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Abstract. We study linear time-dependent Maxwell equations on a cuboid consisting of two homogeneous subcuboids. At
the interface, we allow for nonzero surface charge density and surface current. This model is a first step towards a detailed
mathematical analysis of the interaction of single-layer materials with electromagnetic fields. The main results of this paper
provide several wellposedness and regularity statements for the solutions of the Maxwell system. To prove the statements,
we employ extension arguments using interpolation theory, as well as semigroup theory and regularity theory for elliptic
transmission problems.
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1. Introduction

In the past few years, there has been an extensive study of the properties of single-layer materials (or 2D
materials) such as the semimetal graphene and the semiconductors called transition-metal dichalcogenides
(TMDCs). This is mainly due to the large area of possible application such as optoelectronics, spintronics,
energy storage, lubrication, and catalysis. We refer to the reviews [1,36] on graphene and TMDCs,
respectively, for a detailed discussion.

In order to study the optical properties of such materials, the sheet is placed on top of a thin dielectric
and a metal plate and ultrafast optical pulses are sent towards the material. The behavior of the light
pulses is described by Maxwell equations which interact with an interface induced by the 2d material.
In the general model, the 2d material itself has a dynamic often described by a quantum mechanical
model [7,23,34], influencing the electromagnetic waves via induced surface currents, see for example [6]
and Section 3 in [25]. In graphene models, the surface current satisfies in frequency domain

jsurf(ω) = σ(ω)[[nint × E(ω)]]

where σ is the surface conductivity associated with the 2d material, [[·]] denotes the jump at the interface,
and E is the electric field and nint denotes the unit normal vector associated with the interface, see, for
example, Chapter 1 in [13,20,24,40]. This is a special case of the linear response theory which makes the
ansatz

jsurf(k, ω) = σ(k, ω)E(k, ω)

corresponding to Ohm’s law, see [19], Chapter 6 in [31].
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In order to understand the physical model better, there is also put a large amount of work in the
numerical treatment of Maxwell equations with inhomogeneous interface conditions, which are usually
referred to as current sheets. For the finite volume method, this was considered in [28], for the discontin-
uous Galerkin method in [38–40] and for a finite difference method in [5,30].

As a first step towards the full model, we consider in this work linear time-dependent Maxwell equations
on a cuboid Q composed of two homogeneous cuboids Q1 and Q2 with an interface Fint = Q1 ∩ Q2, see
Fig. 1. On this we assume an abstract external surface current jsurf only depending on space and time
which replaces the dynamics of the 2d material. We note that in the full Maxwell–Schrödinger model one
usually has, combining the approach in [6,25] with the minimal coupling discussed in Chapter 5 of [32],
the dependency

jsurf = jsurf(t, ψ,A),

where A is the magnetic vector potential and ψ is the wave function on the 2d material. We consider the
Maxwell equations

∂tE(i) =
1

ε(i)
curlH(i) − 1

ε(i)
J(i)

Σ , ∂tH(i) = − 1
μ(i)

curlE(i), (1.1a)

div
(
ε(i)E(i)

)
= ρ(i), div

(
μ(i)H(i)

)
= 0, (1.1b)

on Qi, i ∈ {1, 2}, for t ≥ 0. Throughout we denote by f (i) the restriction of a function f ∈ L2(Q) to the
subcuboid Qi. The vector E = E(t, x) ∈ R

3 is the electric field, H = H(t, x) ∈ R
3 the magnetic field,

JΣ = JΣ(t, x) ∈ R
3 models an external current, and ρ = ρ(t, x) denotes the volume charge. The material

is described by the scalar electric permittivity ε > 0 and the scalar magnetic permeability μ > 0.
We accompany the Maxwell system with perfectly conducting boundary conditions

E × ν = 0, μH · ν = 0 on ∂Q

and interface conditions

[[μH · nint]] = 0, [[E × nint]] = 0, [[εE · nint]] = ρsurf, [[H × nint]] = jsurf on Fint, (1.2)

involving the surface charge ρsurf and the surface current jsurf, see Section 4.12 in [35], Section 1.1.3 in
[4] and Section I.5 in [22]. Note that ν denotes the exterior unit normal vector on the boundary ∂Q, and
that the inner normal vector nint points from Q1 to Q2. For the jump [[·]], we use the convention

[[f ]] := f (2)|Fint − f (1)|Fint ,

whenever the traces of f are well-defined at the interface. The parameters ε and μ are assumed to be
positive and constant on each subcuboid, modeling a piecewise homogeneous medium. After coordinate
transformation, we can assume the identities

Q = (−1, 1) × (0, 1)2, Q1 = (−1, 0) × (0, 1)2, Q2 = (0, 1)3.

To the best of our knowledge, there is so far no detailed regularity and wellposedness theory available
for our model problem (1.1)–(1.2). On the one hand, Maxwell equations with discontinuous material
parameters on more general and complicated polyhedral Lipschitz domains are studied in [2,3,8–10,12]
for instance. These papers, however, assume homogeneous transmission conditions, meaning the surface
charge density and the surface current are zero. Note that one of the authors analyzes a similar model
problem with nontrivial surface charge density but zero surface current, see [41,42]. On the other hand,
a nonlinear time-dependent Maxwell system is recently studied in [33] with discontinuous material pa-
rameters. On the interface, the analysis allows nonzero surface charge density and surface current. Note,
however, that the boundary of the domain in [33] is regular, and that the interface between the two
submedia has a positive distance to the boundary.

Recently, a nonlinear transmission problem on the full space is analyzed with homogeneous trans-
mission conditions at the interface {x1 = 0}, see [14]. The results are also applicable to time-dependent
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Fig. 1. Sketch of the domain Q

Maxwell equations. In [15], transverse magnetic wave packets are studied and approximated for a non-
linear time dependent Maxwell system on the full space with discontinuous material parameters at the
interface {x1 = 0}. The surface current is assumed to be zero, and the surface charge is nonzero and time
independent.

Structure of the paper

We present our main results in Sect. 2: Depending on the regularity of the initial data for (1.1) as well as
the regularity of the surface current jsurf and the external current JΣ, we establish three wellposedness
and regularity statements for the solution (E,H) of (1.1). Among others, the initial data and the surface
current have to satisfy certain compatibility conditions at t = 0, see also [33]. In 3.1, we additionally show
that the assumed compatibility conditions are in fact necessary. An overview of the involved function
spaces is given in Fig. 2.

To achieve our results, we first transform the Maxwell system (1.1) with interface conditions (1.2) into
an evolution equation with zero surface current jsurf, see (3.5). To be more precise, we construct suitable
regular extensions JH and JE of jsurf and ∂tjsurf in Sect. 4 by means of interpolation theory involving
analytic semigroups. This turns out to be quite sophisticated. Here we also use ideas and techniques from
[16,41].

For the Cauchy problem (3.5), we can employ semigroup theory on appropriate function spaces, see
Sect. 3.3. To conclude the desired piecewise Sobolev regularity of the solutions of (3.5) (and thus eventually
of (1.1)), we show that elements of the arising function spaces are piecewise H1- and H2-regular. Here we
use regularity theory for elliptic transmission problems, see Sect. 3.2 and compare [11,12,16,21,41,42].

2. Framework and results

In this section, we present our main results, i.e., wellposedness and regularity analysis of the system (1.1),
under precise assumptions on the regularity of the initial data and the surface current.

Spaces

We first introduce the relevant spaces which are necessary to state our main results. For a Lipschitz
domain O, we denote for k ∈ N by Hk(O) the space of functions with weak derivatives up to order k in
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L2(O). By H1
0 (O) we mean the closure of test functions C∞

c (O) in H1(O). To define Sobolev spaces of
fractional order, we use real interpolation spaces, see Section 1.1 in [27] for instance. For s ≥ 0, we define
the fractional Sobolev spaces

Hs(O) :=
(
L2(O),H2(O)

)
s/2,2

, H
1/2
00 (O) :=

(
L2(O),H1

0 (O)
)
1/2,2

,

H
3/2
0 (O) :=

(
H1

0 (O),H2(O) ∩ H1
0 (O)

)
1/2,2

,

see [26,37]. For the electric volume charge, we also need the space

H1
00(Qi) := {ϕ ∈ H1(Qi) | trF ϕ ∈ H

1/2
00 (F ) for each face F of Qi},

‖ϕ‖2
H1

00(Qi)
:= ‖ϕ‖2

H1(Qi)
+

∑

F face
of Qi

‖ϕ|F ‖2

H
1/2
00 (F )

,

for i ∈ {1, 2}. For the disjoint union Q = Q1 ∪ Q2, we define the piecewise Sobolev space of order s ≥ 0
by

PHs(Q) = {u ∈ L2(Q) | u(i) ∈ Hs(Qi), i = 1, 2},

and use the notation

X0 := L2(Q)6 = PH0(Q)6.

The space X0 is equipped with the weighted inner product

(
(E,H), (Ẽ, H̃)

)
:=

∫

Q

εE · Ẽ + μH · H̃dx,

inducing the norm ‖·‖. (Note that this norm is equivalent to the standard L2-norm, due to the assumption
on ε and μ.) In addition, we make use of the maximal domains of the rotation curl and divergence div

H(curl, Q) = {ϕ ∈ L2(Q)3 | curl ϕ(i) ∈ L2(Qi)3, i = 1, 2, [[ϕ × nint]] = 0},

H(div, Q) = {ϕ ∈ L2(Q)3 | div ϕ(i) ∈ L2(Qi), i = 1, 2, [[ϕ · nint]] = 0},

and the corresponding spaces H0(curl, Q) and H0(div, Q) with vanishing tangential or normal boundary
traces, respectively. With this, we define the extended Maxwell operator M̃

M̃ =
(

0 1
ε curl

− 1
μ curl 0

)

on its domain

D(M̃) := {(E,H) ∈ X0 | curlE(i), curlH(i) ∈ L2(Qi), [[E × nint]] = 0, E × ν = 0 on ∂Q, i = 1, 2}
= H0(curl, Q) × {H ∈ L2(Q)3 | curlH(i) ∈ L2(Qi)3, i = 1, 2},

which neglects the magnetic transmission conditions. In particular, the curl in the second component
is only applied piecewise on the subcuboids Qi. Including the magnetic conditions, we obtain the usual
Maxwell operator M on

D(M) = D(M̃) ∩ {(E,H) ∈ X0 | [[H × nint]] = 0} = H0(curl, Q) × H(curl, Q)

via the restriction

M = M̃
∣
∣
D(M)

. (2.1)
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Remark 2.1. We note that M̃ cannot be the generator of a strongly continuous semigroup on D(M̃) since
this would imply that for some ρ > 0 the map ρI − M̃ : D(M̃) → X0 is bijective. However, by (2.1) and
the generator property of M, also ρI −M̃ : D(M) → X0 is bijective. This is a contradiction though, since
D(M) is a strict subspace of D(M̃). ♦

Additionally, we require more structure in order to prove regularity statements for (1.1) in piecewise
Sobolev spaces. Inspired by [16,41], we consider the Hilbert space

X̂0 := {(Ẽ, H̃) ∈ L2(Q)6 | div(Ẽ(i)) ∈ L2(Qi), μH̃ ∈ H0(div, Q), [[εẼ · nint]] ∈ H
1/2
00 (Fint)},

‖(Ẽ, H̃)‖2
X̂0

:= ‖(Ẽ, H̃)‖2 + ‖div(μH̃)‖2
L2(Q) + ‖[[εẼ · nint]]‖2

H
1/2
00 (Fint)

, (2.2)

which is intersected below with domains of certain powers of the Maxwell operator. For the surface
current, we identify Fint with the square S = (0, 1)2 and use the two negative Laplacians

D(−Δ2) := {u ∈ H2(S) | u(0, ·) = u(1, ·) = 0, ∂2u(·, 0) = ∂2u(·, 1) = 0}, (2.3a)

D(−Δ3) := {u ∈ H2(S) | u(·, 0) = u(·, 1) = 0, ∂1u(0, ·) = ∂1u(1, ·) = 0}, (2.3b)

which are both positive definite and self-adjoint on L2(S). We can thus define the fractional powers
(−Δj)γ/2 on domains

X γ
j := D(−Δj)γ/2 (2.4)

for γ ∈ R. These spaces are used to formulate the assumptions on the surface current. We elaborate
further on the fractional domains in the following remark.

Remark 2.2. The domain of (−Δ2)1/2 can be represented via

D(−Δ2)1/2 = {u ∈ H1(S) | u(0, ·) = u(1, ·) = 0}.

Using the trace method in interpolation theory, see Section 1.3.2 in [26], we can express the other arising
fractional domains of −Δ2 as images of the trace operator trFint on Fint (with equivalence of norms). We
have for Γj = {x ∈ ∂Q | xj ∈ {0, 1}}, j ∈ {2, 3},

D(−Δ2)1/4 = trFint

(
{u ∈ H1(Q2) | u = 0 on Γ2}

)
,

D(−Δ2)3/4 = trFint

(
{u ∈ H1(Q2) | u = 0 = ∂1u on Γ2, ∂3u = 0 on Γ3,

1∫

0

(‖Δu(x1, ·)‖2
L2(S) + ‖∂1u(x1, ·)‖2

H1(S)

)
dx1 < ∞}

)
,

D(−Δ2)5/4 = trFint

(
{u ∈ H1(Q2) | u = 0 = ∂1u = Δu on Γ2, ∂3u = ∂1∂3u = 0 on Γ3,

1∫

0

(‖Δu(x1, ·)‖2
H1(S) + ‖Δ∂1u(x1, ·)‖2

L2(S)

)
dx1 < ∞}

)
.

(The arising traces in the spaces on the right-hand side of the above equations are understood in the
following sense: In the first line, u(x1, ·) = 0 on {0, 1} × [0, 1] for almost all x1 ∈ (0, 1). Analogous
interpretations hold for the other lines.)

There is also a less precise but easier way to interpret the arising fractional domains. Avoiding tech-
nicalities regarding the regularity issues in taking traces, we have for ε > 0

{u ∈ H1/2+ε(S) | u(0, ·) = u(1, ·) = 0} ⊆ D(−Δ2)1/4 ⊆ H1/2(S)
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and similarly for the Neumann traces

{u ∈ H3/2+ε(S) | u(0, ·) = u(1, ·) = 0, ∂2u(·, 0) = ∂2u(·, 1) = 0} ⊆ D(−Δ2)3/4 ⊆ H3/2(S).

Since we only work on a convex Lipschitz domain, we may only conclude

{u ∈ H5/2+ε(S) | u(0, ·) = u(1, ·) = 0,Δ2u(0, ·) = Δ2u(1, ·) = 0,

∂2u(·, 0) = ∂2u(·, 1) = 0} ⊆ D(−Δ2)5/4 ⊆ H2(S).

For Δ3, we only change the boundary conditions and obtain the same observations. ♦

2.1. First-order regularity result

In order to state the wellposedness and regularity statements for (1.1), we introduce the necessary spaces
for the surface current given by

VT,j :=
1⋂

l=0

C1+l([0, T ],X 3/2−l
j ), j ∈ {2, 3}, T > 0, (2.5)

and several state spaces for the solution, which we collect in Fig. 2. For the lowest order, we introduce

X̃1 := D(M̃) ∩ X̂0, X1 := X̃1 ∩ D(M), ‖·‖2
X̃1

:= ‖·‖2
X1

:= ‖·‖2
X̂0

+ ‖M̃·‖2
L2(Q). (2.6)

This enables us to formulate our first main result which shows existence and uniqueness of piecewise
H1-regular solutions. We elaborate on the appearing compatibility conditions between the initial values
in Sect. 3.

Theorem 2.3. Let the initial data satisfy (E0,H0) ∈ X̃1, [[H0 × nint]] = jsurf(0), and assume for the
currents that (j2

surf, j
3
surf) ∈ VT,3 × VT,2,

(
1
εJΣ, 0

) ∈ C1([0, T ], X̂0) + C([0, T ],X1). Then there is a unique
solution (E,H) ∈ C1

(
[0, T ], L2(Q)) ∩ C

(
[0, T ], PH1(Q)) of (1.1) with

1∑

j=0

‖(E,H)‖Cj([0,T ],PH1−j(Q)) ≤ C ‖(E0,H0)‖X̃1

+ C(1 + T )
(∥
∥( 1

εJΣ, 0)
∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)
+

∥
∥(j2

surf, j
3
surf)

∥
∥

VT,3×VT,2

)

involving a uniform constant C = C(ε, μ,Q) > 0.

Proof. (1) By Corollary 4.3, there is a function JH with [[JH(t) × nint]] = jsurf(t), JH(t) · ν = 0 on ∂Q,
t ∈ [0, T ], and

1∑

l=0

‖JH‖C1+l([0,T ],PH2−l(Q)) ≤ C
∥
∥(j2

surf, j
3
surf)

∥
∥

VT,3×VT,2
. (2.7)
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Choose JE = 0, and define J̌ as in (3.4a). By Corollary 4.3 and the precondition on JΣ, J̌ ∈ C1([0, T ], X̂0)+
C([0, T ],X1) with

∥
∥J̌

∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)
≤ C

( ∥
∥( 1

εJΣ, 0)
∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)
+

2∑

i=1

∥
∥
∥1

ε curlJ(i)
H

∥
∥
∥

C1([0,T ],L2(Qi))

+ ‖∂tJH‖C1([0,T ],L2(Q)) + ‖[[curlJH · nint]]‖C1([0,T ],H
1/2
00 (Fint))

+ ‖∂t div JH‖C1([0,T ],L2(Q)) +
2∑

i=1

(∥
∥
∥curl 1

ε curlJ(i)
H

∥
∥
∥

C([0,T ],L2(Qi))

+
∥
∥
∥curl ∂tJ

(i)
H

∥
∥
∥

C([0,T ],L2(Qi))

))

≤ C
( ∥

∥(1
εJΣ, 0)

∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)
+ ‖JH‖C2([0,T ],PH1(Q))

+ ‖JH‖C1([0,T ],PH2(Q))

)
.

Taking (2.7) into account, we obtain
∥
∥J̌

∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)
≤ C

( ∥
∥( 1

εJΣ, 0)
∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)
+

∥
∥(j2

surf, j
3
surf)

∥
∥

VT,3×VT,2

)
. (2.8)

We then put Ẽ0 := E0 − JE(0) and H̃0 := H0 − JH(0), see (3.2). By construction (Ẽ0, H̃0) ∈ X1.
Proposition 3.6 then provides a unique solution (Ẽ, H̃) ∈ C1([0, T ], X̂0) ∩ C([0, T ],X1) of (3.3) with

1∑

j=0

∥
∥
∥(Ẽ, H̃)

∥
∥
∥

Cj([0,T ],X1−j)
≤ C

( ∥
∥
∥(Ẽ0, H̃0)

∥
∥
∥

X1

+ (1 + T )
∥
∥J̌

∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)

)
. (2.9)

(2) Set E := Ẽ + JE and H := H̃ + JH. Employing Lemma 3.1, (E,H) ∈ C1([0, T ], L2(Q)) ∩
C([0, T ], PH1(Q)), and by construction (E,H) solves (1.1), see also Sect. 3.1. Combining (2.7), (2.8), and
(2.9), the asserted estimate finally follows. �
Remark 2.4. The regularity of jsurf is used below to construct regular extensions from Fint to Q, see
Sect. 4.2. Certain combinations of spatial and temporal derivatives and the extensions then have to
satisfy similar regularity requirements as the external (volume) current 1

εJΣ. This leaves several degrees
of freedom in the choices for the regularity of jsurf. However, for the sake of presentation, we only elaborate
on the notionally most convenient variant. ♦

2.2. Second-order regularity result

In the second result, we aim for solutions which are piecewise H2-regular. We emphasize that due to the
Lipschitz regularity of the boundary, in general one cannot expect the existence of higher order spatial
derivatives. In order to derive such a result, we assume more regular surface currents, in particular in the
spaces

WT,j :=
2⋂

l=0

C1+l([0, T ],X 5/2−l
j ), (2.10)

for T > 0 fixed and j ∈ {2, 3}. In addition, we need the spaces

X̂1 := {(E,H) ∈ X1 | div(E(i)) ∈ H1
00(Qi), [[εE · nint]] ∈ H

3/2
0 (Fint), div(μH) ∈ PH1(Q)}, (2.11)

X̃2 := {(E,H) ∈ D(M̃2) ∩ X̂0 | div(E(i)) ∈ H1
00(Qi), [[εE · nint]] ∈ H

3/2
0 (Fint), div(μH) ∈ PH1(Q)},

X2 := X̂1 ∩ D(M2), (2.12)
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where the latter one allows for an embedding into PH2(Q), see Proposition 3.4. The spaces X̂1 and X2

are equipped with the norms

‖(E,H)‖2
X̂1

:= ‖(E,H)‖2
X1

+
2∑

i=1

(‖div(E(i))‖2
H1

00(Qi)
+ ‖div(μH)‖2

H1(Qi)

)
+ ‖[[εE · nint]]‖2

H
3/2
0 (Fint)

,

‖(E,H)‖2
X2

:= ‖(E,H)‖2
X̂1

+ ‖M2(E,H)‖2.

The norm on X̃2 is defined in an analogous way. With this, we state our second main result.

Theorem 2.5. Let the initial data satisfy

(E0,H0) ∈ X̃2, [[H0 × nint]] = jsurf(0), [[ 1
μ curlE0 × nint]] = −∂tjsurf(0),

and assume for the currents that
(j2

surf, j
3
surf) ∈ WT,3 ×WT,2,

(
1
εJΣ, 0

) ∈ C1
(
[0, T ], X̂1). Then there is a unique solution (E,H) of (1.1)

with

(E,H) ∈ C2
(
[0, T ], L2(Q)) ∩ C1

(
[0, T ], PH1(Q)) ∩ C

(
[0, T ], PH2(Q))

and it holds
2∑

j=0

‖(E,H)‖Cj([0,T ],PH2−j(Q)) ≤ C ‖(E0,H0)‖X̃2

+ C(1 + T )
(∥
∥( 1

εJΣ, 0)
∥
∥

C1([0,T ],X̂1)
+

∥
∥(j2

surf, j
3
surf)

∥
∥

WT,3×WT,2

)

with a uniform constant C = C(ε, μ,Q) > 0.

Proof. We combine Lemma 3.1, Proposition 3.4, Proposition 3.7 and Corollary 4.4. �

As explained in Remark 2.4, we do not state all admissible settings for jsurf and JΣ which lead to the
same result as above.

2.3. Higher-order regularity result

Our last main result is motivated from the error analysis of second-order time integration schemes for
Maxwell equations. Here, it is necessary to control derivatives up to order three in space or time. For the
surface current, we introduce the spaces

YT,j :=
3⋂

l=0

C1+l([0, T ],X 5/2−l
j ), ZT,1 :=

2⋂

l=0

C1+l([0, T ],X 1/2−l
3 × X 1/2−l

2 ), (2.13a)

ZT,2 :=
2⋂

l=0

C1+l([0, T ],X 1/2−l
2 × X 1/2−l

3 ), (2.13b)

for T > 0 and j ∈ {2, 3}. As state spaces for the electric and magnetic fields, we employ

X̃3 = D(M̃3) ∩ X̃2, X3 = X̃3 ∩ D(M3). (2.14)

Additionally, we use the sum

{{f}} := f (1)|Fint + f (2)|Fint , (2.15)

for a function f with well-defined traces at the interface Fint. We are now in the position to state the
final main result.
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Fig. 2. Connection of spaces. Vertical lines are restrictions and diagonal lines indicate the domain of the operator, i.e., for

Mi on ground spaces X̂i it holds D(Mi) = Xi+1, see Lemma 3.5

Theorem 2.6. Let the initial data satisfy

(E0,H0) ∈ X̃3, [[H0 × nint]] = jsurf(0),

[[ 1
μ curlE0 × nint]] = −∂tjsurf(0), [[ 1

μ curl 1
ε curlH0 × nint]] = −∂2

t jsurf(0)

and assume for the currents that (j2
surf, j

3
surf) ∈ YT,3 × YT,2,

(
1
εJΣ, 0

) ∈ C1
(
[0, T ],X2) ∩ C2([0, T ], X̂0). In

addition, let div jsurf ∈ C1([0, T ],H3/2
0 (Fint)) and further

g :=
( 1

2{{ 1
εμ}}∂2 div jsurf − 1

2{{ ε
μ}}Δj3

surf − ∂2
t j2

surf
1
2{{ 1

εμ}}∂3 div jsurf − 1
2{{ ε

μ}}Δj2
surf − ∂2

t j3
surf

)
∈ZT,1, g̃ := {{ 1

ε}}
(−(−Δ2)1/2∂tj

3
surf

(−Δ3)1/2∂tj
2
surf

)
∈ZT,2.

Then there is a unique solution (E,H) of (1.1) with

(E,H) ∈ C3
(
[0, T ], L2(Q)) ∩ C2

(
[0, T ], PH1(Q)) ∩ C1

(
[0, T ], PH2(Q)) ∩ C

(
[0, T ], X̃3)

and it holds
2∑

j=0

‖(E,H)‖C1+j([0,T ],PH2−j(Q)) + ‖(E,H)‖
C([0,T ],X̃3)

≤ C ‖(E0,H0)‖X̃3
+ C(1 + T )

(∥
∥( 1

εJΣ, 0)
∥
∥

C1([0,T ],X2)∩C2([0,T ],X̂0)

+ ‖div jsurf‖C1([0,T ],H
3/2
0 (Fint))

+
∥
∥(j2

surf, j
3
surf)

∥
∥

YT,3×YT,2
+

∥
∥g

∥
∥

ZT,1
+

∥
∥g̃

∥
∥

ZT,2

)

with a uniform constant C = C(ε, μ,Q) > 0.

Proof. We combine Lemma 3.1, Proposition 3.4, Proposition 3.8, and Corollary 4.5. �

3. Transformation and analytical framework

In this section, we replace the original system (1.1) by a (nonphysical) shifted version for which we
can show wellposedness and regularity results by means of semigroup theory. To motivate the shifts, we
consider the interface condition in (1.2) for a smooth solution of (1.1). We differentiate in time and obtain

∂tjsurf(t) = [[∂tH × nint]] = −[[ 1
μ curlE × nint]], (3.1a)

∂2
t jsurf(t) = −[[ 1

μ curl ∂tE × nint]] = −[[ 1
μ curl 1

ε curlH × nint]], (3.1b)

where we used the continuity conditions of 1
εJΣ across the interface. The shifts are chosen in such a way

that we can work with homogeneous interface conditions, i.e., the modified fields satisfy (3.1) with zero
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left-hand side, which means in particular using the state spaces X̂i instead of X̃i, see Sect. 2. Eventually,
this enables us to conclude wellposedness of the system (1.1) in piecewise Sobolev spaces.

3.1. Transformation to homogeneous interface conditions

Let (E,H) be a solution of (1.1), and define the modified fields (Ẽ, H̃)

H̃ = H − JH, Ẽ = E − JE, (3.2)

with piecewise sufficiently regular currents JE, JH. The latter are chosen such that in particular

[[H̃ × nint]] = 0 = [[Ẽ × nint]]

on Fint, meaning that (Ẽ(t), H̃(t)) satisfies the transmission conditions in D(M) for t ≥ 0. We formally
derive the evolution equations for the modified fields in the following and make these calculations rigorous
in Sect. 4. We insert the modified fields into (1.1) and obtain

∂tẼ(i) =
1

ε(i)
curl H̃(i) − J̌1,(i), ∂tH̃(i) = − 1

μ(i)
curl Ẽ(i) − J̌2,(i), (3.3a)

div
(
εẼ(i)

)
= ρ̃

(i)
E , div

(
μH̃(i)

)
= ρ̃

(i)
H , (3.3b)

on Qi with currents J̌ and charges ρ̃ given by

J̌1,(i) =
1

ε(i)
J(i)

Σ − 1
ε(i)

curlJ(i)
H + ∂tJ

(i)
E , J̌2,(i) = ∂tJ

(i)
H +

1
μ(i)

curlJ(i)
E , (3.4a)

ρ̃
(i)
E = ρ(i) − div J(i)

E , ρ̃
(i)
H = −div J(i)

H . (3.4b)

Further, the modified solutions satisfy the boundary conditions

Ẽ × ν = −JE × ν, H̃ · ν = −JH · ν on ∂Q.

Depending on the regularity of the surface current jsurf, we discuss transmission and regularity properties
of the modified solution. To employ a semigroup approach, we formulate (3.3) as an evolution equation.
We define the vectors

w =

(
Ẽ
H̃

)

, J̌ =
(
J̌1

J̌2

)
,

and consider the Maxwell operator M defined in (2.1) on D(M). This yields an equivalent formulation
of (3.3) in X0 = L2(Q)6 as

w′(t) = Mw(t) − J̌(t), t ≥ 0. (3.5)

In the following, we discuss wellposedness for (3.5) and consider J̌ as a given quantity. From the regularity
of jsurf and the extension results in Sect. 4, we can then conclude the results in Sect. 2.

3.2. Functional analytic framework for shifted Maxwell system

Recall the spaces X1,X2 defined in Sect. 2. We next show that fields in the space X1 are piecewise
H1-regular.

Lemma 3.1. The space X1 embeds into PH1(Q)6.
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Proof. (1) Let (Ẽ, H̃) ∈ X1. In view of Proposition 9.8 in [41], it suffices to analyze the magnetic field
component. We next use a well-known technique to deduce the existence of a function ψ ∈ PH2(Q) with
Δψ(i) = div H̃(i) and ∇ψ · ν = 0 on ∂Q from Proposition 8.2 in [41].

Set V := {w ∈ H1(Q) | [w] = 0}, where [·] denotes the mean of an integrable function on Q. Note that
V is a closed subspace of H1(Q). Combining the generalized Poincaré inequality with the Lax–Milgram
Lemma, there is a unique function ψ ∈ V with

∫

Q

μ(∇ψ) · (∇ϕ)dx = −
∫

Q

div(μH̃)ϕdx, ϕ ∈ V.

Using that the mean of div(μH̃) is zero on Q, we then infer
∫

Q

μ(∇ψ) · (∇ϕ)dx =
∫

Q

μ(∇ψ) · ∇(ϕ − [ϕ])dx = −
∫

Q

div(μH̃)(ϕ − [ϕ])dx = −
∫

Q

div(μH̃)ϕdx

for all ϕ ∈ H1(Q). In particular, the formula
∫

Q

μ2ψϕ + μ(∇ψ) · (∇ϕ)dx =
∫

Q

(μ2ψ − div(μH̃))ϕdx, ϕ ∈ H1(Q),

is valid. We then set Ψ := μψ ∈ PH1(Q). Let also ϕ ∈ H1(Q), and put Φ := μϕ as well as f :=
Ψ − 1/μdiv(μH̃). By construction, the identities

[[ 1
μΨ]] = 0,

2∑

i=1

∫

Qi

Ψ(i)Φ(i) + 1
μ(i) (∇Ψ(i)) · (∇Φ(i))dx =

∫

Q

fΦdx

are then valid. Since ϕ ∈ H1(Q) is chosen arbitrarily, we infer the last formula for all functions Φ ∈
PH1(Q) with [[ 1

μΦ]] = 0. Now Proposition 8.2 in [41] implies that ψ belongs to PH2(Q) with ∇ψ · ν = 0
on ∂Q, and [[μ∂1ψ]] = 0 on Fint. The construction of ψ additionally implies the desired formula div(μ∇ψ) =
div(μH̃) on Q. Together with Proposition 8.2 in [41], we additionally obtain

‖ψ‖PH2(Q) ≤ C
(‖ψ‖L2(Q) + ‖div(μH̃)‖L2(Q)

)
, (3.6)

with a uniform constant C = C(μ,Q) > 0.
(2) We next estimate ‖ψ‖L2(Q). Using the generalized Poincaré inequality as well as an integration by

parts, we conclude

‖ψ‖2
L2(Q) ≤ CP

δ ‖√
μ∇ψ‖2

L2(Q) = −CP

δ

∫

Q

div(μH̃)ψdx ≤ CP

δ ‖div(μH̃)‖L2(Q)‖ψ‖L2(Q),

where CP is the Poincaré constant on Q, and δ > 0 is a lower bound for μ. We hence conclude

‖ψ‖L2(Q) ≤ CP

δ ‖div(μH̃)‖L2(Q). (3.7)

(3) Due to the choice of ψ, the difference H̃ − ∇ψ belongs to the space

{Ȟ ∈ H(curl, Q) | div(μȞ) = 0, μȞ · ν = 0 on ∂Q}.

Proposition 9.7 in [41] consequently yields that H̃ − ∇ψ belongs to PH1(Q)3 with

‖H̃ − ∇ψ‖PH1(Q) ≤ C
(‖H̃ − ∇ψ‖L2(Q) + ‖curl H̃‖L2(Q)

)
.

Combining (3.6) and (3.7), we conclude ‖H̃‖PH1(Q) ≤ C‖(0, H̃)‖X1 . �
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We next establish piecewise H2-regularity for fields in X2. To that end, we start with the first compo-
nent of the magnetic field. Note that we only sketch the relevant arguments here, as we modify the proof
for Lemma 9.15 in [41] in a straightforward way, see also Lemma 3.7 in [21].

Lemma 3.2. Let (Ẽ, H̃) ∈ X2. Then H̃1 belongs to PH2(Q) with

‖H̃1‖PH2(Q) ≤ C‖(Ẽ, H̃)‖X2 ,

involving a uniform constant C = C(ε, μ,Q) > 0.

Proof. (1) We define

V := {ϕ ∈ PH1(Q) | [[μϕ]] = 0, ϕ = 0 on Γ1},

W := {ϕ ∈ V | ϕ(i) is smooth on Qi, supp(ϕ) ⊆ (−1, 1) × [0, 1] × [0, 1]}.

Note that W is dense in V in the norm of PH1(Q). We also use the subcuboids

Q1,n := (−1 + 1
n ,− 1

n ) × ( 1
n , 1 − 1

n )2, Q2,n := ( 1
n , 1 − 1

n )3,

for n ≥ 3. Moreover, we denote by Γ(i)
j,n, for j ∈ {1, 2, 3} and i ∈ {1, 2}, the boundary parts of Qi,n with

normal vector ej . We note that H̃ is H2-regular on Qi,n. (This is a consequence of curl curl H̃(i) ∈ L2(Qi)
and standard elliptic regularity theory.)

(2) Let ϕ ∈ W . Integrating by parts, we first obtain

2∑

i=1

∫

Qi

μ(i)(∇H̃(i)
1 ) · (∇ϕ(i))dx = lim

n→∞

2∑

i=1

⎛

⎜
⎝

∫

Qi,n

−μ(i)(ΔH̃(i)
1 )ϕ(i)dx +

∫

∂Qi,n

μ(i)(∇H̃(i)
1 · ν(i))ϕ(i)dσ

⎞

⎟
⎠ .

We next analyze the last summand on the right-hand side. Inserting curl H̃ and div(μH̃), we infer

2∑

i=1

∫

∂Qi,n

μ(i)(∇H̃(i)
1 · ν(i))ϕ(i)dσ =

2∑

i=1

⎛

⎜
⎜
⎝

∫

Γ
(i)
1,n

ν
(i)
1 (div(μH̃(i)) − μ∂2H̃

(i)
2 − μ∂3H̃

(i)
3 )ϕ(i)dσ

−
∫

Γ
(i)
2,n

μν
(i)
2 (curl H̃(i))3ϕ(i)dσ +

∫

Γ
(i)
3,n

μν
(i)
3 (curl H̃(i))2ϕ(i)dσ

+
∫

Γ
(i)
2,n

μν
(i)
2 (∂1H̃

(i)
2 )ϕ(i)dσ +

∫

Γ
(i)
3,n

μν
(i)
3 (∂1H̃

(i)
3 )ϕ(i)dσ

⎞

⎟
⎟
⎠ .

Taking the boundary condition curl H̃ × ν = 0 on ∂Q into account, the second and third integral terms
on the right-hand side converge to zero as n → ∞. Combining Green’s formula for curl with Lemma 9.14
in [41], one can moreover show that

lim
n→∞

2∑

i=1

⎛

⎜
⎜
⎝

∫

Γ
(i)
1,n

−ν
(i)
1 (μ∂2H̃

(i)
2 + μ∂3H̃

(i)
3 )ϕdσ +

∫

Γ
(i)
2,n

μν
(i)
2 (∂1H̃

(i)
2 )ϕdσ +

∫

Γ
(i)
3,n

μν
(i)
3 (∂1H̃

(i)
3 )ϕdσ

⎞

⎟
⎟
⎠ = 0.

Altogether, we conclude
2∑

i=1

∫

Qi

μ(i)(∇H̃(i)
1 ) · (∇ϕ(i))dx =

2∑

i=1

∫

Qi

−μ(i)(ΔH̃(i)
1 )ϕ(i)dx −

∫

Fint

[[ 1
μ div(μH̃)]]μϕdσ.
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By density of W in V , this formula is also valid for all ϕ ∈ V .
(3) We next use the Neumann–Laplacian ΔN on Fint

∼= (0, 1)2. Note that I − ΔN is positive definite
and self-adjoint on L2(Fint). As a result, it has well-defined positive definite and self-adjoint fractional
powers (I − ΔN )γ , γ > 0. The latter generate analytic semigroups (e−t(I−ΔN )γ

)t≥0.
Let χ : [−1, 1] → [0, 1] be a smooth cutoff function with χ = 1 on [−1/4, 1/4] and suppχ ⊂ [−1/2, 1/2].

We put

ψ(1)(x) := χ(x1)x1(e−x1(I−ΔN )1/2
g)(x2, x3), ψ(2)(x) := 0,

with g := −[[ 1
μ div(μH̃)]] ∈ H1/2(Fint) = D(I − ΔN )1/4. Similar arguments as in the proof of Lemma 4.1

then imply that ψ ∈ PH2(Q), ψ = 0 on Γ1 ∪ Fint, [[∇ψ · nint]] = −g, and

‖ψ‖PH2(Q) ≤ C‖g‖H1/2(Fint) ≤ C‖div(μH̃)‖PH1(Q),

with a uniform constant C > 0.
(4) Proposition 8.1 in [41] provides a function Ψ ∈ PH2(Q) with Ψ = 0 on Γ1, [[μΨ]] = 0 and

2∑

i=1

∫

Qi

μ(i)(∇Ψ(i)) · (∇ϕ(i))dx =
2∑

i=1

∫

Q

(
−μ(i)ΔH̃(i)

1 + μ(i)Δψ(i)
)

ϕ(i)dx, ϕ ∈ V.

By uniqueness, H̃1 = Ψ + ψ ∈ PH2(Q). The asserted energy estimate is a consequence of the estimate
in Proposition 8.1 for Ψ, the bound for ψ, and the identity curl curl H̃(i) = −ΔH̃(i) + ∇div H̃(i). �

We continue with the remaining magnetic field components.

Lemma 3.3. Let (Ẽ, H̃) ∈ X2. Then H̃2 and H̃3 belong to PH2(Q) with

‖(H̃2, H̃3)‖PH2(Q) ≤ C‖(Ẽ, H̃)‖X2 ,

involving a uniform constant C = C(ε, μ,Q) > 0.

Proof. In the presence of Lemmas 3.1–3.2, the proof for Lemma 9.16 in [41] implies also in our setting
that H̃2 and H̃3 are elements of PH2(Q) with

‖H̃j‖PH2(Q) ≤ C

(
2∑

i=1

‖ΔH̃(i)
j ‖L2(Qi) + ‖curl H̃‖PH1(Q) + ‖H̃1‖PH2(Q)

)

.

(Note here that (1
ε curl H̃, 0) ∈ X1.) Lemmas 3.1–3.2, as well as the identity curl curl H̃(i) = −ΔH̃(i) +

∇div H̃(i), then yield the asserted inequality. �

In view of Theorem 9.17 in [41], the electric field component of each vector (Ẽ, H̃) ∈ X2 is piecewise
H2-regular, and the PH2-norm can be estimated in terms of the X2-norm of (Ẽ, 0). We have consequently
established:

Proposition 3.4. The space X2 embeds continuously into PH2(Q)6.

3.3. Wellposedness of the shifted Maxwell system

Let Mi denote the part of M in X̂i for i ∈ {0, 1, 2} defined in Sect. 2, with the notation X̂2 := X2. We
first show that the domain of Mi coincides with Xi+1. This turns out to be useful for the formulation of
the wellposedness statements for (3.5).

Observe first that M(D(M) ∩ X̂0) ⊂ X̂0, and hence D(M0) = X1. We further note that D(M1) ⊂
D(M2)∩X̂1 by definition of X̂1. Additionally, M(D(M2)∩X̂1) ⊂ D(M)∩X̂1 = X̂1, and thus D(M1) = X2.
The remaining claim can be verified in the same way.
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We next derive wellposedness of the shifted Maxwell equations (3.5) in X̂0, X̂1, and X2 = X̂2. To that
end, we modify arguments in the proofs of Proposition 2.3 from [17] and Proposition 9.22 from [41].

Lemma 3.5. Let j ∈ {0, 1, 2}. The part Mj of M in X̂j generates a contractive C0-semigroup on X̂j. It
is the restriction of (etM)t≥0 to X̂j.

Proof. (1) We first deal with the case j = 0. It suffices to show that M0 is dissipative on X̂0. By the
Lumer–Phillips Theorem, M0 then generates a contractive strongly continuous semigroup on X̂0. Note
that Proposition 3.5 in [21] shows that M is skew-adjoint and generates a unitary C0-semigroup on
X0 = L2(Q)6. Due to the unique solvability of the shifted Maxwell equations, we then consequently infer
also the asserted restriction statement.

As M(D(M) ∩ X̂0) ⊂ X̂0, we conclude that (λI − M)−1 leaves X̂0 invariant for λ ∈ R \ {0}. Hence,
λI − M0 : D(M0) → X̂0 is bijective for λ ∈ R \ {0}.

Let (E,H) ∈ D(M0), and put (u, v) := M0(E,H). We denote by (·, ·)
X̂0

the canonical inner product
inducing the norm in (2.2). Note that div(εu) = div(μv) = 0 on Q, and [[εu · nint]] = 0. In view of the
skew-adjointness of M on X0, we then infer that (M0(E,H), (E,H))

X̂0
= 0, whence M0 is dissipative

and the asserted generator property is shown.
(2) We next restrict ourselves to the case j = 1, as the remaining one j = 2 can be obtained by a

straightforward modification. In view of subspace theory for semigroups, see Paragraph II.2.3 in [18], it
suffices to show that (etM)t≥0 leaves X̂1 invariant and that it is continuous on it. Let (u, v) ∈ X̂1, and
put (Ẽ(t), H̃(t)) := etM(u, v), t ≥ 0. Then (Ẽ, H̃) ∈ C([0,∞),D(M)) ∩ C1([0,∞), L2(Q)6) by standard
semigroup theory. The shifted Maxwell system furthermore leads to the formulas

∂t div(εẼ(t)) = div(curl H̃(t)) = 0, ∂t div(μH̃(t)) = −div(curl Ẽ(t)) = 0

in H−1(Q). This shows that

div(εẼ(i)(t)) = div(εu(i)) ∈ H1
00(Qi), div(μH̃(t)) = div(μv) ∈ PH1(Q).

Using the continuity of the normal trace operator from H(div, Q) into H−1/2(∂Q) and H−1/2(Fint), we
furthermore conclude in the same way

[[εẼ · nint]] = [[εu · nint]] ∈ H
3/2
0 (Fint), μH̃(t) · ν = 0 on ∂Q.

As a result, (Ẽ(t), H̃(t)) belongs to X̂1. The above arguments furthermore imply that (Ẽ, H̃) is an element
of C([0,∞), X̂1). �

Lemma 3.5 yields the following direct consequences for the inhomogeneous problem (3.3).

First-order regularity result. The first result is the shifted analogue of Theorem 2.3 and yields a classical
solution of the system (3.3).

Proposition 3.6. Let the initial values of the modified fields (3.2) satisfy (Ẽ0, H̃0) ∈ X1 and the current
from (3.4a) J̌ ∈ C1

(
[0, T ], X̂0) + C

(
[0, T ],X1). Then, there is a unique solution (Ẽ, H̃) ∈ C1([0, T ], X̂0) ∩

C([0, T ],X1) of (3.3). In addition, it holds the energy estimate
1∑

j=0

∥
∥(Ẽ, H̃)

∥
∥

Cj([0,T ],X1−j)
≤ C

(∥∥(Ẽ0, H̃0)
∥
∥

X1
+ (1 + T )

∥
∥J̌

∥
∥

C1([0,T ],X̂0)+C([0,T ],X1)

)

with a uniform constant C = C(ε, μ,Q) > 0.

Proof. By the standard results, see, e.g., Theorem 4.2.4, Corollaries 4.2.5 and 4.2.6 in [29], and the
condition on the initial value and the current J̌, we immediately obtain that there is a unique (classical)
solution which satisfies w(t) ∈ C1([0, T ], X̂0) ∩ C([0, T ],X1).
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For the energy estimates, we consider the variation-of-constants formula

w(t) = etM w0 −
t∫

0

e(t−s)M J̌(s) ds. (3.8)

Note that by the integration-by-parts formula, we can exchange spatial for temporal regularity via

M

t∫

0

e(t−s)M J̌(s) ds = etM J̌(0) − J̌(t) +

t∫

0

e(t−s)M J̌′(s) ds

in case of J̌ ∈ C1([0, T ], X̂0), and the energy estimate is shown. �
Second-order regularity result. Next, we turn to the shifted analogue of Theorem 2.5 which yields deriva-
tives up to order 2.

Proposition 3.7. Let the initial values of the modified fields (3.2) satisfy (Ẽ0, H̃0) ∈ X2 and the current
from (3.4a) J̌ ∈ C1

(
[0, T ], X̂1). Then, there is a unique solution (Ẽ, H̃) of (3.3) with

(Ẽ, H̃) ∈ C2
(
[0, T ], X̂0) ∩ C1

(
[0, T ], X̂1) ∩ C

(
[0, T ],X2).

In addition, it holds the energy estimate
2∑

j=0

∥
∥(Ẽ, H̃)

∥
∥

Cj([0,T ],X2−j)
≤ C

(∥∥(Ẽ0, H̃0)
∥
∥

X2
+ (1 + T )

∥
∥J̌

∥
∥

C1([0,T ],X̂1)

)

with a uniform constant C = C(ε, μ,Q) > 0.
Proof. By the standard results, we immediately obtain that there is a unique (classical) solution which
satisfies
w(t) ∈ C1([0, T ], X̂1) ∩ C([0, T ],X2).
The additional regularity in time of the solution follows from the identity

∂2
t

t∫

0

e(t−s)M J̌(s) ds = J̌′(t) + etM MJ̌(0) +

t∫

0

e(t−s)M MJ̌′(s) ds. (3.9)

In particular, we deduce from (3.8) and (3.9) the desired energy estimates. �
Higher-order regularity result. In the last wellposedness result, we establish solutions with derivatives
up to order 3, roughly speaking. This enables us to show Theorem 2.6.

Proposition 3.8. Let the initial values of the modified fields (3.2) satisfy (Ẽ0, H̃0) ∈ X3 and the current
from (3.4a) satisfy J̌ ∈ C1

(
[0, T ],X2

)
. Then, there is a unique solution (Ẽ, H̃) of (3.3) with

(Ẽ, H̃) ∈ C2
(
[0, T ], X̂1) ∩ C1

(
[0, T ],X2) ∩ C

(
[0, T ],X3).

If, in addition, the current satisfies J̌ ∈ C2
(
[0, T ],X0), then we further obtain (Ẽ, H̃) ∈ C3

(
[0, T ],X0),

and it holds the energy estimate
3∑

j=0

∥
∥(Ẽ, H̃)

∥
∥

Cj([0,T ],X3−j)
≤ C

(∥∥(Ẽ0, H̃0)
∥
∥

X3
+ (1 + T )

∥
∥J̌

∥
∥

C1([0,T ],X2)
+ (1 + T )

∥
∥J̌

∥
∥

C2([0,T ],X0)

)

with a uniform constant C = C(ε, μ,Q) > 0.

Proof. We obtain immediately the existence and uniqueness of a solution (Ẽ, H̃) ∈ C1
(
[0, T ],X2) ∩

C
(
[0, T ],X3), and we have to establish the additional regularity. For the differentiability in X1, we employ

(3.9), and the fact that M maps X2 to X̂1. The additional regularity of J̌, as well as the evolution equation
∂t(Ẽ, H̃) = M(Ẽ, H̃) + J̌, implies the desired regularity (Ẽ, H̃) ∈ C3([0, T ],X0). �
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4. Extension of the surface current

In this section, we establish the connection between the surface current jsurf and the volume currents J̌,
JE and JH, used in the transformation in Sect. 3.1. The results are essential to prove our main findings
presented in Sect. 2. To extend jsurf from the interface Fint to Q, we proceed in two steps. First, we provide
two stationary extension results in Sect. 4.1. (The proofs of the statements are postponed to Sect. 4.3.)
By means of our stationary findings, we can then establish time-dependent extension results in Sect. 4.2.

4.1. Stationary extension results

Our first extension statement is crucial to construct mappings JH and JE so that the tangential compo-
nents of the shifted fields H̃ and Ẽ from (3.2) are continuous across the interface Fint, see Sect. 3.1. In
view of the regularity results in Propositions 3.6–3.8, it is also important that the mapping J̌ from (3.4)
fulfills additional boundary, transmission, and regularity conditions. As a result, we furthermore study the
transmission relations of our extension operators. For the statements, recall the spaces X γ

j = D(−Δj)γ/2

from (2.4). For the sake of presentation, we denote by curl the piecewise defined curl-operator.

Lemma 4.1. There are bounded linear mappings L1 : X −1/2
3 ×X −1/2

2 → {0}×L2(Q)2 and L2 : X −3/2
3 ×

X −3/2
2 → {0} × L2(Q)2 satisfying the following statements.

a) Let v1 ∈ X 1/2
3 and v2 ∈ X 1/2

2 . Then

[[L1(v1, v2) × nint]] = (0, v1, v2), L1(v1, v2) · ν = 0 on ∂Q,

L2(v1, v2) ∈ H0(curl, Q), [[ 1
μ curlL2(v1, v2) × nint]] = −(0, v1, v2),

curlL2(v1, v2) · ν = 0 = ∇L2(v1, v2) · ν on ∂Q, L2(v1, v2) = 0 on Fint.

b) Let v1 ∈ X 3/2
3 and v2 ∈ X 3/2

2 . Then 1
ε curlL1(v1, v2) ∈ H0(curl, Q), and

[[1ε curl 1
μ curl L2(v1, v2) × nint]] = {{ 1

ε}}
⎛

⎝
0

−(−Δ2)1/2v2

(−Δ3)1/2v1

⎞

⎠ .

c) Let v1 ∈ X 5/2
3 and v2 ∈ X 5/2

2 . Then

[[ 1
μ curl 1

ε curl L1(v1, v2) × nint]] =
1
2

⎛

⎝
0

−{{ 1
εμ}}∂2 divFint

(v1, v2) + {{ ε
μ}}Δ3v1

−{{ 1
εμ}}∂3 divFint

(v1, v2) + {{ ε
μ}}Δ2v2

⎞

⎠ .

Additionally, L1 is bounded from X 5/2−j
3 × X 5/2−j

2 into {0} × ⋂3−j
l=0 PH l((−1, 1),X 3−j−l

2 × X 3−j−l
3 )

for j ∈ {0, 1, 2}. L2 is bounded from X 3/2−j
3 × X 3/2−j

2 into {0} × ⋂3−j
l=0 PH l((−1, 1),X 3−j−l

3 × X 3−j−l
2 )

for j ∈ {0, 1, 2}.

As indicated above, the mapping J̌ from (3.4) has to satisfy several transmission conditions to apply
the regularity results in Propositions 3.6–3.8. To account for the higher order transmission conditions and
to shift away the contributions from the operators L1 and L2 in Lemma 4.1b–c), we still need a second
stationary extension result.
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Lemma 4.2. There are bounded linear operators L̃1 : X −3/2
3 × X −3/2

2 → {0} × ⋂1
l=0 PH l((−1, 1),X 1−l

2 ×
X 1−l

3 ) and L̃2 : X −3/2
2 × X −3/2

3 → {0} × ⋂1
l=0 PH l((−1, 1),X 1−l

3 × X 1−l
2 ) with

L̃1(v1, v2) = 0 = curl L̃1(v1, v2) on Fint, L̃1(v1, v2) · ν = 0 on ∂Q,

[[ 1
μ curl 1

ε curl L̃1(v1, v2) × nint]] = (0, v1, v2), curl L̃1(v1, v2) × ν = 0 on ∂Q,

L̃2(v3, v4) = 0 = curl L̃2(v3, v4) on Fint, [[1ε curl 1
μ curl L̃2(v3, v4) × nint]] = (0, v3, v4)

L̃2(v3, v4) ∈ H0(curl, Q), curl L̃2(v3, v4) · ν = 0 on ∂Q,

for v1, v4 ∈ X 1/2
3 and v2, v3 ∈ X 1/2

2 . Moreover, both operators are bounded as mappings

L̃1 : X 1/2−j
3 × X 1/2−j

2 → {0} ×
3−j⋂

l=0

PH l((−1, 1),X 3−j−l
2 × X 3−j−l

3 ),

L̃2 : X 1/2−j
2 × X 1/2−j

3 → {0} ×
3−j⋂

l=0

PH l((−1, 1),X 3−j−l
3 × X 3−j−l

2 ),

for j ∈ {0, 1, 2}.
For the sake of readability, we move the proofs of Lemmas 4.1–4.2 to Sect. 4.3.

4.2. Time-dependent extension

The next three corollaries provide useful extension results for the surface current jsurf. The statements
are implications of Lemmas 4.1–4.2. Recall the function spaces VT,j , WT,j , YT,j , and ZT,j from (2.5),
(2.10), and (2.13).

Corollary 4.3. Let T > 0, j2
surf ∈ VT,3 and j3

surf ∈ VT,2. There is a function

JH =

⎛

⎝
0

JH,2

JH,3

⎞

⎠ ∈
1⋂

l=0

C1+l([0, T ], PH2−l(Q)3),

with [[JH(t)×nint]] = jsurf(t), and JH(t) · ν = 0 on ∂Q for t ∈ [0, T ]. Choosing JΣ = JE = 0, the function
J̌ from (3.4a) satisfies the conditions in Proposition 3.6. Moreover, the energy estimate

1∑

l=0

‖JH‖C1+l([0,T ],PH2−l(Q)) ≤ C‖(j2
surf, j

3
surf)‖VT,3×VT,2 ,

is valid with a uniform constant C = C(ε, μ,Q).

Proof. We choose JH := L1(j2
surf, j

3
surf). The statements then follow from Lemma 4.1 a) and by choosing

j = 2 in the addendum. �

For the next statement, we denote by ΔS the two-dimensional Laplacian on the square S = [0, 1]2.

Corollary 4.4. Let T > 0, j2
surf ∈ WT,3 and j3

surf ∈ WT,2. There are two functions

JH =

⎛

⎝
0

JH,2

JH,3

⎞

⎠ , JE =

⎛

⎝
0

JE,2

JE,3

⎞

⎠ ∈ C2([0, T ], PH2(Q)3),
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with curlJ(i)
H ∈ C1([0, T ],H1(Qi)3), ΔS curlJ(i)

H ∈ C1([0, T ], L2(Qi)3), and

[[JH(t) × nint]] = jsurf(t), JH(t) · ν = 0 on ∂Q, 1
ε curlJH(t) ∈ H0(curl, Q),

JE(t) ∈ H0(curl, Q), [[ 1
μ curlJE(t) × nint]] = −∂tjsurf(t), curlJE(t) · ν = 0 on ∂Q,

for t ∈ [0, T ]. Choosing JΣ = 0, the function J̌ from (3.4a) then satisfies the conditions from Proposi-
tion 3.7. Moreover, the estimate

‖(JH,JE)‖C2([0,T ],PH2(Q)) +
2∑

i=1

(‖∂1 curlJ(i)
H ‖C1([0,T ],H1(Qi)3) + ‖ΔS curlJ(i)

H ‖C1([0,T ],L2(Qi))

)

≤ C‖(j2
surf, j

3
surf)‖WT,3×WT,2 ,

is valid with a uniform constant C = C(ε, μ,Q).

Proof. We choose JH = L1(j2
surf, j

3
surf), and JE = L2(∂tj

2
surf, ∂tj

3
surf). Then all statements follow from

Lemma 4.1. (We choose j ∈ {1, 2} in the addendum of Lemma 4.1.) �

We finally provide an extension of jsurf that meets the conditions in Proposition 3.8. Recall also
Definition (2.15).

Corollary 4.5. Let T > 0, j2
surf ∈ YT,3, j3

surf ∈ YT,2, and divFint
jsurf ∈ C1([0, T ],H3/2

0 (Fint)). Let further

g :=
( 1

2{{ 1
εμ}}∂2 divFint

jsurf − 1
2{{ ε

μ}}Δj3
surf − ∂2

t j2
surf

1
2{{ 1

εμ}}∂3 divFint
jsurf − 1

2{{ ε
μ}}Δj2

surf − ∂2
t j3

surf

)
∈ ZT,1,

g̃ := {{1
ε}}

(−(−Δ2)1/2∂tj
3
surf

(−Δ3)1/2∂tj
2
surf

)
∈ ZT,2.

Then there are two functions

JH,JE ∈
2⋂

l=0

C1+l([0, T ], PH2−l(Q)3) ∩ C([0, T ],D(M̃3)),

satisfying the following properties. The statements in Corollary 4.4 are valid,

[[1ε curl 1
μ curlJE × nint]] = 0, [[ 1

μ curl 1
ε curlJH × nint]] = −∂2

t jsurf,

and the mapping J̌ from (3.4a) with JΣ = 0 satisfies the conditions in Proposition 3.8. The mappings
J̌,JH,JE can be estimated by

‖J̌‖C1([0,T ],X2) + ‖J̌‖C2([0,T ],X0) +
2∑

l=0

‖(JE,JH)‖C1+l([0,T ],PH2−l(Q)) + ‖(JE,JH)‖
C([0,T ],D(M̃3))

≤ C
(‖(j2

surf, j
3
surf)‖YT,3×YT,2 + ‖divFint

jsurf‖C1([0,T ],H
3/2
0 (Fint))

+ ‖g‖ZT,1 + ‖g̃‖ZT,2

)
,

with a uniform constant C = C(ε, μ,Q) > 0.

Proof. We choose JH = L1jsurf+L̃1g and JE = L2∂tjsurf−L̃2g̃. The asserted statements then follow from
Lemmas 4.1–4.2, as well as the relation [[curlJH · nint]] = divFint jsurf (with curl denoting the piecewise
defined curl-operator). �
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4.3. Proof of the stationary extension results

Proof of Lemma 4.1. In the following, we use ideas and arguments from [16,41]. Recall the Laplacians Δ2

and Δ3 on Fint from (2.3), as well as the notation X γ
j := D(−Δj)γ/2 from (2.4). Set α := min{1, ε(1)/ε(2)},

and let additionally χ : [−1, 1] → [0, 1] be a smooth cutoff function with suppχ ⊂ [− 3
4α, 3

4α] and χ = 1
on [− 1

2α, 1
2α].

(1) Let v1,1 ∈ X −1/2
3 , v1,2 ∈ X −1/2

2 , v2,1 ∈ X −3/2
3 , and v2,2 ∈ X −3/2

2 . We put Lj(vj,1, vj,2) :=
(0,Φj,2,Φj,3) for j ∈ {1, 2} with

Φ(2)
1,2(x) := −1

2
χ(x1)(−Δ2)1/4

(
e−ε(2)x1(−Δ2)

1/2
(−Δ2)−1/4v1,2

)
(x2, x3),

Φ(1)
1,2(x) := −Φ(2)

1,2(− ε(1)

ε(2) x1, x2, x3),

Φ(2)
1,3(x) :=

1
2
χ(x1)(−Δ3)1/4

(
e−ε(2)x1(−Δ3)

1/2
(−Δ3)−1/4v1,1

)
(x2, x3),

Φ(1)
1,3(x) := −Φ(2)

1,3(− ε(1)

ε(2) x1, x2, x3),

Φ(2)
2,2(x) := −μ(2)

2
χ(x1)x1(−Δ3)3/4

(
e−x1(−Δ3)

1/2
(−Δ3)−3/4v2,1

)
(x2, x3),

Φ(1)
2,2(x) := −μ(1)

μ(2)
Φ(2)

2,2(−x1, x2, x3),

Φ(2)
2,3(x) := −μ(2)

2
χ(x1)x1(−Δ2)3/4

(
e−x1(−Δ2)

1/2
(−Δ2)−3/4v2,2

)
(x2, x3),

Φ(1)
2,3(x) := −μ(1)

μ(2)
Φ(2)

2,3(−x1, x2, x3),

where Φ(2)
j,2 ,Φ(2)

j,3 are defined on (0,∞)×(0, 1)2, and Φ(1)
j,2 ,Φ(1)

j,3 are defined on (−∞, 0)×(0, 1)2 for j ∈ {1, 2}.

By Remark 2 in Section 6.1 of [27], L1 is then bounded from X −1/2
3 × X −1/2

2 into {0} × L2(Q)2.
Proposition 6.4 in [27] implies that L2 is bounded from X −3/2

3 × X −3/2
2 into {0} × L2(Q)2.

(2) Let now v1,2, v2,2 ∈ X 3/2
2 . We calculate

∂1Φ
(2)
1,2 =

1
2
( − χ′ + ε(2)χ(−Δ2)1/2

)(
e−ε(2)x1(−Δ2)

1/2
v1,2

)
,

∂2
1Φ(2)

1,2 =
1
2
( − χ′′ + 2ε(2)χ′(−Δ2)1/2 + (ε(2))2χΔ2

) · (
e−ε(2)x1(−Δ2)

1/2
v1,2

)
,

∂3
1Φ(2)

1,2 =
1
2
( − χ′′′ + 3ε(2)χ′′(−Δ2)1/2 + 3(ε(2))2χ′Δ2 + (ε(2))3χ(−Δ2)3/2

)

· (
e−ε(2)x1(−Δ2)

1/2
v1,2

)
,

∂1Φ
(2)
2,3 = −μ(2)

2
(
χ + x1χ

′ − x1χ(−Δ2)1/2
)(

e−x1(−Δ2)
1/2

v2,2

)
,

∂2
1Φ(2)

2,3 = −μ(2)

2
(
2χ′ + x1χ

′′ − 2χ(−Δ2)1/2 − 2x1χ
′(−Δ2)1/2 − x1χΔ2

)

· (
e−x1(−Δ2)

1/2
v2,2

)
,

∂3
1Φ(2)

2,3 = −μ(2)

2
(
3χ′′ + x1χ

′′′ − 6χ′(−Δ2)1/2 − 3x1χ
′′(−Δ2)1/2 − 3χΔ2 − 3x1χ

′Δ2

− x1χ(−Δ2)3/2
)(

e−x1(−Δ2)
1/2

v2,2

)
(4.1)
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on Q2. Using Proposition 6.4 in [27], we derive the estimates

3∑

l=0

1∫

0

‖∂l
1Φ

(2)
2,3(x1, ·)‖2

X 3−l
2

dx1

≤ C

1∫

0

‖Δ2 e−x1(−Δ2)
1/2

v2,2‖2
L2((0,1)2) + ‖x1(−Δ2)3/2 e−x1(−Δ2)

1/2
v2,2‖2

L2((0,1)2)dx1

≤ C‖v2,2‖X 3/2
2

.

Arguing similarly for the remaining mappings in the definition of L2, we conclude that L2 is bounded
from X 3/2

3 × X 3/2
2 to {0} × ⋂3

l=0 PH l((−1, 1),X 3−l
3 × X 3−l

2 ). The remaining boundedness statements for
L1 and L2 are obtained with analogous calculations.

(3) It remains to verify the asserted interface and boundary conditions. For v1,1, v2,1 ∈ X 1/2
3 and

v1,2, v2,2 ∈ X 1/2
2 , we calculate

[[L1(v1,1, v1,2) × nint]] =

⎛

⎜
⎝

0
Φ(2)

1,3(0, ·) − Φ(1)
1,3(0, ·)

−(Φ(2)
1,2(0, ·) − Φ(1)

1,2(0, ·))

⎞

⎟
⎠ =

⎛

⎝
0

v1,1

v1,2

⎞

⎠ , L2(v2,1, v2,2)|Fint = 0,

[[ 1
μ curl L2(v2,1, v2,2) × nint]] =

⎛

⎜
⎝

0
1

μ(2) ∂1Φ
(2)
2,2(0, ·) − 1

μ(1) ∂1Φ
(1)
2,2(0, ·)

1
μ(2) ∂1Φ

(2)
2,3(0, ·) − 1

μ(1) Φ
(1)
2,3(0, ·)

⎞

⎟
⎠ = −

⎛

⎝
0

v2,1

v2,2

⎞

⎠ .

We next combine the analyticity of the semigroups (e−s(−Δj)
1/2

)s≥0 for j ∈ {2, 3}, the choice of χ,
and Lemma 2.1 in [17]. In this way, we infer the identities

L1(v1,1, v1,2) · ν = 0, L2(v2,1, v2,2) × ν = 0, curlL2(v2,1, v2,2) · ν =

⎛

⎝
∂2Φ2,3 − ∂3Φ2,2

−∂1Φ2,3

∂1Φ2,2

⎞

⎠ = 0,

∇L2(v2,1, v2,2) · ν =

⎛

⎝
0

∂2Φ2,2

∂3Φ2,3

⎞

⎠ · ν = 0

on ∂Q. In case v1,1, v2,1 ∈ X 3/2
3 and v1,2, v2,2 ∈ X 3/2

2 , we furthermore infer

[[1ε curlL1(v1,1, v1,2) × nint]] =

⎛

⎜
⎝

0
1

ε(2) ∂1Φ
(2)
1,2(0, ·) − 1

ε(1) ∂1Φ
(1)
1,2(0, ·)

− 1
ε(1) ∂1Φ

(1)
1,3(0, ·) + 1

ε(2) ∂1Φ
(2)
1,3(0, ·)

⎞

⎟
⎠ = 0,

[[1ε curl 1
μ curlL2(v2,1, v2,2) × nint]] =

[[
⎛

⎝
0

− 1
εμ∂2

1Φ2,3
1
εμ∂2

1Φ2,2

⎞

⎠
]]

= {{ 1
ε}}

⎛

⎝
0

−(−Δ2)1/2v2,2

(−Δ3)1/2v2,1

⎞

⎠ ,

1
ε(i)

curlL1(v1,1, v1,2)(i) × ν =
1

ε(i)

⎛

⎜
⎝

∂2Φ
(i)
1,3 − ∂3Φ

(i)
1,2

−∂1Φ
(i)
1,3

∂1Φ
(i)
1,2

⎞

⎟
⎠ × ν = 0 on ∂Qi ∩ ∂Q, i ∈ {1, 2}.
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Let finally v1,1 ∈ X 5/2
3 and v2 ∈ X 5/2

2 . With Lemma 2.1 in [17] and (4.1), we then obtain

[[ 1
μ curl 1

ε curl L1(v1,1, v1,2) × nint]] =

⎛

⎝
0

− 1
2{{ 1

εμ}}∂2 divFint(v1,1, v1,2) + 1
2{{ ε

μ}}Δ3v1,1

− 1
2{{ 1

εμ}}∂3 divFint(v1,1, v1,2) + 1
2{{ ε

μ}}Δ2v1,2

⎞

⎠ .

�

Proof of Lemma 4.2. (1) We argue similarly as in the proof of Lemma 4.1, whence we only sketch our
reasoning. In particular, we use the smooth cutoff function χ from the proof for Lemma 4.1. Let v1, v4 ∈
X −3/2

3 and v2, v3 ∈ X −3/2
2 . Set L̃1(v1, v2) := (0,Φ1,2,Φ1,3) and L̃2(v3, v4) := (0,Φ2,2,Φ2,3) with

Φ(2)
1,2(x) := ε(2)μ(2)

2 χ(x1)x2
1(−Δ2)3/4

(
e−x1(−Δ2)

1/2
(−Δ2)−3/4v2

)
(x2, x3), Φ(1)

1,2 := 0,

Φ(2)
1,3(x) := − ε(2)μ(2)

2 χ(x1)x2
1(−Δ3)3/4

(
e−x1(−Δ3)

1/2
(−Δ3)−3/4v1

)
(x2, x3), Φ(1)

1,3 := 0,

Φ(2)
2,2(x) := ε(2)μ(2)

2 χ(x1)x2
1(−Δ3)3/4

(
e−x1(−Δ3)

1/2
(−Δ3)−3/4v4

)
(x2, x3), Φ(1)

2,2 := 0,

Φ(2)
2,3(x) := − ε(2)μ(2)

2 χ(x1)x2
1(−Δ2)3/4

(
e−x1(−Δ2)

1/2
(−Δ2)−3/4v3

)
(x2, x3), Φ(1)

2,3 := 0.

We calculate

∂1Φ
(2)
1,2 = ε(2)μ(2)

2

(
χ′x2

1 + 2x1χ − χx2
1(−Δ2)1/2

)
(−Δ2)3/4

(
e−x1(−Δ2)

1/2
(−Δ2)−3/4v2

)
,

∂2
1Φ(2)

1,2 = ε(2)μ(2)

2

(
χ′′x2

1 + 4x1χ
′ + 2χ − (2χ′x2

1 + 4χx1)(−Δ2)1/2

+ χx2
1(−Δ2)

)
(−Δ2)3/4

(
e−x1(−Δ2)

1/2
(−Δ2)−3/4v2

)
,

∂3
1Φ(2)

1,2 = ε(2)μ(2)

2

(
χ′′′x2

1 + 6x1χ
′′ + 6χ′ − (3χ′′x2

1 + 12χ′x1 + 6χ)(−Δ2)1/2

+ (3χ′x2
1 + 6χx1)(−Δ2) − χx2

1(−Δ2)3/2
)
(−Δ2)3/4

(
e−x1(−Δ2)

1/2
(−Δ2)−3/4v2

)
,

and analogously

∂1Φ
(2)
1,3 = − ε(2)μ(2)

2

(
χ′x2

1 + 2x1χ − χx2
1(−Δ3)1/2

)
(−Δ3)3/4

(
e−x1(−Δ3)

1/2
(−Δ3)−3/4v1

)
,

∂2
1Φ(2)

1,3 = − ε(2)μ(2)

2

(
χ′′x2

1 + 4x1χ
′ + 2χ − (2χ′x2

1 + 4χx1)(−Δ3)1/2

+ χx2
1(−Δ3)

)
(−Δ3)3/4

(
e−x1(−Δ3)

1/2
(−Δ3)−3/4v1

)
,

∂3
1Φ(2)

1,3 = − ε(2)μ(2)

2

(
χ′′′x2

1 + 6x1χ
′′ + 6χ′ − (3χ′′x2

1 + 12χ′x1 + 6χ)(−Δ3)1/2

+ (3χ′x2
1 + 6χx1)(−Δ3) − χx2

1(−Δ3)3/2
)
(−Δ3)3/4

(
e−x1(−Δ3)

1/2
(−Δ3)−3/4v1

)
.

Note that the derivatives of Φ(2)
2,2 and Φ(2)

2,3 have the same structure. By means of Proposition 6.4 in [27],
we then conclude the stated boundedness results for L̃1 and L̃2.

(2) Let v1 ∈ X 1/2
3 and v2 ∈ X 1/2

2 . We only analyze the traces of L̃1(v1, v2) at the interface and the
boundary faces. The mapping L̃2(v3, v4) can be handled in the same way. In the following, we combine
the analyticity of (e−x1(−Δj)

1/2
)x1≥0 with Lemma 2.1 in [17] several times. We then note the identities

x2
1(−Δ2) e−x1(−Δ2)

1/2
v2 = 0 = x1(−Δ2) e−x1(−Δ2)

1/2
(−Δ2)−1/2v2 = x1(−Δ2)1/2 e−x1(−Δ2)

1/2
v2,
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on Fint. Analogous statements are true for the summands in the formulas for ∂j
1Φ

(2)
1,3. Altogether, we

conclude

L̃1(v1, v2)(2) = 0 =

⎛

⎜
⎝

∂2Φ
(2)
1,3 − ∂3Φ

(2)
1,2

−∂1Φ
(2)
1,3

∂1Φ
(2)
1,2

⎞

⎟
⎠ = curl L̃1(v1, v2)(2),

1
μ(2)ε(2)

curl curl L̃1(v1, v2)(2) × nint =
1

μ(2)ε(2)

⎛

⎜
⎝

0
∂2∂3Φ

(2)
1,2 − ∂2

1Φ(2)
1,3 − ∂2

2Φ(2)
1,3

−(∂2∂3Φ
(2)
1,3 − ∂2

1Φ(2)
1,2 − ∂2

3Φ(2)
1,2)

⎞

⎟
⎠

=
1

μ(2)ε(2)

⎛

⎜
⎝

0
−∂2

1Φ(2)
1,3

∂2
1Φ(2)

1,2

⎞

⎟
⎠ =

⎛

⎝
0
v1

v2

⎞

⎠ ,

on Fint. On the boundary, the relations L̃1(v1, v2) · ν = 0, and curl L̃1(v1, v2) × ν = 0 are finally also
valid. �
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