of the subcatchments
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Figure 5.8: Chillón and Lurín basins: mean annual potential evapotrans-
piration (PISCO-ETp dataset)

Figure 5.9: Chillón and Lurín basins: mean annual potential evapotrans-
piration (ETp-HS-calib dataset)
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the gauge catchments and thus of lesser interest to this study. For the
middle and upper parts, both datasets show a mean annual potential
evapotranspiration steadily decreasing with elevation, resulting in
generally lower potential evapotranspiration in the headwater catch-
ments. In the PISCO-ETp dataset, the headwater catchments in both
basins are subject to 150-200 mm/a less potential evapotranspiration
than the main catchments (Figure 5.7).

The two datasets differ in several aspects. Firstly, total annual
potential evapotranspiration in the ETp-HS-calib dataset is higher
for both basins and their subcatchments (Figure 5.7b). While the
main catchments in the PISCO-ETp datasets reach values of around
850/1000 m for Chillón and Lurín, respectively, the other datasets
predicts catchment-averaged values of 1150-1200 mm/a. In addition,Interannual

variability differs the PISCO dataset shows very little interannual variability compared
to ETp-HS-calib, in particular concerning the headwater catchments
(Figure 5.7b). Secondly, the ETp-HS-calib dataset does not show signifi-
cant differences between the Chillón and Lurín basins, stemming from
the fact, that this ETp approach is mainly based on the (similar) topog-
raphy and regionally determined vertical temperature profiles. Lastly,Seasonality is

different the seasonal potential evapotranspiration cycle of the two datasets are
not comparable (Figure 5.10b). While the calibrated HS-ETp dataset
exhibits a distinct seasonal cycle, with potential evapotranspiration
reaching its lowest values in February and March, the other dataset is
fairly uniform throughout the year, with only one slightly lower value
in February.

Summing up the data analysis in terms of precipitation and potential
evapotranspiration, which together make the climatic aridity of aSumming up: aridity

catchment or region, we can note a few things:

• the headwaters are more humid parts, both because of higher
rainfall totals and lower potential evapotranspiration

• depending on the combination of P and ETp datasets, the corre-
sponding dryness indexes vary (table 5.4).

• the PISCO datasets suggest significantly less agreement and
thus less hydroclimatic similarity between the Chillón and Lurín
basins than the other two datasets

Soil

According to a national soil map, there are mainly two different soil
types covering the area of the main subcatchments of the Chillón and
Lurín basin, with comparable spatial distributions and coverage (per-
centages see Figure 5.18b): In the medium to medium-high elevations,
a mixing between Leptosols and sporadic bedrock outcrops (Leptosols
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Figure 5.10: Chillón and Lurín subcatchments: rainfall and pot. evapotrans-
piration seasonality based on both rainfall datasets. Dashed lines
show the headwater subcatchments
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districo, afloramiento litico), and Regosols mixed with sporadic bedrock
outcrops for the highest headwater parts (Regosols districo, afloramiento
litico).

Figure 5.11: Chillón and Lurín basins: soil types (Observatorio del Agua,
2017)

As modeling input data, globally available soil texture and bulk
density data were used (Poggio et al., 2021). As indicated by Figure
A.1 in appendix A.2, according to this data product, there are no
significant differences in mean soil properties between all four sub-
catchment, with slightly more clayey soils in the Lurín and slightly
higher bulk densities. In terms of spatial distribution, the soils are less
sandy and more clayey in the upper parts (Figure 5.12). Bulk density
is quite homogeneous in the Lurín, whereas in the Chillón there are
higher bulk densities in the medium elevation zones.

Information of the thickness of the soil layers was not available.
Field trips to the Lurín valley and point-wise assessments of soil
depths, showed that the thickness varies locally but is generally low,
ranging somewhere between 10 and 50 cm, sometimes reaching 1-1.5
m.

Vegetation and land cover

Two different data sources were used to assess and compare vegetation
and land cover of the Chillón and Lurín basins. The first one is a
national GIS map containing a land use classification, likely derived
from satellite data (Figure 5.13), and the second one a global leaf area
index (LAI) satellite data product.
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Figure 5.12: Chillón and Lurín basins: spatial distribution of soil texture
of main subcatchments (soilgrids product). (top row) Chillón-
Puente Magdalena (bottom row) Lurin-Antapucro

The whole national map comprises 11 land cover classes, not all
of which are part of the study subcatchments’ domains. The most
prominent classes in the middle and upper basin parts are (in order of
increasing altitud): cardonal (sparse arid cactaceous plants), matorral
arbustivo (also dry but more shrubland vegetation), pajonal andino (dry
Andean grassland) and area altoandina con escasa o sin vegetacion (high
Andean land, scarce or no vegetation). Starting at the barren coast, the
presence of vegetation cover increases with elevation in the basins. In
the lowest basin parts, vegetation only occurs adjacent to the stream,
resulting from agriculture fed by groundwater resources of the valley
aquifer (see also next subsection on hydrogeology), as also shown by
prominent LAI values along the stream in Figures 5.14 and 5.15. While
the LAI maximum and densest vegetation cover is found at medium to
medium-high elevations, it turns sparser and dryer in the very highest
parts, the headwaters. The higher leaf area indexes in the medium to
high parts are mainly related to agriculturally used lands, as the map
overlay shows in Figures 5.14 and 5.15.

The spatial arrangement and percentage area covered by each land
cover class (Figure 5.18a) are fairly similar across the study subcatch-
ments in Chillón and Lurin. The map also shows agriculturally used
lands, which in both catchments represents around 6-7% of the catch-
ment area. There is more catchment surface covered with reservoirs
and lakes in the Puente Magdalena catchment of the Chillón basin
(0.3%) compared to the Antapucro catchment of the Lurín basin (0.06

%), which hints at more reservoir- and lake-based retention capacity in
the basin. Glacial parts are of small and similar extent in both basins
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Figure 5.13: Chillón and Lurín basins: vegetation types (Observatorio del
Agua, 2017)

(0.03-0.05%).

The seasonality of vegetation cover, as expressed by the mean
monthly LAI in the study subcatchments (Figure 5.16), follows more
or less the seasonality of rainfall. Both Chillón subcatchments show
slightly higher LAI values than the Lurín catchment throughout the
year.
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Figure 5.14: Chillón and Lurín basins: Leaf Area Index (LAI) during the rainy
season. The shapes of "agriculture" were taken from the national
vegetation map in 5.13

.

Figure 5.15: Chillón and Lurín basins: Leaf Area Index (LAI) during the dry
season. The shapes of "agriculture" were taken from the national
vegetation map in 5.13

.

Hydrogeology

For an overview of groundwater-related geological structures, a
national map of "hydrogeological units" in Figure 5.17. In the map,
presumably on the basis of a map of geological formations, hydro-
geological units were derived and classified in terms of hydraulic
conductivity (aquifer or aquitard) and the type of rock as well as the
kind of aquifer (porous/fissured).

In the lowest and flat parts of the Chillón and Lurín, the alluvial
valley deposits visible along the streams form a thick sedimentary
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Figure 5.16: Chillón and Lurín basins: seasonality of subcatchment-averaged
leaf area index (LAI)

Figure 5.17: Chillón and Lurín basins: Hydrogeological units. Blue colors
indicate geological formations classified as aquifers, red colors
formations classifed as aquitards

stream water-fed aquifer, whose groundwater is pumped up and used
for irrigation in these parts. In the middle and upper parts, larger
contiguous geological structures ("volcanic sedimentary aquitard")
stretch across the three basins, however to a lesser extent in the Lurín
basin. The map and the percentage of coverage comparison in Figure
5.18d both suggest that the layer of "fissured volcanic aquifer" and by
that aquifer formations in general are significantly more present in
the Lurín basin. An aquitard is a rock formation deemed significantly
less permeable than aquifers, yet still capable of storing and slowly
transmitting groundwater. However, the relatively high number and
density of wells and sources in the aquitard formation in the Chillón
headwater shown by an overlain map of wells and sources in Figure
5.17 could be an indication that groundwater dynamics and flow in
this aquitard formation is higher than suggested by the hydrogeologi-
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cal map.

Figure 5.18: Chillón and Lurín subcatchments: comparison of spatially ag-
gregated vegetation and hydrogeological classes, in percent of
covered catchment area

Anthropogenic activities

Apart from the uppermost area near the mountain crests, villages and
localities are spread all over both river basins, concentrated alongside
streams (Figure 5.19). The density of localities is comparable in the
two basins. In the Chillón, there appears to be more mineral deposits
and mining activities. The map also shows five hydropower plants in
the Chillón basin, whereas there are none in the Lurín valley. However,
many of those are placed (or georeferenced) quite far off › the streams
and there is no indication of adjacent reservoirs which are normally
found upstream of hydropower plants.

Figure 5.19: Chillón and Lurín basins: Anthropogenic activities
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5.5 results

5.5.1 Calibration and validation of Chillón river model

Model performance of calibrations

23 different calibrations were conducted for the Chillón model, vary-
ing in forcing datasets, objective function, time period and calibration
gauges. The resulting model performances are summarized in Figure
5.20, which shows NSE and water balance errors for the main (Puente
Magdalena) and headwater (Obrajillo) catchment. Since one of the
ETp products only provides data until end of 2016, the calculation of
performance metrics for all runs was limited to that time period, to
ensure a fair comparison. This had a significant impact on the general
model performance in the main catchment since hydrological year
2016/17 presented an unusually high model error, e.g. with an NSE
dropping to -3.8 for the chi10 run for the main catchment Puente
Magdalena because of heavily overestimated observed stream flow
(see Figure 5.22a).

We observe that both in terms of NSE and water balance error, the
performances of the calibration runs vary for both subcatchments,
however to a considerably higher degree for the main catchment. NSE
for the headwater ranges between 0.55 and 0.88, whereas it spans a
range from -0.29 to 0.83 for the main catchment (counting both calibra-
tion and validation values). While for the headwater catchment, the
calibration and validation time period perform similarly, for the main
catchment the two time periods can differ greatly (e.g. runs chi6-chi8).
The modeled water balances show biases in opposite directions for
main catchment and headwater (Figure 5.20 -bottom). While for the
main catchment, the model systematically overestimates the discharge
at the stream gauge between approx. 15 and 70% (mean: 36%), the
headwater stream flow data is underestimated by 5-30% (mean: 19%).
The performance according to NSE and to the water balance error for
the whole time periods are well correlated for the main catchment (R2

= 0.75) and moderately correlated for the headwater (R2 = 0.57).
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Figure 5.20: mHM calibration results Chillón- Comparison of all calibration
runs. (top) Nash-Sutcliffe-efficiency (NSE), separately for each
gauge catchment and distingiushing calibrationa and valiation
time periods. (bottom) MBE mean biased annual water balance
error throughout full simulation time period

The best model runs in terms of a compromise between the two
stream gauges are 3, 4, 13, 15, 20, 21. The simulations producing the
poorest model performances for the Puente Magdalena catchment are
11, 12, 14, 19, 22, 23. The poorest performances for the main catchment
stem from calibrations based on the NSElog objective function and
against stream flow data of only the headwater gauge, Obrajillo (see
table 5.3). Inversely, calibration only against stream flow data of the
main catchment, Puente Magdalena, also results in the poorest per-
formances for the headwater, however to a significantly lesser extent,
still producing NSE values around 0.6 for the headwater in these
cases. The intra-annual comparison of the model runs revealed that
the poor performances for the main catchment primarily stem from
3-4 particular years during which the simulations fail to reproduce
the measured stream flow at the Puente Magdalena gauge: 2003/04,
2005/06, 2006/07, 2008/09 (and especially 2016/17 as aforementioned,
which was however excluded from the averaged model performances
in Figure 5.20 analyzed here), as illustrated by Figure 5.21. In compar-
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ison, the headwater Obrajillo shows a far more stable performance
throughout the years, reaching its lowest values in the first two
modeled years (2003/04 and 2004/05). The performance at Obrajillo
gauge also suggests a somewhat periodic behavior, with longer lasting,
multi-annual periods of better and worse performance, as shown by
the position of the performance envelope of the headwater in Figure
5.21. For lack of stream flow data for the main catchment Puente
Magdalena between 2009/10 and 2012/13 as well as the very poor
performance in the years mentioned, such trends in the fluctuation
cannot readily be discerned for that gauge. Towards the end of the
modeling period, starting around 2013/14, the water balance errors
seem to shift and the simulation biases are inverted, with Puente
Magdalena beginning to underestimate and Obrajillo to overestimate
the observed stream flows.

Figure 5.21: mHM calibration results Chillón- Interannual performances, se-
lection of two well (chi3, chi21, greenish colors) and two poorly
(chi11, chi22, reddish colors) performing runs. The colored en-
velopes in the background show the full set of runs, in grey the
headwater performance and in the blue the main catchment
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The precipitation-discharge time series of two well and two poorly
performing examples are visualized in Figure 5.22 for the two sub-
catchments respectively (reddish colors indicates poor performance,
greenish colors good performance). The rainfall seasonality that
translates also to a pronounced stream flow seasonality is generally
captured by the model for both subcatchments. However, the model
reproduces the baseflow during the dry season more accurately for
the headwater, while it tends to significantly overestimate it for the
main catchment in most years and for all four simulations shown.
Only in the first two hydrological years, the main catchment’s dry
season flow corresponds well to the model simulation, possibly stem-
ming from initial conditions and spin-up effects in the storages. The
runs with lower model performance (11, 22) were optimized based
on the NSElog criterion (see section 5.3.2), which does not overstate
the high flows as much, and leads to a better representation of the
dry season flow. The defining criteria for the model performance
are however the high flows during the rainy season, since they are
dominant both for the NSE and the water balance error. In all the
poorly modeled years for the main catchment, the high flows are
heavily overestimated, explaining the low NSE and considerable water
balance errors in Figure 5.21. The same influence of high flows can
be seen for the headwater simulations, where the model performance
drops between 2010 and 2013 because of clearly underestimated peaks.
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(a) mHM simulation results- Time series comparison of selected runs for main catch-
ment (Puente Magdalena)

(b) mHM simulation results- Time series comparison of selected runs for headwater
(Obrajillo)

Figure 5.22: mHM simulation results for Chillón catchment- Time series of
selected runs. Runs with poor model performance have reddish,
the good ones greenish colors. Mind that the precipitation shown
on the upper y-axis corresponds only to one of the two rainfall
datasets (here: CovVar), whereas the four runs differ in the
forcing dataset

Water balances and Budyko positions

The mean annual water balances, both measured and modeled, remain
in general below the estimate by the Budyko curve (Figure 5.23). The
Budyko curve thus overestimates the evaporation ratios of the Chillón
basin, in both its subcatchments. The headwater expectedly plots
on the more humid section of the Budyko space. The four possible
combinations of available meteorological forcing datasets (see section
5.2) result in four distinct aridity indexes, covering a relatively wide
range of 0.6 in dryness. The forcing combination P-CovVar and ETp-
PISCO yields the most humid scenario and the evaporation ratios
closest to the Budyko curve. The order of forcing combinations for
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both subcatchments in Figure 5.23 from humid (left) to dry (right)
is: P-CovVar & ETp-PISCO / P-PISCO & ETp-PISCO / P-CovVar &
ETp-HS-calib / P-CovVar & ETp-HS-calib.
The differently calibrated models span EVR ranges between around
0.02 and 0.12, and runs chi21 and chi22 produce water balances
closest the Budyko curve for both subcatchments. Simulated mean
water balances from the different forcing combinations with different
dryness indexes, do not follow the trend that higher dryness results
in higher evaporation ratios as suggested by the Budyko curve.

Figure 5.23: mHM simulation results Chillón- mean annual water balances of
all model runs in Budyko space, the four possible combinations
of forcing datasets yield four distinct aridity indexes, confronted
with the measured water balance

For the headwater Obrajillo, the runs closest to the Budyko curve
are however furthest away from the observed water balance s since the
model underestimates the measured runoff and thus overestimates
actual evaporation (the Budyko positions based on observations vary
due to different rainfall datasets, since ETa-observed is determined
by P-Q). The combination of forcing datasets thus has a significant
impact on the position of the catchment along the dryness axis and
on the Budyko offset, both observed and simulated water balances.
That is most relevant for the more humid headwater catchment,
which plots in the vicinity of the steeper section of the Budyko curve.
It approaches the Budyko curve in the case of observed data and
practically reaches the curve in the case of simulation chi21 and chi22.

In terms of interannual variability of the simulated water balances
and their corresponding Budyko positions, we observe in parts a
considerable spread around the mean annual values, along both axes
of the Budyko space (Figure 5.24). Differences in the spread between
model runs are mainly related to the combination of meteorological
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Figure 5.24: mHM simulation results- annual water balances of four selected
model runs (best compromise between gauges) in Budyko space.
Big symbols correspond to mean annual, little symbols to annual
water balances. Square symbol and solid lines for main catch-
ment (Pte. Magdalena), triangles and dashed lines for headwater
(Obrajillo)

forcing datasets, which on the other hand is conditioned by the
time period covered. When the dataset includes the outlier year of
2016/17, the spread increases significantly, both in terms of dryness
and evaporation ratio (only the case for chi11). For three out of the
four runs shown, the headwater’s (Obrajillo) annual water balance
plots on or in immediate proximity to the Budyko curve for chi3,
chi21, chi22.
When comparing the simulated and measured annual water balances,

it becomes visible that for runoff-favoring years (i.e. lower observed
EVRs), the spread of simulated EVR increases (Figure 5.25), i.e. the
two are less correlated. While the model -neglecting here the general
bias found in the mean water balances of the model (visible also
in the Figure on the two sides of the y=x diagonal)- does simulate
higher evaporation ratios for higher observed ones, it deviates from
that behavior for the runoff-favoring years, especially for the main
catchment Puente Magdalena: below an EVRobs of around 0.7, the
correlation between modeled and observed EVR changes, as indicated
by the fitted lines in Figure 5.25. Only the hydrological year 2016/17

stands out in run chi11 (the other runs do not cover that ). For the
headwater Obrajillo, a similar trend is somewhat visible (the threshold
being somewhere around 0.5), however less clear and with a larger
spread, precluding the drawing of such trend lines.
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Figure 5.25: mHM simulation results- sim. vs. obs. annual water balances
of four selected model runs (best compromise between gauges).
Squares for main catchment (Pte. Magdalena), triangles for head-
water (Obrajillo)

5.5.2 Parameter transfer and modeling of Lurín river

Selection of transferable parameter sets

The global parameter set from three calibrated runs of the Chillón
model were chosen to be transferred to the Lurín model, to be tested
for runoff and water balance prediction in the neighboring Lurín basin:
chi3, chi21, chi19. The selection resulted from a compromise of several
criteria: The first two were picked because of their good performance
at both stream gauges in the Chillón river and because they differ in
the parametrization with regard to a selection of the most sensitive
parameter based on Höllering et al. (2018) and a sensitivity analysis
conducted for the Chillón model. In addition, chi21 presents the run
closest to the Budyko curve. The third one, chi19, was chosen because
of its good performance in the headwater due to the calibration based
solely on that one gauge. The headwater is likely to be under less
anthropogenic influence and produces in general more robust and
coherent modeling results.

Performance of transferred parametrizations and calibrated reference runs

The validation of model simulations in the Antapucro subcatchment
of the Lurín river revealed significant differences between the few
hydrological years for which stream flow data exist, both in terms of
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observations and in resulting model performances. Given that two
of the forcing datasets, PISCO-P and PISCO-ETp, were only available
until 2018-06 and 2016-12, respectively, the model runs’ performances
are validated only inter-annually, since a temporally aggregated per-
formance metric would not be comparable with varying simulation
periods and with such interannual variability. The validation will thus
be on focused on selected and not the entire set of calibrated model
runs that serve as reference runs to the runs based on parameter
transfer. Furthermore, in the hydrological year 2016/17, the measured
streamflow data stops near the end of the rainy season on March
17th 2017 (section 3.5), and thus does not cover a full hydrological year.

While the first two hydrological years modeled, 2014/15 and
2015/16, show a comparably stable performance with an NSE ranging
from about 0.35 to 0.75, for the third year the NSE jumps between
below 0 and 0.8 (Figure 5.26). The model either reaches a compromise
between the first two and the third year (lu6, lu5_19), or favors the
performance of one of the two periods to the disadvantage of the
other. Annual water balance errors fluctuate less, going from an
underestimation of measured streamflow in 2014/15 of around -18 to
-50% to a clear overestimation in 2016/17 ranging from 17 to 125%,
and 2015/16 plotting in between. This trend is independent of the
model parametrization. The fourth hydrological year with available
stream flow data, 2018/19, the discharge could not be reproduced by
the model at all. For that year, the NSE drops considerably below 0,
producing values between -1.5 and -12, and a water balance overes-
timation of about 180-250%. The color code in Figure 5.26 as well as
the run nomenclature (table 5.3 distinguishes the different ways the
model parametrization was obtained. The mHM-default parameters
(lu5_def_anta) produces better results in the first hydrological year
than the calibrated run. The performance drops however for the
second and even more for the third year. The transferred parameter
sets (greenish colors) show performances comparable to the calibrated
runs, with lu5_21 yielding the best performance in 2016/17 and lu5_19

the best compromise across the years.
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Figure 5.26: mHM simulation results Lurín- Interannual comparison of all
simulation runs. Color code: black: default mHM parameters,
reddish: Lurín direct calibration, greenish: parameters trans-
ferred from Chillón model. (top) Nash-Sutcliffe-efficiency (NSE),
red arrows indicate NSE values below zero (values vary between
-1.5 and -12) / (bottom) MBE mean biased annual water balance
error

The monitoring data at Antapucro gauge show a similar seasonal
streamflow pattern as in the Chillón basin, however suggesting even
lower dry period flows that approach 0 m3/s. Most of the model
runs simulate however a significantly higher dry season runoff, a
slower recession after the rainy season than the observation data. All
three transferred model runs were initially obtained by optimizing
NSE as well as two of the reference Lurín calibrations, putting put
more weight on the high flows. That translates to an overestimated
dry period flow in the Lurín. The same goes for the default mHM
parameter run which seems to expect a slower baseflow recession. Out
of the visualized runs, only lu8, stemming from an optimization of
NSElog generates a quick recession and near-zero flow during the dry
season. That is also the case of other, not visualized runs optimizing
the NSElog criterion.
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While for the dry season runoff, the monitoring data and the model
error show similar behavior throughout the 3-4 hydrological years,
the rainy season flows expose considerable differences that make for
the variable performances between the years in Figure 5.26. In general,
all runs systematically underestimate the first 2-3 months of the
rainy season in 2014/15. The lu8 run, NSElog-optimized and having
more soil storage capacity, produces a more dynamic runoff response,
with faster rising and sharper peaks, coming closest to the measured
peaks. Even if not as striking, the behavior is fairly similar in 2015/16,
whereas it is different in 2016/17. In the third year, the initial increase
of streamflow at the onset of the rainy season is reproduced by most
model runs. However, the peaks then are overestimated. The three
Lurín model runs with parameters transferred from the Chillón basin
produce peak flows that are lower than the calibrated runs in the Lurín
and the mHM default run. For the first two hydrological years, this
worsens the underestimation. In the third year, when rainfall-runoff
proportions are different, the transfer runs are in better agreement
with the peak flows.

Figure 5.27: mHM simulation results Lurín- Comparison of all simulation
runs. (top) Nash-Sutcliffe-efficiency (NSE), (bottom) MBE mean
biased annual water balance error throughout full simulation
time period

Water balances in Budyko space

The mean annual water balances of the Lurin-Antapucro catchment
are overestimated by the Budyko curve for all simulations (Figure 5.28).
There is likewise a strong dependence on the meteorological forcing
dataset that impacts both the estimated dryness as well as measured
and simulated EVR. In the case of the Lurín, there was however only
one ETp dataset that was used, since ETp-PISCO was available until
2016-12, covering only the first two hydrological years. Variations
in dryness and EVR thus can stem from the rainfall dataset itself
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and from the time period covered by it: the PISCO-P rainfall dataset
only provides data until 2018-06, which does not contain the fourth
hydrological year, and given the short time period in general, one
year or data point can impact the average significantly. In addition,
the hydrological 2016/17 was excluded for the Budyko plot, since
streamflow data was available only until 03/2017.

Figure 5.28: mHM simulation results Lurin- mean annual water balances of
all model runs in Budyko space, the four possible combinations
of forcing datasets yield four distinct aridity indexes, confronted
with the measured water balance

The main influence stems from the CovVar rainfall dataset itself,
which produces significantly more rainfall for the Lurín catchment
(see section 4.1.4) and entails a diagonal shift in the Budyko space
for the observations (see section 2.4.3). The fourth hydrological year,
2018/19, having the highest simulated runoff coefficient and the
lowest observed one (together with 2016/17) and being included only
in the CovVar dataset, additionally shifts the mean observed EVR
towards the Budyko curve, and the simulations further away from it
5.29. Besides the proximity to the Budyko curve, the CovVar rainfall
dataset also produces a mean water balance for the Lurín that is quite
comparable to the one of the Chillón river. On the other hand, the
PISCO dataset yields water balances and dryness indexes far off the
Budyko curve and the Chillón basin. The three transferred parameter
sets lead to simulated water balances in the Lurín similar to their
corresponding model runs in the Chillón, and amongst the closest
ones to the Budyko curve. The most comparable Chillón runs use
however a different ETp dataset (PISCO-ETp), partially influencing the
lower dryness index (more humid).
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Figure 5.29: mHM simulation results Lurín and Chillon- mean annual water
balances of all model runs in Budyko space, the four possi-
ble combinations of forcing datasets yield four distinct aridity
indexes, confronted with the measured water balance

5.6 discussion

This chapter discusses relevant results obtained for the models set
up for the Chillón and Lurín basin. It discusses the ability of the
model to reproduce the rainfall-runoff dynamics, reflects on the initial
similarity assumption for the two basins and the related parameter
transfer, as well as evaluates observed and simulated water balances,
their positions relative to the Budyko curve and if the Budyko curve
is useful in evaluating the model performances.

5.6.1 Relation between headwater and main catchment streamflow in the
Chillón basin

The hydrological model, mHM, was able to reproduce the general
discharge dynamics in the Chillón basin, validated on the basis of two
stream gauges, one placed in a headwater (Chillon-Obrajillo) and the
other further downstream, effectively encompassing the whole part
of the basin where significant rainfall occurs (Chillon-Puente Mag-
dalena). The model struggled however to simulate water balances forStream flow data of

the two gauges
appears inconsistent

both gauges simultaneously since their discharge data appears to be
partially inconsistent. In some hydrological years, monthly and annual
discharge volumes measured at the headwater gauge exceed the ones
at the lower main gauge, suggesting water losses along the river path.
As depicted by Figure 5.30, which visualizes the difference between
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monthly discharge at Obrajillo and Puente Magdalena according to A.
the observed (solid line) and B. the modeled discharge (dashed line)
for two very different hydrological years. In 2004/05, the headwater
flow is constantly higher during the rainy season (Figure 5.30-left),
while it is the other way around in 2007/08 (Figure 5.30-right). Given
the catchment sizes -Puente Magdalena 1260 km2 and Obrajillo 365

km2 -and the fact that there is significant rainfall occurring outside
the headwater (Figure 5.5), it is unlikely that there is no contribution
to the discharge, as the model demonstrates when it brings all the
input data together.

Figure 5.30: Inconsistencies of observed streamflow at the two gauges in
the Chillón basin, based on chi3 run, dashed lines in the back-
ground show the model simulations: (left) year with implausible
streamflow data, (right) year with plausible data

The model, when calibrated simultaneously against both stream
gauge datasets, has to find a compromise between the two and thus
overestimates the lower gauge while it underestimates the headwater
one (Figure 5.20). The question why the two streamflow datasets do
not yield a more coherent picture is probably due to a combination
of the following two reasons: anthropogenic interventions and/or
measurement uncertainties. Uncertainties and errors in discharge
monitoring are in general hard to assess, especially if there is no infor-
mation on the part of the institution conducting the measurements
and developing the rating curve. Such measurement uncertainties are
more likely in challenging terrains as well as in a region of limited
resources for environmental monitoring and maintenance such as the
study area. Geometry changes in the gauge control section are more
likely in a region suffering flood events with heavy bed and sediment
load (huaycos, local name for mudslides (Pareja Dominguez et al.,
2022)).

In terms of anthropogenic interference with the natural discharge
dynamics, extractions of stream water between the two gauges or
artificial retention in reservoirs in the non-headwater part of the catch-
ment could explain part of the flow differences- both are measures to
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stock or use water during the rainy season for agricultural, industrial
or domestic purposes. The main flow difference occurring during theAnthropogenic

effects? rainy months (Figure 5.30-left) would support that since the difference
during the dry season is zero or switches back to the expected pro-
portion. During the dry season, stream flow is sustained by baseflow
stemming from sources and reservoir release. In the Chillón basin,
most reservoirs are situated in the headwater (Figure 5.13), while
sources are also found below (Figure 5.17). In the Chillón, there are
mining activities, mainly silver and gold (INRENA, 2004), many of
which are found between the gauges as illustrated by the map in
Figure 5.19. Such water-consumptive industrial activities could explain
water diversions and losses between the gauges. The same goes for
agricultural activity, which in the middle and upper parts almost
exclusively occurs outside the headwater (Figure 5.15) and usually rep-
resents the most important human water consumption. In accordance
with agricultural activity, Andean villages are also found mainly below
the headwater gauge (Figure 5.19). The total water demand for the
dry season of the Lurín was estimated by the TRUST project at around
13 Mm3, mainly for agriculture. A difference of approx. 2.5 m3/s
between the gauges of Obrajillo and Puente Magdalena (Figure 5.30-
left) during the rainy season would correspond to a volume stocked
for the dry season of 32.4 Mm3, or more since the flow difference
between the gauges, under unaltered natural conditions, is supposed
to go the other way. However, as a rough estimate and knowing that
the Chillón has more industrial activities (Sanchez, 2016) as well as
more storage capacity in reservoirs than the Lurín (Observatorio del
Agua, 2019), withdrawals during the rainy season can play a role in
the two streamflow measurements. The mHM model at its current
state, without explicitly developed extensions or modules (the model
is constantly under development), cannot and thus does not account
for anthropogenic interference with the natural hydrological processes.

While it is difficult to quantitatively tell the two influences men-
tioned apart, they presumably both play a role to some degree. TheInconsistent flows

depend on year fact that the inconsistencies between the two stream gauges are highly
variable throughout the years, could also be related to both influences.
While measurement uncertainties could be more prominent in years
with or after heavy flood events, inconsistencies across the years
could also indicate differences in the management of the stream water
extractions and reservoir management. It might vary depending on
remaining reservoir fillings, wetness of previous and current year,
changes in the consumption or its prioritization with respect to con-
flicts with downstream Lima metropolitan area.
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5.6.2 Mean annual water balance and relation to the Budyko curve of
Chillón and Lurín basin

Before starting to discuss mean annual water balances, it shall be re-
minded that for the Lurín, only three to four years of streamflow data
was available, violating the steady-state condition the Budyko curve is
designed for (section 2.3), and thus limiting the representativeness of
a derived mean annual water balance as in the Figure since storage
effects play a role at this short time range. The mean water balance
derived on the basis of three to four years is however used here as a
coarse estimate and comparison to the Chillón, rather for plausibility
than for exact quantitative assessment.

All subcatchments of Chillón and Lurín have measured evapora-
tion ratios lower than estimated by the Budyko curve. The Budyko Budyko curve

overestimates all
subcatchments water
balances

positions and offsets vary however considerably as a function of the
meteorological forcing dataset used to make simulations, to estimate
observed ETa (P-Qobs) as well as to determine the dryness index.
There is a multitude of possible reasons for the systematic overes-
timation by the Budyko curve. In literature, studies have found a
more general trend of regions with pronounced rainfall seasonality
to generate lower evaporation ratios (Fu and Wang, 2019; Lavenne
and Andréassian, 2018). Lavenne and Andréassian (2018) argue how-
ever that rainfall seasonality leads to significantly lower EVR only
in combination with a relative phase lag of potential evaporation.
Other influences, potentially interacting with the seasonal aspects, can
contribute to the offsets as well. In chapter 6, which takes a closer
look at multiple catchments along the western slopes of the Peruvian
Andes, all exposed to similarly seasonal climate, a systematic however
very variable overestimation by the Budyko curve is observed for all
those catchments. Chapter 7 investigates the role of soil storage in
Budyko offsets by means of a model-based virtual experiment. Soil
storage capacities as well a capillary storage fraction therein appear
to be of crucial importance in the lower soil storage capacity ranges,
thus potentially explaining a part of the trend to be overestimated
by the Budyko curve. In field campaigns, soil depth in the Lurín
basin proved to be variable yet often very limited within the range of
10-20cm.

The CovVar rainfall dataset developed in section 4.1 proved to yield
more plausible water balances for the Lurín basin. The plausibility CovVar rainfall

approaches the two
basins, and suggests
more proximity to
Budyko

here is based on a greater similarity to the neighboring Chillón
basin, on a smaller offset to the Budyko curve as well as on a better
agreement between observed and modeled water balances (Figure
5.28). Use of the CovVar rainfall model supports the initial hypothesis
of similarity between Chillón and Lurín. Hydrological models can
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be used to evaluate the performances of different rainfall datasets
(Kneis and Heistermann, 2009). The similarity also depends on the
meteorological datasets used for the Chillón, however to a significantly
lesser degree in terms of the rainfall dataset. The two datasets yield
comparable Budyko positions for Chillón’s main catchment Puente
Magdalena. For the Lurín, only one ETp dataset is shown in the
Budyko plot in Figure 5.28 since the other one (PISCO-ETp) only
covers two hydrological years.

The transfer of model (global) parameters simulates evaporation
ratios in the Lurin-Antapucro catchment that are fairly similar to
the water balances of the corresponding calibrations of the donor
catchment (Figure 5.28). It thus serves as a valid way of obtaining aTransferred

parameter sets yield
useful model runs

functional model parameter set for the ungauged target catchment.
The run with parameters transferred from a calibration only against
the Chillón headwater (Obrajillo, chi19, lowest EVR dot in Figure 5.28)
also clearly underestimates the water balance in the main catchment of
Lurín, indicating similar differences between headwater and residual
catchment in the Lurín. However, the variability of the meteorological
input datasets has a far greater impact on the observed and simulated
water balances than the model parametrization itself. The model run
based on mHM’s default parameter setting produces a mean water
balance in the Lurín furthest away both from observation and the
Budyko curve, however still in some proximity to the other runs as
opposed to the runs based on the other rainfall dataset.

The water balances resulting from both stream gauges of the Chillón
basin do not appear to be coherent, as explained in the previous sec-
tion. When both gauges condition the model calibration, the modelDifferences between

headwater and
residual catchments’

water partitioning

behavior results in a compromise between the gauges, and thus in
the two subcatchments approaching one another in terms of EVRsim.
While the model does follow the general tendency to generate more
runoff in more humid catchments -as described by the Budyko curve-,
it does not suggest such a big difference in the mean water partitioning
(EVR) between the headwater and the rest of the main catchment. If it
is not solely related to discharge data quality issues, catchment charac-
teristics would have to differ more strikingly between head and main
catchment in order for the model to generate a more different mean
hydrological response. Soil characteristics, whose importance for the
mean water partitioning was shown in chapter 7, are not very different
between the two subdomains based on the soil texture data used in
the model (Figures 5.12 and A.1 in appendix A.2) homogeneously
distributed, for lack of more detailed information at the catchment
scale (section 5.4). Effective model parameters like conceptualized
field capacity and hydraulic conductivity based on soil textural input
data in the calibration procedure, could theoretically result in different
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drainage mechanisms in different areas of the model domain - in the
morphological input data provides such spatial variability.

5.6.3 Interannual variability of the water balance of Chillón and Lurin

The high interannual variability in terms of observed annual runoff
coefficients for both the Chillón and Lurín basin, made it difficult
for the model to reproduce the hydrographs and water balances.
The variability concerns all subcatchments of both basins in theory,
the discrepancies between modeled and simulated water balance is
however not as striking in the Obrajillo headwater of the Chillón basin.
Figure 5.25 showed that the relation between modeled and observed
annual water balance depends mainly on the value of the observed
annual runoff coefficient itself, the model not being able to adequately
represent two different runoff coefficient scenarios for the basin.

While for the two Chillón subcatchments, the systematic water
balance errors of the model were found practically in all hydrological
years, this was strongly conditioned by flow volume inconsistencies
between the two stream gauge datasets, as discussed above in section
5.6.1. However, certain hydrological years, in particular 2008/09 and
2016/17 in the Chillón and to a lesser extent 2018/19 in the Lurín),
stand out from the mean water balance error by the model heavily
overestimating stream flow at the lower gauge. The question arises if
this pronounced variation of the annual runoff coefficient is due to
natural processes or to shortcomings in measurement and estimation
of discharge and areal rainfall. Anthropogenic influences are not
likely to play an important role at volume differences of that order
of magnitude. Figure 5.31 reveals that the observed runoff coefficient
tends to be quite low in very wet years in 2008/09 and 2016/17 for
the main catchment of the Chillón. While the rainfall amount in those
years is also high in the headwater alone, in comparison to the other
years they do not stand out as much as the rainfall amounts in the
main catchment - suggesting a particularly rainy year in the residual
catchment. Similar issues are observable in 2018/19 for the Lurín
(Antapucro), even though rainfall-wise the year, while indicating a
comparably wet year, the annual total is not that high. For 2016/17,
with partial streamflow data only until 03/2017, a statement on the
annual total difference between model and observation cannot readily
be determined, the first half of the year hinting at a volume error,
however probably not as striking. If taking the Budyko curve as an
orientation, such low runoff coefficients as in 2016/17 correspond
better to the expected water balance - bearing in mind however that
the Budyko framework is representative at multiannual scales.
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Interannual dry-wet cycles and catchment memory in terms of stor-
age could be relevant at the interannual level. The antecedent years
to 2016/17 (and to 2008/09 in the Chillón) were significantly drier,
and resulting comparably empty subsurface and reservoir storages
may have caused lower runoff coefficients than other years. If this
aspect had a significant impact on the resulting model error, actual
catchment storage dynamics would not be adequately represented by
the model.

Furthermore, the year 2016/17 raises attention in terms of the ENSO
anomaly, since that year a coastal, more localized El Niño anomaly
in ENSO-region 1+2 (see Figure 3.2) was detected that also lead to
extreme flood events in Peru (Son et al., 2020). One supposedly El Nino-
driven event in March destroyed the water level sensor Antapucro in
the Lurin. The influence of ENSO anomalies on rainfall patterns in the
region not being straightforwad -e.g. higher annual precipitation total
in Perus north, lower ones in the south (Rome-Gaspaldy and Ronchail,
1998; Tapley and Waylen, 1990). If at a subdaily scale, higher intensity
rainfall events occurred with preference at El Niño conditions, making
Hortonian overland flow more probable, mHM’s model structure
running at daily forcing time steps, would not be able to model that
process. Such a shortcoming would result in underestimated simulated
runoff coefficients, the opposite is the case however, rendering an El
Niño based reasoning unfounded. For 2008/09, the ENSO indexes
indicated La Niña conditions.
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Figure 5.31: ChiLu interannual variability of runoff coefficients and Cov-
Var precipitation, one illustrative example model run per basin
(chi11, lu5), dashed lines without dots indicate years without
enough Qobs data (and no interpolation), crosses indicate the
partial hydrological year 2016/17 with the runoff coefficient
evaluated only until 2017-03-17

Upon analysis of the outlier nature of the years mentioned, com-
parison of Luríns’ observed annual double mass curves with the ones
from the Chillón, it seems that rather a year like 2014/15 with higher
runoff coefficients is out of range when compared to all Chillón-Pte.
Magdalena years (Figure 5.32a), while 2016/17 and 2018/19 are within
this range. Looking at the Budyko curve, those low runoff coefficients
are also in better agreement with the Budyko-expected water balance.
Given however the high interannual variability and the small number
of years taken into account, a derived mean annual water balance is
however not at steady-state and barely representative for the catch-
ment. With such variability and data uncertainty, conclusions on more
or less plausible water balances remain difficult.

5.6.4 Similarity in intra-annual dynamics and seasonality of Chillón and
Lurin

When zooming in on intra-annual dynamics, high flows during rainy
season and low baseflow during the dry season, differences between
both between the basins and between model parametrizations become



102 paired catchment modeling approach lurín and chillón

(a) based on observed runoff (b) based on simulated runoff

Figure 5.32: Annual double mass curves of observed and simulated runoff
for Chillón-Pte. Magdalena and Lurín-Antapucro, Lurín curves
in color, Chillón curves in grey

apparent. Given the pronounced rainfall seasonality, all models re-
produce in general the resulting seasonal pattern of the streamflow.
However, with respect to the representation of peak flows of flood
events and the baseflow recession and sustainment after the rainy
season, the models can deviate considerably from the observed behav-
ior. The model behavior in this regard is related to runoff generation
types and their calibrated recession constants. mHM distinguishes
four types of runoff: direct runoff over impervious areas QD (of
which there are none in the Chillón and Lurín model setups), fast
interflow QI f , slow interflow QIs and baseflow QB (section 5.3.1). The
proportions between the three runoff components are conditioned by
the parametrization and are sensitive to the objective criteria which
weight high and low flows differently, which in such a seasonal setting
is of particular importance.

High flows in rainy season
The Lurín model runs based on transferred parameters produces
plausible simulations of flood events, however with even greater un-
derestimations in the first two hydrological years than the calibrated
reference runs and the mHM default parameter settings 5.26. In the
third year, 2016/17, with high rainfall and a low runoff coefficient,
the peaks of the transfer runs are closer to the observations. The
transfer run parametrizations partition the runoff quite equally be-
tween baseflow QB and slow interflow QIs (Figure 5.33), with the
parametrization from the Chillón headwater slightly preferring slow
interflow in comparison. Lu8 with a deeper soil layer and calibrated
against NSElog generates almost 90% of the runoff via slow interflow,
resulting in a more jumpy and dynamic hydrograph. Relating the
behavior to global model parameters is not straightforward, it results
rather from the interplay of multiple global parameters that in combi-
nation with the morphological input shape the regionalized effective
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model parameters (βi).

The observed stream flow at Antapucro contains two major peaks,
around 75 m3/s in 2015 and 80 m3/s in 2017, the latter resulting
from the local El Niño event that destroyed the water level sensor in
March 2017. Those flood events occurring in this short time period of Smaller Lurín

catchment exhibits
higher peak flows?

four years are higher than any measured event in the Chillón-Puente
Magdalena catchment over the extent of a significantly longer time
period and despite the approx. 315 km2 larger catchment area (Qobs)
in Figure 3.5).

Apart from the possibility of discharge measurement errors for the
highest peaks as a result of rating curve extrapolation uncertainty,
other natural and anthropogenic reasons might explain the differences
between the basins. It may be indicative of a higher dynamic retention
capacity in the Chillón. According to Observatorio del Agua (2019),
there is significantly more natural and artificial reservoirs/lakes in the
Chillón upper basin part than in the Lurín, that is not only relevant
at longer term storage but can also play a role in flood mitigation, if
managed accordingly (see also the GIS map in Figure 5.13).

The mHM model does however capture that difference. It simulates
such high discharges for the two major flood events in the Lurín, even
overestimates them in some model scenarios, but never reaches com-
parably high streamflows in the Chillón. Hence, certain hydrological
ingredients of the flood events must be included in the model, mainly
continuous rainfall over days, antecedent and increasing soil moisture
as well as an additional fast interflow generated by the model as a
result. As visualized in Figure 5.7, the daily input data suggests on
average more rainy days yet of less daily totals in the Lurín. More
frequent rainfall can also result in higher average soil moisture and
lead to more proneness to generate saturation-excess overland flow, a
potential difference between the basins.

For the fourth hydrological year, 2018/19, all model runs clearly
overestimate the rainy season streamflow. Despite the differences
between the model configurations and their parametrization, the
interannual variability suggested by the observation data and the
related model deficiencies clearly outweigh the importance of the
parametrization.

Dry season flow
The dry season streamflow also presents significant differences be-
tween the model parametrizations and the two basins. All three
transferred parameter sets resulted in an overestimated dry season
runoff compared to the near-zero observations in the Lurín-Antapucro
catchment (Figure 5.27). The corresponding original Chillón-Puente
Magdalena runs also generated too high dry reason flow in some
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Figure 5.33: Runoff components by model run, in percent of total runoff

years, in others however it was in agreement. In general, the dry
season flow in the Lurín main catchment is significantly lower than at
the corresponding position in the Chillón river, with almost 0 m3/s
in the Lurín vs. 2-2.5 m3/s in the Chillón. As aforementioned, theDifferences in water

retention capacity,
anthropogenic and

natural

Chillón appears to have more surface water storage capacity in the
form of lakes and reservoirs (Observatorio del Agua, 2019), which is
probably a crucial difference for the dry season’s baseflow. Moreover,
the higher amount of industrial mining activity (Sanchez, 2016), a
stronger management of the resources in the dry season is likely
to produce targeted infrastructure that increases storage. Besides
anthropogenic retention of rainy season stream water, also geological
differences might sustain more runoff during the dry period. There is
a higher number of sources in the Chillón, especially in the highest
basin parts (map in Figure 5.17). The map shows numerous sources in
a hydrological layer classified as aquitard, rendering this classification
questionable. Differences in hydrogeological characteristics could thus
also explain a higher dry season runoff, sustained by groundwater
sources. In addition, the measured dry period flows at the lower
gauges do probably not correspond to the actual baseflow from
groundwater and reservoirs in the upper basin, since withdrawals
and diversions occur for water uses like industry, agriculture and
households. Those measured streamflow-reducing influences occur
however in both basins, even if to different degrees. Works within
the TRUST project estimated around 16 Mm3 of agricultural water
demand (mostly irrigation) for the basin part above Antapucro in the
Lurín, of which around 83% percent fall within the dry part of the
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year. If all that water was withdrawn from the stream during the dry
season only, 0.73 m3/s would be missing in the baseflow. With the
overestimated simulated dry season runoff of 3-4 m3/s, anthropogenic
interventions cannot by itself explain that discrepancy. Plus, water
consumed in the dry season is likely to be stored to a large extent in
reservoirs during the rainy season. In consequence, the overestimated
dry season runoff in the model must stem from model shortcomings.
Model runs in the Lurín that were calibrated based on NSElog, like for
example lu8, were able to reproduce such quick recessions after the
rainy season and near-zero dry season flows. Lu8 controls most of the
runoff via the slow interflow reservoir (Figure 5.33), which is drained
faster, leaving little water to be drained via the slower baseflow after
wards. The trade-off in the lu8 calibration however presents itself in
the overestimation of high flow peaks in the rainy season.



6
WAT E R B A L A N C E S I M I L A R I T Y A N D B U D Y K O
O F F S E T S O F C AT C H M E N T S O N T H E W E S T E R N
S L O P E S O F T H E P E R U V I A N A N D E S

Offsets from the Budyko curve, with their climatic and physiographic
controls, are continuously subject to research (see section 2.4). Padrón
et al. (2017) complied catchment water balances of 2733 catchments
from around the globe in a systematic literature review, and attempted
to identify dominant controls on the water partitioning into runoff
and evapotranspiration. Padrón et al. (2017) found that the controls
vary with the region and climate. In their study, Padrón et al. (2017)
gathered and considered numerous potential controls. He concluded
that, besides climatic dryness, other climatic characteristics like snow
and phase shifts between rainfall and potential evapotranspiration as
well as topographic properties like slope outweigh the often overesti-
mated influence of land cover and anthropogenic influences.

The rather inconsistent picture in terms of observed and modeled
water balances of the Chillón and Lurín river in chapter 5, and
their overestimation by the Budyko curve, served as a motivation to
broaden the picture of water balances in the study region. Thanks
to the orographic arrangement, with the Andes following parallelly
the coastline, there are many similarly arranged catchments located
between mountain crest and Pacific Ocean. While they stretch over
a north-south range of approx. 1000 km and are presumed to have
different climates and landscapes, they are all part of the tropics, cover
tropical highlands and are exposed to seasonal, semi-arid climate.

In order to explore the water balance similarity and the applicability
of the Budyko curve in the region, a brief data and correlation analysis
is conducted for the catchments along the western slopes of the Peru-
vian Andes. To that end, data for catchment precipitation, potential
evapotranspiration and streamflow were retrieved to estimate dryness
and water balances. Globally available topographic and physiographic
datasets were used to quantify catchment characteristics. The char-
acteristics were translated to one-dimensional indexes and linearly
correlated to offsets from the Budyko curve.

106
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6.1 methods

The study presents a purely data-based analysis, assessing the mean
annual water balances and analyzing detected offsets from the Budyko
curve by means of a linear correlation analysis. The multi-catchment
analysis consists of the following steps, whose methodologies will be
described subsequently.

1. Data retrieval and preprocessing

2. Selection of eligible catchments

3. Derive climatic and biogeophysical properties in the form of
one-dimensional indexes for selected catchments

4. Correlation analysis between Budyko offsets and catchment
indexes

Data retrieval and preprocessing

Datasets used in the study are described and referenced in chap-
ter 3. For rainfall and potential evaporation, the national gridded
PISCO products were used. Monthly streamflow measurements were
retrieved from a database. For biogeophysical data, multiple remote
sensing data products were used to determine catchment character-
istics, the references and methods of which are described in table
6.2. All spatially distributed data were averaged to the extent of each
catchment.

Selection of eligible catchments

The study is based on gauge catchments whose downstream boundary
or outlet is represented by a stream gauge. The topographic delineation
of catchments was conducted on the basis of a 30m resolution global
digital elevation model (NASA, 2001). The eligibility of a catchment
for the study depended on two criteria:

• location consistency: the availability of geographic coordinates
of a stream gauge permitting to unambiguously assign it to a
specific stream

• record length: the availability of sufficient stream flow data for
the gauge to calculate mean annual water balances. In general,
the more hydrological years the records cover, the more robust
is the mean annual estimate. For climatological time scales, 30

years are often indicated as sufficiently long to cover enough
interannual variability. Given the rather data-scarce region in
Peru, the threshold was lowered to 14 hydrological years in order
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to assess more catchments, also allowing the hydrological years
to be non-consecutive. The number of hydrological years with
valid stream flow data per catchments are listed in table 6.1.

Moreover, visual inspection of the streamflow data ensured that it
looked like reasonable hydrographs.

Table 6.1: Valid hydrological years of each gauge stream flow record, between
at 1982 and 2016

no. of valid years

BATAN 22

CONDORCERRO 39

MALVADOS 17

QUIRIHUAC 37

SALINAR 32

SOCSI 29

YANAPAMPA 31

SANTO DOMINGO 31

LA CAPILLA 29

CONTA 31

PUENTE JAQUI 25

PUENTE MAGDALENA_2 24

YONAN_2 31

HUACAPONGO_2 30

LETRAYOC_2 31

LA ACHIRANA_2 21

PUENTE OCOÑA 14

A total of 119 gauge positions were retrieved for catchments stretch-
ing from around 6.5° S to 17.0°S latitude along the western slopes
of the Andes. However, given the data limitations mainly stemming
from insufficient or unavailable stream flow data, only 17 gauges
from separate river basins were found suitable for the analysis. Many
stream gauges only measured for short time periods or there were too
many gaps in the dataset. The location of the stream gauges as well as
the corresponding catchments are visualized in Figure 6.1.

The Rímac basin in the surrounding of Lima was excluded from the
analysis since transandine tunnels transport water from the eastern
side of the Andes, from the (Alto) Mantaro basin (a headwater of the
Ucayali and later the Amazon river) through tunnels to the other side
of the basin - significantly altering the water balance of the Rímac
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basin itself.

Climatic and biogeophysical characteristics and indexes for selected catch-
ments

A number of different climatic and biogeophysical (sometimes also
referred to as physiographic) catchment characteristics or indexes
were derived for each of the selected catchments. Spatially distributed
data, mostly remotely sensed data such as the MODIS snow cover
index, were spatially averaged to the extent of the gauge catchment.
Table 6.2 lists all the indexes that were included in the analysis and
indicates the method or reference of how it was determined. For
evident reasons, the list of indexes cannot be exhaustive. It is rather
conditioned and limited by available data. In particular soil-related
data, whose importance was shown and elaborated in chapter 7, is
hardly available at the catchment scale, even more so in a data-scarce
region like Peru.
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Correlation analysis between Budyko offsets and catchment indexes

A linear correlation analysis was performed to analyze potential
controls on the Budyko offsets in the catchments of the study area.
For each index listed in table 6.2, the Pearson correlation coefficient R
and the coefficient of determination R2 were computed.

The results, i.e. discernible trends, are discussed by relating the
findings to literature and by a hypothesis-based reasoning as to
how physical mechanisms in the catchment might explain deviations
from the Budyko curve. A correlation matrix between the indexes
themselves was computed to check for potential collinearity of the
predictors.

Finally, a multiple linear regression analysis was conducted to test
how much of the variance of the Budyko offset can be explained by
a limited number of the most significant indexes emerging from the
univariate approach. To that end, all two-part, three-part and four-part
combinations of indexes with coefficients of determination above 0.2
were used as predictors for the Budyko offsets.

6.2 results

6.2.1 Characteristics of selected catchments

For 17 catchments, sufficient stream flow data was available and their
gauge coordinates were unambiguously attributable to streams in
the catchment delineation process. The gauge catchment and data of
Puente Huamba was dropped as improbable outlier with an evapo-
ration ratio of 0.08, far off all the other catchments and suggesting
that more than 90% of incoming precipitation leaves the catchment
as runoff at an aridity index of almost 3. The geographic positions
and shapes of the selected gauge catchments are visible in Figure 6.1.
Figure 6.2 provides an overview of all catchment-related climatic and
physiographic characteristics.
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Figure 6.1: Map of selected catchments along western slopes of Peruvian
Andes for Budyko offsets analysis (white space: the DEM tiles
were retrieved only for the area west of the Andes mountain
range, where the catchments are located)

The selected catchments extend over a wide latitude range, between
6.5° and 15.5° S, roughly 1000 km. Most of them are similarly arranged
between the Andean main ridge and the Pacific Ocean and have
somewhat comparable shapes, with the exception of Condorcerro
which stretches over around 270 km parallel to the coast line. In
general, the catchment area varies from 621 km2 to 10405 km2 with a
median 2620 km2. The dryness index range spanned by the selected
dataset goes from 1.55 to 4.49, thus covering a large spread which is
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mainly due to variations of mean annual precipitation while mean
annual potential evapotranspiration shows little variability.

The gauges of the catchments are all located below 1000 m a.s.l.,
between 250 m a.s.l. and 930 m a.s.l, indicating that all of them include
a significant degree of inner-catchment climatic heterogeneity in the
form of a dryness gradient going from semi-humid to humid near
the Andean crest to arid in the regions closer to the coast. The hetero-
geneity is accounted for by the elevation difference normalized by the
catchment area. Vegetation-related leaf area indexes are distributed
fairly homogeneously across the catchments. Only the catchment of
Batan stands out with a higher mean leaf area index. In terms of
snow and ice cover in the catchments, there are noticeable differences
between the catchments, with Condorcerro and Cahua showing the
highest mean snow cover.
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Figure 6.2: Overview of catchment and climate characteristics of selected
catchments of Western Andes slopes (sorted by ascending dryness
index). Color scale: yellow indicates high values, blue indicates
low values, normalized to the range of each variable

6.2.2 Budyko offsets and correlation analysis

The entire set of selected catchments along the western slopes of
the Andes exhibit mean evaporation ratios (EVR) significantly below
the Budyko curve (Figure 6.3), meaning that mean annual evapo-
ration is overestimated by the Budyko curve. While one catchment
(Huacapongo) nearly reaches the curve (offset of -0.1), the rest of the
catchments show offsets between -0.23 and -0.57, with corresponding
evaporation ratios of 0.65 to 0.3 (see also Figure 6.4). Most of the
catchments, which are encompassed by a dryness index range of
1.5 to 2.5, show a high degree of dataset-internal variability in the
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evaporation ratio.

The Puente Jacqui catchment appears to be considerably drier than
the other catchments, with a dryness index of 4.5, however within the
same EVR range.

Figure 6.3: Budyko positions of all selected catchments on the western slopes
of the Peruvian Andes

A first-order linear correlation analysis looked at correlations be-
tween climatic or physiographic catchment characteristics and the
Budyko offsets. It yielded coefficients of determination (R2) generally
smaller than 0.65, for most characteristics below 0.3 (Figure 6.5) and
for more than half of the indexes tested, it remained smaller than 0.1.

Figure 6.4: Budyko offsets of all selected catchments on the western slopes
of the Peruvian Andes
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The correlation analysis suggests that increasing catchment area is
slightly related to a higher Budyko offset in our dataset. The R2 of
0.27 is however mainly driven by the two catchments of Condorcerro
and Puente Ocona, the two largest catchments, while for the rest of
the catchments a considerable spread becomes visible. Correlations
with topographic indexes were found for mean elevation (R2=0.22)
as well as for maximum elevation (R2=0.42) and elevation difference
(R2=0.41), of which the latter two are highly collinear with an R2 of
0.9 (Figure A.3 in appendix A.3). The higher the maximum elevation
or the elevation difference is, the larger are the Budyko offsets. Mean
snow cover reaches an R2 of 0.45, with snowier or more glacial catch-
ments showing higher Budyko offsets.
Seasonality of certain indexes stood out as well. Budyko offsets were

Figure 6.5: Correlation coefficients R and coefficients of determination R2

for each index and the Budyko offsets. The color frames cate-
gorize the indexes, note however that some cannot be assigned
unambiguously to one category

lower for catchments with higher stream flow seasonality ("seas. Q"),
represented by a coefficient of determination of 0.49. LAI seasonality
reached an R2 of 0.29.

Indexes related to relative humidity and to average LAI showed
coefficients of determination near zero, thus not indicating any linear
correlation with the Budyko offsets.

The multivariate regression was performed for combinations of 2, 3

and 4 different predictors, chosen out the most prominent indexes that
arose during the first-order correlations: area, seas. Q, max. Z, mean
snow cov., seas. LAI. The results are visualized by Figure 6.6. The
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Figure 6.6: Coefficients of determination of multivariate regression, numbers
in the Figure indicate the combination ID in table A.2

combinations of two, three or four predictors resulted in a maximum
explained variance of 0.65, 0.69 and 0.70, respectively (table A.2 in
appendix A.3). The three most prominent predictors of the univariate
regression (R2>0.4) explain 0.65 of the variance. Combined with LAI
seasonality 0.70 of explained variance is reached.

6.3 discussion

The results of the data analysis showed a clear and systematic trend
of the Peruvian catchments to produce mean water balances, i.e.
evaporation ratios, below the estimate by the Budyko curve. In other
words, the Budyko curve systematically overestimates the evaporation
ratios of the study catchments, and thus -assuming the catchment
sample to be representative to a certain degree- likely of all com-
parable catchments of that particular geographic region along the
Western slopes of the Peruvian Andes. Figure 6.7 compares the mean Peruvian study

catchments have
very low evaporation
ratios in global
context

water balances of the Peruvian study catchments with an extensive
compilation of 2700 catchment water balances by Padrón et al. (2017).
The Figure illustrates well that the Peruvian catchments are all located
in a very sparsely populated domain within the Budyko space. That
being said, there is a monitoring bias in favor of moderate climates
in the US and Europe to be acknowledged, meaning that semi-arid
and arid catchments often located in the Global South tend to be
underrepresented in global studies.

Note that the analysis is limited to the dataset itself and its internal
variability in the Budyko offsets. While the dataset-internal variability
is considerable and thus allows the analysis of controls on the mean
water balance, it cannot discern influences that are present in the entire
sample of catchments. For instance, all catchments are exposed to a
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Figure 6.7: Comparison of Peruvian study catchments with extensive com-
pilation of over 2700 catchment water balances by Padrón et al.
(2017). Green dots represent our Peruvian catchments that were
graphically inserted in the original Figure by Padrón et al. (2017).
The blue catchments were dismissed from Padrón’s analysis be-
cause they were either smaller than 12 km2 or larger than 12.000

km2. The red ones without known geolocation were also dis-
missed from Padrón’s analysis, their water balances however
remain valid.

relatively high precipitation seasonality. The point of dataset-external
controls potentially affecting all catchments is addressed at the end of
the discussion.

There is a high degree of dataset-internal variability in the mean
annual water balances and the resulting Budyko offsets, varying
from -0.1 to -0.55 and not showing any correlation with the dryness
index itself (Figure 6.4). The correlation analysis conducted aims at
relating the offsets to climatic and biogeophysical catchment char-
acteristics. Since influences on the mean water balance are known
to be interdependent (e.g. Gentine et al., 2012; Schaefli et al., 2011)
and possibly non-linear, a linear correlation analysis is only a rough
means to assess such relationships. However, the correlation analysis
did reveal trends of characteristics affecting the mean water balance.
The subsections below discuss the relationships found with respect
to their interpretation in terms of underlying physical mechanisms,
focusing only on coefficients of determination R2>0.4. The analysis
revealed correlations both for climatic heterogeneity as expressed by
the elevation difference (R2 = 0.44) and for mean snow cover (NDSI)
with an R2 of 0.48. The two indexes themselves are however somewhat
collinear, with an R2 of 0.8, since both correlations are partially driven
by snowier catchments like Condorcerro and Yanapampas. Having
a higher mean snow cover obviously translates to a non-negligible
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fraction in high elevation ranges (which is why snow cover is likewise
correlated to Zmax, Figure 6.5), making for a steeper climatic gradient.
These two indexes are both strongly related to higher elevations.
However, the heterogeneity aspect is not limited to higher elevations
and can be relevant without the effect of snow cover. Two paragraphs
discuss how spatial heterogeneity, and in particular snow cover can
affect the Budyko position and offset. In addition to that, a correlation
was found for streamflow seasonality. Treated as a proxy for catchment
retention and storage capacity, potential influences of different natural
and anthropogenic storages on the mean water balance are discussed.

Figure 6.8: Correlations of the most prominent features in the linear correla-
tion analysis, with an R2 above 0.4

6.3.1 Spatial heterogeneity and scale

Given the strong dependence of the climate (precipitation as well as
potential evaporation) on elevation (see Figures 5.5 and 5.8 for exam-
ples catchments Chillón and Lurín), the elevation difference within
the catchment was used as proxy index for spatial heterogeneity in
climate. We observe that with increasing spatial climatic heterogene-
ity, the Budyko offset increases (R2 = 0.44). In literature, catchments
with pronounced climate gradients tend to be excluded from studies
applying the Budyko framework (Gentine et al., 2012). The Budyko Average ϕ less

representative of
heterogeneous
catchment

framework relies on the dryness index, ϕ = P/ETP, as a catchment-
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characterizing property and as dominant control on the mean water
partitioning. Having various climate zones within a catchment -with
greatly differing dryness indexes between the zones- a singular, spa-
tially averaged dryness index ϕ is not able to describe or capture the
whole system’s behavior, ultimately also because of the nonlinearity
of the Budyko curve itself. Thus, even if all different climatic subzones
within a catchment were conditioned by their respective dryness index
and corresponded perfectly to the Budyko curve, spatial averaging of
ϕ would result in an offset from the curve. As depicted by the 2

nd nu-
merical derivative of the Budyko curve in Figure 6.9, the nonlinearity
is greatest for aridity ranges between 0.25 and 1.5, which includes the
headwater part of the Peruvian catchments, as visible in the example
shown in Figure 6.10.

Figure 6.9: 1
st and 2

nd numerical derivative of Budyko curve

Evidently, the degree of heterogeneity will determine the relevance
to the expectable deviation from the Budyko curve. In order to illus-
trate that, Figure 6.10 shows the movement of a catchment’s water
balance through the Budyko space, from the headwater (Ao = 80

km2) down to the river mouth at the coast (Ao = 2150 km2). The
dryness indexes and water balances in the Figure were extracted from
the distributed hydrological model developed and calibrated for the
Chillón river in section 5.5.1, one of the Peruvian study catchments
also used for the present analysis. It shows that due to the pronounced
climatic gradient within a comparably small catchment of roughly
2000 km2, the evaporation ratio covers a wide range of from 0.4 to 0.6.
The position of the water balance point, i.e. the stream gauge, is thus
relevant to the determination of the Budyko position of the catchment.
Approaching lower elevations and the coast, the catchments transform
into arid to hyper arid landscapes, with no precipitation input and
thus zero hydrological partitioning processes but with rising mean
aridity. Most of the Peruvian study catchments encompass a signifi-
cant degree of climatic heterogeneity. However, even if the EVR range
in Figure 6.10 is significant and may account for a portion of the
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Budyko offset, it does not on its own explain the systematic deviation
of the catchments from the Budyko curve, as it does not reach the
vicinity of the Budyko estimate despite the wide range covered in the
example in Figure 6.10.

The point of spatial heterogeneity also relates to the question of
the applicability of the Budyko curve across different spatial scales.
Is the spatial scale of the Peruvian catchments appropriate? The
point has been addressed in literature, also originally by Budyko
himself (Budyko, 1974). In general, the Budyko model is assumed At which scale is

Budyko a reasonable
framework?

to be increasingly valid at larger scales, Budyko (1974) mentioned
catchments with an area above 10.000 km2 to produce very little
deviations from his curve. It is reasonable to assume that at very
small scales (below for example 10 km2), local influences such as for
instance topography, soil structure or local weather patterns dominate
the behavior in terms of runoff generation, and that macroclimatic
descriptions like the dryness index have little significance. However,
determining a fixed threshold for the transition of the applicability
of the Budyko curve seems inappropriate as well. It results rather
from the struggle between the spatial variability and influence of
physiographic controls and that of the climate. Perhaps this issue can
be described by an interplay of coupling and competition. While the
Budyko curve approach relies on the idea that the influence of water
and energy availability (macroclimate) predominantly shapes water
balance-relevant landscape elements like soil and vegetation, it is not
the only driver. As described by Troch et al. (2015), geology in terms
of tectonics and bedrock weatherability which influence topographical
gradients and soil formation and by that also vegetation, is a driver
whose spatial distribution is independent from the climate. It thus
depends on the spatial correlation between climate on the one hand
and soil and vegetation on the other (coupling), as well as on the kind
and degree of control of such landscape elements on the water balance
or rather the Budyko offsets (competition). If climate is the dominant Correlation of

climate and
catchment
characteristics

driver, predominantly shaping the landscape elements over time
(climate and landscape well correlated spatially) and/or overlaying a
spatially random pattern of other influences within the domain, there
should not be any significant offset from the Budyko curve. If however
the other controls follow spatial trends against the climate and are
water-balance relevant, they will cause the mean water balance to
deviate from the Budyko curve. The same holds true for subscale
climatic influences such as for instance mean rainfall intensity, if they
are not well correlated with the macroclimatic dryness index.

Usually, gradients in the macroclimate extend over larger spatial
scales and therefore tend to be a good descriptor for water balances of
larger catchments. At such scales, the climate becomes dominant while
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the catchment-internal variability of physiographic characteristics or
the relevance of small-scale extreme weather events start averaging
out spatially, in comparison.

Our study catchments in West Peru cover a pronounced climatic
or aridity gradient - a product of the markedly sharp topographic
gradient, along which the distinguishable vegetation zones have
formed. In addition to the general topographic gradient, tectonicControls of steep

hillslopes and
climate in Peruvian

catchments

and geological activity has produced a landscape of fairly steep
hillslopes in the region, to be found everywhere from high elevations
almost down to coast level. The question arises in what way and to
what degree climate and soil and vegetation resulting from the steep
topography are correlated at smaller scales. Satellite images indicate
that while sometimes the plateau-like hilltops are green during the
rainy season, many hillslopes often show little to no vegetation cover -
suggesting that this effect is not due to elevation or the climate but to
topography-related mechanisms. In comparison to the tropical Andes,
mountains in the Alps in Europe show significantly more vegetation
cover on their hillslopes, up until the climate-imposed tree line inter-
rupts it, underlining the correlation of climate and vegetation. The
steeper the hillslopes, the smaller is the potential for soil formation
and vegetation growth due to the proneness to overland flow and
soil erosion. As a result, as demonstrated also by the model study
in chapter 7, mean evapotranspiration decreases when soil storage
is limited and an overestimation by the Budyko curve is more likely.
The present correlation analysis used mean slope as an indicator
for steep topography, without showing any signal towards Budyko
offsets. The lack of a direct influence could be related to the limited
dataset-internal variability of mean slope. It is a characteristic shared
by practically all catchments in the region, and can thus have an
ET-reducing effect on all of them which contributes to the general
trend of the detected Budyko offsets.

6.3.2 Snowiness

Mean snow cover has a correlation coefficient of 0.45 and 0.78 of
collinearity to elevation difference, thus also being related to the point
of a steep climatic gradient in the catchments. The higher the snow
cover fraction in the catchment, the lower is the mean evaporation
ratio, likely responsible for the lowest evaporation ratios of the dataset
by the catchments Condorcerro, Cahua and Yanapampas. An influence
of snowiness of catchments on mean water balances overestimated
by the Budyko curve, have also been suggested by Milly (1994),
Berghuijs et al. (2014b), Berghuijs et al. (2014a) and Padrón et al. (2017).
The following paragraphs discuss how Budyko offsets relate to the
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Figure 6.10: Budyko position as a function of the relative stream gauge po-
sition and thus the upstream climatic heterogeneity. Extracted
from a calibrated mHM model of the Chillón basin, going from
a catchment area of around 100 km2 (blue) to 2200 km2 (yellow)

estimation of potential evapotranspiration in cold and snowy regions,
and how snowpacks and glaciers can affect the mean water balance
by favoring runoff and streamflow over evaporation.

Precipitation falling down as snow accumulates above the soil, form-
ing a snowpack. In the case of a positive snow mass balance, it leads
to glaciation and the presence of an ice layer over time. The snowpack
or ice layer, contingent on atmospheric conditions, is exposed to
the evaporative demand and melting. From an energy perspective, Calculation of

potential evaporation
in snowy regions

the sublimation process (phase transition from solid/ice to gaseous
state/water vapor) requires more energy intake than the evaporation
from a free water surface or the soil domain. Moreover, the surface
albedo of snow and ice are higher than that of vegetated surfaces,
resulting in higher surface reflectivity and a lower net radiation- com-
mon ETp calculation methods however assume a reference crop with
a fixed albedo of 0.23 (Allen, 1998). Therefore, Meira Neto et al., 2020

argues that the estimate of potential evaporation and the resulting
true aridity of a catchment would have to be adjusted in the presence
of snow cover, something which usually is not accounted for. Accord-
ing to Meira Neto et al., 2020, in global studies on water resources,
snow-covered regions tend to be neglected in general, which does
not remedy the incomplete description of potential evaporation in
such regions. In consequence, the potential evaporation estimates
used in the present Budyko study cannot adequately represent the
actual energy-based upper limit to the evaporation for snowier catch-
ments. An overestimation of potential evaporation in catchments with
non-negligible influence of snowfall and snow accumulation leads
to an overestimated aridity in the Budyko space (shift on x-axis). A
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correction towards a more humid system would reduce the actual
deviation from the Budyko curve.

Secondly, physical mechanisms related to accumulation of frozen
water and snowmelt can result in an increased streamflow. WhileRunoff processes in

the presence of
snowpacks

Berghuijs et al. (2014a) present empirical observations in 420 US
catchments that the fraction of precipitation falling as snow has a
streamflow-enhancing effect on the mean water balance, they do not
investigate any underlying physical processes. The effect can be due
to a combination of interacting processes and influences. For instance,
the potentially rapid release of melting, accumulated precipitation
(Williams et al., 2012)- in comparison to the same amount of liquid
precipitation falling down on snow-free surfaces will likely increase
streamflow compared to evaporation. In combination with saturated
and/or frozen soils having very low hydraulic conductivity and
infiltration capacity, mobilized water from snowpacks is likely to run
off rather than to infiltrate and evaporate. In addition, in the case
of glaciers having a constant ice layer, melting would not lead to
infiltration and sustain a soil water-based evaporation process at all. If
water infiltrates the soil beneath the ice, it would feed groundwater
resources and contribute to baseflow or run off close to the surface.

6.3.3 Catchment storage and anthropogenic influences

Natural catchment storage comprehends several compartments:
subsurface storage including soil, alluvial deposits, regolith and
permeable bedrock, lakes as well as snowpacks and glaciers. In the
case of subsurface storage capacity, the individual components are
not easy to distinguish and present in nature rather a continuum
than fully separate domains as often conceptualized in hydrological
models for simplification. In addition to naturally available storages,
human-made reservoirs can increase the water retention capacity of
river basins. The release of stream water is intimately linked to the
catchment’s storage dynamics, unless stream flow is predominantly
precipitation-driven, which may become more relevant at smaller
scales and high-intensity rainfall events (Blöschl and Sivapalan, 1995).
Since catchment storage capacities are hard to measure and assess
directly, the resulting stream flow signatures can be used to reversely
derive certain characteristics (Kirchner, 2009). Stream flow can be
viewed as the system’s integrated response to a variety of properties
and interactions.

With an R2 = 0.5, the correlation analysis showed that there is some
relationship between effects leading to more seasonal discharge and
the Budyko offsets. The higher the discharge seasonality, the lower
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is the Budyko offset, i.e. the higher is in general the evaporation
ratio. In some cases, the seasonality index of discharge surpasses
the one of rainfall (Yonan, Letrayoc, Huacapongo, Salinar, Quirihuac,
Malvados). If the variability of discharge seasonality is not related
to rainfall events during the dry season and thus the variability of
rainfall seasonality itself (collinearity only of R2 = 0.3), there are two
reasons why discharge seasonality is more or less pronounced (sharp)
in some catchments: It can be related to the initial filling or refilling of
catchment storages at the onset of the rainy season or to the prolonged
release of stream flow (base flow) after the rainy season.

After the onset of the rainy season, it can take a while until the
seasonal stream flow sets in, i.e. that the runoff-to-rainfall ratio in-
creases significantly. That becomes visible in the selected double Storage effects at the

onset of the rainy
season

mass curves in Figure 6.11, where catchments like Huacapongo and
Conta with high discharge seasonalities only show higher runoff
coefficients from February/March on, while the others start a month
earlier (note that it is based on monthly discharge data, thus of coarse
temporal resolution). That delay shortens and thus sharpens runoff
seasonality. It likely stems from the initial refilling of and retention by
certain catchment storages, both natural and anthropogenic ones: soils,
groundwater, lakes and artificial reservoirs, although the individual
contributions to storage cannot be discerned here. After a while,
soils are more saturated which triggers more runoff, the delayed
groundwater response sets in and reservoir intake slows down or even
stops. After that point, storing and retaining of water seems to occur
at a lower rate. For snowier catchments, snow is likely accumulating
throughout the rainy season, without reaching a sort of "filling"
threshold where the storage amount itself would trigger a stronger
runoff response in the middle of the rainy season. While the delayed
increase of the runoff coefficient is visible in almost all catchments,
showing a certain storage capacity, it varies however, which points to
differences between the catchments’ storage capacities and dynamics.

The second relevant characteristic of the discharge regime is the
potential release of water after the rainy season, which attenuates
discharge seasonality. An extension of stream flow towards the dry Release of stored

water in dry seasonseason without significant dry season rainfall events, corresponds to
the release of water from certain storage compartments. The relative
amount of stream flow after the rainy season corresponds to the
increase along the y-axis past the red dot of month May in Figure 6.11.
The percentag of dry season runoff to total annual runoff is listed
in Figure 6.2 under Q_dry period perc, it includes however also the
transitional month of October, when some rainfall events already set
in. The percentages vary from 6% to 25%, thus potentially relevant
to annual water balances. In this regard, apart from groundwater
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Figure 6.11: Mean double mass curves for selected catchments. Gradual
colors correspond to the discharge seasonality index, as do the
values in parentheses in the legend. Dashed straight lines follow
the slope of the double mass curve between December 1st and
January 1st, the first significant month of the rainy season. Dots
indicate the first day of a month, red dots delineate the rainy
season from beginning of December until end of April

base flow and reservoir water release, also snow melt can play a role.
Soils are less important here since root zones would rather retain the
moisture and only be drained by evaporation than sustain runoff after
the rainy season.

The important question is why some catchments have a higher
water yield during the dry season than others. If the water balance is
measured correctly and this is strictly due to natural catchment dy-
namics, it would mean that there is no or significantly less catchment
storage capable of sustaining the stream flow after the rainy season
(no gradual groundwater recession). As explained more theoreticallyAnthropogenic

alterations in section 2.4.2, especially given the low position of the stream gauges,
it is likely that a considerable portion of the stream or reservoir water
is diverted and used for irrigation, livestock, industrial and domestic
activities above the stream gauge. In that case the measured water
balances do not only result from naturally occurring hydrological
processes. The withdrawal and use of stream water probably happens
throughout the entire rainy season as well, which on the other hand
cannot be disentangled from between-catchment differences in dry
season stream flow. It is to be expected, however, that with the onset
of the dry season the withdrawals generally increase since any rainfed
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agricultural activities stop. Differences in the mean water balance
and intensified resulting Budyko offsets can thus be partially due to
anthropogenic withdrawals, which end up as evaporation one way or
another (section 2.4.2). In addition, artificial reservoirs also enhance
evaporation. This is of particular relevance in a semiarid tropical
region like West Peru, with dry air during the dry season and high
solar radiation. Catchments in West Peru are often strongly influenced
by anthropogenic activities and measures (Lavado Casimiro et al.,
2012).

6.3.4 Dataset-external controls: seasonality

There is a tendency of catchments of the same aridity but with
markedly seasonal rainfall to result in higher runoff coefficients (i.e.
lower evaporation ratios), as demonstrated by Fu and Wang (2019).
Lavenne and Andréassian (2018) argued that -for their collection of
French catchments- seasonal rainfall only lead to lower mean annual
EVR when there was also a phase shift between P and ETp.

Figure 6.12 compares the Peruvian catchments to the MOPEX
catchments above a rainfall seasonality index of 0.8. While the trend
to be overestimated by the Budyko curve is noticeable in the MOPEX
catchments, it is negligible compared to the offsets of the Peruvian
catchments - showing that other influences, potentially interacting
with seasonal aspects, dominate the considerable offsets.

Figure 6.12: Budyko offset and precipitation seasonality in comparison to
MOPEX dataset containing both US American and Australian
seasonal catchments with seasonality index SI ≥ 0.8. Labeled,
square symbols show Peruvian catchments (Budyko positions
and catchment selection differ slightly from the dataset and
Figures shown in section 6.2, it is based on an older version of
data preprocessing)
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E X P L O R I N G T H E R O L E O F S O I L S T O R A G E
C A PA C I T Y F O R E X P L A I N I N G D E V I AT I O N S F R O M
T H E B U D Y K O C U RV E U S I N G A S I M P L E WAT E R
B A L A N C E M O D E L

This chapter is based on the HESS preprint by Bondy et al. (2021).

7.1 introduction

While the Budyko curve (Budyko, 1974) has regained attention in
recent years, understaning deviations from it continue to be subject
to research efforts (e.g. Berghuijs et al., 2020; Daly et al., 2019; Reaver
et al., 2022; Sposito, 2017a; Yao et al., 2020). While both climatic
and physiographic factors control the steady-state water balance,
evaporation itself is commonly conceptualized as either energy- or
water- limited. Water limitation of evaporation, however, stronglyWater limitation and

storage supply, and
competing process

velocities

relates to root zone storage supply and thus root zone storage capacity,
because evaporation is two or three orders of magnitude slower than
surface runoff. Root zone storage capacity determines the amount
of plant-available water and can be characterized by its total storage
volume as well as capillarity-related properties like the storage at field
capacity held against gravity. While free soil water above field capacity
feeds groundwater and ultimately streamflow, the water content
between field capacity and wilting point (effective field capacity)
sustains evaporation. These catchment properties controlling root
zone storage and recharge capacities are co-evolutionary fingerprints
of climate and the geology setting (Gentine et al., 2012; Troch et al.,
2015).

The climate controlling the mean annual water balance to first-order,
there is broad agreement that second-order controls and potentiallySoil storage and

other second-order
controls on mean

water balance

resulting offsets from the Budyko curve are caused by both subscale
climate variability and physiographic characteristics of the catchment
(examples are cited in section 2.4.1). In line with the above-mentioned
explanation of physical processes making soil storage capacity con-
trols relevant to mean evaporation, it was identified as an important
control in other studies. Milly (1993) and Milly (1994) explored the
influence of soil water storage on the annual average water balance,
using a 1d vertical soil water balance model with a stochastic meteoro-
logical forcing. While Milly’s approach was simplified with respect
to variability of the forcing, it nevertheless explained 85% of the
variance in water balances in the contiguous USA east of the Rocky

128
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Mountains. Milly identified the dryness index, ratio of plant-available
water holding capacity to annual average precipitation and number
of precipitation events per year as main controls. Daly et al. (2019)
present an approach to introduce a new characteristic hydrological
space in the form of a storage limitation by combining the physical
storage capacity with the temporal variability of ETp and P. They
conclude that soil storage is a key parameter in terms of the Budyko
offsets. Gentine et al. (2012) also investigated the relationship between
the Budyko curve and -amongst other- soil storage, trying to reversely
infer Budyko-optimized soil storage capacities for MOPEX catchments,
neglecting however capillarity-based influences.

The need to better understand second-order controls on the
long-term water balance and their relationship to the original, non-
parametric Budyko curve remains. The main objective of this work Our approach to

explore soil storage
capacity influences

to explore the role of specific soil characteristics in the steady-state
water balance and, building on other studies and ET-related physical
mechanisms, operate on the hypothesis that root zone storage is an
important physiographic control of offsets from the Budyko curve.
Instead of using a parameterized version of the Budyko framework
based on a lumped parameter, a model-based virtual experiment
approach is proposed. The approach targets specific model param-
eters that are more relatable to physiographic characteristics of a
catchment. The study being based on a limited number of catchments,
that via calibration are supposed to represent realistic hydrological
systems, uses the hbv model and the beta store (Lindström et al.,
1997) as a learning tool to understand the role of total soil storage
capacity and a capillary storage fraction in the mean water balance
and resulting Budko offsets. The focus is on mesoscale catchments,
the scale at which physiographic catchment characteristics are likely
to be more relevant controls that at larger scales where the climate can
be expected to dominate.

To that end, 16 catchments covering a wide range of climate and
landscape settings were selected for the virtual experiment. For each
catchment, a simple hydrological model was calibrated based on
30 years of water balance observations. The calibrated models were
subsequently used to investigate how variations in total soil storage
and a capillary storage fraction affect offsets from the Budyko curve,
and to look for similarities in terms of the storage configurations that
match the Budyko curve.
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Table 7.1: Datasets used and references

Data used Dataset
Region

Southwest Precipitation DWD-REGNIE
Germany
Baden-
Württemberg Pot. evapotranspiration DWD-ETp
(“BaWue”) Stream flow LUBW

Continental USA Precipitation MOPEX
(“MOPEX”) min./max. daily temperature MOPEX

Stream flow MOPEX

Peru, Western Andes Precipitation PISCO-P
(“Peru”) min./max. daily temperature station data

Stream flow Stream gauge data

7.2 methods , data and model

7.2.1 Selection of study catchments

In order to represent a broad range of climate settings, the study is
based on several publicly available datasets from around the globe.
The choice was also conditioned by the type of available data (precipi-
tation, potential evapotranspiration and streamflow), a minimum time
series length of 30 years and the degree of preprocessing (especially
spatial aggregation to catchment area) to allow for a multi-catchment
approach. Finally, 16 study catchments were selected from the three
datasets listed in table 7.1.

The goal was not to include as many catchments as possible, but to
conduct a multi-catchment study focusing on 16 distinctly different
catchments. Those were selected from the three datasets using the
following criteria:

• A wide range of climatic dryness indices: In order to inte-
grate catchments covering a large climatic gradient, catchments
spreading over a dryness index between ϕ = 0.3 to ϕ = 2 were
selected. For extremer dryness values such as in desert regions or
in extremely humid or cold regions (e.g., polar regions), rainfall
partitioning into runoff and evaporation is not expected to relate
to soil water storage characteristics. In the case of the MOPEX
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dataset, where several catchments at similar or same dryness
indices are available, a random subset of catchments was picked.

• Catchment area: The selection was limited to lower mesoscale
catchments ranging from around 50 to 1.000 km2. Larger catch-
ments potentially contain climate gradients and need to be rep-
resented by more complex distributed models. This hinders
identification of clear causal relations.

• Minimum anthropogenic influence: In line with the Budyko
framework that was developed on the basis of pristine catch-
ments, catchments with significant anthropogenic disturbance
were excluded from the study. The MOPEX dataset claims that its
catchments are of little anthropogenic disturbance. The BaWue
catchments were drawn from a preselection where anthropogenic
influences in the form of extractions or inlets were excluded. The
selected headwater catchment in the Peruvian Andes is sparsely
populated due to its elevation and only has a few smaller reser-
voirs not expected to alter the annual catchment water balance
significantly.

• A closed water balance: Catchments with a closed long-term
water balance (within 5% error) were preferred, because this is a
pre-condition to apply the Budyko framework and it facilitates
water balance modeling.

• No significant snow/ice dynamics: Catchments with significant
snow and ice storage were not selected in order to to ensure that
water limitation is mainly controlled by storage in the root zone.

7.2.2 Data and preprocessing

The Budyko framework was derived empirically, and is applicable at
steady state, climatological timescales at which inter-annual storage
changes in the catchment become negligible. In terms of modeling
input (meteorological forcing) and output (stream flow) for the study,
daily data for 30 consecutive years were retrieved for each catchment
to fulfil that premise. The following paragraphs briefly outline the
necessary preprocessing steps to prepare the different data sets for
modelling.

Preparation of the BaWue dataset

The German Meteorological Service (DWD) provides 1x1 km Germany-
wide raster datasets for several climatological meteorological variables,
stemming for example from the interpolation of point-wise monitoring
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data (e.g., from rainfall gauges) or from the processing in the frame-
work of the spatially distributed agrometeorological AMBAV-model.
For the BaWue dataset, catchment averages of daily precipitation
(DWD, 2020b) and potential evapotranspiration (DWD, 2020a) were
derived from the corresponding raster datasets. The potential evapo-
transpiration estimates are essentially based on the Penman-Monteith
method. Stream flow data were obtained from the environmental
agency of the State of Baden-Württemberg (LUBW, 2020).

Preparation of the MOPEX dataset (USA)

The MOPEX dataset (Duan et al., 2006) provides complete, catchment-
averaged time series of precipitation, minimum/maximum daily tem-
perature, NOAA climatological pan evaporation as well as stream
flow data for a total of 438 catchments. Since NOAA climatological
pan evaporation is based on seasonal averages with the same values
recurring every year, it was considered to be less suited as forcing
data for a hydrological model. Instead, potential evapotranspiration
was estimated based on daily minimum and maximum temperature
(Samani, 2000).

Preparation of the Peruvian data set

For the Peruvian catchment, the national 0.1° gridded PISCO dataset
was used (section 3.2.1). The gridded PISCO data was used to calcu-
late catchment average precipitation for the Obrajillo (P-1) catchment.
Station data from the SENAMHI station “Canta” as well as a region-
ally calibrated Hargreaves-Samani model (section 4.2) was used to
estimate potential evapotranspiration. For the purpose of gap filling
and obtaining catchment averages from the point-wise measurements,
linear correlations to nearby stations as well as elevation-dependency
of the temperature were made use of. Streamflow data for the Obrajillo
catchment was provided by SENAMHI. For this catchment, stream-
flow data was available only for roughly 19 out of the 30 years of
meteorological data used to compute long-term water balances.

7.2.3 Characteristics of selected catchments

In the end, 16 catchments were selected for the study, seven from
Germany (IDs: “B-x”), eight from the US (IDs: “M-x”) and one from
Peru (“P-1”). For the sake of readability, the original catchment/stream
gauge IDs from the datasets were modified. Table A.3 in appendix
A.4 links the original catchment IDs to the newly assigned IDs used
in this study. Figures A.4, A.5 and A.6 in appendix A.4 show the geo-
graphic locations of the catchments. Figure 7.1 provides an overview
over catchment and climate characteristics spanned by the selected
catchments. The catchments cover areas between 50 and 1000 km2.
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The catchments in Baden-Württemberg in Germany cover the most
humid climate settings with dryness indexes of from 0.31 to 0.77,
while some of the drier MOPEX catchments, mostly due to signifi-
cantly higher potential evaporation, range between 1.05 and 1.55. In
all catchments, annual total precipitation exceeds 750 mm/year. The
most humid catchments in Germany reach annual totals of up to 1600

mm/year. The variation of the dryness index largely stems from the
higher variations in energy supply. This is reflected in the spreading
of the annual potential evapotranspiration between 500 mm/year and
1350 mm/year. Potential evapotranspiration is quite evenly distributed
among the catchments in Germany, whereas precipitation is more het-
erogenous. Figure 7.1 also provides the number of rainy rays per year
(a rainy day is defined as P > 1 mm/d). For most catchments, the
number of rainy days correlates with mean annual precipitation. How-
ever, in the Peruvian catchment (P-1) 150 rainy days occur per year,
a frequency similar to the far more humid catchments in Germany.
In the more arid MOPEX catchments, the number of wet days per
year is generally lower ranging between 80 and 100. Catchment M-7,
however, has the lowest number of rainy days, despite a total annual
precipitation of 1075 mm.
Rainfall seasonality was calculated according to Walsh and Lawler
(1981):

SIi =
1
Pi

12

∑
j=1

∣∣∣∣Pij −
Pi

12

∣∣∣∣ , (7.1)

where Pi is annual precipitation for year i and Pij is monthly precipita-
tion for month j in year i. For the multiannual timescale the annual
seasonality indexes were averaged. Rainfall seasonality is higher in
the drier catchments, in particular in catchments P-1 and M-7 (7.1).

Figure 7.1: Overview over catchment and climate characteristics of the se-
lected catchments (sorted by ascending dryness index). Color
scale: yellow indicates high values, blue indicates low values,
normalized to the range of each variable.
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7.2.4 Hydrological modeling

The conceptual hydrological model used for this study is a simplified
version of the HBV model (Lindström et al., 1997). HBV is a widely-
used hydrological model, capable of reproducing catchment dynamics
across numerous hydrological settings (e.g. Booij, 2005; Osuch, 2015;
Uhlenbrook et al., 1999). The following section explains our slightly
altered and simplified derivative.

Conceptual model structure

The modeling approach for the water balance is fully lumped and thus
based on catchment-scale averaged values, with daily precipitation
and potential evapotranspiration as meteorological forcing. The model
consists of the HBV soil store to model runoff generation and actual
evapotranspiration, and a single linear reservoir for daily streamflow
(Figure 7.2).

Figure 7.2: Setup of hydrological model. Abbreviations used for states and
fluxes are explained in section 7.2.4

The soil store is characterized by the total storage volume Smax, its
field capacity FC, and β-parameter. Smax corresponds to the product
of effective porosity and soil depth, while FC describes the threshold
below which actual evapotranspiration drops below the potential one.
The water balance of the water balance of the soil bucket is:

dSM
dt

= P − ETa − Qd, (7.2)
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with soil water storage SM (mm), precipitation P (mm/d), actual
evapotranspiration ETa (mm/d) and direct runoff Qd (mm/d). Direct
runoff per time is calculated based on the relative saturation using
a power law with β as parameter (Eq. 7.3). The remaining water
infiltrates, and feeds evapotranspiration, while direct runoff goes to
the linear reservoir:

Qd =

(
SM
Smax

)β

· P (7.3)

Actual evapotranspiration is a linear function of soil moisture SM
below FC as given by Eq. 7.4 and 7.5:

ETa =
SM
FC

· ETp f .SM < FC (7.4)

ETa = ETp f .SM ≥ FC (7.5)

Contrary to the usual reservoir series used in the original HBV
model, this model version uses a single linear reservoir to simulate
streamflow. It is characterized by a recession constant kres (1/d) and
its reservoir storage S(t), as described by Eq. 7.6:

Qtot = kres · S (7.6)

This model is rather simple, but fits the purpose of annual water
balance simulations (Uhlenbrook et al., 2010) and a multi-catchment
approach. Here, the focus is on two qualitatively different types of
storage. The model accounts for the capillarity-bound storage fraction
SM < FC and corresponding water limitation of evaporation, while
for SM > FC evaporation is not water limited. Runoff production
increases nonlinearly with SM until Smax. In order to characterize the
relative portion of both storage fractions, the capillary storage fraction
FC f rac is defined as FC f rac = FC/Smax.

Model calibration and objective functions

In order to reproduce the catchment water balance, the hydrological
model’s parameters had to be calibrated. Meteorological forcing data
(P, ETp) and discharge data described in section 7.2.2 were used to
optimize the model parameters. Due to the simple fully lumped
model structure and the objective to reproduce the annual water
balance, the model parameters were optimized for monthly discharge
values using the Kling-Gupta-efficiency (KGE) (Gupta et al., 2009) as
objective function. An acceptable simulation of the water balance at the
monthly scale was deemed acceptable for exploring the partitioning
of rainfall into runoff and evapotranspiration at the annual and inter-
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Table 7.2: Model parameter ranges for calibration

Unit Parameter limits
Parameter

β - 0.05 – 5

Smax mm 50 – 800

FC f rac - 0.1 – 0.9

kres 1/d 0.05 – 0.9

annual scales. The calibration was performed on the entire datasets
covering 30 consecutive years, excluding the first year as model spin-
up phase. In order to make a final catchment selection based on
model performance, not only monthly KGE but also the resulting
mean biased water balance error (MBE) was taken into account. The
MBE was calculated as given by Eq. 7.7, with annually aggregated
streamflows, Qi, respectively for the i-th hydrological year:

MBE =
1
N

N

∑
i=1

(Qsim,i − Qobs,i)

Qobs,i
(7.7)

While for the monthly KGE a threshold of 0.7 was set for acceptable
model performance, a water balance error of MBE ≤ 15% was consid-
ered sufficiently small.

Four parameters were varied within defined limits (table 7.2) using
the shuffled complex evolution SCE-UA (Duan et al., 1994) uniform
sampling scheme. The parameter ranges were defined in close accor-
dance with other studies (Beck et al., 2016; Osuch, 2015; Piotrowski
et al., 2017; Wang and Solomatine, 2018).

Sensitivity of the water balance to soil storage parameters

The behavior of mean annual water balances across a wide range of
catchments with different soil water storage properties was investi-
gated. Therefore, the calibrated models with their optimized param-
eter sets were used to vary the two parameters characterizing soil
water storage, Smax and FC f rac in the following within three different
variation schemes:

(i) Variation of Smax between 1 and 2000 mm in increments of
∆Smax = 20 mm, while the other optimized parameters (kres, β

and FC f rac) were kept constant

(ii) Variation of FC f rac between 0.1 and 0.9 in increments of ∆FC f rac
= 0.05, while the other optimized parameters (kres, β and Smax)
were kept constant
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(iii) Combined variation of both soil storage parameters: all possible
parameter combinations of Smax and FC f rac, given the same
boundaries and increments as in (i) and (ii)

For each parameter combination resulting from the iterative varia-
tion process, a long-term simulation (30 years at a daily timestep) was
run and the mean annual evaporation ratio (EVR) calculated. Observed
EVR were estimated based on the assumption that at multiannual
timescales, catchment storage changes are negligible and that mean
actual evaporation thus equals the difference between mean annual
precipitation and mean annual observed discharge (ETa = P − Q).

7.3 results

7.3.1 Water balance simulations

The model performed acceptably for the selected study catchments,
with monthly KGE > 0.8 and a water balance MBE within ±15%
(Figure 7.3). While for catchments with lower dryness indexes, the
MBE is does not exceed 5%, it is noticeably higher for the more arid
ones, reaching errors close to +15% indicating slight overestimations
of the mean annual discharge.
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Figure 7.3: (top) KGE of monthly streamflow simulations and mean biased
(MBE) water balance error of the calibrated models, catchments
are sorted by ascending dryness. + overestimation, - underes-
timation. Highlighted areas: value ranges for KGE (red) and
water balance (blue) with acceptable model performance. (bot-
tom) Model parametrizations resulting from calibration of each
catchment, catchments sorted by ascending dryness

The calibrated model parameters cover their predefined parameter
ranges, without reaching the boundaries (Figure 7.3 and table A.4 in
appendix A.4). The calibrated β parameters varies between 0.8 and
4.7, indicating a large spread between strong to moderate growth
of area contributing to runoff with relative saturation. Smax ranges
between 70 mm and 800 mm. Assuming a porosity of e.g. 0.4, this
corresponds to an average root zone depth between 0.175 and 2 m.
Field capacity ranges between 40 and 90 % of total root zone storage,
suggesting either a rather small or strong influence of capillarity on
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root zone storage. The kres parameter is quite uniformly distributed
for the more humid catchments with values around 0.1-0.2, whereas it
shows greater variability throughout the drier catchments with values
between 0.26 and 0.77.

7.3.2 Variation of total storage volume Smax

The selected catchments spread across a dryness range from 0.30

to 1.55, while simulated evaporation ratios (EVRsim), caused by the
incremental variation of Smax, range between 0.05 and 0.92 (Figure 7.4).
Generally, a higher total storage volume Smax corresponds a larger
evaporative fraction, as visualized by the color code of the plots. At
the minimal total storage volume of Smax = 1 mm, the catchments’
evaporation ratios are around 0.1, almost independent of the dryness,
as nearly 90% of the precipitation would run off. An increase in Smax

by only 20 mm causes EVR to jump from 0.25 to 0.4. The total range
of the EVR varies for the different catchments, with smaller ranges
for the more humid systems, which tend to approach the energy limit
at a certain point. MOPEX catchment M-7 shows the largest EVR range.

Figure 7.4: Variation of Smax in Budyko space: the simulated mean evap-
oration ratios (EVR) of each variation step are shown as dots.
Catchment IDs indicated by arrows

The offset from the Budyko curve is a nonlinear function of total
storage volume, normalized with annual precipitation, for most study
catchments (Figure 7.5 left). The reduction of the initially negative
offsets with increasing storage shows a steep decline at small normal-
ized storage volumes which flattens to an almost asymptotic curve
at larger normalized storage volumes. This appears plausible, as the
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EVR is bound by the energy limit as an asymptote. When the latter is
reached, the curve becomes horizontal as can be seen for the humid
catchments reaching the energy limit. Exceptionally, catchment M-7
is characterized by a gradual and steady increase in EVR, with a
quasilinear development up to a Smax/Pann−avg ratio of about 0.5,
never really reaching this asymptotic tendency.

The EVR offset of most catchments is zero at a distinct normalized
total storage volume. A comparison of these distinct total storage
volumes revealed a clustering at 5-15% of the annual rainfall (Figure
7.5 (right)). Exceptions are the Peruvian catchment P-1 as well as the
U.S. catchment M-1, which do not reach the Budyko curve at all. It is
also important to note that the catchment with the highest dryness
index, M-8, meets the Budyko curve at a normalized total storage
volume of 1.2.

Figure 7.5: (left) Variation of Smax: offsets from Budyko curve as a function of
normalized total storage. Color scale is relative to the catchments’
dryness. positive values: simulated EVR higher / negative values:
simulated EVR lower than Budyko curve / zero line: EVRsim
matches Budyo curve. Labeled catchments are specifically ad-
dressed in the discussion. (right) distinct normalized total storage
at which the catchments reach the Budyko curve as a function of
the dryness index (catchments M-1 and P-1 remain below Budyko
curve throughout variation of Smax and are thus not plotted here)

7.3.3 Variation of the capillary storage fraction FC f rac

In the second variation scheme, the FC f rac model parameter was
varied in [0.1, 0.9] by increments of ∆FC f rac = 0.05, while keeping Smax

constantly at the calibrated value. The lower the FC f rac parameter, the
more water evaporates -being subject to water limitation in the soil-
which implies higher evaporation ratios in the Budyko space (Figure
7.6). The total spreading of EVR is generally smaller, when compared
to the variation of the total storage volume. The min-max extent of
simulated EVR varies throughout the catchments, the majority of
which generate EVR ranges scattering in a narrow envelope around



7.3 results 141

the Budyko curve. Simulated evaporation ratios of the M-7 catchment,
however, are all below the Budyko curve, while EVR for catchment
M-4 remains solely above the Budyko curve. The lowest FC f rac values
cause comparably high evaporation ratios. For humid catchments,
many of those are located close to the energy limit. Catchments with
dryness indices above one also reach high evaporation ratios. For
instance, catchments M-8 and M-4 show simulated EVR values of
around 0.9-0.95 at their lowest FC f rac values, which is close to the
water limit.

For most catchments, the gradual increase of capillary storage
fraction FC f rac causes a decrease in simulated EVR, which is initially
quite slow at low FC f rac values, indicating little sensitivity in this
parameter range (Figure 7.7). At higher FC f rac values of around 0.4-0.6
the reduction becomes steeper. Note that 50% of the catchments,
mostly humid ones, reach the Budyko curve at distinct capillary
storage fractions clustering between 0.6 and 0.75. For another group
of four catchments this distinct capillary storage fraction cluster at
0.9, which corresponds to the maximum. For two other catchments,
the Peruvian P-1 and the German B-1, the distinct capillary storage
fractions are around 0.2. Both show a quasilinear dependency of the
evaporation ratio on FC f rac. The M-7 catchment, as in the previous
exercise, does not reach the Budyko curve.

Figure 7.6: FC f rac variation in Budyko space. For each catchment the simu-
lated mean evaporation ratios (EVR) of each variation step are
visualized as one dot. Catchment IDs indicated by arrows



142 exploring the role of soil storage for budyko curve offsets

Figure 7.7: FC f rac variation, offsets from Budyko curve. Color scale is relative
to the catchments’ dryness indexes. positive values: simulated
EVR higher / negative values: simulated EVR lower than Budyko
curve / zero line: EVRsim meets Budyko curve. Labeled catch-
ments are specifically addressed in the discussion

7.3.4 Simultaneous parameter variation

The simultaneous variation of the total storage volume and capillary
storage fraction revealed three main types of 2-dimensional Budyko
offset and EVR sensitivity pattern. Each type is visualized using
representative catchments in Figure 7.8.

• Type 1: humid, close to energy limit. Almost all parameter
combinations result in an evaporation ratio close to the Budyko
curve with the exception of the minimum Smax value of 1mm).

• Type 2: intermediate dryness, little seasonality. There is a pa-
rameter domain whose combinations result in an evaporation ra-
tio close to the Budyko curve (hereinafter referred to as “Budyko
domain”, with EVR offsets within ±0.05 from Budyko curve).
At low FC f rac values, the Budyko domain is very sensitive to an
increase of Smax, while at higher FC f rac values, this sensitivity
is inverted. In between the two extremes, there is a transition
zone with intermediate sensitivity of the Budyko domain to both
sort of parameter changes. In this example, this transition zone
extends from roughly 15-50% of normalized total storage vol-
umes and capillar storage fractions between 0.55-0.8 (see yellow
square in Figure 7.8).

• Type 3: dry (ϕ >1) catchments with pronounced seasonality.
The two catchments with stronly seasonal climate M-7 and P-1
revealed similar EVR patterns. The Budyko domain is reached
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for normalized total storage volumes of more than 60% and even
90% of annual rainfall, respectively, at comparably low capillary
storage fractions comprised between 0.1-0.4.

Figure 7.8: Simultaneous parameter variation. Simulated EVR is visualized
in terms of its offset from the Budyko curve (only offsets ∆EVR
< ± 0.2 are sensitive to color scale). Contour lines delineate
parameter combinations causing mean EVR within ±0.05 range
around Budyko curve (“Budyko domain”). Blue dots: calibrated
parameter combination. Yellow square: highlights a parameter
subspace where catchment could evolve inside the Budyko do-
main with both parameters changing only moderately. Three
catchment groups with distinguishable patterns emerged: (1) up-
per left: quite humid, close to energy limit / (2) upper right:
intermediate dryness, no seasonality / (3) lower two: drier catch-
ments with pronounced seasonality.

7.4 discussion

In this study, a conceptual hydrological model was used to con-
duct a systematic variation of two soil storage-related parameters
(Smax, FC f rac) for selected catchments across a variety of climate and
landscape settings. The main goal was to investigate their role as
second-order controls on the steady-state catchment water balance
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and in particular their suitability to explain offsets from the Budyko
curve.

The discussion starts with the performance of the water balance
modeling, the calibrated parameterizations, and the implications of
the approach taken for the presented results. Secondly, the sensitivity
of the water balance to soil storage variations and the related findings
for different groups of catchments are reflected upon. Thirdly, the
relative offsets from the Budyko curve and the clustering found in
the distinct soil characteristics for matching the Budyko curve are
discussed. Finally, the results are interpreted in terms of catchment
coevolution in the Budyko framework, concentrating on patterns that
emerged during the simultaneous parameter variations.

7.4.1 Water balance modeling

Model performance and hydrologic processes representation

The hydrological model, despite its simplicity, proved capable of
reproducing monthly discharge dynamics as well as the catchments’
annual and interannual water balance in the 30 years of simulation
period. The usefulness of similar HBV model versions for simulating
discharge and water balance dynamics has been shown throughout nu-
merous studies at comparable spatio-temporal scales (e.g. Lindström
et al., 1997; Osuch et al., 2015; Seibert, 1999; Uhlenbrook et al., 2010).
The performance of the model was slightly inferior for more arid
catchments, perhaps due to more interannual variability in the annual
water balances (and potentially also the rainfall-runoff mechanisms),
which is more likely in drier climates (Koster and Suarez, 1999).

The hydrological model conceptualizes and simplifies hydrological
processes. The chosen modeling approach is primarily focused on
catchments where soil water storage plays a crucial role in the parti-
tioning of rainfall into runoff and evapotranspiration, which includes
a large number of catchments around the globe. For other settings,
e.g., with considerable impact of snow cover or Hortonian overland
flow, the dominant processes would not be well represented by the
model used for this study. On the other hand, the soil storage-based
reasoning of this study is not as relevant for these types of catchments,
since the water partitioning is conditioned by influences not related to
soil storage volumes. Other processes that are not explicitly modelled
include soil moisture redistribution due to percolation and capillary
rise, and the effective cutting of evapotranspiration below the per-
manent wilting point. The effects of these processes on the waterEffects of not

explicitly modeled
processes

compensating

balance, however, are potentially compensating, depending on the
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individual conditions in a catchment. While percolation into deeper
layers and the introduction of a permanent wilting point are likely
to reduce evapotranspiration, capillary rise would rather increase
evapotranspiration. The successful calibration suggests that the model
yields robust estimates of mean annual water partitioning, the lack of
process detail notwithstanding. The simple hydrological model used
thus seemed adequate for the main purpose of the study.

Catchment parametrizations and parameter interrelations

The hydrological setting of the study catchments is represented by
their calibrated parameter combinations. There was notable variabil-
ity in the calibrated parameterizations not only between the three
global regions, but also among the catchments within one region, for
example in the geographically limited region of Baden-Württemberg
in Germany (B-x). The catchments thus cover a range of relevant
conditions, while the limited number made it possible to keep track
of more detailed characteristics of each catchment. The systematic
selection helped explore the influence of storage volume-related
parameters on mean hydrologic partitioning and their relationship
to the Budyko curve for different hydroclimates and catchments in
a more direct way than it would have been possible in a statistical
analysis of an unsystematic collection including as many catchments
as possible. Nonetheless, the selection of catchments is limited, and Limits of catchment

selectiondoes not cover all possible meteorological forcings and hydrologic
responses. For instance, the drier regimes used in this study have
climates with high potential evapotranspiration. The datasets and the
selection process did not yield any catchments in the dry regime with
low annual precipitation (cf. section 7.2.3). Including such catchments
in future studies would show if additional variability in the calibrated
parameterizations would also increase the sensitivity to the subse-
quent parameter variation conducted on that basis.

In this regard, the issue of parameter correlation needs to be ad-
dressed. The calibration results show strongly contrasted β and Smax

values for the drier catchments included in the study, suggesting that
the interplay of the two parameters affects the monthly (monthly KGE
calibration) and thus likely also the annual water balances. Evidently, Smax and FC f rac are

not independentalso total root zone storage capacity and its field capacity are closely
related, as both increase with increasing fraction of silt and clay in the
soil. This naturally implies that the model parameters Smax and FC f rac
are interrelated as well and interact with respect to the sensitivity to
EVR (Figure 7.8). The separate variation of both parameters yields,
nevertheless, information about their relative importance in controlling
EVR. The significantly larger EVR ranges in the results showed that
total storage capacity dominated against the subdivision of the total
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storage volume in free and capillarity-controlled fractions. The simulta-
neous variation of both parameters provides a better understanding of
the interactions and helps to infer distinct combinations that match the
Budyko curve and find behavioral parameter sets (Schaefli et al., 2011).

7.4.2 The role of soil storage characteristics for the evaporation ratio

Variation of the total storage volume

Soil water storage hydrologically acts as a control for direct runoff
generation and it buffers water to feed the much slower evapotrans-
piration process from intermittent rainfall. When storage capacity in-
creases, the soil is less likely to be water-saturated, leading to a higher
saturation deficit and thus infiltration potential (1 − (SM/Smax)β)
during rainfall events. This causes an increased water stock in the
root zone which feeds evapotranspiration. In the extreme case of zero
soil storage capacity, corresponding to impervious soil surface, nearly
all precipitation would run off as overland flow, and the EVR would
tend to zero. This is also shown by the low evaporation ratios in
the corresponding simulations with the lowest Smax value of 1 mm.
When Smax was increased from the minimum to small and moderate
values, water partitioning was very sensitive to changes in total soil
storage capacity, with evaporation ratio ranges ∆EVR from 0.1 to 0.3
for most catchments. The observed variations in sensitivities among
the catchments, however, suggests additional controls on the EVR
resulting from the interplay of the meteorological forcing and the
parametrization.

A correlation analysis revealed that the number of rainy days per
year explains 93% of the variability in the total EVR ranges (beyond
minimal Smax = 1 mm) that occurred during the variation of total
storage volumes (Figure 7.9). Interestingly, the catchment M-7 with theInfluence of number

of rainy days highest EVR range of ∆EVR = 0.6, is characterized by a comparably
small number of rainy days, which indicates, given the total rainfall
amount, rather intense rainfall events (catchment characteristics in
Figure 7.1). This is in line with Milly (1994), who found that the
number of rainy days is a sensitive variable in terms of the role of
soil storage and for the mean annual water balance. The number of
rainy days did not act as a proxy for a different characteristic such
as mean annual precipitation or dryness itself, as the correlation
plots in Figure A.7 in appendix A.4 show by explaining considerably
less variance of the EVR range than the number of rainy days. For
a given amount of total annual rainfall, the number of rainfall days
relates to the mean depth of rainfall events as well as to the average
interstorm period. The time between rainfall events influences the
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soil depletion (ETa resulting from ETp and rel. soil saturation) and
thus the mean antecedent soil moisture state prior to rainfall events.
More storage capacity leads to less saturated soils on average which
in turn enhances infiltration and the amount of water available for
evapotranspiration.

Figure 7.9: Linear correlation between the no. of rainfall days/year and the
evaporation range (∆EVR) spanned by the variation of Smax (ex-
cluding its minimum value of Smax=1 mm)

For almost all catchments, the sensitivity to further increase of
storage capacity vanished beyond a critical normalized total storage
volume, with negligible to no changes in mean evaporation (see Figure
7.5). For humid, energy-limited systems, a further increase of total Quasi-asymptotic

behavior above
certain storage
capacity Smax

soil storage cannot increase evapotranspiration anymore, once the
energy limit is reached. The other systems reach this quasi-asymptotic
behavior when two competing soil moisture influences are balanced
in the model. On the one hand, a further increase of Smax leads to a
lower relative saturation, causing a higher infiltration potential and
thus providing more water for subsequent evaporation. On the other
hand, this decrease of relative soil moisture leads to an increasing
reduction of the evaporation flux (imitating capillary forces), which
in turn retains moisture longer in the soil and limits further decrease
of soil moisture. The critical Smax value for reaching this behavior
depends on forcing characteristics and parametrization. Catchment
M-7, characterized by an exceptionally low number of rainy days
per year, does not reach this near-asymptotic behavior within the
bounds of the Smax variation, again underlining the aforementioned
influence of rainfall frequency on the importance of total water storage
volume regarding mean annual partitioning. This finding is again
in line with Milly (1994), who found a maximum value of water-
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holding capacity, beyond which mean evapotranspiration does no
longer increase significantly.

Variation of the capillary storage fraction in soil

The mean annual water balance was also sensitive to changes of the
capillary storage fraction of the soil, FC f rac, spanning EVR ranges of
around ∆EVR=0.3 and ∆EVR=0.5 and with notable between-catchment
variability reflecting different hydrologic behaviors. In general, higher
FC f rac caused lower mean evapotranspiration ratios, because FC f rac
determines the onset of water-limited evapotranspiration. This reflects
in a simplified and linearized manner the decrease in capillary matric
potential and reduction of capillary supply of upper soil layers losing
water to sustain evapotranspiration. The conceptual soil water balance
models used by Milly (1994) and Potter et al. (2005) neglect this
effect. For the most humid systems in particular, the decline in mean
evaporation ratio occurs at capillary storage fractions ≥ 0.6. In these
humid climate regimes, relative soil moisture tends to be high and in
combination with lower capillary storage fractions, evapotranspiration
occurs mostly without water limitation. With increasing FC f rac values,
evapotranspiration is more likely to fall below the threshold to reduce
evaporation, the soil retains more soil moisture and in turn enhances
direct runoff production during rainfall. For other catchments, the
sensitivity of mean EVR remains nearly uniform within the variation
range of FC f rac, in particular for the two seasonal catchments (P-1 and
M-7). This may be due to the fact that these drier, seasonal catchments
tend to have relative soil moistures even below lower FC f rac values,
making their mean water balance sensitive to FC f rac across the whole
variation range.

7.4.3 Offsets from the Budyko curve

Soil storage characteristics matching the Budyko curve

For most study catchments, the modelled EVR ranges intersect the
Budyko curve at distinct values of Smax and FC f rac, respectively. The
distinct storage parameters that made the systems reach the evapo-
ration ratio predicted by the Budyko curve showed a clustering, and
can be interpreted hydropedologically. For most of the systems, inSmax matching

Budyko curve
partially cluster at
5-15 % of the mean

ann. P

particular for the humid catchments, the distinct normalized total
storage that matches the Budyko curve is between 5-15% of the mean
annual precipitation. In case of a uniform annual rainfall regime this
corresponds roughly to the monthly precipitation amount and to an
Smax = 60-180 mm given a mean annual precipitation of P=1200 mm/a.
When recalling that Smax equals the product of soil depth and porosity,
and assuming porosity values of around 0.3-0.5, this suggests soil
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depths ranging between 120-540 mm. This is in the range of the root
zone depths found in vegetated systems (Gentine et al., 2012). The
distinct capillary storage fractions for matching the Budyko curve
scattered between 0.18 and 0.90 of the total storage volume, which
is the range to be expected for sandy and clayey soils, respectively.
For half of the catchments, the distinct FC f rac ranged between 0.6 –
0.8, equivalent to loamy soils. There was, however, no clear trend of
distinct capillary storage fractions with dryness index.

From the findings, it can be concluded that soil storage characteris-
tics are important controls on the mean annual water balance, which
can help explain observed offsets of catchments from the Budyko
curve. The fact that some catchments did not reach the Budyko curve
through independent variation of the soil storage parameters, however,
also underlines that other second-order controls such as for example
temporal variability and seasonality of the forcing, or their interplay
with soil storage, can play an important role for hydrologic partition-
ing. Among the study catchments, the two drier and in particular Seasonal catchments

stand outseasonal catchments, P-1 and M-7, stand out in this respect. While Fu
and Wang (2019) show that seasonality can indeed have a significant
influence on the position in the Budyko space, Potter et al. (2005)
pointed out in his study on Australian catchments, that seasonality
by itself was not able to explain the inter-catchment variance in the
observed mean evaporation ratio. Lavenne and Andréassian (2018)
pointed out the importance of the phasing of P and ETP in seasonal
climate regimes in France. In consequence, while seasonality-related
aspects appear to play a role, its interaction with other characteristics
such as soil storage cannot readily be discerned. Another possibility is
that a catchment’s evapotranspiration can be transport-limited when
the vapor pressure gradient in the lower boundary layer is low and
the air is moisture-saturated. Strongly seasonal environments could Atmospheric

transport limitationpresent a more favorable setting for transport limitation, since the
atmosphere is more likely to be moisture-saturated when the entire
annual precipitation occurs within a limited number of months during
the rainy season. A straightforward supplement analysis of relative
humidity data of stations in the vicinity of the study catchments
revealed that mean relative humidity during the rainy season for the
Peruvian catchment was around 85%, and higher than the year-round
average for all other catchments. Assuming that most of the annual
evapotranspiration in the Peruvian catchment occurs during the
period of abundant soil moisture storage in the rainy season, the mean
evaporation flux could. This reasoning, however, does not apply to
the other seasonal catchment (M-7).
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Interpretation in terms of catchment coevolution and behavioral model pa-
rameterization

The findings fit well into the perspective that a catchment’s form
and functioning are co-evolutionary (Troch et al., 2015), which also
implies that the development of total storage volume and of capillary
storage fraction are not independent of each other. The successiveParameter variations

regarded as two
weathering

mechanisms

variation of the two soil storage parameters sheds light on the role of
the soil formation process resulting from two weathering mechanisms.
While the first one (Smax) represents the generation of soil storage
volume, i.e., porosity, the second one (FC f rac) relates to the transfor-
mation of coarse to increasingly fine-grained material with higher
capillary forces. In a chronosequence study on proglacial moraines,
Hartmann et al. (2020) show such a soil development over time at
scales of centuries and millennia, both in terms of soil storage and
retention characteristics (i.e. porosity and the fraction of silt and clay
increasing). They detected a similar soil evolution for two different
parent materials, however occurring at different rates. While this type
of soil evolution is an example for discussing the parameter variation
and hypothesized related weathering processes in this study, in other
hydro-pedogenetic contexts (e.g. highly erosive terrains) the storage
development can differ.

The parameter variations corresponding to these two mechanisms
resulted in opposite effects on the mean evaporation ratio. This could
imply that catchments with their related soil formation processes
converge towards an optimal state with regard to hydrologic parti-
tioning. While in early stages of a catchment’s evolution –probably
starting out far off Budyko– the development of total storage Smax is
likely to dominate the evolution, at later stages both parameters could
continue to evolve simultaneously within the Budyko domain, thus
keeping the water balance in a steady-state in accordance with Budyko.

The idea of finding underlying organizing principles for the steady-
state hydrologic partitioning described by the Budyko curve has
been addressed by multiple studies in the past (cf. Berghuijs et al.,
2020). Westhoff et al. (2016) showed in a backward approach that theUnderlying

organizing principles
that explain

clustering around
Budyko curve?

Budyko curve can be derived using the Maximum Power principle as
a constraint. Porada et al. (2011) simulated the water balance of the 35

largest basins on Earth using the SIMBA model and inferred parame-
ters controlling root water uptake by maximizing entropy production.
Simulations were in line with the Budyko framework. Milly (1994),
referring also to similar conclusions by Milly and Dunne (1994), stated
that simulated threshold values of water-holding capacities, beyond
which evaporation does not change significantly anymore, were in
proximity to the observed ones, which lead him to hypothesize that
ecosystems strive to maximize evapotranspiration. The Budyko curve
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could thus also represent the strategy to maximize evapotranspiration
by approaching the supply and demand limit, yet not reaching them
due to limiting factors such as climate variability (Berghuijs et al.,
2020). If catchments were in fact to coevolve towards an optimal
state of hydrologic partitioning, it would still remain difficult to infer
which stage of coevolution a catchment actually is in. The plots shown
in Figure 7.8 can be helpful in this respect, as they connect a wide
range of total storage volumes and capillary storage fractions to the
resulting offsets of simulated EVR from the Budyko curve. This space
represents all possible system configurations with respect to these two
soil storage-related parameters, and thus which soil states a catchment
might potentially go through.

Groups of catchments emerging in terms of the “Budyko domain”
were identified, which clustered with respect to their climate setting
and their parameter combinations in a close range of ∆EVR = ±0.05

around the Budyko curve. The most humid catchments are bound by Catchment groups in
terms of Budyko
"domain" emerged
in simultanous
parameter vairation

a tight energy limit, and hence proximity to the Budyko curve is easier
to achieve, also at lower Smax values. For catchments of intermediate
humidity, a Budyko domain stretching throughout the parameter
space is observable, with the sensitivity of one parameter to the mean
water balance being strongly conditioned by the other parameter.
The domain highlighted by the yellow square in Figure 7.8-upper
right represents a parameter subspace where both parameters could
develop whilst remaining within the Budyko domain. A catchment in
that subset could evolve at “moderate pace” in terms of soil storage,
while the water balance partitioning in terms of the Budyko framework
would roughly remain constant.

In the drier range of catchments, the two seasonal ones (P-1, M-
7) are of particular interest. In both cases, the Budyko evaporation
ratio is only reached at high Smax and low FC f rac values. According
to observed discharge and precipitation data, both are currently not
inside the Budyko domain. Troch et al. (2015) introduced catchment
forming factors, as quasi-independent drivers of catchment coevo-
lution: climate, bedrock weatherability, tectonics and time, and the
concept of hydrologic age as the result of their combined effect. The
latter is related to the amount of energy that has flown through the
catchment and to the amount of physical work expended thereby. In Hydrologic aging

different in seasonal
environments?

this context one might speculate that catchments’ hydrologic aging in
a highly seasonal climate is slower than in humid settings. The two
dryness-defining variables (P, ETp) and their corresponding mediators
–water and energy– are interacting simultaneously only during 4-6
months during the rainy season, which could lead to a slower evolu-
tion towards the Budyko state in these catchments. Catchments with
seasonal climates are known to produce lower evaporation ratios than
non-seasonal ones of the same aridity (Fu and Wang, 2019; Lavenne
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and Andréassian, 2018) and tend to be overestimated by the Budyko
curve (cf. Figure 6.12), which supports this point of view.



8
S Y N T H E S I S A N D C O N C L U S I O N S

The main goals of this thesis were to assess catchment water balances
in a data-scarce and mountainous environment on the Western flanks
of the Peruvian Andes, as well as to explore in what way the Budyko
curve can serve as a water balance landmark for hydrological model-
ing in that region. To that end, methods were developed to estimate
catchment-wide precipitation and potential evaporation in the region
based on minimum data, and subsequently used to estimate catch-
ments’ aridity and as model forcing. A paired modeling approach
between two climatic-structurally similar catchments was conducted,
with the better monitored Chillón catchment serving as reference and
parameter donor catchment to overcome data shortcomings in the
target basin, the Lurín. The focus was on annual and mean annual
water balances, with the Budyko curve as orientation. In a second step,
due to the favorable topography, the water balance and Budyko offset
analysis was widened to multiple similarly arranged catchments along
the Western flanks of the Andes. A rather inconsistent picture of water
balances prompted a more in-depth exploration of the role of soil
storage capacity since -despite its importance- it is hardly quantifiable
at the catchment scale. A virtual, model-based experiment was car-
ried out to analyze the sensitivity to the mean water balance and the
relationship to the Budyko curve of two soil storage-related properties.

In the following sections, the key findings are summarized and put
in relation across the individual chapters.

8.1 synthesis of key findings

8.1.1 Estimation of precipitation and pot. evapotranspiration in data-scarce
environment

A robust approach for the interpolation of rainfall over mountain-
ous catchments, named CovVar, was introduced and applied to two
study catchments in West Peru, Chillón and Lurín. Based solely on
rain gauge data, it establishes and incorporates long-term statistical
relationships between monthly rainfall totals and elevation as well
as elevation-dependent structures of the variance and the covariance.
The regionalization involves a nearest neighbor approach, using ele-
vation difference instead of the euclidean distance and weighting the
fluctuation around an elevation-dependent, long-term average rainfall.

153
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Showing reasonable performance metrics, also in comparison to
the national gridded PISCO rainfall product. Differences between the
two datasets in catchment-average rainfall became apparent at annual
scales, with CovVar yielding higher annual rainfall - both as a result
of the CovVar method exploiting the statistical patterns and of the
newly installed rain gauges in the high elevation headwater zones
of the Lurín basin. The CovVar model was successfully implemented
as forcing data in the distributed hydrological model (mHM) for the
Chillón and Lurín basin, proving valuable in the estimation of the
water balance.

8.1.2 Similarity of Peruvian catchments and their Budyko positions

Paired catchment modeling approach

The paired-catchment approach, using the Budyko space and curve as
a tool and water balance landmark, helped evaluating the quality of
different meteorological forcing datasets. The datasets had a signifi-
cant impact on observed and modeled water balances, not only for
the Lurín but also for the better monitored Chillón basin. The Lurín,
keeping in mind that the observed and modeled time period covers
only 3-4 years, showed water balances far off the Budyko curve and farNew datasets present

more plausible
scenarios

off the presumably similar neighboring catchment without use of the
newly developed CovVar rainfall dataset, both in terms of dryness and
of the evaporation ratio. The CovVar method thus seemed to simulate
more plausible catchment rainfall totals. In conclusion, with the right
datasets, the initial similarity assumption seemed more reasonable and
a parameter transfer possible. The parameter transfer from Chillón to
Lurín yielded useful parameter sets for the Lurín which performed
similarly to direct calibrations of the Lurin. However, both the effect of
different forcing datasets and model errors dominated by interannual
water balance variability in four years of discharge records in the
Lurín outweighed the influence of the model parametrization.

Not only the similarity but also dissimilar aspects between the
two basins became apparent, regarding for example the water re-
lease during the dry season. Besides differences in hydrogeological
conditions, in this context questions of anthropogenic alterations
might be relevant. Lack of more detailed knowledge about manage-Limited knowledge of

differences in water
management

ment of reservoirs and of water extractions, limited the ability to
explain differences between the two stream gauges in the Chillón and
differences between the two basins in terms of dry season stream
flow. In conclusion, the two basins did expose a considerable degree
of similarity in aridity and mean water balance as well as in their
seasonal flow regime, however with notable differences at shorter
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timescales, whose explanations could only be hypothesized.

Water balance similarity and Budyko offsets of multiple catchments in West
Peru

There were two findings regarding the water balances in the wider
geographic context of the Western slopes of the Peruvian Andes. On
the one hand, there is a marked systematic trend of the 17 catchments’
mean water balances to be overestimated by the Budyko curve. On
the other hand, a pronounced between-catchment variability in the
mean annual water balance and thus also of the Budyko offsets
distinguished the catchments.

A linear correlation analysis was conducted in order to relate the dif-
ferent water balances to subscale climatic or physiographic catchment
characteristics. While the individual coefficients of determination
remained expectedly low for the coarse correlation approach, it did 3 R2 signals for

Budyko offsetsshow signals (here, R2 > 0.4) for elevation difference as a proxy for
inner-catchment climatic heterogeneity, partially related snowiness
and discharge seasonality serving as proxy for all catchment storage-
related characteristics. Hypothesis- and literature-based reasoning
offered possible explanations as to how these characteristics might
lead to the offsets from the Budyko curve.

The remaining variance is due to other influences that were not
accessed or accessible, or their interrelations. The similarity notion Macroscale vs.

microscale similarityis limited by what is known or measurable, and has to distinguish
macroscale and microscale similarity. While e.g. macroscale climatic
similarity in terms of mean precipitation and potential evaporation
may be provided to a certain degree, microscale soil properties, result-
ing from other, not climate-related influences like rock weatherability,
are relevant to the evapotranspiration process and might cause such
differences. Anthropogenic influences may also play a role, given
however the magnitude of Budyko offsets, such influences are of
minor importance.

The systematic trend of the water balance with respect to the es-
timate by the Budyko curve must also be due to characteristics that
differentiate those catchments from the numerous other catchments
around the world that are in better agreement with the Budyko curve.
Characteristics affecting all of the Peruvian study catchments to some
degree, are not detectable in an internal correlation analysis. The im- Soil storage and

seasonal influencesportance of soil storage capacity that was demonstrated by means of
the virtual experiment in chapter 7 and the fact that semi-arid climate
combined with the steep slopes of the Andean topography present
favorable conditions to soil storage deficits, make soil storage deficits
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likely to explain a part of the general water balance trend. Effects
related to the seasonal climate likewise affects all catchments and
might contribute to the shift in the Budyko space as well.

8.1.3 Soil storage and other controls on mean water balance and on Budyko
offsets

Soil storage capacity is a dominant control

Soil storage capacity had already been identified as a dominant control
on mean annual water balance and on potential Budyko offsets in
literature. Process velocity-wise, soil storage is required to buffer the
slower evapotranspiration process that competes with runoff. How-
ever, soil storage is notoriously hard to assess and thus quantitatively
effectively unknown at the catchment scale, resulting in a conflict
between importance and data availability. In the geographic context of
the West Peruvian catchments, limited soil storage capacity is likely
in the semi-arid region with fairly steep topography. In consequence,
soil storage could one the one hand contribute to the general water
balance bias found for all Peruvian catchments compared to the
Budyko estimate as well as to the between-catchment variability.

A model-based virtual experiment was conducted to explore the
role more in detail, built on catchment observation data (P, ETp, Q)
in order to represent realistic systems. The fully-lumped and simple
hydrological model, similar to the widely used HBV model, proved to
be an effective and efficient tool to simulate multiple catchment water
balances at scales between 50-1000 km2. The study singles out specific
root zone characteristics, namely total soil storage volume and the
capillary storage fraction, two physically interpretable parameters.

The results corroborated the important role of soil storage as a
control on the mean annual water balance and potential offsets from
the water balance predicted by the Budyko curve. In most cases, the
parameter variations generated evaporation ratio envelopes enclosing
the Budyko curve. A clustering was observed in terms of normalizedBoth soil storage

properties are
important &

observable clustering
in terms of Budyko

optimum

soil storage required to match the Budyko curve at around 5-15%
of mean annual precipitation which reasonably corresponds to soil
storage capacities commonly found in nature. Similarly, also the
second parameter (capillary storage fraction) clustered in a range that
agrees well with hydropedological interpretation. As a result of the
study, and given the indispensable buffering role between runoff and
evapotranspiration processes, and in line with the proposition of a
hydrological space related to soil storage combined with water and
energy availability by Daly et al. (2019), soil storage could also be



8.1 synthesis of key findings 157

ranked a first-order control.

When making model-based predictions or when assessing the wa-
ter balance in ungauged basins, the Budyko curve can be used as a
landmark for long-term simulations. If taking potential deviations due
to soil storage volume into account, model parameterizations could
be oriented and constrained based on the behavior of the “Budyko
domains” identified in section 7.3 for different climate types. Doing
that, one could take into consideration that in catchments with high
soil storage capacity, the actual water balance might exceed the evapo-
ration ratio given by Budyko, or vice versa for catchments with little
soil storage capacity (below 5-10% of mean annual precipitation in
humid climates).

Role of seasonal climate

Climate seasonality-related aspects appear to play a role in mean
annual water balances and Budyko offsets. Such catchments stood out
in the model-based soil storage study and such a reasoning comes to
mind when considering the systematic and in parts considerable bias
of evaporation ratios lower than the Budyko estimate for such aridity
indexes (chapter 6). Comparison to seasonal catchments in the US
(MOPEX dataset) showed that seasonality by itself cannot explain such
offsets. In literature, the tendency of catchments markedly seasonal
rainfall to result in higher runoff coefficients (i.e. lower evaporation
ratios) was also found to act in combination with other characteristics.
Seasonal rainfall only lead to lower mean annual EVR when there was
also a phase lag between P and ETp or in combination with soil storage
capacity limitations (Daly et al., 2019). Moreover, atmospheric trans-
port limitation might play a role in markedly rainy seasons, where air
saturation and slow transport conditions of the moisture might impede
the evaporation flux. The pronounced between-catchment variability
shown in the multi catchment analysis of water balances also sug-
gests an interplay of the seasonal climate with other system properties.

While the general reasoning is based on the lack of temporal co-
occurrence of incoming energy and available soil moisture as a result
of available rainfall, and the more out of phase they are, the less evap-
oration is likely to occur -always compared to a uniformly distributed
climate, P and ETp. In that sense, mean annual dryness might not
be ideal in characterizing the system in terms of water- or energy-
limitation. Like the issue of spatial heterogeneity addressed in section
6.3.1, which might result in an effective catchment area for the mean
water partitioning, also in a temporal sense there could be a hydrolog-
ically effective part of the year, related to the maximum co-availability
of water and energy and similar to the phase lag issue by Lavenne and
Andréassian (2018). Hence, while as an annual aggregate the catch-
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ment system appears to be water-limited, this does not necessarily
apply to the rainy season where most of the annual water partitioning
into P and ETa however occurs. The characterization of the systemsSeasonality

challenges the
water-limitation

assumption of the
annual aggregate

thus depends on the season and might undergo a phase change from
water-limited to neutral or even energy-limited. Taking this reasoning
a bit further, from a landscape evolutionary perspective, seasonal pro-
vision of water and energy, often not in phase, might affect the rate of
catchment evolution (soil and vegetation), since the amount of energy
flown through a and applied to a catchment is inferior or more slowly
in such a setting.

Water balance estimation errors

When applying the Budyko curve (calculating aridity) or when as-
sessing observed catchment water balances as in chapter 6, estimation
errors potentially affect the analysis. If all components of the Budyko
framework are affected, aridity in terms of catchment rainfall and
potential evaporation as well as actual evaporation estimated via
streamflow measurements, it remains difficult to get a realistic picture.
Discharge measurements can be a major source of uncertainty in such
a region. However, the bias found for all catchments in West Peru that
clearly points in one direction regarding the offset from the Budyko
curve, indicates a systematic shift due to physical mechanisms gov-
erning the water balance of the catchments, and not due to random
estimation errors. In addition, a certain degree of reliability of dis-
charge data was backed up for instance by redundant and consistent
stream flow data available for some catchments due to two gauges
positioned in proximity in the same stream (e.g. Yanapampas), or by
the fact that the runoff-favoring influence of snowiness or glaciers on
catchment water balances known in literature is well captured in the
Peruvian dataset since it affects the correct catchments (Yanapampas,
Condorcerro).

8.2 outlook and further research

CovVar could be developed further, e.g. use more than one refer-
ence station for calculation and weighting of the fluctuation from the
elevation-dependent mean. Such an approach could be implemented
by inverse-distance-weighting the fluctuations of multiple neighboring
stations. Additionally, an evaluation of the performance of this simple
regionalization algorithm in comparable regions would be of interest.

More in-depth research as to the systematic deviation of catchment
water balances in West Peru from the Budyko curve as well as their
considerably high variability despite the similar geography, which in
thesis was carried out only on the basis of linear correlations with a
limited number of predictors.
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With model- and multiple catchment data-based studies on the role
of soil storage capacity on Budyko offsets conducted, including the
virtual experiment of this thesis, it would be helpful in the future to
focus on catchments where soil storage properties can be estimated
more precisely on the basis of comparably abundant soil data, both in
terms of texture and depth, and analyze Budyko positions and offsets.
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a.1 appendix of chapter 3

Overview of hydrometeorological data
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a.2 appendix of chapter 5

Soil grids data

Figure A.1: Chillón and Lurín basins: mean soil texture of subcatchments
(soilgrids product)
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Parameters of mHM modeling

Figure A.2: mHM global parameters of transferred Chillón runs, mHM de-
fault parameter settings and calibrated Lurín reference runs
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a.3 appendix of chapter 6

Correlation matrix of all climatic and physiographic catchment characteristics
and indexes

Figure A.3: Correlation matrix of all climatic and physiographic catchment
characteristics and indexes
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Multivariate regression

Table A.2: Results of multivariate regression analysis, sorted by no. of pre-
dictors and ascending explained variance

no. of
predic-
tors

coeff.
of de-
termi-
nation

indexes/predictors

combi_ID

3 2 0.41 area, seas. LAI
1 2 0.42 area, Z diff.
2 2 0.45 area, mean snow cov.
7 2 0.46 Z diff., mean snow cov.
6 2 0.50 seas. Q, seas. LAI
0 2 0.56 area, seas. Q
9 2 0.56 mean snow cov., seas. LAI
5 2 0.60 seas. Q, mean snow cov.
8 2 0.63 Z diff., seas. LAI
4 2 0.65 seas. Q, Z diff.
13 3 0.47 area, Z diff., mean snow cov.
12 3 0.57 area, seas. Q, seas. LAI
15 3 0.58 area, mean snow cov., seas. LAI
11 3 0.60 area, seas. Q, mean snow cov.
18 3 0.62 seas. Q, mean snow cov., seas. LAI
19 3 0.63 Z diff., mean snow cov., seas. LAI
14 3 0.65 area, Z diff., seas. LAI
10 3 0.65 area, seas. Q, Z diff.
16 3 0.65 seas. Q, Z diff., mean snow cov.
17 3 0.69 seas. Q, Z diff., seas. LAI
22 4 0.63 area, seas. Q, mean snow cov., seas. LAI
20 4 0.65 area, seas. Q, Z diff., mean snow cov.
23 4 0.66 area, Z diff., mean snow cov., seas. LAI
24 4 0.70 seas. Q, Z diff., mean snow cov., seas. LAI
21 4 0.70 area, seas. Q, Z diff., seas. LAI
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a.4 appendix of chapter 7

Catchment/Stream gauge IDs

Table A.3: Reference to orginal stream gauge IDs

Catchment ID used in this thesis
Original catchment/stream gauge ID

3303 B-1
3304 B-2
3302 B-3
2340 B-4
3443000 M-1
177 B-5
3314 B-6
478 B-7
1534000 M-2
3438000 M-3
7346050 M-4
6914000 M-5
Obrajillo P-1
6888500 M-6
11160000 M-7
8171000 M-8

Catchment locations

Figure A.4: Location of MOPEX catchments in the USA
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Figure A.5: Location of BaWue catchments in Germany
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Figure A.6: Location of Peruvan catchment



A.4 appendix of chapter 7 169

Water balance modeling with HBV

Table A.4: Calibrated parameters and loss functions

β kres FC f rac Smax KGEmon MBE
catchment

B-1 2.60 0.18 0.74 70.60 0.89 -0.05

B-2 4.45 0.25 0.43 420.80 0.92 -0.01

B-3 2.41 0.16 0.86 376.20 0.94 -0.01

B-4 2.64 0.15 0.41 444.00 0.90 0.00

M-1 1.37 0.11 0.88 444.50 0.94 0.01

B-5 2.86 0.05 0.72 651.50 0.70 -0.04

B-6 1.85 0.13 0.57 243.40 0.86 -0.03

B-7 2.20 0.05 0.74 425.00 0.89 -0.03

M-2 3.15 0.57 0.87 83.06 0.70 -0.09

M-3 3.22 0.49 0.87 183.10 0.91 0.03

M-4 4.72 0.26 0.84 439.20 0.93 0.03

M-5 4.14 0.46 0.59 77.70 0.86 0.12

P-1 0.76 0.05 0.78 773.00 0.90 0.02

M-6 4.69 0.77 0.89 118.75 0.89 0.10

M-7 1.27 0.27 0.31 798.50 0.95 0.12

M-8 2.65 0.55 0.88 340.20 0.92 0.10
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Linear correlations of EVR range to other influences

(a) correlation between mean rainfall depth and EVR range

(b) correlation between mean annual rainfall and EVR range

(c) correlation between dryness index ϕ and EVR range

Figure A.7: correlations between EVR range and other influences



B I B L I O G R A P H Y

ANA, Autoridad Nacional del Agua (2017). National GIS Database.
Abatzoglou, John T. and Darren L. Ficklin (2017). “Climatic and phys-

iographic controls of spatial variability in surface water balance
over the contiguous United States using the Budyko relation-
ship.” en. In: Water Resources Research 53.9, pp. 7630–7643. doi:
https://doi.org/10.1002/2017WR020843.

AghaKouchak, Amir, András Bárdossy, and Emad Habib (June 2010).
“Conditional simulation of remotely sensed rainfall data using a
non-Gaussian v-transformed copula.” en. In: Advances in Water
Resources 33.6, pp. 624–634. doi: 10.1016/j.advwatres.2010.02.
010.

Alcamo, Lucas (2019). “Regionalization of Precipitation in the Sparsely
Gauged Western Slopes of the Peruvian Andes.” MA thesis. Insti-
tute KIT-IWG (Chair of Hydrology): Karlsruhe Institute of Tech-
nology (KIT).

Allen, R. G., ed. (1998). Crop evapotranspiration: guidelines for computing
crop water requirements. en. FAO irrigation and drainage paper 56.
Rome: Food and Agriculture Organization of the United Nations.

Anagnostou, Emmanouil N. (Nov. 2004). “Overview of Overland Satel-
lite Rainfall Estimation for Hydro-Meteorological Applications.”
en. In: Surveys in Geophysics 25.5, pp. 511–537. doi: 10.1007/
s10712-004-5724-6.

Andréassian, Vazken, Ülo Mander, and Taavi Pae (Apr. 2016). “The
Budyko hypothesis before Budyko: The hydrological legacy of
Evald Oldekop.” en. In: Journal of Hydrology 535, pp. 386–391. doi:
10.1016/j.jhydrol.2016.02.002.

Arnaud, Patrick et al. (Mar. 2002). “Influence of rainfall spatial variabil-
ity on flood prediction.” en. In: Journal of Hydrology 260.1, pp. 216–
230. doi: 10.1016/S0022-1694(01)00611-4.

Aybar, Cesar et al. (Apr. 2020). “Construction of a high-resolution
gridded rainfall dataset for Peru from 1981 to the present day.”
In: Hydrological Sciences Journal 65.5. Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/02626667.2019.1649411, pp. 770–
785. doi: 10.1080/02626667.2019.1649411.

Bai, Peng et al. (2020). “Estimation of the Budyko model parameter for
small basins in China.” en. In: Hydrological Processes 34.1, pp. 125–
138. doi: https://doi.org/10.1002/hyp.13577.

Beck, Hylke E. et al. (2016). “Global-scale regionalization of hydrologic
model parameters.” en. In: Water Resources Research 52.5, pp. 3599–
3622. doi: https://doi.org/10.1002/2015WR018247.

171

https://doi.org/https://doi.org/10.1002/2017WR020843
https://doi.org/10.1016/j.advwatres.2010.02.010
https://doi.org/10.1016/j.advwatres.2010.02.010
https://doi.org/10.1007/s10712-004-5724-6
https://doi.org/10.1007/s10712-004-5724-6
https://doi.org/10.1016/j.jhydrol.2016.02.002
https://doi.org/10.1016/S0022-1694(01)00611-4
https://doi.org/10.1080/02626667.2019.1649411
https://doi.org/https://doi.org/10.1002/hyp.13577
https://doi.org/https://doi.org/10.1002/2015WR018247


172 bibliography

Berghuijs, W. R., R. A. Woods, and M. Hrachowitz (July 2014a). “A
precipitation shift from snow towards rain leads to a decrease in
streamflow.” en. In: Nature Climate Change 4.7. Number: 7 Pub-
lisher: Nature Publishing Group, pp. 583–586. doi: 10 . 1038 /

nclimate2246.
Berghuijs, Wouter R., Sebastian J. Gnann, and Ross A. Woods (2020).

“Unanswered questions on the Budyko framework.” en. In: Hydro-
logical Processes 34.26, pp. 5699–5703. doi: 10.1002/hyp.13958.

Berghuijs, Wouter R. et al. (2014b). “Patterns of similarity of seasonal
water balances: A window into streamflow variability over a range
of time scales.” en. In: Water Resources Research 50.7, pp. 5638–5661.
doi: https://doi.org/10.1002/2014WR015692.

Berkowitz, Brian and Erwin Zehe (Apr. 2020). “Surface water and
groundwater: unifying conceptualization and quantification of
the two “water worlds”.” English. In: Hydrology and Earth System
Sciences 24.4. Publisher: Copernicus GmbH, pp. 1831–1858. doi:
10.5194/hess-24-1831-2020.

Bernex, N., J. Apaéstegui, and P. Fluquer (2017). El Agua en el Perú:
Situación y Perspectivas. Tech. rep.

Beven, Keith (Apr. 1996). “The limits of splitting: Hydrology.” en.
In: Science of The Total Environment. Modelling in Environmental
Studies 183.1, pp. 89–97. doi: 10.1016/0048-9697(95)04964-9.

Beven, Keith and Andrew Binley (1992). “The future of distributed
models: Model calibration and uncertainty prediction.” en. In: Hy-
drological Processes 6.3, pp. 279–298. doi: 10.1002/hyp.3360060305.

Blöschl, G. and M. Sivapalan (1995). “Scale issues in hydrological
modelling: A review.” en. In: Hydrological Processes 9.3-4. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.3360090305,
pp. 251–290. doi: 10.1002/hyp.3360090305.

Blöschl, Günter et al., eds. (2013). Runoff Prediction in Ungauged Basins:
Synthesis across Processes, Places and Scales. Cambridge: Cambridge
University Press. doi: 10.1017/CBO9781139235761.

Bondy, Jan et al. (Mar. 2021). “Exploring the role of soil storage capacity
for explaining deviations from the Budyko curve using a simple
water balance model.” English. In: Hydrology and Earth System
Sciences Discussions, pp. 1–24. doi: 10.5194/hess-2021-174.

Booij, M. J. (Mar. 2005). “Impact of climate change on river flooding
assessed with different spatial model resolutions.” en. In: Journal
of Hydrology 303.1, pp. 176–198. doi: 10.1016/j.jhydrol.2004.07.
013.

Borsdorf, Axel (Jan. 1978). “Population growth and urbanization in
Latin America.” en. In: GeoJournal 2.1, pp. 47–60. doi: 10.1007/
BF00212577.

Brooks, Royal Harvard (1965). “Hydraulic Properties of Porous Me-
dia.” Englisch. ISBN: 9781084094253. Ph.D. Ann Arbor, United
States.

https://doi.org/10.1038/nclimate2246
https://doi.org/10.1038/nclimate2246
https://doi.org/10.1002/hyp.13958
https://doi.org/https://doi.org/10.1002/2014WR015692
https://doi.org/10.5194/hess-24-1831-2020
https://doi.org/10.1016/0048-9697(95)04964-9
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1002/hyp.3360090305
https://doi.org/10.1017/CBO9781139235761
https://doi.org/10.5194/hess-2021-174
https://doi.org/10.1016/j.jhydrol.2004.07.013
https://doi.org/10.1016/j.jhydrol.2004.07.013
https://doi.org/10.1007/BF00212577
https://doi.org/10.1007/BF00212577


bibliography 173

Budyko, M. I. (1974). Climate and Life. en. Accepted: 2019-02-14T10:36:35Z.
Academic Press, Inc.

Buytaert, Wouter and Keith Beven (2009). “Regionalization as a
learning process.” en. In: Water Resources Research 45.11. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007359.
doi: 10.1029/2008WR007359.

Buytaert, Wouter et al. (Oct. 2006). “Spatial and temporal rainfall
variability in mountainous areas: A case study from the south
Ecuadorian Andes.” en. In: Journal of Hydrology 329.3, pp. 413–421.
doi: 10.1016/j.jhydrol.2006.02.031.

Choudhury, BhaskarJ. (Mar. 1999). “Evaluation of an empirical equa-
tion for annual evaporation using field observations and results
from a biophysical model.” en. In: Journal of Hydrology 216.1,
pp. 99–110. doi: 10.1016/S0022-1694(98)00293-5.

DWD (Mar. 2020a). “DWD Climate Data Center (CDC), REGNIE-
Raster der täglichen Niederschlagshöhe für Deutschland.” In.

DWD (Mar. 2020b). “DWD Climate Data Center (CDC): Tägliche Raster
der potentiellen Evapotranspiration über Gras, Version 0.x.” In.

Daly, Christopher, Ronald P. Neilson, and Donald L. Phillips (Feb.
1994). “A Statistical-Topographic Model for Mapping Climato-
logical Precipitation over Mountainous Terrain.” EN. In: Journal
of Applied Meteorology and Climatology 33.2. Publisher: American
Meteorological Society Section: Journal of Applied Meteorology
and Climatology, pp. 140–158. doi: 10.1175/1520-0450(1994)
033<0140:ASTMFM>2.0.CO;2.

Daly, Edoardo et al. (2019). “Hydrological Spaces of Long-Term
Catchment Water Balance.” en. In: Water Resources Research 55.12,
pp. 10747–10764. doi: https://doi.org/10.1029/2019WR025952.

Das, Tapash et al. (July 2008). “Comparison of conceptual model
performance using different representations of spatial variability.”
en. In: Journal of Hydrology 356.1, pp. 106–118. doi: 10.1016/j.
jhydrol.2008.04.008.

Dirks, K. N. et al. (July 1998). “High-resolution studies of rainfall on
Norfolk Island. Part II: Interpolation of rainfall data.” In: Journal
of Hydrology 208. ADS Bibcode: 1998JHyd..208..187D, pp. 187–193.
doi: 10.1016/S0022-1694(98)00155-3.

Donohue, Randall, Michael Roderick, and Tim R. McVicar (2007). “On
the importance of including vegetation dynamics in Budyko’s
hydrological model.” en. In: Hydrology and Earth System Sciences.
Accepted: 2015-12-10T21:56:23Z Last Modified: 2020-05-19 Pub-
lisher: Copernicus GmbH.

Duan, Q. et al. (Mar. 2006). “Model Parameter Estimation Experiment
(MOPEX): An overview of science strategy and major results from
the second and third workshops.” en. In: Journal of Hydrology.
The model parameter estimation experiment 320.1, pp. 3–17. doi:
10.1016/j.jhydrol.2005.07.031.

https://doi.org/10.1029/2008WR007359
https://doi.org/10.1016/j.jhydrol.2006.02.031
https://doi.org/10.1016/S0022-1694(98)00293-5
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
https://doi.org/https://doi.org/10.1029/2019WR025952
https://doi.org/10.1016/j.jhydrol.2008.04.008
https://doi.org/10.1016/j.jhydrol.2008.04.008
https://doi.org/10.1016/S0022-1694(98)00155-3
https://doi.org/10.1016/j.jhydrol.2005.07.031


174 bibliography

Duan, Qingyun, Soroosh Sorooshian, and Vijai K. Gupta (June 1994).
“Optimal use of the SCE-UA global optimization method for
calibrating watershed models.” en. In: Journal of Hydrology 158.3,
pp. 265–284. doi: 10.1016/0022-1694(94)90057-4.

Eakin, Thomas E. (1966). “A regional interbasin groundwater system
in the White River Area, southeastern Nevada.” en. In: Water
Resources Research 2.2, pp. 251–271. doi: https://doi.org/10.
1029/WR002i002p00251.

Ehret, U. et al. (2014). “Advancing catchment hydrology to deal with
predictions under change.” In: Hydrology and Earth System Sciences
18.2. Publisher: European Geosciences Union, pp. 649–671. doi:
10.5194/hess-18-649-2014.

Follett, Ronald et al. (Jan. 2011). Carbon sequestration and greenhouse gas
fluxes in agriculture: challenges and opportunities.

Friedrich, Katja et al. (Jan. 2018). “Reservoir Evaporation in the Western
United States: Current Science, Challenges, and Future Needs.”
EN. In: Bulletin of the American Meteorological Society 99.1. Publisher:
American Meteorological Society Section: Bulletin of the American
Meteorological Society, pp. 167–187. doi: 10.1175/BAMS-D-15-
00224.1.

Fu, Baopu (1981). “On the calculation of the evaporation from land
surface.” In: Atmos. Sin. 5, pp. 23–31.

Fu, Jianyu and Weiguang Wang (Mar. 2019). “On the lower bound of
Budyko curve: The influence of precipitation seasonality.” en. In:
Journal of Hydrology 570, pp. 292–303. doi: 10.1016/j.jhydrol.
2018.12.062.

Garreaud, R. D. (Oct. 2009). “The Andes climate and weather.” English.
In: Advances in Geosciences. Vol. 22. ISSN: 1680-7340. Copernicus
GmbH, pp. 3–11. doi: 10.5194/adgeo-22-3-2009.

Gentine, Pierre et al. (2012). “Interdependence of climate, soil, and
vegetation as constrained by the Budyko curve.” en. In: Geophysical
Research Letters 39.19. doi: 10.1029/2012GL053492.

German Aerospace Center (DLR) (2016). TanDEM-X - Digital Elevation
Model (DEM) - Global, 12m.

Gharari, S. et al. (Dec. 2014). “Using expert knowledge to increase
realism in environmental system models can dramatically reduce
the need for calibration.” en. In: Hydrology and Earth System Sciences
18.12, pp. 4839–4859. doi: 10.5194/hess-18-4839-2014.

Goswami, Monomoy and Kieran M. O’Connor (Aug. 2010). “A “mon-
ster” that made the SMAR conceptual model “right for the wrong
reasons”.” In: Hydrological Sciences Journal 55.6. Publisher: Taylor
& Francis _eprint: https://doi.org/10.1080/02626667.2010.505170,
pp. 913–927. doi: 10.1080/02626667.2010.505170.

Granger, R. J. (Jan. 1989). “An examination of the concept of potential
evaporation.” en. In: Journal of Hydrology 111.1, pp. 9–19. doi:
10.1016/0022-1694(89)90248-5.

https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/https://doi.org/10.1029/WR002i002p00251
https://doi.org/https://doi.org/10.1029/WR002i002p00251
https://doi.org/10.5194/hess-18-649-2014
https://doi.org/10.1175/BAMS-D-15-00224.1
https://doi.org/10.1175/BAMS-D-15-00224.1
https://doi.org/10.1016/j.jhydrol.2018.12.062
https://doi.org/10.1016/j.jhydrol.2018.12.062
https://doi.org/10.5194/adgeo-22-3-2009
https://doi.org/10.1029/2012GL053492
https://doi.org/10.5194/hess-18-4839-2014
https://doi.org/10.1080/02626667.2010.505170
https://doi.org/10.1016/0022-1694(89)90248-5


bibliography 175

Gupta, Hoshin V. et al. (Oct. 2009). “Decomposition of the mean
squared error and NSE performance criteria: Implications for
improving hydrological modelling.” en. In: Journal of Hydrology
377.1, pp. 80–91. doi: 10.1016/j.jhydrol.2009.08.003.

Haberlandt, Uwe (Jan. 2007). “Geostatistical interpolation of hourly
precipitation from rain gauges and radar for a large-scale extreme
rainfall event.” en. In: Journal of Hydrology 332.1, pp. 144–157. doi:
10.1016/j.jhydrol.2006.06.028.

Hall, D. K. and G. A. Riggs (2021). MODIS/Aqua Snow Cover Daily L3
Global 500m Grid, Version 61. Type: dataset. doi: 10.5067/MODIS/
MOD10A1.061.

Harman, C. and P. A. Troch (Feb. 2014). “What makes Darwinian
hydrology "Darwinian"? Asking a different kind of question about
landscapes.” en. In: Hydrology and Earth System Sciences 18.2,
pp. 417–433. doi: 10.5194/hess-18-417-2014.

Hartmann, Anne, Markus Weiler, and Theresa Blume (Dec. 2020).
“The impact of landscape evolution on soil physics: evolution of
soil physical and hydraulic properties along two chronosequences
of proglacial moraines.” English. In: Earth System Science Data
12.4. Publisher: Copernicus GmbH, pp. 3189–3204. doi: https:
//doi.org/10.5194/essd-12-3189-2020.

Heistermann, Maik and David Kneis (2011). “Benchmarking quan-
titative precipitation estimation by conceptual rainfall-runoff
modeling.” en. In: Water Resources Research 47.6. doi: 10.1029/
2010WR009153.

Herrera, Sixto et al. (2019). “Uncertainty in gridded precipitation prod-
ucts: Influence of station density, interpolation method and grid
resolution.” en. In: International Journal of Climatology 39.9. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/joc.5878, pp. 3717–
3729. doi: 10.1002/joc.5878.

Hornberger, George M. et al. (Aug. 2014). Elements of Physical Hydrology.
en. Google-Books-ID: gnoZBQAAQBAJ. JHU Press.

Hu, Qingfang et al. (Mar. 2019). “Rainfall Spatial Estimations: A Re-
view from Spatial Interpolation to Multi-Source Data Merging.”
en. In: Water 11.3. Number: 3 Publisher: Multidisciplinary Digital
Publishing Institute, p. 579. doi: 10.3390/w11030579.

Hundecha, Yeshewatesfa and András Bárdossy (June 2004). “Modeling
of the effect of land use changes on the runoff generation of a river
basin through parameter regionalization of a watershed model.”
en. In: Journal of Hydrology 292.1, pp. 281–295. doi: 10.1016/j.
jhydrol.2004.01.002.

Höllering, Simon et al. (Jan. 2018). “Regional analysis of parameter
sensitivity for simulation of streamflow and hydrological finger-
prints.” English. In: Hydrology and Earth System Sciences 22.1. Pub-
lisher: Copernicus GmbH, pp. 203–220. doi: 10.5194/hess-22-
203-2018.

https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2006.06.028
https://doi.org/10.5067/MODIS/MOD10A1.061
https://doi.org/10.5067/MODIS/MOD10A1.061
https://doi.org/10.5194/hess-18-417-2014
https://doi.org/https://doi.org/10.5194/essd-12-3189-2020
https://doi.org/https://doi.org/10.5194/essd-12-3189-2020
https://doi.org/10.1029/2010WR009153
https://doi.org/10.1029/2010WR009153
https://doi.org/10.1002/joc.5878
https://doi.org/10.3390/w11030579
https://doi.org/10.1016/j.jhydrol.2004.01.002
https://doi.org/10.1016/j.jhydrol.2004.01.002
https://doi.org/10.5194/hess-22-203-2018
https://doi.org/10.5194/hess-22-203-2018


176 bibliography

INRENA (Aug. 2004). “Estudio hidrológico de la cuenca del río Lurín:
Informe final.” spa. In: Autoridad Nacional del Agua. Accepted:
2017-11-22T04:59:04Z Publisher: INRENA.

Kirchner, James W. (2009). “Catchments as simple dynamical systems:
Catchment characterization, rainfall-runoff modeling, and doing
hydrology backward.” en. In: Water Resources Research 45.2. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR006912.
doi: 10.1029/2008WR006912.

Kleidon, A. and S. Schymanski (2008). “Thermodynamics and op-
timality of the water budget on land: A review.” en. In: Geo-
physical Research Letters 35.20. doi: https://doi.org/10.1029/
2008GL035393.

Kneis, David and Maik Heistermann (Jan. 2009). “Bewertung der Güte
einer Radar-basierten Niederschlagsschätzung am Beispiel eines
kleinen Einzugsgebiets.” In: Hydrologie und Wasserbewirtschaftung
53. Jahrgang, Heft 3, pp. 160–171.

Koster, Randal D. and Max J. Suarez (July 1999). “A Simple Frame-
work for Examining the Interannual Variability of Land Surface
Moisture Fluxes.” en. In: Journal of Climate 12.7. Publisher: Amer-
ican Meteorological Society, pp. 1911–1917. doi: 10.1175/1520-
0442(1999)012<1911:ASFFET>2.0.CO;2.

Kumar, Rohini (2010). “Distributed hydrologic model parameter-
ization: application in a mesoscale river basin.” PhD thesis.
Helmholtz-Zentrum für Umweltforschung GmbH-UFZ.

Köppen, W (1936). “Das geographische System der Klimate.” de. In:
p. 44.

LUBW (2020). Pegel-und Datendienst.
Lavado Casimiro, Waldo Sven et al. (May 2012). “Basin-scale anal-

ysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca
and Amazonas drainages.” In: Hydrological Sciences Journal 57.4,
pp. 625–642. doi: 10.1080/02626667.2012.672985.

Lavenne, Alban de and Vazken Andréassian (Mar. 2018). “Impact
of climate seasonality on catchment yield: A parameterization
for commonly-used water balance formulas.” en. In: Journal of
Hydrology 558, pp. 266–274. doi: 10.1016/j.jhydrol.2018.01.
009.

Leon, Christian D. et al. (2021). Integrated water management solutions in
the Lurín Catchment, Lima, Peru : supporting United Nations’ Sustain-
able Development Goal 6 : final report of the joint project TRUST. en.
report. Accepted: 2021-04-06T16:19:24Z ISBN: 9783000684982. doi:
10.18419/opus-11390.

Li, Changbin et al. (Apr. 2018). “An analytical approach to separate
climate and human contributions to basin streamflow variability.”
en. In: Journal of Hydrology 559, pp. 30–42. doi: 10.1016/j.jhydrol.
2018.02.019.

https://doi.org/10.1029/2008WR006912
https://doi.org/https://doi.org/10.1029/2008GL035393
https://doi.org/https://doi.org/10.1029/2008GL035393
https://doi.org/10.1175/1520-0442(1999)012<1911:ASFFET>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<1911:ASFFET>2.0.CO;2
https://doi.org/10.1080/02626667.2012.672985
https://doi.org/10.1016/j.jhydrol.2018.01.009
https://doi.org/10.1016/j.jhydrol.2018.01.009
https://doi.org/10.18419/opus-11390
https://doi.org/10.1016/j.jhydrol.2018.02.019
https://doi.org/10.1016/j.jhydrol.2018.02.019


bibliography 177

Lindström, Göran et al. (Dec. 1997). “Development and test of the dis-
tributed HBV-96 hydrological model.” en. In: Journal of Hydrology
201.1-4, pp. 272–288. doi: 10.1016/S0022-1694(97)00041-3.

Llauca, Harold et al. (Jan. 2021). “PISCO_HyM_GR2M: A Model of
Monthly Water Balance in Peru (1981–2020).” en. In: Water 13.8.
Number: 8 Publisher: Multidisciplinary Digital Publishing Insti-
tute, p. 1048. doi: 10.3390/w13081048.

Lvovich, M. I. (Sept. 1979). “World water resources, present and
future.” en. In: GeoJournal 3.5, pp. 423–433. doi: 10 . 1007 /

BF00455981.
Ly, S., C. Charles, and A. Degré (July 2011). “Geostatistical interpo-

lation of daily rainfall at catchment scale: the use of several vari-
ogram models in the Ourthe and Ambleve catchments, Belgium.”
English. In: Hydrology and Earth System Sciences 15.7, pp. 2259–2274.
doi: 10.5194/hess-15-2259-2011.

Ly, Sarann, Catherine Charles, and Aurore Degré (2013). “Different
methods for spatial interpolation of rainfall data for operational
hydrology and hydrological modeling at watershed scale: a re-
view.” en. In: Biotechnologie, Agronomie, Société et Environnement
17.2. Publisher: Presses Agronomiques de Gembloux.

López-Urrea, R. et al. (Sept. 2006). “Testing evapotranspiration equa-
tions using lysimeter observations in a semiarid climate.” en. In:
Agricultural Water Management 85.1, pp. 15–26. doi: 10.1016/j.
agwat.2006.03.014.

Marcotte, Denis (July 1995). “Generalized cross-validation for covari-
ance model selection.” en. In: Mathematical Geology 27.5, pp. 659–
672. doi: 10.1007/BF02093906.

Marsily, Ghislain de (2009). L’eau, un tresor en partage. fr. Dunod Paris.
Masson-Delmotte, V. et al. (2021). Climate Change 2021: The Physical

Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change. Tech. rep.
Cambridge University Press: IPCC.

Matheron, Georges, Fernand Blondel, and Bureau de recherches
géologiques et minières (France) (1962). Traité de géostatistique
appliquée. Tome I. French. OCLC: 491866302. Paris: Technip.

McMahon, T. A. et al. (Apr. 2013). “Estimating actual, potential, ref-
erence crop and pan evaporation using standard meteorological
data: a pragmatic synthesis.” English. In: Hydrology and Earth Sys-
tem Sciences 17.4. Publisher: Copernicus GmbH, pp. 1331–1363.
doi: 10.5194/hess-17-1331-2013.

Meira Neto, Antônio Alves et al. (Dec. 2020). “Interactions be-
tween snow cover and evaporation lead to higher sensitivity
of streamflow to temperature.” en. In: Communications Earth
& Environment 1.1. Bandiera_abtest: a Cc_license_type: cc_by
Cg_type: Nature Research Journals Number: 1 Primary_atype:
Research Publisher: Nature Publishing Group Subject_term: Envi-

https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.3390/w13081048
https://doi.org/10.1007/BF00455981
https://doi.org/10.1007/BF00455981
https://doi.org/10.5194/hess-15-2259-2011
https://doi.org/10.1016/j.agwat.2006.03.014
https://doi.org/10.1016/j.agwat.2006.03.014
https://doi.org/10.1007/BF02093906
https://doi.org/10.5194/hess-17-1331-2013


178 bibliography

ronmental sciences;Hydrology Subject_term_id: environmental-
sciences;hydrology, pp. 1–7. doi: 10.1038/s43247-020-00056-9.

Mezentsev, V. (1955). “Back to the computation of total evaporation.”
In: Meteorologia i Gidrologia – Meneopokoubz b Ublpokoubz 5,

Milly, P. C. D. (1993). “An analytic solution of the stochastic storage
problem applicable to soil water.” en. In: Water Resources Research
29.11, pp. 3755–3758. doi: 10.1029/93WR01934.

Milly, P. C. D. (1994). “Climate, soil water storage, and the average an-
nual water balance.” en. In: Water Resources Research 30.7, pp. 2143–
2156. doi: 10.1029/94WR00586.

Milly, P. C. D. and K. A. Dunne (Apr. 1994). “Sensitivity of the Global
Water Cycle to the Water-Holding Capacity of Land.” EN. In:
Journal of Climate 7.4. Publisher: American Meteorological Society
Section: Journal of Climate, pp. 506–526. doi: 10.1175/1520-
0442(1994)007<0506:SOTGWC>2.0.CO;2.

Milly, P. C. D. et al. (Feb. 2008). “Stationarity Is Dead: Whither Water
Management?” en. In: Science 319.5863, pp. 573–574. doi: 10.1126/
science.1151915.

Monteith, J L (Jan. 1965). “Evaporation and environment.” eng. In:
Symposia of the Society for Experimental Biology 19, pp. 205–234.

Muggeo, Vito M. R. (2003). “Estimating regression models with un-
known break-points.” en. In: Statistics in Medicine 22.19, pp. 3055–
3071. doi: 10.1002/sim.1545.

Myneni, Ranga, Yuri Knyazikhin, and Taejin Park (2015). MOD15A2H
MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid
V006. Type: dataset. doi: 10.5067/MODIS/MOD15A2H.006.

NASA (2001). “ASTER DEM Product.” In: 2001 NASA/METI/AIST/-
Japan Spacesystems and U.S./Japan ASTER Science Team.distributed
by NASA EOSDIS Land Processes DAAC.

Nash, J. E. and J. V. Sutcliffe (Apr. 1970). “River flow forecasting
through conceptual models part I — A discussion of principles.”
en. In: Journal of Hydrology 10.3, pp. 282–290. doi: 10.1016/0022-
1694(70)90255-6.

Observatorio del Agua (2017). GIS data collection. (various contributing
state authorities).

Observatorio del Agua (Sept. 2018). Estado situacional de los recursos hí-
dricos en las cuencas Chillón, Rímac y Lurín 2016/2017. spa. Tech. rep.
Accepted: 2019-06-01T16:05:55Z Publisher: Autoridad Nacional
del Agua.

Observatorio del Agua (2019). Diagnóstico inicial para el Plan de gestión
de recursos hídricos en el ámbito de las cuencas Chillón, Rímac, Lurín y
Chilca. spa. Tech. rep. Accepted: 2020-02-29T21:50:11Z Publisher:
Autoridad Nacional del Agua.

Ochoa-Tocachi, Boris F. et al. (July 2019). “Potential contributions of
pre-Inca infiltration infrastructure to Andean water security.” en.

https://doi.org/10.1038/s43247-020-00056-9
https://doi.org/10.1029/93WR01934
https://doi.org/10.1029/94WR00586
https://doi.org/10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2
https://doi.org/10.1126/science.1151915
https://doi.org/10.1126/science.1151915
https://doi.org/10.1002/sim.1545
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6


bibliography 179

In: Nature Sustainability 2.7, pp. 584–593. doi: 10.1038/s41893-
019-0307-1.

Oezgür, Selin (2020). “Comparison of performance/applicability of po-
tential evapotranspiration models in semi-arid Peruvian Andes.”
Study project. Institute KIT-IWG (Chair of Hydrology): Karlsruhe
Institute of Technology (KIT).

Ol’dekop, E.M. (1911). “On Evaporation From the Surface of River
Basins.” (in Russian). In: Lur’evskogo Univ., Tartu, Estonia Collection
of the Works of Students of the Meteorological Observatory.

Osuch, Marzena (2015). “Sensitivity and Uncertainty Analysis of
Precipitation-Runoff Models for the Middle Vistula Basin.” en.
In: Stochastic Flood Forecasting System: The Middle River Vistula Case
Study. Ed. by Renata J. Romanowicz and Marzena Osuch. Geo-
Planet: Earth and Planetary Sciences. Cham: Springer International
Publishing, pp. 61–81. doi: 10.1007/978-3-319-18854-6_5.

Osuch, Marzena, Renata J. Romanowicz, and Martijn J. Booij (Aug.
2015). “The influence of parametric uncertainty on the relation-
ships between HBV model parameters and climatic characteris-
tics.” In: Hydrological Sciences Journal 60.7-8. Publisher: Taylor &
Francis _eprint: https://doi.org/10.1080/02626667.2014.967694,
pp. 1299–1316. doi: 10.1080/02626667.2014.967694.

Padrón, Ryan S. et al. (2017). “Large-Scale Controls of the Surface
Water Balance Over Land: Insights From a Systematic Review and
Meta-Analysis.” en. In: Water Resources Research 53.11, pp. 9659–
9678. doi: https://doi.org/10.1002/2017WR021215.

Pareja Dominguez, Marco Antonio, Henry Douglas Pascual Figueroa,
and Marisa Rosana Silva Dávila (2022). “Evaluation of the Effec-
tiveness of Flexible Debris Flow Barriers for Control of Huaycos
Using Satellite Images and GIS, in the Basin of Rímac River, Perú.”
en. In: Geohazard Mitigation. Ed. by Basanta Raj Adhikari and Sree-
valsa Kolathayar. Lecture Notes in Civil Engineering. Singapore:
Springer, pp. 29–41. doi: 10.1007/978-981-16-6140-2_4.

Patil, S. and M. Stieglitz (Feb. 2012). “Controls on hydrologic similarity:
role of nearby gauged catchments for prediction at an ungauged
catchment.” English. In: Hydrology and Earth System Sciences 16.2.
Publisher: Copernicus GmbH, pp. 551–562. doi: 10.5194/hess-
16-551-2012.

Piotrowski, Adam P. et al. (Mar. 2017). “Are modern metaheuris-
tics successful in calibrating simple conceptual rainfall–runoff
models?” In: Hydrological Sciences Journal 62.4, pp. 606–625. doi:
10.1080/02626667.2016.1234712.

Poggio, Laura et al. (June 2021). “SoilGrids 2.0: producing soil infor-
mation for the globe with quantified spatial uncertainty.” en. In:
SOIL 7.1, pp. 217–240. doi: 10.5194/soil-7-217-2021.

Porada, P., A. Kleidon, and S. J. Schymanski (Sept. 2011). “Entropy
production of soil hydrological processes and its maximisation.”

https://doi.org/10.1038/s41893-019-0307-1
https://doi.org/10.1038/s41893-019-0307-1
https://doi.org/10.1007/978-3-319-18854-6_5
https://doi.org/10.1080/02626667.2014.967694
https://doi.org/https://doi.org/10.1002/2017WR021215
https://doi.org/10.1007/978-981-16-6140-2_4
https://doi.org/10.5194/hess-16-551-2012
https://doi.org/10.5194/hess-16-551-2012
https://doi.org/10.1080/02626667.2016.1234712
https://doi.org/10.5194/soil-7-217-2021


180 bibliography

English. In: Earth System Dynamics 2.2. Publisher: Copernicus
GmbH, pp. 179–190. doi: https://doi.org/10.5194/esd-2-179-
2011.

Potter, N. J. et al. (2005). “Effects of rainfall seasonality and soil
moisture capacity on mean annual water balance for Australian
catchments.” en. In: Water Resources Research 41.6. doi: https:
//doi.org/10.1029/2004WR003697.

Prosser, Ian, Leif Wolf, and Anna Littleboy (2011). “Water in mining
and industry.” en. In: CSIRO Publishing Chapter 10, p. 12.

Ramírez, Ivan J. and Fernando Briones (Dec. 2017). “Understanding the
El Niño Costero of 2017: The Definition Problem and Challenges of
Climate Forecasting and Disaster Responses.” en. In: International
Journal of Disaster Risk Science 8.4, pp. 489–492. doi: 10.1007/
s13753-017-0151-8.

Reaver, Nathan G. F. et al. (Mar. 2022). “Theoretical and empirical
evidence against the Budyko catchment trajectory conjecture.”
English. In: Hydrology and Earth System Sciences 26.5. Publisher:
Copernicus GmbH, pp. 1507–1525. doi: 10.5194/hess-26-1507-
2022.

Rinaldi, Massimo et al. (Oct. 2015). Thematic Annexes on monitoring
indicators and models, Deliverable 6.2, Part 2, of REFORM (REstoring
rivers FOR effective catchment Management), a Collaborative project
(large-scale integrating project) funded by the European Commission
within the 7th Framework Programme under Grant Agreement 282656.

Roderick, Michael L. and Graham D. Farquhar (2011). “A simple
framework for relating variations in runoff to variations in climatic
conditions and catchment properties.” en. In: Water Resources
Research 47.12. doi: 10.1029/2010WR009826.

Rome-Gaspaldy, Sandra and Josyane Ronchail (1998). “La pluviomérie
au Pérou pendant les phases ENSO et LNSO.” In: Bulletin de
l’Institut français d’études andines.

SENAMHI (2019). Datos hidrometeorológicos.
SENAMHI (2020). SENAMHI HSR PISCO Streamflow v1 stable.
Samani, Zohrab (July 2000). “Estimating Solar Radiation and Evapo-

transpiration Using Minimum Climatological Data.” EN. In: Jour-
nal of Irrigation and Drainage Engineering 126.4. Publisher: American
Society of Civil Engineers, pp. 265–267. doi: 10.1061/(ASCE)0733-
9437(2000)126:4(265).

Samaniego, Luis, Rohini Kumar, and Sabine Attinger (2010). “Multi-
scale parameter regionalization of a grid-based hydrologic model
at the mesoscale.” en. In: Water Resources Research 46.5. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007327.
doi: 10.1029/2008WR007327.

Samaniego, Luis et al. (2019). The mesoscale Hydrological Model (mHM)
Documentation v5.10. Tech. rep. https://git.ufz.de/mhm/mhm:
Centre for Environmental Research (UFZ).

https://doi.org/https://doi.org/10.5194/esd-2-179-2011
https://doi.org/https://doi.org/10.5194/esd-2-179-2011
https://doi.org/https://doi.org/10.1029/2004WR003697
https://doi.org/https://doi.org/10.1029/2004WR003697
https://doi.org/10.1007/s13753-017-0151-8
https://doi.org/10.1007/s13753-017-0151-8
https://doi.org/10.5194/hess-26-1507-2022
https://doi.org/10.5194/hess-26-1507-2022
https://doi.org/10.1029/2010WR009826
https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
https://doi.org/10.1029/2008WR007327


bibliography 181

Sanabria, Janeet Margarita (Apr. 2018). “Interannual variability of the
rainfall regime and strong ENSO events along the Peruvian Pacific
Basin : large-scale control mechanisms.” en. PhD thesis. Université
Paul Sabatier - Toulouse III.

Sanchez, Daves (Nov. 2016). AquaFondo - Estudio de riesgos hídricos y
vulnerabilidad del sector privado en Lima Metropolitana y Callao en un
contexto de Cambio Climático. es.

Schaefli, B. et al. (Feb. 2011). “HESS Opinions: Hydrologic predictions
in a changing environment: behavioral modeling.” English. In:
Hydrology and Earth System Sciences 15.2. Publisher: Copernicus
GmbH, pp. 635–646. doi: https://doi.org/10.5194/hess-15-
635-2011.

Schreiber, P. (1904). “Über die Beziehungen zwischen dem Nieder-
schlag und der Wasserführung der Flüsse in Mitteleuropa.” In: Z.
Meterol. 21.10, pp. 441–452.

Segond, Marie-Laure, Howard S. Wheater, and Christian Onof (Dec.
2007). “The significance of spatial rainfall representation for flood
runoff estimation: A numerical evaluation based on the Lee catch-
ment, UK.” en. In: Journal of Hydrology 347.1, pp. 116–131. doi:
10.1016/j.jhydrol.2007.09.040.

Seibert, Jan (Dec. 1999). “Regionalisation of parameters for a concep-
tual rainfall-runoff model.” en. In: Agricultural and Forest Meteorol-
ogy 98-99, pp. 279–293. doi: 10.1016/S0168-1923(99)00105-7.

Shahidian, S. et al. (2013). “Parametric calibration of the Harg-
reaves–Samani equation for use at new locations.” en. In: Hydro-
logical Processes 27.4, pp. 605–616. doi: 10.1002/hyp.9277.

Singh, R., S. A. Archfield, and T. Wagener (Sept. 2014). “Identifying
dominant controls on hydrologic parameter transfer from gauged
to ungauged catchments – A comparative hydrology approach.”
en. In: Journal of Hydrology 517, pp. 985–996. doi: 10.1016/j.
jhydrol.2014.06.030.

Sivapalan, Murugesu (2003). “Prediction in ungauged basins: a grand
challenge for theoretical hydrology.” en. In: Hydrological Processes
17.15, pp. 3163–3170. doi: https://doi.org/10.1002/hyp.5155.

Son, Rackhun et al. (Jan. 2020). “Climate diagnostics of the extreme
floods in Peru during early 2017.” en. In: Climate Dynamics 54.1,
pp. 935–945. doi: 10.1007/s00382-019-05038-y.

Sposito, Garrison (Sept. 2017a). “Incorporating the Vadose Zone into
the Budyko Framework.” en. In: Water 9.9. Number: 9 Publisher:
Multidisciplinary Digital Publishing Institute, p. 698. doi: 10.

3390/w9090698.
Sposito, Garrison (Apr. 2017b). “Understanding the Budyko Equation.”

en. In: Water 9.4. Number: 4 Publisher: Multidisciplinary Digital
Publishing Institute, p. 236. doi: 10.3390/w9040236.

https://doi.org/https://doi.org/10.5194/hess-15-635-2011
https://doi.org/https://doi.org/10.5194/hess-15-635-2011
https://doi.org/10.1016/j.jhydrol.2007.09.040
https://doi.org/10.1016/S0168-1923(99)00105-7
https://doi.org/10.1002/hyp.9277
https://doi.org/10.1016/j.jhydrol.2014.06.030
https://doi.org/10.1016/j.jhydrol.2014.06.030
https://doi.org/https://doi.org/10.1002/hyp.5155
https://doi.org/10.1007/s00382-019-05038-y
https://doi.org/10.3390/w9090698
https://doi.org/10.3390/w9090698
https://doi.org/10.3390/w9040236


182 bibliography

Takahashi, Ken (Apr. 2017). “Fenómeno El Niño: “Global” vs “Cos-
tero”.” spa. In: Accepted: 2022-02-21T10:18:54Z Publisher: Instituto
Geofísico del Perú.

Tapley, Thomas D. and Peter R. Waylen (Aug. 1990). “Spatial variabil-
ity of annual precipitation and ENSO events in western Peru.”
In: Hydrological Sciences Journal 35.4. Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/02626669009492444, pp. 429–446.
doi: 10.1080/02626669009492444.

Thornthwaite, C. Warren (1931). “The Climates of North America:
According to a New Classification.” In: Geographical Review 21.4.
Publisher: [American Geographical Society, Wiley], pp. 633–655.
doi: 10.2307/209372.

Tixeront, J. (1964). “Prévision des apports des cours d’eau (Streamflow
prediction).” In: IAHS publication n°63: General Assembly of Berkeley.

Trabucco, Antonio and Robert J Zomer (Nov. 2018). Global Aridity Index
and Potential Evapo-Transpiration (ET0) Climate Database v2. en. Tech.
rep. Published online, available from the CGIAR-CSI GeoPortal:
CGIAR Consortium for Spatial Information (CGIAR-CSI), p. 10.

Trachte, Katja et al. (Mar. 2018). “Cross-Scale Precipitation Variability
in a Semiarid Catchment Area on the Western Slopes of the Central
Andes.” EN. In: Journal of Applied Meteorology and Climatology 57.3.
Publisher: American Meteorological Society Section: Journal of
Applied Meteorology and Climatology, pp. 675–694. doi: 10.1175/
JAMC-D-17-0207.1.

Trajkovic, Slavisa (Feb. 2007). “Hargreaves versus Penman-Monteith
under Humid Conditions.” EN. In: Journal of Irrigation and Drainage
Engineering 133.1. Publisher: American Society of Civil Engineers,
pp. 38–42. doi: 10.1061/(ASCE)0733-9437(2007)133:1(38).

Troch, Peter A. et al. (2015). “Catchment coevolution: A useful frame-
work for improving predictions of hydrological change?” en.
In: Water Resources Research 51.7, pp. 4903–4922. doi: 10.1002/
2015WR017032.

Turc, L. (1954). “The water balance of soils: relationship between
precipitations, evaporation and flow (Le bilan d’eau des sols:
relation entre les précipitations, l’évaporation et l’écoulement).”
In: Annales Agronomiques Série A (5), 491–595.

UCL (2021). Introduction to climate dynamics and climate modelling - The
hydrological cycle.

UNESCO (2012). “Managing water under uncertainty and risk: World
Water Development report, 4 (WWDR4).” In: Accepted: 2019-04-
05T04:08:21Z Publisher: UNESCO.

Uhlenbrook, S., Y. Mohamed, and A. S. Gragne (Oct. 2010). “Ana-
lyzing catchment behavior through catchment modeling in the
Gilgel Abay, Upper Blue Nile River Basin, Ethiopia.” English. In:
Hydrology and Earth System Sciences 14.10. Publisher: Copernicus

https://doi.org/10.1080/02626669009492444
https://doi.org/10.2307/209372
https://doi.org/10.1175/JAMC-D-17-0207.1
https://doi.org/10.1175/JAMC-D-17-0207.1
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(38)
https://doi.org/10.1002/2015WR017032
https://doi.org/10.1002/2015WR017032


bibliography 183

GmbH, pp. 2153–2165. doi: https://doi.org/10.5194/hess-14-
2153-2010.

Uhlenbrook, Stefan et al. (Oct. 1999). “Prediction uncertainty of con-
ceptual rainfall-runoff models caused by problems in identifying
model parameters and structure.” In: Hydrological Sciences Journal
44.5, pp. 779–797. doi: 10.1080/02626669909492273.

Verworn, A. and U. Haberlandt (Feb. 2011). “Spatial interpolation
of hourly rainfall – effect of additional information, variogram
inference and storm properties.” English. In: Hydrology and Earth
System Sciences 15.2. Publisher: Copernicus GmbH, pp. 569–584.
doi: 10.5194/hess-15-569-2011.

Wagener, Thorsten et al. (2007). “Catchment Classification and Hydro-
logic Similarity.” en. In: Geography Compass 1.4, pp. 901–931. doi:
10.1111/j.1749-8198.2007.00039.x.

Walsh, R. P. D. and D. M. Lawler (1981). “Rainfall Seasonality: Descrip-
tion, Spatial Patterns and Change Through Time.” en. In: Weather
36.7, pp. 201–208. doi: 10.1002/j.1477-8696.1981.tb05400.x.

Wang, Anqi and Dimitri P. Solomatine (Feb. 2018). “Practical experi-
ence and framework for sensitivity analysis of hydrological mod-
els: six methods, three models, three criteria.” English. In: Hydrol-
ogy and Earth System Sciences Discussions. Publisher: Copernicus
GmbH, pp. 1–34. doi: https://doi.org/10.5194/hess-2018-78.

Wang, Dingbao et al. (2015). “A thermodynamic interpretation of
Budyko and L’vovich formulations of annual water balance: Pro-
portionality Hypothesis and maximum entropy production.” en.
In: Water Resources Research 51.4, pp. 3007–3016. doi: https://doi.
org/10.1002/2014WR016857.

Westhoff, M. et al. (Jan. 2016). “Does the Budyko curve reflect a
maximum-power state of hydrological systems? A backward anal-
ysis.” English. In: Hydrology and Earth System Sciences 20.1. Pub-
lisher: Copernicus GmbH, pp. 479–486. doi: https://doi.org/10.
5194/hess-20-479-2016.

Wikipedia (2021a). Archivo: Peru physical map.
Wikipedia (2021b). Archivo: Regiones naturales del Perú.
Williams, Christopher A. et al. (2012). “Climate and vegetation controls

on the surface water balance: Synthesis of evapotranspiration
measured across a global network of flux towers.” en. In: Water
Resources Research 48.6. doi: 10.1029/2011WR011586.

WorldAtlas (Apr. 2018). Maps of South America. en.
Yao, Lili et al. (2020). “The Roles of Climate Forcing and Its Vari-

ability on Streamflow at Daily, Monthly, Annual, and Long-
Term Scales.” en. In: Water Resources Research 56.7. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020WR027111,
e2020WR027111. doi: 10.1029/2020WR027111.

Zehe, Erwin et al. (Dec. 2005). “Uncertainty of simulated catchment
runoff response in the presence of threshold processes: Role of

https://doi.org/https://doi.org/10.5194/hess-14-2153-2010
https://doi.org/https://doi.org/10.5194/hess-14-2153-2010
https://doi.org/10.1080/02626669909492273
https://doi.org/10.5194/hess-15-569-2011
https://doi.org/10.1111/j.1749-8198.2007.00039.x
https://doi.org/10.1002/j.1477-8696.1981.tb05400.x
https://doi.org/https://doi.org/10.5194/hess-2018-78
https://doi.org/https://doi.org/10.1002/2014WR016857
https://doi.org/https://doi.org/10.1002/2014WR016857
https://doi.org/https://doi.org/10.5194/hess-20-479-2016
https://doi.org/https://doi.org/10.5194/hess-20-479-2016
https://doi.org/10.1029/2011WR011586
https://doi.org/10.1029/2020WR027111


184 bibliography

initial soil moisture and precipitation.” en. In: Journal of Hydrology
315.1, pp. 183–202. doi: 10.1016/j.jhydrol.2005.03.038.

https://doi.org/10.1016/j.jhydrol.2005.03.038


O W N P U B L I C AT I O N S

first author ; peer-reviewed international publications

Bondy, J., J. Wienhöfer, L. Pfister, E. Zehe (2021), “Exploring the
role of soil storage capacity for explaining deviations from the
Budyko curve using a simple water balance model.” In: Hydrology and
Earth System Sciences Discussion [preprint], https://doi.org/10.5194/
hess-2021-174.

conference contributions (poster)

Bondy, J., S. Schroers, J. Wienhöfer (2018), "TRUST - Sustainable water
supply and management in water-scarce regions - the case study of
the Lurín River in Lima, Perú", Geophysical Research Abstracts, Vol.
20, EGU2018-16633, Vienna, Austria.

Bondy, J., S. Schroers, J. Wienhöfer (2018), "Hydrological model-
ing as a basis for water management in semi-arid regions - the case
study of the Lurín River in Lima, Perú", Integrated Hydrosystem
Modelling Conference, Tübingen, Germany

Bondy, J., S. Schroers, J. Wienhöfer (2018), "Hydrologische Mod-
ellierung in semiariden peruanischen Anden mittels Betrachtung
hydrologischer Ähnlichkeit benachbarter Einzugsgebiete", Tag der
Hydrologie 2019, Karlsruhe, Germany

185

https://doi.org/10.5194/hess-2021-174
https://doi.org/10.5194/hess-2021-174


D E C L A R AT I O N

Eidesstattliche Versicherung gemäß §13 Abs. 2 Satz 1 Ziff. 4 der Promo-
tionsordnung des Karlsruher Instituts für Technologie für die Fakultät
für Bauingenieur-, Geo- und Umweltwissenschaften:

1. Bei der eingereichten Dissertation zu dem Thema Catchment
water balance in data-scarce environments– what insights does the
Budyko framework provide? handelt es sich um meine eigenständig
erbrachte Leistung.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt
und mich keiner unzulässigen Hilfe Dritter bedient. Insbeson-
dere habe ich wörtlich oder sinngemäß aus anderen Werken
übernommene Inhalte als solche kenntlich gemacht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer
Hochschule des In- oder Auslands als Bestandteil einer Prüfungs-
oder Qualifikationsleistung vorgelegt.

4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich.

5. Die Bedeutung der eidesstattlichen Versicherung und die straf-
rechtlichen Folgen einer unrichtigen oder unvollständigen ei-
desstattlichen Versicherung sind mir bekannt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die reine
Wahrheit erklärt und nichts verschwiegen habe.

Karlsruhe, 2023

Jan Bondy



colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 23, 2023 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Contents
	Abstract
	 Abstract
	Zusammenfassung

	 Zusammenfassung
	Acknowledgments

	 Acknowledgments
	Nomenclature, abbreviations and acronyms

	 Nomenclature, abbreviations and acronyms
	1 Introduction
	1.1 Water and data scarcity in the Global South
	1.2 Hydrological predictions and assessments in data-scarce environments
	1.3 Mean annual water balance and Budyko curve
	1.4 Objectives and outline

	2 Catchment water balance and Budyko Framework
	2.1 Water cycle and catchment water balance
	2.2 Energy balance and potential evapotranspiration
	2.3 Mean annual water balance and Budyko Curve
	2.3.1 Steady state
	2.3.2 Budyko hypothesis and equation

	2.4 Deviations from the Budyko curve
	2.4.1 Natural second-order controls
	2.4.2 Anthropogenic influences
	2.4.3 Effect of estimation errors and uncertainty in the Budyko space


	3 Study area and data
	3.1 Main study area: West Peruvian Andes
	3.1.1 Peru's geography
	3.1.2 Climate and meteorology
	3.1.3 Western slopes of Andes, Chillón and Lurín basin

	3.2 Data
	3.2.1 Meteorological data
	3.2.2 Streamflow data
	3.2.3 Biogeophysical data


	4 Estimating catchment water and energy balance components in a data-scarce environment in the Peruvian Andes
	4.1 CovVar model development for precipitation regionalization
	4.1.1 Methods
	4.1.2 Spatiotemporal rainfall patterns and statistics
	4.1.3 The CovVar model
	4.1.4 Model application and validation
	4.1.5 Discussion of model performance

	4.2 Regionally calibrated Hargreaves-Samani approach for potential evapotranspiration
	4.2.1 Hargreaves-Samani method
	4.2.2 Data
	4.2.3 Spatiotemporal differences between reference evapotranspiration and Hargreaves-Samani
	4.2.4 Calibration of Hargreaves-Samani coefficient
	4.2.5 Areal potential evapotranspiration


	5 Paired catchment modeling approach for Lurín and Chillón River
	5.1 Introduction
	5.2 Data and preprocessing
	5.3 Methods
	5.3.1 Mesoscale Hydrological Model (mHM)
	5.3.2 Modeling and parameter transfer

	5.4 Comparative catchment analysis
	5.5 Results
	5.5.1 Calibration and validation of Chillón river model
	5.5.2 Parameter transfer and modeling of Lurín river

	5.6 Discussion
	5.6.1 Relation between headwater and main catchment streamflow
	5.6.2 Mean water balance and relation to Budyko curve
	5.6.3 Interannual variability of the water balance
	5.6.4 Similarity in intra-annual dynamics


	6 Water balance similarity and Budyko offsets of catchments on the Western slopes of the Peruvian Andes
	6.1 Methods
	6.2 Results
	6.2.1 Characteristics of selected catchments
	6.2.2 Budyko offsets and correlation analysis

	6.3 Discussion
	6.3.1 Spatial heterogeneity and scale
	6.3.2 Snowiness
	6.3.3 Catchment storage and anthropogenic influences
	6.3.4 Dataset-external controls: seasonality


	7 Exploring the role of soil storage capacity for explaining deviations from the Budyko curve using a simple water balance model
	7.1 Introduction
	7.2 Methods, data and model
	7.2.1 Selection of study catchments
	7.2.2 Data and preprocessing
	7.2.3 Characteristics of selected catchments
	7.2.4 Hydrological modeling

	7.3 Results
	7.3.1 Water balance simulations
	7.3.2 Variation of total storage volume Smax
	7.3.3 Variation of the capillary storage fraction FCfrac
	7.3.4 Simultaneous parameter variation

	7.4 Discussion
	7.4.1 Water balance modeling
	7.4.2 The role of soil storage characteristics for the evaporation ratio 
	7.4.3 Offsets from the Budyko curve


	8 Synthesis and conclusions
	8.1 Synthesis of key findings
	8.1.1 Estimation of precipitation and pot. evapotranspiration in data-scarce environment
	8.1.2 Similarity of Peruvian catchments and their Budyko positions
	8.1.3 Soil storage and other controls on mean water balance and on Budyko offsets

	8.2 Outlook and further research

	A Appendix
	A.1 Appendix of chapter 3
	A.2 Appendix of chapter 5
	A.3 Appendix of chapter 6
	A.4 Appendix of chapter 7

	 Bibliography
	 Own publications
	 Declaration
	Colophon

