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Abstract—Tracking the state of a lithium-ion battery in an
electric vehicle (EV) is a challenging task. In order to tackle
one aspect of this task, we choose a data-driven approach for
estimating the State of Charge (SOC), which is one of the
most import parameters. In this context, the quality of the
provided data is of utmost importance. Usually, standardized
driving profiles are used to generate current profiles which
are then applied to battery cells during testing. However, these
standardized driving profiles exhibit significant deviation from
real-world conditions, which can considerably affect the learning
and validation performance of data-driven approaches. In this
paper, we first propose a test profile generator which generates
realistic current profiles for EV battery testing. Second, to
demonstrate the effect of the proposed test profiles a multilayer
perceptron (MLP) based SOC estimator is presented. Finally, we
compare the results to the standardized driving profiles.

Index Terms—State of Charge, Artificial Neural Networks,
Realistic Driving Cycle, SOC Estimation, Lithium-Ion Battery

I. INTRODUCTION

Lithium-ion batteries (LIBs) are extensively employed as
electrochemical energy storage in electrical vehicles (EVs)
thanks to their high energy and power density, energy effi-
ciency and long cycle life [1]. Battery management systems
(BMS) are required to ensure the safe and efficient operation
of LIBs [2]. One of the most important tasks of BMSs is
the estimation of State of Charge (SOC). SOC is a crucial
indicator which defines the currently available capacity (Qact)
relative to the maximum capacity (Qnom) of LIBs [3], which
is expressed in percentage as follows:

SOC =
Qact

Qnom
× 100% (1)

SOC cannot be measured directly and has to be esti-
mated with the help of special algorithms and battery state

variables such as battery voltage, current and temperature
[13]. Accurate and reliable SOC estimation improves user
experience, prevents overdesign of LIBs and enables more
efficient and safe usage of the installed capacity [14]. Since
the energy storage system is one of the major cost factors
of EVs [15], each improvement of SOC estimation has a
direct influence on the economic efficiency and customer
acceptance of EVs. Therefore, developing SOC estimation
algorithms is one of the most popular research areas in battery
domain and numerous methods were proposed in the literature
[16]. However, accurate and reliable SOC estimation is still
a challenging task. A large number of influencing factors
like temperature, history of cell operation (hysteresis effects),
aging and nonlinear voltage characteristics of lithium-ion cells
make the accurate estimation challenging. All these parameters
interact with each other and form a complex, time-varying
nonlinear system [1]. In addition, the proposed methods have
to deal with extra limitations of implementation like the mea-
surement errors of the BMS. The state-of-the-art estimation
algorithms are model based. Plett [17] introduced in 2004 for
the first time extended Kalman filter (EKF) for state estimation
of LIBs and it has become one of the most commonly
used methods. Nevertheless, several data-based or artificial
intelligence (AI) methods were proposed in the last decade to
overcome the problems of model based algorithms. They offer
new possibilities to eliminate difficulties and weaknesses of
mathematical modeling of nonlinear systems. Among others,
variations of artificial neural networks (ANN) are widely
implemented. Like the other data-based methods, ANNs learn
from the data, hence the quality and the quantity of the data
is crucial. According to the computational learning theory,
the data set has to be representative of the problem [18].
To generate experimental battery data, standardized driving



profiles (SDPs) like UDDS, US06, WLTP, DST etc. are used
intensively. Table I summarizes some examples of applied
ANN architectures and used test profiles for SOC estimation.
Numerous different SDPs are proposed in the literature [19].
They are specifically designed and stylized speed profiles
for the reproducible measurement of vehicle emissions and
fuel consumption of conventional vehicles. Additionally, the
configured tests assume a road slope of zero. In this context,
they can mimic the complex real life load of EVs and batteries
to a limited extent. Therefore, the generalization performance
of the developed algorithms can be validated only partially.
This validation problem can be overcome by using real-drive
measurements like [20] used. But unfortunately, generating
real-drive data is excessively time and resource consuming.

To train and test the proposed algorithms, experimental data
has to be divided randomly into two disjoint data sets [21].
The number of the required data points to train an algorithm
is proportional to its complexity. Because of SDPs limited
distance, same cycles are repeated in the generated data.

Repeating the same test profiles builds unrealistic patterns
in the collected data. These patterns can cause an overlapping
between some data points in training and test data sets. Hence,
the performance of the algorithm is likely be overestimated. In
[9–12] different profiles are used to generate distinct training
and test data sets.

Vehicle simulators are standard tools for vehicle design. In
order to generate realistic driving profiles, as an alternative to
real-drive and SDP tests, simulators can be cost efficiently used
with online data sources. Morlock et al. [22] proposed a similar
approach for the prediction of EV’s energy consumption.

In this paper, we propose a test profile generator which
generates realistic current profiles for EV battery testing. Our
algorithm combines an EV simulator with online real-time
traffic and route information. This approach provides a reliable
and cost efficient way to generate training and test data for
ANN based SOC estimators for EVs.

In the following, we first introduce the profile generator
algorithm. Second, experimental setup and cell tests for data
collection is described. Then, to demonstrate the effect of the
proposed test profiles a multilayer perceptron (MLP) based
SOC estimator is presented. In the final section, the results
and the conclusions are given.
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Fig. 1. Structure of Algorithm

II. DESIGN OF REALISTIC PROFILE GENERATOR

The proposed algorithm consists of two stages: driving
simulation stage and EV simulation stage. The algorithm
implemented in MATLAB/Simulink uses online data sources.
Fig. 1 shows the structure of the implemented algorithm. At
the driving simulation stage, speed and slope profiles are gen-
erated for a given route considering speed limits, traffic lamps,
road intersections and real-time traffic information. At the EV
simulation stage, realistic current profile is derived from the
speed and slope profiles with an in-house developed EV drive
train model according to the selected vehicle parameters. The
consideration of slope allows to simulate the EV’s current
demand more realistically.

A. Driving simulation

First, the algorithm collects road and real-time traffic infor-
mation from online services according to the user inputs i.e.
origin, destination and departure time. To this end, we combine
Google Maps Platform APIs (GMP) [23] and Open Street Map
(OSM) API [24] data. Both platforms support fetching data
with HTTP requests via their APIs.

The fastest route is calculated by GMP according to the
real-time traffic information. The route information includes
encoded polyline representation of the route, which is an
approximate path consisting finite number of points described
with their coordinates. GMP also provides route length, real-
time duration in traffic, base duration (derived from historical
data), elevation and road type. Additionally, we obtain data

TABLE I
EXAMPLES OF TEST PROFILES AND ANN ARCHITECTURES FOR SOC ESTIMATION

Reference ANN Architecture Training data Test data

[4] MLP Discharge Test, UDDS Discharge Test, UDDS
[5] NARX US06 US06
[6] Recurent NARXNN-LSA FUDS, US06 FUDS, US06
[7] LSTM-RNN Combination of 10 different SDPs Combination of 10 different SDPs
[8] BPNN DST, FUDS DST, FUDS
[9] FFNN US06 Pulse test
[10] Improved BP neural network 1C Discharge test DST
[11] Time-delay neural network (TDNN) Discharge Test, HPPC DST, FUDS, US06
[12] MLP + UKF DST FUDS, US06



about speed limits, location of traffic lights and intersections
from OSM.

1) Calculation of Slope Profile: The distance between two
polyline points is calculated with Haversine formula using
their latitude and longitude information. The slope between
these points is calculated by division of elevation difference
by distance. Thereafter, the slope profile along the route is
generated iteratively.

2) Calculation of Speed Profile: The calculation of the
speed profile begins with the calculation of an average speed
profile. Therefore, the route is divided into 1000m segments.
The real time driving duration in traffic of each segment
depending on the user-defined departure time is used to
calculate the average speed profile vav . The speed limits are
also considered in this calculation.

Saumeister et al. [25] compared mean traffic speeds from
the map provider HERE with real drive measurements and
assessed the uncertainty of the speeds. To model realistic driver
behavior, we added speed deviations to the speed profile for
speeds higher than 50 kmh−1. In their study, Schwarz and
Ghorbani [26] treated speed fluctuations as velocity noise
and modeled them as oscillations. They classified velocity
oscillations into three categories: Low-Frequency (LF) Noise,
which is caused by factors such as terrain topology, traffic
congestion, speed limits, and construction areas; Medium-
Frequency (MF) Noise, which is caused by road topology,
traffic flow, and driving behavior; and High-Frequency (HF)
Noise, which is caused by road conditions, lane changes,
rapid driving maneuvers, and spontaneous reactions. As our
basic speed profile vav takes into account the effects of the
LF noise, we modified the proposed equation to incorporate
both MF and HF noise to reflect the influence of factors
such as traffic flow, driving behavior, and driving maneuvers.
The implemented equation is displayed in (2), where the
amplitudes Ai

FS , frequencies ωi
FS , and phase ϕi

FS for each
frequency spectrum (FS) i are modeled as normally distributed
random variables. The mean values µ and variances σ2 of the
normal distributions N are inherited from [27]. The speed
deviation vdev is calculated for each segment and added to
the speed profile vav to get the first version of the realistic
speed profile vRpre,1.

vdev(t) =

2∑
i=1

Ai
FSsin(ω

i
FSt+ ϕi

FS) (2)

vRpre,1(t) = vav + vdev (3)

The generated profile vRpre,1 is then expanded to include
information about traffic lights and intersections. Rittger et al.
[28] investigated driving behavior at intersections with traffic
lights and found that drivers start slowing down approximately
80m before a red light. Based on this finding, we implemented
a random braking process starting 80m before intersections
and traffic lights. The probability of stopping is defined based
on the ratio between the duration of the route with and without
traffic. The updated speed profile called vRpre,2.

To avoid sudden and unrealistic changes in the speed
profile vRpre,2, we incorporated processes for acceleration,
deceleration, and braking into the profile. Acceleration (ms−2)
is modeled using an exponential function of speed (ms−1) as
described in (4) [29]. Bokare and Maurya [30] investigated
deceleration and proposed a two-step function (5), where the
deceleration rate is considered a constant value for speeds
higher than 100 kmh−1 (27.7m s−1) and a second-order poly-
nomial is used for lower speeds. For braking, we implemented
the step function (6) depending to the speed during braking
proposed by Roenitz et al. [31].

aacc(v) = 1.90exp(−0.04v) (4)

adcc(v) =

{
0.005v2 − 0.154v − 0.493 if v < 27.7

−1.686 if 27.7 ≤ v
(5)

abr(v) =



−0.628 if v < 1

−(0.001296v + 0.175)9.806 if 1 ≤ v ≤ 6.25

−(−0.1188v + 0.330)9.806 if 6.25 < v < 15.2

−1.686 if 15.2 ≤ v
(6)

The final realistic speed profile vR(t) is generated by apply-
ing the demonstrated acceleration, deceleration, and braking
processes into the profile vRpre,2.

B. EV Simulation

The in-house developed ETI drive train model for EVs
is employed to simulate the battery current. It consists of
the models of a battery, DC-AC inverter, permanent-magnet
synchronous motor and mechanical elements such as car body,
tires, differential, spur gear etc. In addition to the predefined
SDPs, the simulator also allows to use custom current and
slope profiles as inputs.

TABLE II
MAIN PARAMETERS OF EV MODEL

Motor

Type Permanent-magnet synchronous motor
Power 100 kW
Nominal Torque 220Nm

Battery

Nominal Voltage 400V
Capacity 40 kWh
Max. Charge Current 1 C
Max. Discharge Current 3 C

Chassis

Weight 1400 kg
Drag coefficient 0.29
Tire radius 0.3687m
Frontal area 2.195m2



TABLE III
GENERATED REALISTIC DRIVING PROFILES

No. Origin - Destination Departure Time Duration Length v vmax

1.a Berlin, Mitte - Berlin, Neuköln 06.02.2023 (Mon) 00:53 27.8min 16.15 km 34.3 kmh−1 80.9 kmh−1

1.b Berlin, Mitte - Berlin, Neuköln 08.02.2023 (Wed) 15:58 56.8min 16.15 km 17.2 kmh−1 80.4 kmh−1

2.a Frankfurt, Innenstadt - Frankfurt, Nieder-Erlenbach 05.02.2023 (Sun) 22:12 22.8min 14.53 km 38.5 kmh−1 113 kmh−1

2.b Frankfurt, Innenstadt - Frankfurt, Nieder-Erlenbach 06.02.2023 (Mon) 17:13 32.2min 14.53 km 27.4 kmh−1 109.4 kmh−1

3.a Frankfurt, West - Frankfurt, Mitte-Nord 05.02.2023 (Sun) 22:14 13.3min 4.9 km 22kmh−1 50 kmh−1

3.b Frankfurt, West - Frankfurt, Mitte-Nord 06.02.2023 (Mon) 17:19 16min 6.1 km 22kmh−1 60 kmh−1

4 Karlsruhe - Berlin 05.02.2023 (Sun) 21:47 386min 677.5 km 104kmh−1 139 kmh−1

5.a Frankfurt - Würzburg 08.02.2023 (Wed) 01:23 78.8min 119.86 km 89.2 kmh−1 122.7 kmh−1

5.b Frankfurt - Würzburg 09.02.2023 (Thu) 01:58 77.8min 119.86 km 91.3 kmh−1 128.4 kmh−1

6 Karlsruhe - Zugspitze 05.02.2023 (Sun) 08:30 207.7min 332.2 km 95.2 kmh−1 136.2 kmh−1

WLTP 30min 23.1 km 46.3 kmh−1 131.3 kmh−1

NEDC 19.7min 11 km 33.6 kmh−1 120 kmh−1

III. DESIGN OF EXPERIMENT

A. Lithium-Ion Battery Cell

As for the chosen cell to perform testing, we used a
commercially available cylindrical cell Samsung INR21700-
40T. It has a nominal capacity of Qnom = 4Ah and a
nominal voltage of Unom = 3.6V and delivers a maximum
constant current of Iconstmax = 35A. The cells are charged using
the recommended CCCV (Constant Current Constant Voltage)
charging method with a 2A constant current rate, a maximum
voltage of 4.2V and a cut-off current of 200mA.

B. Generating Realistic Test Profiles

In order to generate realistic test profiles, different trips
are simulated at different times. The simulated EV has a
100 kW permanent-magnet synchronous motor and 40 kWh
battery with 400V nominal voltage. Table II summarizes the
applied drive train model parameters. Table III presents the
generated realistic driving profiles and standardized driving
profiles, highlighting key characteristics such as average speed
v, maximum speed vmax, duration and length. Fig. 2 shows the
results of an exemplary trip between Karlsruhe and Landau,
Germany. Additionally, current profiles of WLTP and NEDC
are also generated with the ETI drive train model. In all
cases, the battery current was scaled-down to cell level for
cell testing.

C. Battery Experimental Setup and Tests

In order to generate proper data sets, cell tests are executed
with different scenarios. The cells are cycled first with two
different SDPs, namely WLTP and NEDC. Additionally, gen-
erated current profiles of ten realistic trips are used. All the
tests are executed at room temperature (25 ◦C).

The testing hardware used at APL Automobil-Prüftechnik
Landau GmbH is a combination of a temperature chamber
equipped with an electrical DC controller. The temperature
chamber, on the one hand, is commercially available by
CTS [32] where the chamber volume is 1000L and the tem-
perature can range from −40 ◦C to 180 ◦C by a temperature
gradient up to 3.5Kmin−1. The electrical DC controller, on

the other hand, is a commercially available battery tester by
Keysight Technologies [33] with 12 DC channels per chamber
providing 6V voltage, from 100A (in this case) up to 300A
current and 0.6 kW to 1.8 kW electrical power. In terms
of accuracy, ±1mV, concerning voltage, and ±0.05% of
measured value with an offset between 20mA and 60mA,
concerning electric current, can be achieved. Additionally, the
temperature can be measured within a tolerance of ±1K per
test channel. During all tests, the voltage, the current and the
temperature at the cell surface is tracked and measured.

Reference values for SOC are calculated by (1) with a high
accuracy Coulomb-counting approach in order to determine
the currently available capacity (Qact). The initial maximum
available capacity of the cell (Qnom) must be periodically
adjusted due to degradation effects of the cell. The current
maximum available capacity (Qmax,act) is determined through
specially designed capacity tests, which are conducted inter-
mittently between the driving profile tests and are utilized for
SOC calculation. Additionally, the ratio of the current capacity
to its initial capacity represents the State of Health (SOH) of
the cells, and it is calculated by:

SOH =
Qmax,act

Qnom
× 100% (7)

To minimize the impact of aging effects on results, we
utilized cells with similar SOH by generating test data. Fig. 3
shows the cells at the test bench.

D. Generated Data sets for Training and Testing

The first data set is generated from the cell tests with WLTP.
It’s split into training and testing data sets with an 70-30 ratio.
The cell test measurements of NEDC and realistic current
profiles are used to generate test data sets for the validation
of the SOC estimator trained with WLTP. All data sets are
normalized to improve the learning performance.

IV. DESIGN OF MLP BASED SOC ESTIMATOR

A multi-layer perceptron (MLP) neural network algorithm is
implemented using Python and Keras for SOC estimation. The
network consists of two hidden layers, one input layer, and one
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Fig. 2. Exemplary speed (a), slope (b) and cell current (c) profile

output layer. The input variables include cell voltage, current,
and temperature, while the output is the SOC. The hidden
layers contain 10 and 5 nodes, respectively. Equation (8)
describes the general formula for calculation of the output y of
a neuron i in a layer k. The output is calculated by applying the
activation function f to the weighted sum of the outputs y(k−1)

j

from the neurons in the previous layer (k − 1). The weights
connecting neurons j from the previous layer to neuron i in
layer k are represented by w

(k)
ij . Additionally, the bias term

for neuron i in layer k is denoted by b
(k)
i . Rectified linear unit

(ReLU) is used as activation function for the nodes within
the hidden layers. Equation (9) presents the ReLU function,
in which the output ranges from 0 to positive infinity. For the
output node, a linear activation function is employed, which
is typical for addressing regression problems.

In this study, the mean squared error (MSE) is employed
as the loss function for the model. The MSE calculates
the average squared difference between the predicted values
ŷi and reference yi values. Mathematical description of the

Fig. 3. Cell testing at APL Automobil-Prüftechnik Landau GmbH

MSE is presented in (10). To optimize the model during the
training process, the Adam (Adaptive Moment Estimation)
optimization algorithm is employed.

y
(k)
i = f

 n∑
j=1

w
(k)
ij y

(k−1)
j + b

(k)
i

 (8)

σ(x) = max(0, x) (9)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (10)

V. EXPERIMENTAL RESULTS

To demonstrate the benefits of the proposed method, the
MLP-based SOC estimation algorithm presented in the pre-
vious section is first trained and validated using the WLTP
test data set with a 70% - 30% split. Subsequently, the
trained SOC estimator is tested with the experimental data
from the driving cycles outlined in Table III. These driving
profiles simulate both highway and city driving trips at various
times, including rush-hour and off-peak periods. This diverse
representation enables a more comprehensive evaluation of the
estimator’s performance under a range of realistic driving sce-
narios. The root mean square error (RMSE) of SOC estimation
is used as the performance criterion and calculated using (11).
The relative estimation error (REE) is calculated with (12) as
the relative difference between the RMSE values of the actual
test profile (RMSETP) and the WLTP test (RMSEWLTP),
expressed as a percentage of the RMSE value of the test
profiles.

RMSE =

√√√√ 1

n

n∑
i=1

(SOCi − ŜOCi)2 (11)

REE =
RMSETP −RMSEWLTP

RMSETP
× 100% (12)

Table IV summarizes the performance of the WLTP-trained
algorithm under proposed driving profiles according to the
RMSE values. As anticipated, the lowest RMSE is achieved for



TABLE IV
THE PERFORMANCE OF THE WLTP-TRAINED SOC ESTIMATOR UNDER

REALISTIC TEST PROFILES

Test Profile RMSE Relative Estimation Error to WLTP-Validation

WLTP 1.31% -

NEDC 1.44% 9.03%
1.a 1.91% 31.45%
1.b 1.92% 31.77%
2.a 1.97% 33.5%
2.b 1.86% 29.57%
3.a 1.95% 32.82%
3.b 2.18% 39.91%
4 1.74% 24.71%

5.a 1.95% 32.82%
5.b 1.70% 22.94%
6 1.87% 29.95%

the WLTP test. The performance under the NEDC test is com-
parable to that of the WLTP, which can be attributed to both
being standardized profiles. However, the performance under
realistic profiles is notably worse. All the realistic tests indicate
an overestimation of the performance of SOC estimation with
the WLTP test. A mean deviation of 30% is observed under
realistic conditions compared to the established approach.

VI. CONCLUSION

In this paper, a method for generating realistic data for the
development of SOC estimators for EVs is presented. The
experimental results demonstrate that the established approach,
which relies on standardized driving profiles, may not accu-
rately represent real driving conditions and may not suffice to
be used for data-driven modeling approaches. Consequently,
the performance of the developed algorithm is often overesti-
mated. The proposed method can be utilized for the validation
and testing of estimation algorithms that employ data-driven
approaches. In addition to the performance validation, the
proposed method can also be used to produce realistic training
data sets in a very cost-efficient way and in large numbers. The
proposed method is verified through an exemplary case, where
a MLP based SOC estimator is developed, implemented, and
tested to demonstrate the capabilities of the approach. In future
work, the profile generator will be extended to automatically
generate extensive data sets with combined trips, based on
driving behavior statistics.
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