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Abstract: The China Loess Plateau (CLP) is a unique geomorphological unit with abundant coal
resources but a fragile ecological environment. Since the implementation of the Western Development
plan in 2000, the Grain for Green Project (GGP), coal mining, and urbanization have been extensively
promoted by the government in the CLP. However, research on the influence of these human projects
on the ecological environment (EE) is still lacking. In this study, we investigated the spatial–temporal
variation of EE in a typical CLP region using a Remote Sensing Ecological Index (RSEI) based on the
Google Earth Engine (GEE). We obtained a long RSEI time series from 2002–2022, and used trend
analysis and rescaled range analysis to predict changing trends in EE. Finally, we used Geodetector to
verify the influence of three human projects (GGP, coal mining, and urbanization). Our results show
that GGP was the major driving factor of ecological changes in the typical CLP region, while coal
mining and urbanization had significant local effects on EE. Our research provides valuable support
for ecological protection and sustainable social development in the relatively underdeveloped region
of northwest China.

Keywords: remote sensing ecological index; human projects; grain for green project; china loess
plateau; Google Earth Engine; geodetector

1. Introduction

The China Loess Plateau (CLP) has been a pivotal region for the Chinese government
in implementing strategies for environmental protection and sustainable development [1–4].
It spans over 640,000 km2 and has a population of nearly 100 million. The surface of CLP is
characterized by thick loess, complex geomorphology, aridity, and low rainfall, resulting
in a fragile natural ecological environment (EE). Moreover, its urbanization process lags
behind the east and central regions of China, and its land resources are relatively poor and
unevenly distributed, despite its abundant underground coal and other mineral resources.

Since the beginning of the 21st century, the CLP has been a primary region for the
implementation of China Western Development [5,6]. The region is characterized by
mountains, plateaus, hills, gullies, and river valley plains. China Western Development
was initiated by the Chinese government in 2000 to promote sustainable and balanced
economic and social development. Its major programs include the Grain for Green Project
(GGP) [7–10], coal mining [11], and urbanization [2,12,13], among others.

The GGP includes two aspects: Firstly, planting trees and forests instead of cultivating
sloped ground in the loess hilly-gully regions, and secondly, hill-closing and afforestation
of mountainous areas to restore forest vegetation. Since 2002, CLP has invested more
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than 50 billion RMB in the GGP and reforested an area of 52,000 km2, with one-third of
the reforestation on arable land and the rest on barren hills and wastelands, as well as
hill-closing and afforestation [14]. The growth rate of vegetation cover in CLP from 2000
to the present is much higher than the national average, resulting in significantly less
sediment entering the Yellow River and reduced soil erosion, making CLP a leader in
China’s greening efforts. The utilization of coal resources is the pillar industry of economic
development in the CLP. Since 2000, several coal production bases have been built in the
region, and annual coal production now exceeds 2 billion tons, accounting for about 1/4
of global coal production, making CLP the major coal production base in China and the
world [15]. The rapid development of four provincial capitals in the CLP’s river valley
plain has been supported by the Chinese government for the past 20 years, and a large
number of rural and suburban areas have been transformed into urban areas, significantly
increasing the region’s development. After nearly three decades of resource development
and EE construction, the CLP has become a key center for China’s chemical and energy
industry, as well as an ecological barrier for the entire northern region.

Due to the complex geomorphology and frequent human projects in CLP, it is currently
poorly understood how the EE of CLP has changed over the last 20 years. GGP promotes
the growth of vegetation cover and EE improvement in CLP, while coal mining damages
the overlying strata, resulting in surface subsidence, collapse, and cracks, which cause EE
deterioration [16]. Urbanization has caused arable or forest land to be turned into building
land, resulting in serious ecological impacts [17,18]. Due to the significant temporal and
spatial divergence of these three human projects in the last 20 years, the EE characteristics
of CLP have become complex and unknown. Previous studies on the EE of CLP have
mainly focused on the impacts of geographical and meteorological factors on the EE of a
certain region, while scientific and quantitative studies on the impact of human projects on
the EE of CLP are still lacking [19,20].

Remote sensing provides new tools for evaluating EE, especially those of ecosystems
that include mining areas, forests, grasslands, and urban areas [21–25]. In the early stages
of EE modeling, only single indicators were used [26–28]. However, due to the complexity
of EE, it is insufficient to describe them using only one index. To overcome this, Xu et al.
extracted indicators of greenness, heat, dryness, and wetness, and constructed a Remote
Sensing Ecological Index (RSEI) based on Principal Component Analysis (PCA) [29]. This
model has been successfully applied to different ecological scenarios [30–33]. However,
EE faces challenges due to the large data size and difficulty in processing. The Google
Earth Engine (GEE) can process large amounts of geospatial data and is a useful tool for
large-scale and long-term ecological evaluation [34,35].

Currently, research on the EE evaluation of CLP remains insufficient. For example,
Hou et al. evaluated the EE of the coal mining area in Datong, Shanxi Province, China
by integrating RS, GIS, and field survey methods [36]. Zhou et al. analyzed land-use and
land-cover changes caused by the GGP in China’s CLP [37,38]. Xiang et al. constructed an
urbanization index using nighttime lighting data and examined the spatial and temporal
evolution of urbanization in CLP [39]. Previous studies on EE in the CLP have primarily
focused on analyzing the impact of individual factors on a specific region or the entire
region. However, there has been limited research examining the impact of multiple factors
on EE. Given the diverse landforms of the Loess Plateau, which includes numerous mining
and urban regions, it is important to select representative areas for detailed analysis,
especially in light of the GGP.

Due to the variability of CLP’s geomorphology, the ecological impact of GGP varies
significantly in different geomorphological units. For example, hilly and gully regions are
generally where GGP is implemented, while river valley plain regions are mostly urbaniza-
tion expansion regions, and coal mining affects the variation of EE in nearby regions. In this
study, we comprehensively analyzed the temporal and spatial characteristics of ecological
environment (EE) changes in typical regions of the China Loess Plateau (CLP) from 2002
to 2022. We used MODIS time-series images and the Remote Sensing Ecological Index
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(RSEI) constructed through principal component analysis (PCA) to analyze the temporal
characteristics of EE changes. Additionally, we evaluated the spatial characteristics of EE
variations in the entire study area and investigated the impacts of coal mining and urban-
ization on EE in sample regions such as the Dafosi mine and the Guanzhong Plain urban
agglomeration in CLP. Based on the long RSEI time series, we predicted the EE evolution
trend. Finally, to verify the conclusions made in this paper, we introduced Geodetector to
perform an attribution analysis of the factors resulting in EE evolution in CLP.

In summary, the authors studied the temporal–spatial variation of EE in the study area
since 2002 under the influence of GGP, coal mining, and urbanization. The results support
the achievement of green and sustainable development in the relatively underdeveloped
region in northwestern China.

2. Study Area and Data
2.1. Study Area

The CLP (33°43′7′′–41°16′7′′ N and 100°54′7′′–114°33′7′′ E) is situated in north–central
China and covers an area of nearly 640,000 km2 [40]. The region is characterized by four
main types of landforms: Mountain regions, loess tableland regions, loess hilly-gully
regions, and river valley regions [41]. In 1999, the Chinese government implemented the
GGP to improve the EE of CLP, with Shaanxi province serving as the pilot region [42].

The study area (33°7′–36°4′ N and 105°7′–110°6′ E) is located in a typical CLP region
in Shaanxi province, comprising the Huanglong coal base, the Xi’an-centered Guanzhong
plain urban agglomeration, and the GGP (including GGP regions and hill-closing and
afforestation regions), as shown in Figure 1 [43]. The loess tableland and loess hilly-
gully regions are mostly located north of the Weihe River, while the river valley plains
and mountainous regions are mostly situated south of the Weihe River. The Huanglong
coal base is located north of the Weihe River [44], while the Guanzhong plain urban
agglomeration is located south of the Weihe River. Figure 1 also illustrates the distribution
of landforms in the study area.

Figure 1. Study area overview: (a) Study area; (b) distribution of coal mining, GGP, urbanization regions
in the study area; (c) landform classification of the study area; (d) location of the study area in China.
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Due to the abundant coal resources in CLP, coal mining has a significant impact on
the EE. The Huanglong coal base is located in central Shaanxi province and is one of the
14 large coal bases that China is focused on developing. The landform of the Huanglong
coal base is complex, with elevations ranging from about 400–1850 m. The main landforms
in the area are loess hilly-gully. However, the resistance to deformation of the loess layer
is very small, and coal mining can lead to ground deformation and collapse, as shown in
Figure 2. Large-scale mining operations in the Huanglong coal base began in the early
1980s, and as a result of mining and other human projects, the EE became poor in the early
21st century.

The China Western Development strategy, which began in 2000, coincided with the
implementation of the GGP and has resulted in the rapid expansion of the Guanzhong
plain urban agglomeration. The extensive urban construction has had a negative impact
on the EE in the surrounding area. The urban agglomeration is centered in Xi’an, Shaanxi
Province, which is situated in the river valley plain region.

(a) (b)

(c) (d)
Figure 2. Deformation and subsidence cause by underground coal mining. (a) Building deformation;
(b) landslide; (c) ground cracks; (d) ground collapse.

2.2. Data and Preprocessing

The remote sensing data used in this study were obtained from the Google Earth En-
gine (GEE) (https://earthengine.google.com/, accessed on 22 March 2023), with a collection
period ranging from 2002 to 2022. The MOD09A1 (MOD09A1.006 Terra Surface Reflectance
8-Day Global 500 m) and MOD11A1 (MOD11A1.061 Terra Land Surface Temperature
and Emissivity Daily Global 1 km) products available in GEE were used to calculate the
greenness (NDVI), wetness (WET), and dryness (NDBSI) indices based on the MOD09A1
products, and the heat (LST) index based on the MOD11A1 products. Please refer to Table 1
for more details on the datasets used in this study.

https://earthengine.google.com/
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The data on China’s administrative division boundaries were obtained from the
National Geomatics Center of China (http://www.ngcc.cn/ngcc/, accessed on 22 March
2023). The GGP and urban planning data were obtained from the National Science and
Technology Infrastructure (http://www.nesdc.org.cn/, accessed on 22 March 2023). The
landform data for the study area were obtained from the National Earth System Science
Data Center (http://www.geodata.cn/, accessed on 22 March 2023). The precipitation and
temperature data for the study area were obtained from the China Meteorological Data
Service Centre (http://data.cma.cn/, accessed on 22 March 2023).

The annual mining area data of the Dafosi coal mine were obtained through the
comparison of working-face images and field measurements. Land-use/land-cover (LULC)
data from 2000 to 2021 for the study area were obtained from the China Land Cover
Dataset (CLCD) based on Landsat data from the GEE. LULC data for 2022 were obtained
through the interpretation of Landsat 8 OLI_TRIS 30 m remote sensing images from the
United States Geological Survey (https://earthexplorer.usgs.gov/, accessed on 22 March
2023). The remote sensing images were analyzed, corrected, fused, and mosaicked using
ArcGIS 10.6 and ENVI 5.3, and the land use types were classified using a combination
of supervised classification and visual interpretation. Per capita GDP, the area of GGP,
and coal production data were obtained from the Statistical Communiqué of the People’s
Republic of China on the national economic and social development from 2000 to 2021.

Table 1. GEE data description.

Indicator Product Spatial
Resolution

Temporal
Resolution

Number of
Scenes

NDVI
MOD09A1 500 8-Days 16WET

NDBSI

LST MOD11A1 1000 1-Days 122

3. Methods
3.1. RSEI

Using MODIS remote sensing data to describe the EE level [22], the RSEI takes a
value ranging from 0 to 1, where a low value indicates a poor ecological condition, a
high value represents a good ecological condition, and a value of 1 signifies a perfect
ecological condition. MODIS remote sensing data collected between June and October in
2002, 2007, 2012, 2017, and 2022 were used to calculate the RSEI. The four indicators utilized
in the RSEI are greenness (NDVI for vegetation), wetness (WET for soil wetness), heat
(LST for temperature), and dryness (NDBSI for floor area). By coupling and integrating
the four indicators and using the PCA, the weights of each indicator are automatically
determined, avoiding any interference from human-determined weights. Then, the first
principal component (PC1) is obtained, and the RSEI assessment model is constructed. The
RSEI is expressed as:

RSEI = f (NDVI, Wet, LST, NDBSI) (1)

1. Greenness can be calculated by:

NDVI = (ρNIR − ρred)/(ρNIR + ρred), (2)

where NIR and red are the near-infrared (NIR1) and red bands of the MODIS 8-day
reflectance image (MOD09A1), respectively.

2. Wetness is calculated using the following equation [45]:

Wet = 0.1147B1 + 0.2489B2 + 0.2408B3 + 0.3132B4− 0.3122B5− 0.6416B6− 0.5087B7 (3)

http://www.ngcc.cn/ngcc/
http://www.nesdc.org.cn/
http://www.geodata.cn/
http://data.cma.cn/
https://earthexplorer.usgs.gov/
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Here, B1 to B7 represent bands 1 to 7, namely, red, NIR1, blue, green, NIR2, shortwave
infrared 1 (SWIR1), and SWIR2 bands of the MODIS images, respectively.

3. Heat is expressed as:
LST = 0.02×DN− 273.15 (4)

where DN represents the grayscale value of the surface temperature.
4. Dryness is expressed as follows:

NDBSI =
IBI + SI

2
(5)

The Building Index (IBI) and Bare Soil Index (SI) can be calculated as follows:

SI =
(ρswir1 + ρred)− (ρnir + ρblue)

(ρswir1 + ρred) + (ρnir + ρblue)
(6)

IBI =

2ρswir1
ρswir1+ρnir

−
[

ρnir
ρnir+ρred

+
ρgreen

ρgreen+ρswir1

]
2ρswir1

ρswir1+ρnir
+
[

ρnir
ρnir+ρred

+
ρgreen

ρgreen+ρswir1

] (7)

where ρblue, ρgreen, ρred, ρNIR, ρswir1 represent the reflectance in the blue, green, red,
the near-infrared and short-infrared bands1, respectively.

5. PCA: Since the four indicators have non-uniform magnitudes, calculating the PCA
directly would result in unbalanced weights for each indicator. Therefore, before
conducting PCA, these indicators should be normalized first, and their magnitudes
should be unified to the range [0, 1] using the following equation:

NIi = (Ii − Imin)
/
(Imax − Imin) (8)

where NIi is the normalized indicator value, Ii is the indicator value in quadrant i,
Imax is the maximum indicator value, and Imin is the minimum indicator value.
After normalization, PC1 can be calculated using the four indicators. In order to
ensure that a larger PC1 value represents a better condition, PC1 is subtracted by 1 to
obtain the initial ecological indicator RSEI0. The calculation is as follows:

RSEI0 = 1− {PC1[ f (NDVI, WET, LST, NDBSI)]} (9)

RSEI = (RSEI0 − RESEI0 min)/(RSEI0 max − RSEI0 min) (10)

Because PC1 usually explains more than 80% of the total variation in the dataset, it
is used to calculate the RSEI, then the bias due to subjective weighting during the
calculation is avoided. The RSEI calculation results for each indicator for 2002, 2007,
2012, 2017, and 2022 are shown in Table 2.

The ecological quality of the study area is classified into five levels based on the nor-
malized RSEI values: Level 1 (0–0.2) representing poor ecological quality, level 2 (0.2–0.4)
representing fair ecological quality, level 3 (0.4–0.6) representing moderate ecological qual-
ity, level 4 (0.6–0.8) representing good ecological quality, and level 5 (0.8–1) representing
excellent ecological quality. Table 3 presents the ecological quality classes and the corre-
sponding area changes in the study area for different years.
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Table 2. Calculation results of the four indicators of RSEI in the study area.

Year Indicator PC1 PC2 PC3 PC4

2002

NDVI 0.562 0.459 −0.541 −0.425
WET 0.186 −0.697 0.136 −0.679

NDBSI −0.445 0.528 0.438 −0.576
LST 0.672 0.159 0.705 0.163

2007

NDVI 0.59 0.379 −0.562 −0.439
WET 0.169 −0.707 0.211 −0.653

NDBSI 0.564 −0.501 −0.226 0.616
LST −0.552 −0.324 −0.767 −0.04

2012

NDVI 0.549 0.387 −0.559 −0.484
WET 0.143 −0.739 0.177 −0.632

NDBSI 0.514 −0.498 −0.357 0.598
LST −0.642 −0.234 −0.726 −0.0766

2017

NDVI 0.584 0.397 −0.551 −0.444
WET 0.195 −0.785 0.107 −0.578

NDBSI −0.483 0.428 0.346 −0.68
LST 0.622 0.206 0.751 0.069

2022

NDVI 0.562 0.401 −0.565 −0.452
WET 0.216 −0.776 0.127 −0.578

NDBSI −0.423 0.446 0.426 −0.663
LST 0.677 0.195 0.695 0.145

Table 3. The changes in ecological quality levels and their corresponding areas in the study area over
different years.

RSEI Level Poor ([0,0.2)) Fair ([0.2,0.4)] Moderate
([0.4,0.6)) Good ([0.6,0.8)) Excellent

([0.8,1.0])

2002 Year Area (km2) 9196.26 25,544.56 18,963.00 13,027.19 15,637.21
Pct. (%) 11.17 31.01 23.02 15.81 18.99

2007 Year Area (km2) 6213.92 19,830.64 23,569.50 15,811.50 16,939.65
Pct. (%) 7.54 24.08 28.62 19.20 20.57

2012 Year Area (km2) 6519.46 18,218.97 22,170.11 16,813.65 18,643.03
Pct. (%) 7.92 22.12 26.92 20.41 22.63

2017 Year Area (km2) 7696.82 19,154.39 18,294.59 16,262.18 20,957.22
Pct. (%) 9.34 23.26 22.21 19.74 25.44

2022 Year Area (km2) 6316.27 16,977.38 20,176.02 17,115.69 21,779.85
Pct. (%) 7.67 20.61 24.50 20.78 26.44

3.2. Change Vector Analysis (CVA)

The method assumes that the images at two different time phases can be represented
as vectors R and T, respectively. It quantifies the degree of change by calculating the
difference vector between R and T. A threshold value is then used to filter out regions
where changes occur between the two phases [22].

R =


r1
r2
...

rn

, T =


t1
t2
...

tn

 (11)
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where n denotes the indicator number or the RSEI levels. The transformation vector is
determined by the following equation.

∆V = R− T =


r1 − t1
r2 − t2

...
rn − tn

 (12)

The magnitude of the change |∆V| can be calculated using Equation (13). The greater
the |∆V|, the greater the likelihood that the RSEI in the region will change.

‖∆V‖ =
[
(r1 − t1)

2 + (r2 − t3)
2 + · · ·+ (rn − tn)

2
] 1

2 (13)

To identify changes in the metrics, a multi-threshold approach is employed:

CVj(R, T) =
{

change, i f
∥∥∆Vj

∥∥ ≥ +ajσj
no− change,

∥∥∆Vj
∥∥ < ∆Vj + ajσj

(14)

In this equation, ∆Vj represents the average of the transformed vector for the jth term,
σj is the standard deviation of ∆Vj, and aj is an adjustable coefficient with a value range of
[0.06, 0.18].

3.3. Spatial Auto-Correlation

The Global Moran’s index is used to analyze the global spatial correlation of EE, while
the local Moran’s index is employed to analyze the local spatial aggregation characteristic.
These indices can be calculated using the following equations [46–48]:

Global Moran′s Index = n
S0

n
∑

i=1

m
∑

j=1
wijzizj

n
∑

i=1
z2

i

Local Moran′s Index =
nzi

m
∑

j=1
wijzj

n
∑

i=1
z2

i

(15)

The deviation of the RSEI value at spatial cell i from its mean value, denoted as
zi = (xi − X̄), is used in the formula, where X̄ is the mean value of the RSEI. The spatial
weight matrix is represented by wij, n is the total number of elements, and S0 represents
the aggregation of all spatial weights.

S0 =
n

∑
i=0

m

∑
j=0

wij (16)

The Moran index I ranges from −1 to 1, and a higher absolute value indicates a
stronger spatial autocorrelation. A positive I value implies a positive correlation, while a
negative value implies a negative correlation. An I value of 0 indicates no spatial correlation.
The local Moran index, calculated using the Local Indicators of Spatial Association (LISA),
is used to assess the degree of local spatial correlation. LISA plots are categorized into five
groups: Insignificant, high–high (HH), low–low (LL), low–high (LH), and high–low (HL).

3.4. RSEI Transfer Matrix

In order to accurately depict the variation of RSEI levels over time, area, and location,
a transfer matrix is utilized to describe the changes in the amount of EE on a temporal scale
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and the changes in location on a spatial scale [49]. The RSEI transfer matrix is constructed
by overlaying RSEI values from different time periods, and can be expressed as:

S =


S11 S12 · · · S1j
S21 S22 · · · S2j
· · · · · · · · · · · ·
Si1 Si2 · · · Sij

 (17)

The RSEI levels at the beginning and end of the study are denoted by i and j (i =
1, 2, . . . , n; j = 1, 2, . . . , n), respectively. The area where the ith RSEI level at the beginning
of the study is transferred to the jth RSEI level at the end of the study period is represented
by Sij.

3.5. Geodetector-Based Driving Force Analysis

The present study employs the Geodetector to undertake the analysis of driving forces
and quantitative attribution of EE, where the factor detector is utilized. Within the factor
detector, the q value is introduced as a metric to indicate the explanatory ability of different
factors on the degree of spatial differentiation of the dependent variable. The q value is
bound within the range [0, 1], where a larger value indicates a more influential factor.

q = 1− SSW
SST

= 1−

k
∑

i=1
Niσ

2
i

Nσ2 (18)

where SSW refers to the sum of squares within the strata, while SST represents the total
sum of squares of RSEI in the study area. The variable i denotes the stratification of each
influencing factor, where i takes values from 1 to k. Moreover, N and Ni refer to the sample
sizes of the entire study area and each stratum i, respectively. Lastly, σ2 and σ2

i denote the
variances of the whole study area and each stratum i, respectively.

3.6. EE Trend Analysis

R/S analysis, also known as rescaled range analysis, is a statistical test applied to a
time series [50]. The R/S analysis utilizes the least squares method, and the slope of the
regression line equation represents the Hurst exponent (H). The Hurst exponent is linearly
fitted using the least squares method, and relevant conclusions are drawn based on the
results. The Hurst index can be used to analyze a set of time-series data, which change
randomly with time. In this study, we utilize the Hurst index to monitor the variation of
RSEI [51].

The basic principle of R/S analysis: For a time series {RSEI(τ)}, t = 1, 2, 3, . . . , τ,
where τ is the total number of subseries in the time series RSEIt.

Define the mean series:

RSEI(τ) =
1
τ

τ

∑
t=1

RSEI(τ), (t = 1, 2, 3, ..., τ) (19)

Cumulative deviation:

X(t, τ) =
τ

∑
t=1

[
RSEI(t)− RSEI(τ)

]
, (1 ≤ t ≤ τ) (20)

Extreme deviation:

R(τ) = max X
1≤t≤τ

(t, τ)−min X
1≤t≤τ

(t, τ), (t = 1, 2, 3, ..., τ) (21)
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Standard deviation:

S(τ) =

[
1
τ

τ

∑
t=1

(
RSEI(t)− RSEI(τ)

)2
] 1

2

, (t = 1, 2, 3, ..., τ) (22)

The Hurst index H is defined based on the asymptotic behavior of the rescaled extreme
difference range as a function of the time span of the time series.

log (Rt/St)τ = log(C) + H × log(n), (23)

where Rt/St denotes the rescaled extreme deviation range, C is a constant, n is the series
length, and H is the Hurst index with a value domain of [0, 1]. In this study, we selected
RSEI data from 2002–2022 for Hurst index analysis. When H = 0.5, the time series are
completely independent; when 0 < H < 0.5, the future change is opposite to the past,
and the closer H is to 0.0, the stronger the inverse persistence; when 0.5 < H < 1.0, the
future change is consistent with the past change, and the closer H is to 1.0, the stronger
the persistence.

3.7. Technical Pathway and Workflow

This paper comprises two parts. The first part involves the analysis of temporal varia-
tions in the EE in typical regions of CLP from 2002 to 2022, while the second part concerns
the analysis of the spatial characteristics of the EE in these regions. To calculate NDVI,
WET, NDBSI, and LST, MODIS data was utilized with the aid of GEE. After normalizing
the four indicators to values between 0 and 1, the RSEI was computed using PCA. With
RSEI serving as a measure of the EE, the study followed the analytical framework outlined
below as Figure 3:

Figure 3. Analysis Framework of the RSEI in CLP.

1. On the temporal scale, the changes in EE in the study area since 2002 were evaluated.
Specifically, the years 2002, 2007, 2012, 2017, and 2022 were chosen, and the EE
was divided into five levels, with the area of each level counted. The change in EE
between two years was obtained by CVA. Additionally, the trend analysis method
was employed using the long RSEI time series results from 2002–2022 to obtain the
slope index, and the Hurst index was used to analyze the trends in EE.

2. Three typical regions (the coal mining region, the urban region, and the GGP region)
were chosen for the local spatial change analysis of the EE. The global spatial change
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characteristics of the EE in the whole study area were analyzed by the Moran index,
Lisa clustering, and transfer matrix. Geodetector was introduced to analyze and verify
the study results.

4. Results
4.1. Temporal Variation of RSEI from 2002–2022

In the whole study area, we calculated the NDVI, WET, NDBSI, and LST using the
GEE for the period of 2000–2022. Then, we applied PCA to obtain the RSEI, as shown in
Figure 4.

The EE has been consistently improving since 2002, with the fitted curve showing
logarithmic growth. The RSEI curve had a steep slope before 2007, but the rate of increase
slowed down in the later period. To study this trend more closely, we selected the RSEI
values from June to October of 2002, 2007, 2012, 2017, and 2022, which were 0.500, 0.542,
0.556, 0.558, and 0.577, respectively, as shown in Figure 5.

Over time, the RSEI has continued to increase, indicating an improvement in EE.
The contribution of PC1 in the five images was 87.9%, 84.8%, 83.4%, 87.6%, and 85.4%,
respectively, with a contribution over 80%. Among the four indicators of RSEI, NDVI and
WET are positive impact indicators, while NDBSI and LST are negative impact indicators.
The positive and negative indicators have opposite effects on the EE.

Figure 4. A logarithmic growth in EE improvement since 2002.

Figure 5. RSEI from June to October of 2002, 2007, 2012, 2017, and 2022.
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To more clearly demonstrate how the EE has changed over time, the RSEI of the
five years was divided into five levels: [0,0.2), [0.2,0.4), [0.4–0.6), [0.6–0.8), and [0.8–1.0),
which are expressed as poor, fair, moderate, good, and excellent, respectively. The spatial
distribution of the EE levels in these five years is shown in Figure 6.

(a) (b) (c)

(d) (e)
Figure 6. Spatial distribution of EE levels: (a) 2002, (b) 2007, (c) 2012, (d) 2017, and (e) 2022.

Compared to 2002, the EE mainly improved in the GGP region, while it became worse
in the regions around the Guanzhong plain urban agglomeration and Huanglong coal base,
and other local regions. In the GGP region, the percentages of poor and fair decreased
significantly, while the percentages of good and excellent increased significantly. The
percentages of moderate rose and then fell, indicating that some regions changed from
poor to excellent.

On the other hand, the distribution characteristics of RSEI over time in different years
were analyzed via CVA. The results are shown in Figure 7.

(a) (b) (c)

(d) (e)
Figure 7. Variation magnitude map of the RSEI in the study area: (a) variation in 2002–2007, (b) vari-
ation in 2007–2012, (c) variation in 2012–2017, (d) variation in 2017–2022, and (e) variation intensity
map of RSEI.

The high values of the amplitude of ecological changes |∆V| are indicated in red, and
the red areas are mostly continuously distributed from 2002 to 2007 and from 2007 to 2012,
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and are more obvious in the Huanglong coal base and the northern GGP region. In 2012 to
2017 and 2017 to 2022, the red regions are mostly discretely distributed, more obvious in
the east of the Huanglong coal base and urban regions.

4.2. Spatial Variation of the EE from 2002–2022
4.2.1. Local Spatial Variation in the EE in the Study Area

Although there has been an overall improvement in the EE since 2002, the local changes
in the study area remain unclear [52]. To better understand the spatial characteristics of
regional EE changes in different regions (that is, the coal mining region, the GGP region,
and the urbanization region) under the influence of human projects, RSEI from 2002–2022
was analyzed. Figure 8 shows the variation in different land use types in 2002 and 2022.
It is evident that the area of the GGP region (e.g., B1, B2, and B3) and the urbanization
region (A) has significantly increased in the last 20 years, while the area of arable land has
decreased. However, changes in land use types in the Huanglong coal base are difficult to
distinguish directly. Further analysis on this area is presented below.

Taking the Dafosi coal mine in the Huanglong coal base as an example (as shown in
Figure 9), we analyze the influence of coal mining activity on the local EE. The Dafosi coal
mine is located in a loess hilly-gully region, with a mining area of about 70 km2 and a total
coal reserve of 765 Mt. Coal mining activity began in 2007, with a designed annual coal
mining capacity of 8 million tons and a service life of 70 years [3,53]. The distribution of
the annual mining workings of the Dafosi coal mine is shown in Figure 9.

After underground coal mining, a large-scale subsidence basin with a maximum
subsidence value of more than 7 m will form on the ground. As shown in Figure 2,
this will lead to serious damage to land resources and construction facilities and further
cause environmental damage, such as soil erosion, lowering of the groundwater level, and
vegetation withering [54]. The area of the coal mining region and surface subsidence region
of the Dafosi coal mine from 2007 to 2022 is shown in Table 4 [55].

(a) (b)
Figure 8. Land use type map in (a) 2002, and (b) 2022.

Table 4. The area of upper and lower coal mining from 2005 to 2022.

Year Mining Area
(km2)

Subsidence Area
(km2) Year Mining Area

(km2)
Subsidence Area

(km2)

2007 0.343 0.785 2015 0.541 1.215
2008 0.490 1.220 2016 0.844 1.940
2009 0.451 1.137 2017 0.842 1.484
2010 0.558 1.290 2018 0.843 1.715
2011 0.592 1.172 2019 0.527 1.248
2012 0.672 1.455 2020 0.575 1.320
2013 0.828 2.050 2021 0.782 1.645
2014 0.777 2.125 2022 0.637 1.530
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Figure 9. Location of Dafosi coal mine in China Loess Plateau (CLP) and Shaanxi province.

To quantitatively analyze the influence of subsidence on the surrounding EE in the
Dafosi coal mine, the surface subsidence region was considered as the direct impact area of
coal mining, and the indirect impact area (called the buffer area) was expanded by 3 km
outward. The area to the east of the buffer area, which had not yet been affected by coal
mining and had similar geographic conditions, was taken as the comparison area. The
location of these three areas can be found in Figure 10. The RSEI values for the three areas
were calculated from 2002–2022 and compared, as shown in Figure 11. Statistical analysis
of the RSEI values of the three areas shows that the RSEI of the direct impact area of coal
mining in the Dafosi mine has a high correlation with the RSEI of the buffer area and
the comparison area, with correlation coefficients of 0.967 and 0.941, respectively. This
means that the RSEI values of the direct impact area, buffer area, and comparison area are
highly correlated, and the trend of all three is consistent, with an overall increasing trend.
However, in the vast majority of years, the annual average RSEI in the direct impact area
is smaller than that in the buffer area, while the annual average RSEI in the buffer area is
smaller than that in the comparison area. After the Dafosi coal mine started mining in 2007,
the annual average RSEI value in the direct impact area was 0.552, the annual average RSEI
value in the buffer area was 0.576, and the annual average RSEI value in the comparison
area was 0.596. The annual average RSEI value in the direct impact area was 4.1% lower
than that in the buffer area and 7.3% lower than that in the comparison area. Further
analysis shows that the difference between the RSEI values of the three areas was very
small and remained almost equal during the period 2002–2006. This indicates that before
coal mining began in 2007, the EE quality of the three regions was almost the same. After
2007, especially during 2009–2017, the EE quality of the direct impact area deteriorated
significantly, indicating that underground coal mining had a significant negative impact on
the surface EE in the mining area. The impact was mainly limited to the subsidence region,
and the impact on the surrounding buffer area was relatively small.

In Figure 8, the urban region (A) and the typical GGP region (B1) were selected to
analyze the EE variation of the above local region from 2002 to 2022, as shown in Figure 12.
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Figure 10. Locations of the coal mine area, buffer area, and comparison area.

2000 2010 2020
0.44
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0.48

0.50
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Figure 11. Changes in RSEI in coal mine area, buffer area, and comparison area from 2005 to 2022.

Figure 12. Local land use type and RSEI change in A (urban region) and B1 (part of GGP region)
from 2002 to 2022.

From 2002 to 2022, the EE of the urban region continued to deteriorate as the area
of Guanzhong plain urban agglomeration centered on Xi’an increased, and there was an
obvious negative correlation between the two. Urbanization only affects the local EE and
has a smaller impact on the EE of the entire study area because the area of the urban region
makes up a small portion of the entire study area, similar to the mining region.
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From 2002 to 2022, with GGP implemented, the area of forest and grassland continued
to increase, and the EE in the typical GGP region (B1) became significantly better, and there
was a high correlation between the two. The same is true for the other typical areas, B2 and
B3 in Figure 8.

From the above analysis, it can be seen that two human projects, underground coal
mining, and urbanization have significant negative impacts on the local EE, but the scope of
such impact is relatively small and the impact on the ecological variation trend is relatively
small. However, the GGP is the main factor driving the improvement in EE.

4.2.2. Global Spatial Variation of EE in the Study Area

To ensure the accuracy of the scale information, a 1 km × 1 km grid was used to
resample the RSEI images, and 83,745 sample points were collected in each RSEI image. The
global Moran index and local LISA clustering were used to perform spatial autocorrelation
analysis. The global Moran index determines whether there is spatial autocorrelation in
the EE, while the local LISA index can obtain the spatial autocorrelation of the local EE.
Figure 13 shows the global Moran index of the EE.

The global Moran index for 2002, 2007, 2012, 2017, and 2022 were 0.901, 0.923, 0.936,
0.937, and 0.966, respectively. These data indicate a very strong spatial correlation be-
tween the EE. Considering that the first and third quadrants contained the majority of the
sample points, that is, H-H and L-L clustering, the study area indicates strong ecological
aggregation characteristics. From 2002 to 2022, the Moran index showed a continuous
upward trend, which was consistent with the changes in EE in the study area. Using local
spatial autocorrelation, LISA clustering maps were created to show the exact distribution
characteristics of the EE, as shown in Figure 14.

(a) (b) (c)

(d) (e)
Figure 13. Global Moran index in the study area in (a) 2002, (b) 2007, (c) 2012, (d) 2017, and (e) 2022.

The LISA cluster distribution map shows that H-H is mainly distributed in the loess
hilly-gully regions, and the vegetation cover in these areas has increased year by year
due to the GGP policy. The distribution area of H-H increased rapidly between 2002 and
2012, until the vegetation entered the ecological succession stage in recent years, indicating
that the GGP has improved the EE. On the other hand, L-L is mainly distributed in the
river valley plain region, where urbanization is rapid and human production activities
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are numerous, leading to continuous expansion of the L-L distribution area. Especially in
the heavily populated urban areas, the L-L area gradually expanded from 2007 to 2022,
indicating that rapid urbanization causes the deterioration of the EE.

(a) (b) (c)

(d) (e)
Figure 14. LISA clustering maps in the study area in (a) 2002, (b) 2007, (c) 2012, (d) 2017, and (e) 2022.

Furthermore, the chordal graph of RSEI transfer matrix is shown in Figure 15. Spatial
transfer between different years is shown in the figure below, and the legend indicates the
level of EE transfer (Figure 16). We also studied the transfer of EE since 2002.

(a) (b)

(c) (d)
Figure 15. Chordal graph of RSEI transfer matrix of (a) 2002–2007, (b) 2007–2012, (c) 2012–2017, and
(d) 2017–2022.
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(a) (b)

(c) (d)
Figure 16. RSEI transfer matrix of (a) 2002–2007, (b) 2007–2012, (c) 2012–2017, and (d) 2017–2022.

The figure indicates that in many ecological improvement regions, Excellent areas
increased to 21,777.36 km2 by 2022. Except for a few regions that do not change, the transfer
pattern is generally a poor, fair, and moderate transfer to each other; then a moderate, good,
and excellent transfer to each other. In the period 2002–2007, a total area of 6124.77 km2 was
transferred from the poor regions, of which 4847.52 km2 were transferred to the fair regions
and 1178.36 km2 were transferred to the moderate regions. In the period 2007–2012, a total
area of 3572.21 km2 was transferred from the poor regions, of which 3172.84 km2 were
transferred to the fair regions and 397 km2 were transferred to the moderate regions. In the
period 2012–2017, a total area of 2106 km2 was transferred from the poor regions, of which
2007.76 km2 were transferred to the fair regions and 97.24 km2 were transferred to the
moderate regions. In the period 2017–2022, a total area of 3485.81 km2 was transferred from
the poor regions, of which 3085.87 km2 were transferred to the fair regions and 398.23 km2

were transferred to the moderate regions.
Poor, fair, moderate, good, and excellent are defined as levels 1, 2, 3, 4, and 5, respec-

tively. From 2002 to 2007, the EE in the study area changed considerably, with most of the
regions changing within levels 2, 3, and 4. It should be noted that the EE of the GGP region
changed to level 5 in a large area, while some parts of the mining region in the eastern
section of the research area changed from level 1 to level 4. From 2007 to 2012, the EE
changes were stable, and the EE in some parts of the GGP region was slightly degraded.
From 2012 to 2017, the regions from level 4 to level 5 were scattered in the whole study
area, and the EE slowly improved, and the environment in the river valley plain region
improved. From 2017 to 2022, the area of the unchanged regions increased more than it
did in the past and the EE is still slowly getting better. In general, the EE of the study area
shows the results where it is rapidly getting better first, and then slowly getting better.

5. Discussion
5.1. Validation Based on Geodetector

In this study, it was concluded that the GGP has a major influence on the EE, while
urbanization and coal mining have limited influence. It is known that meteorological
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factors usually have a significant impact on the EE, with temperature and precipitation
having a direct correlation with plant growth, and vegetation can promote EE improvement.
To verify whether the GGP has the greatest driving force on the EE, we added temperature
and precipitation as dependent variables, all five driving factors we selected can be found
in Table 5 And the results are shown in Figure 17. The curves of RSEI and each driving
factor with time are shown in Figure 18.

Figure 17. Q value of X1–X5.

Table 5. Driving factors.

Driving Factors Factor Symbols Unit Type Numbers

Temperature X1 ◦C 4
Precipitation X2 mm 15

Grain for Green X3 km2 10
Raw coal X4 Mt (Megatons) 15

GDP X5 CNY/person 10

In the study area from June to October, X1 represents the average annual temperature,
and X2 represents the average annual precipitation. The three types of human projects are
represented by the X3 afforestation area, X4 annual coal production, and X5 GDP per capita,
respectively. The results show that the factor with the greatest driving force on the EE is
the Chinese government’s policy of GGP with a q value of 0.881, and the factor with the
least driving force on the EE is the coal production in recent years with a q value of 0.617.
Temperature and GDP per capita also significantly influence EE. Based on these findings, it
can be concluded that GGP has the most significant impact on improving the EE of CLP.
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Figure 18. The RSEI and five driving factors (X1–X5) change curve. (a) RSEI and average annual
temperature, (b) RSEI and average annual precipitation, (c) RSEI and afforestation area, (d) RSEI and
raw coal, and (e) RSEI and GDP.

5.2. Trend Analysis of Ecological Changes in the Study Area

The trends of EE from 2002 to 2022 were analyzed statistically at the pixel scale.
The geomorphological maps of the study area were then superimposed according to
Hurst > 0.5 (indicating that the trend of EE is the same as in the past) and Hurst < 0.5
(indicating that the trend of EE is opposite to the past) after combining the slope index and
significance test. This was performed to determine the spatial distribution of the Hurst
index of different EE from 2002 to 2022, see Figure 19. To predict the EE trend, the slope
index and Hurst index were combined, and the results are shown in Figure 20.
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Figure 19. Hurst index map.

Figure 20. Future trend of EE.

According to the trend analysis graph, the majority of the area has a Hurst index of less
than 0.5, indicating that most regions in the study area have an opposite trend of ecological
change in the future compared to the past. The detail can be found in Table 6. The highest
percentage of the region is moving from the state of past ecological improvement to the
state of future ecological degradation, accounting for 51.94%. The area of regions with
continuous improvement and the region from a past degradation state to possible future
improvement state were 19% and 20.87%, respectively. From a geomorphological aspect,
the EE of the river valley plain region still has potential for future improvement due to
recent urbanization, while the vegetation cover of the loess hilly-gully region has already
reached saturation and will enter the ecological succession stage in the future.

Table 6. Analysis of the trends obtained from long RSEI time series from 2002–2022.

Type of Change Slope Hurst Area (km2) Pct.

Continuous
degradation <0 >0.5 6746.87 8.19

Degradation to
improvement <0 <0.5 15,648.18 19.00

Continuous
improvement >0 <0.5 17,193.62 20.87

improvement to
Degradation >0 >0.5 42,776.54 51.94
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5.3. Comprehensive Analysis and Research Limitation

The spatial variation of EE quality in the typical CLP region generally agrees with the
NDVI and WET indicators. The initial implementation of the GGP from 1999 to 2005 led to
changes in vegetation types, but did not provide sufficient ecological benefits for soil water
retention. However, due to the lagging effect of the GGP, vegetation cover in the typical
CLP region increased and the EE quality significantly improved by around 2010.

Large-scale underground coal mining activities take place every year in the Huanglong
coal base, causing significant subsidence on the surface. The groundwater level in the
mining region and surrounding buffer zone has dropped significantly, and soil nutrients
have been lost, resulting in the destruction of the levelness and water storage functions
of arable land, causing farmers to abandon farming and impairing vegetation growth or
causing it to die. According to statistics, the subsidence regions in the Huanglong coal base
are not continuously distributed, and the area of subsidence regions formed by mining in
each mine each year generally does not exceed 5 km2. Therefore, the impact of coal mining
activities on the EE is small in area and spatially discontinuous. It should be noted that with
the Chinese government’s increasingly stringent requirements for environmental protection
in mining areas, coal mining enterprises have begun to carry out land remediation and
ecological restoration in subsidence regions since 2015. Additionally, the recovery effect
of rising temperatures and increased rainfall on the EE of subsidence regions has helped
to mitigate the damage caused by coal mining activities, so the scope of the EE damage
caused by coal mining activities is relatively small.

Since 2000, the Chinese government has proposed the China Western Development
initiative, which has increased support for the Guanzhong district. The excessive economic
development and population growth coincided with an increase in construction areas,
leading to the occupation of nearby arable land and the expansion of industrial activities,
increasing environmental pressures. The urbanization process has accelerated due to the
creation of economic and high-tech zones, and the rapid growth of GDP per capita reflects
the significant development achieved in the last two decades. The river valley plain area,
with Xi’an as its central city, has experienced significant ecological degradation due to
rapid urbanization, becoming the economic development center in western China. As a
result, construction land and roads have expanded into grasslands and arable land. In 2012,
the government proposed a strategy to promote ecological civilization, placing increasing
emphasis on developing eco-cities [56]. The number of green belts and urban parks within
the city has increased, contributing to the removal of urbanization’s harmful effects on the
local ecology [57].

Regarding landform, the EE of the loess hilly-gully region in the Loess Plateau mining
area improved the most. Although coal mining has an impact on the nearby region, the
GGP greatly improved the EE of the loess hilly-gully region, which entered the ecological
succession stage at around 2020. Conversely, urban development led to EE deterioration in
the river valley plain region, but thanks to the local government’s urban environmental
protection policies, published roughly in 2020, the EE of the river valley plain region has
gradually improved and will continue to do so in the future.

It should be noted that this study mainly used RSEI to evaluate the EE quality in the
typical region of CLP, which still has some limitations in terms of evaluation indices and
data reliability. The study utilized MODIS remote sensing data with a spatial resolution
of 500 m, and higher resolution remote sensing images will be utilized for future studies.
Additionally, for EE prediction, the trend prediction will be changed to predicting the time
period in the future to make the prediction more accurate.

6. Conclusions

In this paper, RSEI was used as an effective indicator for EE evaluation, and RSEI was
calculated on the GEE. Using different methods, the variation of the EE since 2002 was
analyzed comprehensively for the first time on temporal–spatial scales, and the EE impacts
caused by three major human projects, GGP, coal mining activity, and urbanization, were
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evaluated quantitatively. The effectiveness of the GGP policy was verified, and on this
basis, the future trend of the CLP typical region was also predicted. The following is a
summary of the key findings of this study:

1. Between 2002–2022, the EE of the study area has been improving under the policy
of GGP, and the RSEI value has changed from 0.50 in 2002 to 0.577 in 2022, with a
PC1 contribution rate of more than 83%. The results of this study agree with the data
published by the Chinese government, and the applicability of the RSEI model to the
study of the EE of CLP is validated.

2. The GGP implemented since 2000 is the key factor of the EE improvement in the study
area. The GGP has achieved significant results, and there is no need to significantly
increase the artificial vegetation. In this study, we validated that the GGP had the
biggest influence on the EE of the study area using Geodetector [58,59].

3. The EE of the coal mining subsidence region in the Huanglong coal base deteriorated,
but the negative impact of coal mining activities on the EE was small in scope and
discrete in distribution; the China Western Development implemented by the Chinese
government since 2000 has led to the rapid development of Guanzhong plain urban
agglomeration, which significantly deteriorated the EE in and around the urban region,
but the impact is also small in scope. Based on a series of environmental protection
policies in recent years, the EE of the urban region is gradually improving.

4. Obvious temporal–spatial EE variation could be seen in CLP typical regions. The EE
in the loess hilly-gully region changed from rapid improvement in the early phases
to slow improvement in the later phases, and was predicted to enter the ecological
succession stage in the future; the EE in the river valley plain regions changed from
rapid deterioration in the early phases to slow improvement in the later phases, and
was predicted to tend to improve gradually in the future.

This study provides a strong scientific basis for evaluating EE protection and the
sustainable development of CLP.
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