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Abstract
1H NMR spectroscopy was applied to analyse samples of “Swabian–Hall Quality Pork” with protected geographical indica-
tion (PGI). To obtain maximum chemical information sample preparation was based on both polar extraction and non-polar 
extraction. A non-targeted approach was used to analyse the 1H NMR data followed by principal component analysis (PCA), 
linear discriminant analysis (LDA), and cross-validation (CV) embedded in a Monte Carlo (MC) resampling approach. A 
total of 275 raw pork samples were collected in the years 2018 to 2021. The correct prediction rate of “Swabian–Hall Quality 
Pork” was about 92% on average for both models based on either the polar or non-polar metabolites. In addition, 1H NMR 
data describing the polar and non-polar metabolites were combined in a classification model to improve the prediction accu-
racy. By performing a mid-level data fusion, a correct prediction rate of 98% was achieved. Furthermore, spectral regions 
in the NMR spectra of the polar and non-polar metabolites that are relevant for the classification of the pork samples were 
identified to describe potential chemical marker compounds.

Keywords 1H NMR spectroscopy · Meat authentication · Protected geographical indication · Swabian–Hall Quality Pork · 
Multivariate statistical analysis

Abbreviations
CV  Cross-validation
1H NMR  Proton nuclear magnetic resonance
LD  Linear discriminant function
LDA  Linear discriminant analysis
MC  Monte Carlo
NMC  Nearest class mean
NMR  Nuclear magnetic resonance
PCA  Principal component analysis
PGI  Protected geographical indication
PUFA  Polyunsaturated fatty acids
SHQ pork  Swabian–Hall Quality pork

TSP  3-(Trimethylsilyl)-propionic acid-d4 sodium 
salt

TMS  Tetramethylsilane

Introduction

The old German country pig breed “Swabian–Hall swine” 
was created in 1820 by crossing the native pig breed “Ger-
man Landrace” with the Chinese “Meishan” pig with the idea 
of increasing the fat content of the meat. In the 1950s, there 
was a high demand for Swabian–Hall swine due to the very 
good feed conversion and the exceptional fertility of the ani-
mals as well as the excellent tasting meat, which is due to 
the high proportion of fat as a flavor carrier [1, 2]. At that 
time, the pig population in the northern Württemberg (region 
of the German state Baden-Württemberg) consisted of 90% 
Swabian–Hall pigs. However, eating habits changed in the 
1960s. Leaner meat was preferred, resulting in a rapid decline 
in both breeding and demand of the Swabian–Hall pigs and, 
more generally, all high fat breeds [3, 4]. The Swabian–Hall 
Breeders Association, which is committed to the preserva-
tion of the old landrace, was founded in 1986. The Farmer 
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Producer Association of Swabian Hall, founded in 1988, offers 
pork that is produced according to binding producer guidelines 
and that exceed normal requirements. Many consumers ask 
for meat from animal-friendly husbandry, peasant agricul-
ture, and a regional value chain [1]. The founding motive and 
core element of the above mentioned producer association is 
the preservation of the endangered, traditional Swabian–Hall 
swine pig breed. Accordingly, the animals must come from 
the district Swabian–Hall, Hohenlohe, Main-Tauber, Ans-
bach, Ostalb, or Rems-Murr. Furthermore, all animals must be 
slaughtered at the producer slaughter house in Swabian–Hall 
[5]. The registration of “Swabian–Hall Quality Pork” as a pro-
tected geographical indication (PGI) in Europe in conjunc-
tion with a specification regulating production and origin was 
another milestone in marketing [6]. PGI of agricultural and 
food products requires that at least one stage of the produc-
tion process is performed within the defined geographical area 
[7–10]. Today, only about 1500 sows are registered for this 
breed. Without exception, these come from farms that belong 
to the Farmer Producer Association of Swabian Hall, which 
uses a control system that strictly monitors the quality of the 
feed given to the animals. Due to the higher production costs, 
prices for Swabian–Hall pork are about 20–30% higher than 
prices for “regular” pork depending on the amount of the aver-
age market price for pork (range between 1.10 and 1.50 EUR/
kg), on the individual cuts, and on the level of processing [2, 
11]. The increased demand and higher market prices make 
Swabian–Hall Quality (SHQ) pork an interesting commodity 
for food fraud. Conventionally produced pork meat can eas-
ily be mislabeled, because SHQ pork cannot easily be distin-
guished from conventionally produced pork. Thus, analytical 
methods are required to detect or prevent this potential fraud.

In the past, there have been some approaches to differenti-
ate between meat from different species or geographical ori-
gin. These studies used a combination of 1H NMR spectros-
copy (to obtain a “chemical fingerprint” of each sample) and 
multivariate statistical analysis, such as principal component 
analysis (PCA) and linear discriminant analysis (LDA) [12, 
13]. Here, 1H NMR spectroscopic analysis of the non-polar 
and polar metabolites of pork meat with multivariate data 
analysis was applied to distinguish between conventionally 
produced pork (non-SHQ pork) and SHQ pork produced 
according to binding producer guidelines for a controlled 
and species-appropriate production.

Materials and methods

Meat samples

A total of 285 raw meat samples were collected between 
2018 and 2021. Most of the samples were from the state of 
Baden-Württemberg, Germany, and were taken by official 

food inspectors of the German Federal State of Baden Würt-
temberg and the Farmer Producer Association of Swabian 
Hall. Other samples were obtained from local supermarkets 
and butchers. The samples included 180 non-SHQ pork sam-
ples and 105 SHQ pork samples. The samples included a 
variety of cuts as well as mince. A total of 275 meat samples 
(175 non-SHQ and 100 SHQ) were used for multivariate 
data analysis and establishment of the model. The remaining 
10 samples were used for external validation (5 non-SHQ 
and 5 SHQ). Table S1 provides an overall summary of the 
samples used. Information on sex, cut and origin can be 
found.

Chemicals

All reagents and standard compounds were of analyti-
cal or high-performance liquid chromatography grade. 
Sodium chloride, sodium dihydrogen phosphate (≥ 99.0%), 
3-(trimethylsilyl)-propionic acid-d4 sodium salt (TSP, 98.0% 
atom % D),  D2O (99.9% atom % D), methanol-d4 (99.9% 
atom % D), methanol (≥ 99.9%), and chloroform (≥ 99.8%) 
were obtained from Merck (Darmstadt, Germany). Deuter-
ated chloroform-d1 (≥ 99.8% atom % D) and the internal 
reference standard tetramethylsilane (TMS) were from Roth 
(Karlsruhe, Germany).

Sample preparation

Meat samples were freed from bones, rind, subcutaneous fat, 
and innards, mixed, freeze-dried, and ground in a cryomill 
(SamplePrep6870 Freezer Mill, C3 Process and Analysis 
Technology GmbH, Haar, Germany). Samples were stored 
at − 20 °C until being used.

Aqueous extraction Meat powder (500 mg) was extracted 
with 6 mL of water. After the samples were mixed on a test 
tube shaker (Multi Reax, Heidolph, Schwabach, Germany) 
for 10 min, samples were centrifuged at 3000 rpm (relative 
centrifugal force (RCF), 1690×g) for 15 min. The aqueous 
layer was passed through a syringe filter (Chromafil Xtra 
PET − 45/25, Macherey–Nagel, Düren, Germany) into a 
centrifuge tube. The 3 kDa ultrafiltration filter  (Vivaspin®, 
Sartorius, Göttingen, Germany) was rinsed three times 
with 2 mL of water each to remove glycerol (centrifugation 
for 10 min at 3000 rpm, relative centrifugal force (RCF), 
1690×g). After glycerol removal, 800 µL of the meat filtrate 
were transferred to the 3 kDa ultrafiltration filter, followed 
by centrifugation at 3000 rpm (relative centrifugal force 
(RCF), 1690×g) for 1.5 h. An aliquot of the filtrate (500 µL) 
was mixed with 250 µL of 3 M sodium dihydrogen phos-
phate buffer (pH 6), 75 µL of TSP (dissolved in deuterium 
oxide, 0.06 M). Finally, a 600 µL-aliquot was transferred to 
a 5-mm Boro 300–5-8 (Deutero, Bad Kreuznach, Germany) 
NMR tube.
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Fat extraction The meat powder (3 g) was extracted 
with 20 mL of a mixture of chloroform, methanol, and 
water (10:5:1, v/v/v). To improve mixing, glass beads 
were added, and the samples were mixed on a test tube 
shaker (Multi Reax, Heidolph, Schwabach, Germany) 
for 15 min. The suspension was passed through a filter 
(150 mm; Macherey Nagel, Düren, Germany), and 2 mL 
of 0.9% sodium chloride solution was added to the fil-
trate in a separation funnel. After three times shaking 
and a waiting time of 20 min complete phase separation 
was achieved. The organic phase was vaporised at 45 °C 
under a stream of nitrogen. An aliquot of the obtained lipid 
fraction (35 mg) was dissolved in 700 µL of a mixture of 
chloroform-d1 (containing 0.5% TMS) and methanol-d4 
(3:2, v/v); 600 µL of the solution were transferred into a 
5-mm Boro 300–5-8 NMR tube.

NMR measurements

All 1H NMR spectra were acquired on a Bruker 400 MHz 
AVANCE III HD NanoBay spectrometer (Bruker Biospin 
GmbH, Reinstetten, Germany) equipped with a 5-mm BBI 
(broadband inverse) probe and a Bruker automatic sam-
ple changer Sample Xpress. Temperature equilibration for 
each sample was 5 min.

Analysis of the aqueous extracts All 1H NMR spectra 
were recorded using a standard Bruker pulse program 
noesygppr1d_d7.eba with a relaxation delay (D1) of 
4 s and an acquisition time of 8 s. The one-dimensional 
NMR experiment was performed at 300 K with 128 k time 
domain data points, 128 scans, 4 dummy scans, a spectral 
width of 20.5617 ppm, and a receiver gain of 64.

Analysis of the non-polar extracts All 1H NMR spec-
tra were recorded using a standard Bruker pulse program 
zg30 with a relaxation delay (D1) of 4 s and an acquisition 
time of 8 s. The one-dimensional NMR experiment was 
performed at 290 K with 128 k time domain data points, 
128 scans, 2 dummy scans, spectral width of 20.0024 ppm, 
and a receiver gain of 45.2.

Processing The free induction decays obtained of both 
methods were processed with Bruker Biospin Topspin 
software (version 3.2). An exponential window function 
was applied, and line broadening was set to 0.3 Hz, fol-
lowed by a Fourier Transformation, spectral phasing, and 
baseline correction. Spectra were referenced to the TMS 
or TSP signal at 0 ppm.

All spectra were recorded under the same conditions. 
To ensure the quality of the spectra, the full width at half 
maximum of the internal reference signals (TSP and TMS) 
was determined. A limit of 1.2 Hz was set; if this was 
exceeded, the measurement or sample preparation had to 
be repeated.

Chemometric methods

Data reduction and pretreatment of the 1H NMR spectra 
Bucketing was performed for data reduction and to provide 
the input variables for the following statistical analysis.

Analysis of the non-polar extracts The spectral 
region 0.50–9.50 ppm was divided into 1000 equal seg-
ments, and the region around the signal of residual water 
(4.84–5.10 ppm) was excluded. Spectra were normalised 
to the signal of TSP (− 0.5 to 0.5 ppm). A pseudo-scaling 
effect was achieved by log transformation [14, 15].

Analysis of the non-polar extracts The spectral region 
0.50–6.8  ppm was divided into 2000 equal segments, 
and the regions around the methanol (3.32–3.41 ppm) 
and residual water (4.46–4.80  ppm) signals were 
excluded. Spectra were normalised to the signal region 
1.50–4.25  ppm. Again, a pseudo-scaling effect was 
achieved by a log transformation [14, 15]. NMR data 
were analysed using MATLAB version 2019b (The Math 
Works, Natick, MA, USA).

Multivariate statistical data analysis The potential to dif-
ferentiate pork meat using NMR data was validated using 
a combination of established multivariate statistical tools 
including PCA with LDA and multivariate analysis of vari-
ance within a cross-validation (CV) embedded in a Monte 
Carlo (MC) resampling approach [16, 17]. As classifica-
tion rule, a test set object was assigned to the class with 
minimum distance between test set object and respective 
class mean, that is, assignment according to the nearest class 
mean (NCM) [18].

Model building PCA/LDA and MC embedded CV 
(MCCV) 275 meat samples were used to build and validate 
the prediction model. 90% of these samples were used to 
build the model, and 10% of the samples were left out as an 
internal test set. A PCA was performed to reduce the dimen-
sions followed by LDA to get a maximum of class separation 
[19, 20]. The quality was assigned using the NCM. The dis-
tance between the object of the test set and the class means 
of the model set was compared and the group membership 
was assigned. To validate the predictivity of the PCA/LDA, 
a CV with ten randomly selected disjunct subsequent test 
sets was performed. To avoid any segmentation bias, CV 
was repeated 10 times with an MC resampling approach 
(MC = 10) with a new random segmentation for each CV 
step (i.e., tenfold randomised tenfold cross-validation). 
Finally, the rates of correct and false class predictions were 
calculated for each class to set up a confusion matrix.

Identification of possible marker compounds responsible 
for discrimination The PCA/LDA score and loading plots 
were plotted using the MATLAB version 2019b. By inter-
pretation of the loading plots, variables were extracted that 
mostly affect the discrimination or separation in the score 
plot.
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Mid-level data fusion Fusion of 1H NMR data of both the 
aqueous and non-polar extracts was investigated with a mid-
level data fusion approach using MATLAB version 2019b 
with Statistical Toolbox. First, the data sets consisting of 
275 samples were separately subjected to data pretreatment 
(bucketing, selection of relevant metabolites performed by 
solvent exclusion, normalization, and log transformation). 
PCA was then used to perform data reduction from each data 
matrix, resulting in the respective scores. In the next step, 
the PCA scores were fused, resulting in a joint data set. This 
data set was used to perform the LDA [21–23].

Results and discussion

NMR spectroscopy allows for the evaluation of hundreds 
of chemical compounds in a single experiment [18]. For 
the investigation of raw muscle meat by NMR, there are 
already studies that have identified numerous polar and non-
polar metabolites. Castejón's study identified 60 metabolites 
in an aqueous beef extract, 23 of them for the first time in 
NMR meat studies [12, 13, 28]. Representative one-dimen-
sional 1H NMR spectra of aqueous and non-polar (lipid) 
extracts of SHQ pork and non-SHQ pork are shown in Fig. 1. 
Meat fat is composed of two different major lipid classes: 
triglycerides as neutral lipids and charged phospholipids. 
Cholesterol and free fatty acids are also present in compa-
rably low concentrations [25, 26]. Polar metabolites of meat 
include numerous low molecular weight compound classes 
of high chemical diversity. The main classes are amino 
acids, organic acids, carbohydrates, purine derivatives, imi-
dazole dipeptides, quaternary ammonium compounds, and 
amino acid derivatives [28]. Closer inspection of the spectra 
(Fig. 1) reveals differences in the metabolite composition 
between SHQ pork and non-SHQ pork. As for example, in 
the aqueous extracts, the signal of α-alanine at 1.48 ppm 

shows differences between the two groups. In addition, dif-
ferences at 2.1–2.2 ppm and 2.3–2.4 ppm can be seen; within 
this range signals of the amino acids glutamine and glutamic 
acid can be found. In the low-field range, differences can be 
seen at 7.23 and 8.50 ppm, which can be attributed to the 
imidazole dipeptides anserine and carnosine. In the non-
polar extract, differences in phospholipid composition are 
demonstrated by the signal range 3.5–4.5 ppm.

Classification of pork meat by 1H NMR spectroscopy 
and combined multivariate statistical analysis

Figure 2 shows the results of the embedded MCCV as a 
confusion matrix of the obtained classification model for 
the non-polar (A) and polar (B) metabolites of the pork 
samples. For the LDA of data obtained from the non-polar 
metabolites, the scores of the first 15 dimensions of the PCA 
were used, describing 96.5% of the total variance of the data. 
The confusion matrix, in which classification accuracies are 
given in percent, demonstrates that the obtained model is 
suitable for the differentiation of SHQ pork and non-SHQ 
pork by analysis of the lipophilic metabolites: the accu-
racy of assignment to the correct class is between 91.4 and 
94.0%. The vast majority of non-SHQ pork samples (160 
samples of 175 samples) were assigned to the correct class 
using the embedded MCCV. A total of 13 non-SHQ samples 
were assigned to the false class in the entire MCCV, that is, 
in each MC run. Two non-SHQ pork samples were misclas-
sified only twice. Considering the SHQ pork samples, 94 out 
of 100 samples were assigned to the correct class, whereas 
six samples were assigned to the wrong class in the entire 
MCCV.

In the cloud model, the two groups are shown in a 95% 
confidence interval. The two groups of samples overlap 
slightly in the cluster model, which shows the first three 
linear discriminant functions. Figure 2A (bottom right) 

Fig. 1  Representative 1H NMR spectra of non-polar and aqueous extracts from non-SHQ pork (blue) and SHQ pork (turquoise)
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also shows that the majority of the 21 samples that were 
assigned to the incorrect class are located in the overlap-
ping area of the two clusters (red stars).

Figure 2B shows the results of the embedded MCCV 
and the obtained classification model based on the polar 
metabolites. The scores of the first 15 dimensions of the 
PCA, which describe 93.9% of the total variance of the 
data, were used for LDA. The confusion matrix demon-
strates that the model that is based on the polar metabolites 
is also suitable for the differentiation of SHQ pork and 
non-SHQ pork: the accuracy of assignment to the correct 
class is between 90.0 and 94.8%. Using embedded MCCV, 
166 of 175 non-SHQ samples were correctly classified. 
Five non-SHQ pork samples were assigned to the false 
class in all MC runs. The remaining non-SHQ pork sam-
ples were misclassified only once. Accordingly, 90 out of 
100 SHQ pork samples were assigned to the correct class, 
whereas six samples were assigned to the false class in 
the entire MCCV. Each of the remaining four samples was 
assigned to the non-SHQ class three times.

Just as shown for the non-polar metabolites, the two 
groups of samples form clusters that overlap slightly 
(Fig. 2B, top right). In addition, the scatter of the muscle 
meat samples differs within the two clusters. The SHQ 
pork samples scatter more distinctly than the non-SHQ 
samples. Again, most of the 19 samples (red stars, Fig. 2B, 

bottom right) that were incorrectly assigned are located in 
the overlapping area of the two clusters.

Classification‑relevant metabolites

Spectral regions of the 1H NMR spectrum that contain 
buckets with the greatest impact on the clustering of the 
respective sample set can be extracted from PCA/LDA 
loading plots (Fig. 3). Using the loadings, it was possible to 
identify signal regions in the 1H NMR spectra of the non-
polar metabolites that were responsible for the separation 
of the clusters (Fig. 3A) [20, 24]: the buckets in the range 
3.212/3.218 ppm are associated with the head group of 
phosphatidylcholine. These buckets correlate with negative 
score values of the non-SHQ pork group along LD 1 and, 
therefore, hold information for this group. In addition, the 
buckets at 4.006 and 3.596 ppm have high negative load-
ing values and also reflect phospholipids. The buckets at 
5.368/5.375 ppm correspond to protons involved in a double 
bond and thus represent unsaturated fatty acids. Further-
more, a cluster of numerous buckets is found in the region 
of 2.034 and 2.833 ppm. The former correspond to the signal 
of the methylene group adjacent to a double bond, whereas 
the latter represent polyunsaturated fatty acids (PUFA). 
Thus, it can be concluded that the contents of unsaturated 
fatty acids, especially PUFA, and phospholipids are higher 

Fig. 2  Results of embedded Monte Carlo cross-validation (MCCV) 
with respect to the performance of the obtained PCA–LDA based 
classification model for the prediction of non-SHQ pork (blue) and 
SHQ pork (turquoise). The analysed data were obtained from 1H 
NMR spectra of the non-polar metabolites (A) and polar metabolites 
(B). The left figures in A and B show the confusion matrices of the 
MCCV. The x-axis and the y-axis show the assigned class and the 
correct class. The confusion matrices provide information about false 

and true positive and negative sample classifications, respectively, 
given in percent. The figures on the right side in A and B show the 
discrimination space of a single cross-validation step. The training set 
(indicated as circles) for model building of each class is symbolised 
by its 95% confidence ellipsoid, and the test set samples are marked 
as squares. Samples that were incorrectly assigned are marked as red 
asterisks
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Fig. 3  A Two-dimensional 
PCA/LDA score plot of the 
sample group SHQ pork 
(turquoise) and non-SHQ pork 
(blue) and associated loading 
plot with the 1832 buckets used. 
The buckets with the highest 
positive or highest negative 
values along LD 1 are marked 
and correspond to signal regions 
in the 1H NMR spectrum of the 
non-polar metabolites that are 
more distinct in the respective 
sample group. B Two-dimen-
sional PCA/LDA score plot of 
the sample group SHQ pork 
(turquoise) and non-SHQ pork 
(blue) and associated loading 
plot with the 967 buckets used. 
The buckets with the highest 
positive or highest negative 
values along LD 1 are marked 
and correspond to signal regions 
in the 1H NMR spectrum of 
polar metabolites that are more 
distinct in the respective sample 
group

Fig. 4  Results of embedded Monte Carlo cross-validation (MCCV) 
with respect to the performance of the obtained PCA–LDA based 
classification model for the prediction of non-SHQ pork (blue) and 
SHQ pork (turquoise) after mid-level data fusion. Mid-level data 
fusion combined the scores of both methods generated by the previ-
ously performed PCA. A new classification model was generated for 
the prediction of non-SHQ pork (blue) and SHQ pork (turquoise). 
The left figure shows the confusion matrix of the MCCV. The x-axis 

and the y-axis show the assigned class and the correct class, respec-
tively. The confusion matrices provide information about false and 
true positive and negative sample classifications, respectively, given 
in percent. The figure on the right shows the discrimination space of a 
single cross-validation step. The training set (indicated as circles) for 
model construction of each class is symbolised by its 95% confidence 
ellipsoid, and the test set samples are indicated as squares
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in non-SHQ pork as compared to SHQ pork. In contrast, 
the high positive loading values along LD 1 correlate with 
the SHQ pork samples. Here, buckets were identified in the 
region of 1.257/1.263/1.269 ppm. These buckets represent 
the signal region of fatty acid methylene groups. Further-
more, the region at 0.885 ppm exhibits a positive loading 
value along LD 1. The signals of terminal methyl groups of 
fatty acids are found in this region.

These data suggest that SHQ pork and non-SHQ pork 
vary in their lipid composition. The fat fraction of SHQ pork 
is richer in saturated fatty acids and the percentage of phos-
pholipids in the total fat is lower; thus, the percentage of 
triglycerides appears to be higher. In general, the content of 
phospholipids in muscle meat is lower than the triglyceride 
content. Moreover, it remains relatively constant independ-
ent of the total fat content (lean vs. high-fat). However, the 
proportion of phospholipids in relation to the total lipid con-
tent can change due to the increased amounts of triglycerides 
[25]. Thus, if the degree of fatness of an animal increases, 
primarily only the fraction of triglycerides changes. The 
relative amount of phospholipids can vary from 10 to 50% 
(based on total lipid content) and depends on factors, such 
as the species, age of the animal, and feeding [26, 27]. Thus, 

the lipid fraction of non-SHQ samples is richer in unsatu-
rated fatty acids such as PUFA and the proportion of phos-
pholipids in relation to total fat content is higher. In addi-
tion, in the literature, SHQ pork has been described as being 
particularly rich in fat [1, 3, 4].

For the polar metabolites, buckets which are rel-
evant for class separation were identified in the range 
of 3.40–4.00  ppm (Fig.  3B). Buckets in the range of 
3.410–3.440  ppm showed high positive loading values 
for the non-SH pork samples. Since signals of a variety of 
metabolites such as α/β-glucose, proline, and taurine can 
be found in this range, an unambiguous identification was 
not possible [28]. For SHQ pork samples, the highest nega-
tive loading values for the buckets were obtained at 3.635, 
3.374 ppm, and 4.095 ppm. Again, unambiguous metabo-
lite identification was not possible due to numerous signal 
overlaps.

Mid‑level data fusion

Because the clusters slightly overlap in both classification 
models, a mid-level data fusion was performed using the 
275 spectra of each, the non-polar and polar metabolites. 

Fig. 5  External validation 
results of the classification 
model after mid-level data 
fusion (1H NMR data of polar 
and non-polar metabolites). 
The discrimination spaces of 
a single cross-validation step 
are shown. The training set for 
model construction of each 
class is symbolised by its 95% 
confidence ellipsoid, and the 
validation set samples are indi-
cated as red asterisks. The table 
below shows the corresponding 
p values. For the p value, if the 
p value is ≤ 0.05, the samples 
do not meet the specified 
significance level. A External 
validation for the SHQ pork 
class (turquoise), B external 
validation for the non-SHQ pork 
class
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Figure 4 describes the LDA based on the merged PCA scores 
of the two extraction methods. The classification accuracy, 
which was between 90 and 95% for the individual mod-
els, was improved by data fusion. By combining the data, 
the accuracy of assignment to the correct class is 97.3 and 
98.3%, respectively. Furthermore, the two group clusters 
do not overlap in the cloud model based on a confidence 
interval of 95%. As a result, less samples were incorrectly 
assigned. In total, only two samples were assigned to the 
wrong class in the entire MCCV. The remaining three sam-
ples were incorrectly assigned only once or twice.

The robustness was tested by applying the generated clas-
sification model to independent samples. A test set consist-
ing of five non-SHQ samples and five SHQ samples each 
was used for external validation. The test set samples were 
not previously involved in the model construction [22]. 1H 
NMR spectra of the lipophilic and hydrophilic metabolites, 
respectively, were acquired for the ten independent test sam-
ples. For both groups, the test set samples were assigned to 
the correct class, but two SHQ pork samples (sample 100, 
sample 101) were outside the 95% confidence ellipsoid 
(Fig. 5).

Conclusion

It is possible to differentiate between SHQ pork and non-
SHQ pork using 1H NMR spectroscopy in combination with 
multivariate data analysis. However, additional research is 
required to identify the polar metabolites that are responsible 
for discrimination. The developed methods demonstrate the 
power of this approach in the analysis of meat authentic-
ity. Potential applications include the differentiation of con-
ventional and organic meat and meat products. In addition, 
additional studies to differentiate samples with regard to the 
geographical origin or origin-protected meat products (pro-
tected designation of origin or PGI) appear to be promising.
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