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Abstract
In Haeser and Ramos (J Optim Theory Appl, 187:469–487, 2020), a generalization
of the normal cone from single objective to multiobjective optimization is introduced,
along with a weakest constraint qualification such that any local weak Pareto optimal
point is a weak Kuhn–Tucker point. We extend this approach to other generalizations
of the normal cone and correspondingweakest constraint qualifications, such that local
Pareto optimal points areweakKuhn–Tucker points, local proper Pareto optimal points
are weak and proper Kuhn–Tucker points, respectively, and strict local Pareto optimal
points of order one are weak, proper and strong Kuhn–Tucker points, respectively.
The constructions are based on an appropriate generalization of polarity to pairs of
matrices and vectors.

Keywords Generalized polar cone · Generalized bipolar cone · Multiobjective
stationarity condition · Multiobjective Kuhn–Tucker condition · Weakest constraint
qualification

Mathematics Subject Classification 90C29 · 90C46

1 Introduction

We consider multiobjective optimization problems (MOPs) of the form

min f (x) s.t. g(x) � 0, h(x) = 0 (M O P)
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with a vector-valued objective function f : R
n → R

m , a vector-valued inequality
constraint function g : R

n → R
p and a vector-valued equality constraint function

h : R
n → R

q , m ∈ N, p, q ∈ N0. All functions f , g and h are assumed to be
continuously differentiable. The feasible set of M O P will be denoted by

X = {x ∈ R
n | g(x) � 0, h(x) = 0}. (1)

In the present paper,� and< refer to the element-wise non-strict and strict inequalities
between vectors, and correspondingly we denote x � y, x �= y as x ≤ y for x, y ∈
R

m . The set

R
m
� = {d ∈ R

m | d � 0}

is called the natural ordering cone forR
m . Likewise, we defineR

m≥ andR
m
>. We denote

the Euclidean norm as ‖·‖.
In [17], a generalization of the normal cone from single objective to multiobjective

optimization is introduced, along with a weakest constraint qualification such that
any local weak Pareto optimal point is a weak Kuhn–Tucker point. The aim of the
present paper is to extend these results to weakest constraint qualifications for different
relevant types of local Pareto optimal points of M O P to fulfill appropriate types of
Kuhn–Tucker conditions.

In Sect. 2, we collect preliminaries about multiobjective optimality notions
(Sect. 2.1), stationarity notions (Sect. 2.2), and notions of Kuhn–Tucker points
(Sect. 2.3). We recall first-order necessary optimality conditions under the Abadie
constraint qualification in Sect. 2.4 and explain the Guignard constraint qualification
as the weakest constraint qualification from the single-objective case in Sect. 2.5. To
the best of the authors’ knowledge, some results from Sect. 2 have not been stated in
the literature so far.

Section 3 introduces natural generalizations of polarity to pairs of matrices and
vectors, which allow us to extend the notion of a multiobjective regular normal cone
from [17]. In Sect. 4, we use these constructions to define several types of multiobjec-
tive Guignard constraint qualifications, three of which turn out to be central concepts.
They are strictly stronger than the standard Guignard constraint qualification and, for
m < n, strictly weaker than the Abadie constraint qualification. Section5 shows that
they act as weakest constraint qualifications for relevant combinations of stationarity
concepts and Kuhn–Tucker notions. Section6 closes the article with final remarks. For
the readers’ convenience, some results on relations of local proper Pareto optimality
notions are discussed in an appendix.

2 Preliminaries

2.1 Optimality Notions

The single-objective notion of global optimality of a point x̄ ∈ X , namely that there is
no x ∈ X with f (x) < f (x̄), is transferred to the multiobjective setting by an appro-
priate generalization of the requirement that no ‘better’ feasible point exists. In this

123



Journal of Optimization Theory and Applications

paper, we focus on the case that the latter is modelled by the ordering relation induced
by the natural ordering cone R

m
� (see [8, 9, 20, 29] for more general constructions),

resulting in the notion of Pareto optimality (also called Pareto efficiency). Since in the
single-objective case global and local optimality of a point x̄ ∈ X may not only be
written as the (global or local, resp.) absence of points x ∈ X with f (x) < f (x̄), but
equivalently also as the absence of points x ∈ X with (in vector inequality notation)
f (x) � f (x̄) and f (x) �= f (x̄), one considers the following notions.

Definition 2.1 A feasible point x̄ ∈ X of M O P is called

(a) Weak Pareto optimal (x̄ ∈ W P O( f , X)), if there is no x ∈ X with f (x) < f (x̄),
(b) Local weak Pareto optimal (x̄ ∈ LW P O( f , X)), if there is a neighbourhood U

of x̄ such that x̄ ∈ W P O( f , X ∩ U ),
(c) Pareto optimal (x̄ ∈ P O( f , X)), if there is no x ∈ X with f (x) ≤ f (x̄),
(d) Local Pareto optimal (x̄ ∈ L P O( f , X)), if there is a neighbourhood U of x̄ such

that x̄ ∈ P O( f , X ∩ U ).

The inclusions P O( f , X) ⊆ W P O( f , X) and L P O( f , X) ⊆ LW P O( f , X)

are easily seen and, as opposed to the single-objective case, they may be strict.
Pareto optimality of a point x̄ ∈ X may be restated as the fact that for any x ∈ X any

improvement in one objective function (i.e. fi (x) < fi (x̄) for some i ∈ {1, . . . , m})
entails a deterioration in at least one other objective function (i.e. f j (x) > f j (x̄) for
some j ∈ {1, . . . , m}). In particular, for a decision maker, weak Pareto optimal points
which are not Pareto optimal are not desirable since an improvement in one objective
is possible without a deterioration in another. In their 1951 seminal paper [25], Kuhn
and Tucker argue that the Pareto optimality notion also covers points x̄ ∈ X for which
a first-order improvement in one objective function enforces only a second-order dete-
rioration in another objective function. This, however, may be undesirable for decision
makers who consider second-order deteriorations an acceptable consequence of first-
order improvements. They therefore suggest to also consider proper Pareto optimal
points in the sense that any first-order improvement of any objective function (in a
first order feasible direction) must entail a first-order deterioration of another. Their
proposal for an appropriate definition of this fact was subsequently complemented
by alternative proper Pareto optimality definitions by Klinger [24], Geoffrion [11],
Borwein [5], Benson [3], Henig [18] and Ishizuka-Tuan [19] (see [40] and [15] for an
overview). In the present paper, special attention will be paid to proper Pareto optimal
points in the sense of Geoffrion and Ishizuka-Tuan. Borwein andBenson proper Pareto
optimal points are briefly covered in Appendix A.

Definition 2.2 A feasible point x̄ ∈ X of M O P is called

(a) Geoffrion proper Pareto optimal (x̄ ∈ G P O( f , X)) if there is a scalar M > 0
such that for all x ∈ X and for all i ∈ {1, . . . , m} with fi (x) < fi (x̄) there exists
some j ∈ {1, . . . , m} with f j (x) > f j (x̄) and

fi (x̄) − fi (x)

f j (x) − f j (x̄)
� M,
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(b) Local Geoffrion proper Pareto optimal (x̄ ∈ LG P O( f , X)), if there is a neigh-
bourhood U of x̄ with x̄ ∈ G P O( f , X ∩ U ).

In the original definition from [11] also (local) Pareto optimality of the point x̄ ∈ X
is assumed. However, it is easily seen that this requirement is redundant, that is,
G P O( f , X) ⊆ P O( f , X) and LG P O( f , X) ⊆ L P O( f , X) hold.

Local Geoffrion proper Pareto optimality may be strengthend further to strict local
Pareto optimality of order one, as introduced by Jiménez [21].

Definition 2.3 A feasible point x̄ ∈ X of M O P is called strict local Pareto optimal of
order one (x̄ ∈ Str L P O(1, f , X)), if there exist a neighbourhood U of x̄ and α > 0
such that

( f (x) + R
m
�) ∩ B( f (x̄), α‖x − x̄‖) = ∅ ∀x ∈ X ∩ U \ {x̄}

holds.

Remark 2.1 In single-objective optimization, the elements of StrLPO(1, f , X) are also
called strong local minimal points [37] or strongly unique local minimal points [10,
13], so that it may appear natural to also speak of strong or strongly unique local Pareto
optimal points in the multiobjective case. In multiobjective optimization, however, the
terminologyof strongPareto optimal points commonly refers to the oneswhich possess
a neighbourhood U with f (x̄) � f (x) for all x ∈ X ∩ U [20].

In any case, without possible confusion strict local Pareto optimal points of order
one may alternatively be called strongly unique local Pareto optimal points, which
explains our below terminology of strongly stationary points (Definition 2.4) and
strong Kuhn–Tucker points (Definition 2.8).

Jiménez and Novo [22] prove that strict local Pareto optimality of order one is
stronger than a local proper Pareto optimality notion which is inspired by (global)
Borwein proper Pareto optimality. The latter is actually equivalent to local Geoffrion
proper Pareto optimality, which we show in Theorem A.1 in the appendix. Altogether
this yields the chain of inclusions

StrLPO(1, f , X) ⊆ LGPO( f , X) ⊆ LPO( f , X) ⊆ LWPO( f , X). (2)

2.2 Stationarity Notions

With the cones

C<( f , x̄) = {d ∈ R
n | ∇ f (x̄)
d < 0},

C≤( f , x̄) = {d ∈ R
n | ∇ f (x̄)
d ≤ 0},

C�( f , x̄) = {d ∈ R
n | ∇ f (x̄)
d � 0}
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of (potential) descent directions for all components of f at x̄ ∈ X and with the tangent
cone

T (X , x̄) = {d ∈ R
n | ∃t� ↘ 0, x� ∈ X : lim

�
(x� − x̄)/t� = d}

to X at x̄ ∈ X , we define the following stationarity conditions.

Definition 2.4 A feasible point x̄ ∈ X of M O P is called

(a) Weakly stationary (x̄ ∈ W St( f , X)) if C<( f , x̄) ∩ T (X , x̄) = ∅ holds,
(b) Properly stationary (x̄ ∈ P St( f , X)) if C≤( f , x̄) ∩ T (X , x̄) = ∅ holds,
(c) Strongly stationary (x̄ ∈ SSt( f , X)) if C�( f , x̄) ∩ T (X , x̄) = {0} holds.

The relations SSt( f , X) ⊆ P St( f , X) ⊆ W St( f , X) are clear from the defini-
tions. From [4, 36] it is known that any local weak Pareto optimal point is weakly
stationary, [19, Prop. 3.2] states that any local Goeffrion proper Pareto optimal point
is properly stationary, and [23, Th. 4.1] characterizes the strict local Pareto optimal
points of order one by strong stationarity. The following result reformulates these find-
ings in terms of our definitions. Part a is also shown in [17] by a different technique
of proof.

Proposition 2.1 The following relations hold.

(a) LW P O( f , X) ⊆ W St( f , X),
(b) LG P O( f , X) ⊆ P St( f , X),
(c) Str L P O(1, f , X) = SSt( f , X).

The combination of Proposition 2.1 with (2) yields

StrLPO(1, f , X) ⊆ LGPO( f , X) ⊆ LPO( f , X) ⊆ LWPO( f , X) ⊆ W St( f , X)

(3)

as well as

StrLPO(1, f , X) ⊆ LGPO( f , X) ⊆ PSt( f , X). (4)

Note that the inclusion L P O( f , X) ⊆ P St( f , X) does not hold in general.We call
local Pareto optima which are properly stationary local Ishizuka-Tuan proper Pareto
optima and define the corresponding set of points

LITPO( f , X) := PSt( f , X) ∩ LPO( f , X). (5)

There are local Pareto optima which are properly stationary but not local proper in
the sense of Geffrion. Therefore, the inclusion LG P O( f , X) ⊆ L I T P O( f , X) is in
general strict.

Remark 2.2 Points in L I T P O( f , X) were introduced by Ishizuka and Tuan [19]
under the name Kuhn–Tucker proper Pareto optima. These points are exactly those
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local Pareto optima in which there is no first-order decrease which is not offset by a
first-order increase in another objective. This was also the idea of Kuhn and Tucker for
which ‘improper’ points to exclude. In their seminal work [25], however, Kuhn and
Tucker use the linearization cone instead of the tangent cone, leading to a different and
in general stronger notion as will be discussed at the end of the next subsection. Since
the name Kuhn–Tucker proper Pareto optimality is associated in the literature with
the original notion of Kuhn–Tucker, we name the notion using the tangent cone after
Ishizuka-Tuan who, to our knowledge, first introduced it. Klinger [24] also excludes
improper points based on objective decreases of first order, but he considers only
directions in a strict subset of the tangent cone. As a consequence, local Klinger
proper Pareto optima are in general not properly but only weakly stationary.

In addition to the notion discussed here, Ishizuka and Tuan also introduced an
entirely different notion of proper Pareto optimality in the style of Borwein. The latter
is equivalent to a local notion by Borwein under the weak assumption of a pointed and
convex ordering cone with a compact base as shown in [22]. These solution concepts
are based on locality in the image space and are thus stronger than any based on locality
in the decision space. Consequently, they will not be discussed further here.

2.3 Notions of Kuhn–Tucker Points

As in the single-objective case (cf., e.g. [2, 16, 31] for details), also in multiobjective
optimization, the notion of (Karush–)Kuhn–Tucker points is based on the (weaker)
notion of Fritz-John points. For their statements, we use the index set A(x) = {i ∈
{1, . . . , p} | gi (x) = 0} of active inequality constraints at a point x ∈ X and denote
the vector of active inequality constraints at a point by gA. The Jacobian ∇gA(x) is
formed by the column vectors ∇gi (x), i ∈ A(x).

Definition 2.5 Apoint x̄ ∈ X is called aFritz-John point of M O P (x̄ ∈ F J ( f , g, h)),
if there exist λ ∈ R

m
�, μ ∈ R

|A(x̄)|
� and ν ∈ R

q with

(λ, μ, ν) �= (0, 0, 0) and ∇ f (x̄)λ + ∇gA(x̄)μ + ∇h(x̄)ν = 0.

In single-objective optimization, the notion of Fritz-John points is strengthened to
the notion of (Karush–)Kuhn–Tucker points by requiring that the (single) multiplier
of the objective function is positive. In contrast, in multiobjective optimization, the
vector λ of m objective function multipliers arises, so that one needs to distinguish
between the case where some of them are positive, i.e. λ ∈ R

m≥, and the case where all
of them are positive, i.e. λ ∈ R

m
>. Indeed, just like for the notion of optimality, there

is an ambiguity in the generalization from the single-objective to the multiobjective
setting. This leads to the following two notions of Kuhn–Tucker points which both
generalize the notion of Karush–Kuhn–Tucker points from the single-objective case.

Definition 2.6 A point x̄ ∈ X is called a weak Kuhn–Tucker point of M O P (x̄ ∈
K T≥( f , g, h)), if there exist λ ∈ R

m
�, μ ∈ R

|A(x̄)|
� and ν ∈ R

q with

λ ≥ 0 and ∇ f (x̄)λ + ∇gA(x̄)μ + ∇h(x̄)ν = 0.
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Definition 2.7 A point x̄ ∈ X is called a proper Kuhn–Tucker point of M O P (x̄ ∈
K T>( f , g, h)), if there exist λ ∈ R

m
�, μ ∈ R

|A(x̄)|
� , ν ∈ R

q with

λ > 0 and ∇ f (x̄)λ + ∇gA(x̄)μ + ∇h(x̄)ν = 0.

In addition, we introduce the following strengthened version of a proper Kuhn–
Tucker point.

Definition 2.8 A point x̄ ∈ X is called a strong Kuhn–Tucker point of M O P (x̄ ∈
K T�( f , g, h)), if rank(∇ f (x̄),∇gA(x̄),∇h(x̄)) = n holds and if there exist λ ∈ R

m
�,

μ ∈ R
|A(x̄)|
� , ν ∈ R

q with

λ > 0, μ > 0 and ∇ f (x̄)λ + ∇gA(x̄)μ + ∇h(x̄)ν = 0.

Our terminology weak, proper and strong Kuhn–Tucker points stems from
their relation to the above optimality and stationarity notions. The relations
K T�( f , g, h) ⊆ K T>( f , g, h) ⊆ K T≥( f , g, h) ⊆ F J ( f , g, h) are clear from
the definitions.

The subsequent characterizations of the three types of Kuhn–Tucker points will be
useful, where

L(g, h, x̄) = {d ∈ R
n | ∇gA(x̄)
d � 0,∇h(x̄)
d = 0}

denotes the linearization cone to X at x̄ ∈ X . The characterizations are shown by
Tucker’s theorem of the alternative [27]. We remark that the statement of part c is
stronger than the one in [12, Th. 3.4], where the equivalence is shown under the
general assumption of the full rank condition. However, the proof from [12] also
covers the stronger statement. A proof of the same result from the point of view of
linear semi-infinite programming is given in [10, Th. 3.1] and used in, e.g. [7, 13].

Proposition 2.2 The following assertions hold:

(a) x̄ ∈ K T≥( f , g, h) if and only if C<( f , x̄) ∩ L(g, h, x̄) = ∅,
(b) x̄ ∈ K T>( f , g, h) if and only if C≤( f , x̄) ∩ L(g, h, x̄) = ∅,
(c) x̄ ∈ K T�( f , g, h) if and only if C�( f , x̄) ∩ L(g, h, x̄) = {0}.

As already noted in Remark 2.2, Kuhn and Tucker [25] defined local proper Pareto
optimality not based on the tangent cone but based on the linearization cone. In fact,
the condition C≤( f , x̄) ∩ L(g, h, x̄) = ∅ from Proposition 2.2b is the one which they
require local proper Pareto optima to fulfill, in addition to being locally Pareto optimal.
The set of proper Pareto optimal points in the original sense of Kuhn and Tucker is
thus K T >( f , X) ∩ L P O( f , X).
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2.4 First-Order Necessary Optimality Conditions

Since the tangent cone T (X , x̄) at x̄ ∈ X may be a proper subset of the linearization
cone L(g, h, x̄), without some additional assumption, the combination of Propo-
sition 2.1 and Proposition 2.2 does not yield necessary optimality conditions of
the form LW P O( f , X) ⊆ K T≥( f , g, h), etc. Such an additional assumption is
the Abadie constraint qualification (ACQ) at x̄ ∈ X which requires the inclusion
L(g, h, x̄) ⊆ T (X , x̄). In the following result, let AC Q(X) denote the set of points
x̄ ∈ X at which ACQ holds.

Corollary 2.1 The following first-order necessary optimality conditions hold.

(a) LW P O( f , X) ∩ AC Q(X) ⊆ K T≥( f , g, h),
(b) L I T P O( f , X) ∩ AC Q(X) ⊆ K T>( f , g, h),
(c) LG P O( f , X) ∩ AC Q(X) ⊆ K T>( f , g, h),
(d) Str L P O(1, f , X) ∩ AC Q(X) ⊆ K T�( f , g, h).

The assertion of Corollary 2.1a was shown by Wang [38]. Earlier, Maruşciac [28]
gave a proof implicitly employing the ACQ, but he used the stronger Kuhn–Tucker
constraint qualification (KTCQ) in the statement of his theorem. More importantly,
his proof holds only for (global) weak Pareto optima. Singh [34] stated and proved
the assertion of part a also only for the global case. Interestingly, in the articles of
both Maruşciac and Singh, one finds without further discussion a quotation of a result
by Lin [26, Th. 5.1] on tangent vectors in the image space which would allow their
proofs to be extended to local weak Pareto optima. However, their quotations of Lin’s
correct result are false. Lin states his result only for images of locally weak minimal
elements of f (X) which is in general not true for all local weak Pareto optima, as a
counterexample by Wang [38] shows. A correction to Singh’s article has been issued
[35] which quotes Lin’s result only in the global case. Corollary 2.1b was shown by
Ishizuka and Tuan [19]. The assertion of Corollary 2.1c was stated by Haeser and
Ramos [17], while the result is also a corollary of Proposition 2.1b (originally shown
by Ishizuka and Tuan [19]) and part b. Similarly, part d is an immediate corollary of
Proposition 2.1c (originally shown by Jimenez and Novo [23]) but, to the best of our
knowledge, so far it has not been stated explicitly.

2.5 TheWeakest Constraint Qualification in Single-Objective Optimization

In single-objective optimization (m = 1), weak and proper stationarity of x̄ ∈ X for
f collapse to the condition

−∇ f (x̄) ∈ T ◦(X , x̄) =
{
v ∈ R

n | v
d � 0 ∀d ∈ T (X , x̄)
}

(6)

with the polar cone T ◦(X , x̄) of the tangent cone T (X , x̄). The Guignard constraint
qualification (GCQ) at x̄ ∈ X requires T ◦(X , x̄) ⊆ L◦(g, h, x̄), where the Farkas
lemma yields some explicit description of L◦(g, h, x̄). With it, one can show that each
local minimal point x̄ of f on X at which GCQ holds is a Karush–Kuhn–Tucker point.
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Fig. 1 Example for the gap
between multi- and
single-objective optimization

x1

x2

X

Since both T ◦(X , x̄) and L◦(g, h, x̄) are closed convex cones, the GCQ at x̄ can
equivalently be restated as L(g, h, x̄) ⊆ T ◦◦(X , x̄) with the bipolar cone T ◦◦(X , x̄)

of T (X , x̄). Thus, in view of T (X , x̄) ⊆ T ◦◦(X , x̄), the GCQ is weaker than the
ACQ at x̄ . Indeed, the GCQ is the weakest condition under which a point x̄ ∈ X is
a Karush–Kuhn–Tucker point for every at x̄ continuously differentiable function f
possessing x̄ as a local minimizer on X [14].

One might expect that analogously, in Corollary 2.1, one can replace the ACQ by
the GCQ. However, examples show that the inclusion LW P O( f , X) ∩ GC Q(X) ⊆
K T≥( f , g, h) does not hold in general, so that the GCQ is too weak to act as a
constraint qualification for local weak Pareto optimal points to be weak Kuhn–Tucker
points. This effect is known as the ‘gap’ between multiobjective and single-objective
optimization [1, 6, 39]. The following example covers the crucial aspect of the one
treated in [1, 6, 39], but with a somewhat simpler geometry and with an emphasis on
strict local Pareto optimal points of order one.

Example 2.1 Let ϕ : R → R be some function with ϕ(x) = 0 for all x � 0 and
ϕ(x) > 0 else. For example, choose the Ck-function ϕ(x) = (max{0, x})k+1, k ∈ N0,
or the C∞-function with ϕ(x) = 0, x � 0, and ϕ(x) = exp(−1/x), x > 0. Then,
ϕ(a)ϕ(b) � 0 is equivalent to min{a, b} � 0. Therefore, with g(x) := ϕ(−x1 −
2x2)ϕ(−2x1 − x2), the set X = {x ∈ R

2 | g(x) � 0} possesses the shape shown in
Fig. 1.

Due to∇g(x̄) = 0 at x̄ = 0 ∈ X , we have L(g, x̄) = R
2. Moreover, T (X , x̄) = X ,

T ◦(X , x̄) = {0} and T ◦◦(X , x̄) = R
2 = L(g, x̄) hold, so that X satisfies the GCQ

(but not the ACQ) at x̄ . At the same time, the function f (x) = x possesses a strict
local Pareto optimal point of order one at x̄ which is not even a weak Kuhn–Tucker
point.

Note that in the single-objective setting, the set X from Example 2.1 does not
provide a counterexample to the fact that the GCQ is the weakest condition under
which a point x̄ ∈ X is a Karush–Kuhn–Tucker point for every at x̄ continuously
differentiable function f possessing x̄ as a localminimizer on X , since no continuously
differentiable function f can possess x̄ as a local minimizer on X .
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3 Generalized Polarity and Stationarity

3.1 Motivation

To prepare the subsequent constructions, recall (e.g. from [32]) that the regular normal
cone to a set X at x̄ ∈ X can be defined as

N̂ (X , x̄) =
{

v ∈ R
n | lim sup

x→x̄,x∈X

v
(x − x̄)

‖x − x̄‖ � 0

}
,

and that it coincides with the polar cone T ◦(X , x̄) (cf. (6)) of the tangent cone T (X , x̄).
Therefore, the stationarity condition (6) for minimizing a C1-function f : X → R

1

may be rewritten as −∇ f (x̄) ∈ N̂ (X , x̄). We remark that our subsequent arguments
will solely rely on generalizations of the regular normal cone N̂ (X , x̄), but not on
the limiting construction N (X , x̄) = lim supx→x̄,x∈X N̂ (X , x̄) (cf., e.g. [30, 32] for
details on this normal cone).

In [17], the generalization

N̂ �>,m(X , x̄) =
{

V ∈ R
n×m | lim sup

x→x̄,x∈X
min

k=1,...,m

(vk)
(x − x̄)

‖x − x̄‖ � 0

}

of the regular normal cone in R
n to a matrix cone in R

n×m is introduced, where
the matrix V = (v1, . . . , vm) with columns vk ∈ R

n , k = 1, . . . , m, possesses the
dimensions of the Jacobian ∇ f (x̄) of the objective function f of M O P at x̄ . This
justifies to call N̂ �>,m(X , x̄) a ‘multiobjective regular normal cone’ although the vector
function f does not appear explicitly in its definition.

In [17, Th. 3.1], the identity

N̂ �>,m(X , x̄) =
{

V ∈ R
n×m | min

k=1,...,m
(vk)
d � 0 ∀d ∈ T (X , x̄)

}

is shown, which is reminiscent of the definition of a polar cone. Our subsequent
constructions are based on the ‘negative formulation’

N̂ �>,m(X , x̄) =
{

V ∈ R
n×m | V 
d �> 0 ∀d ∈ T (X , x̄)

}

of the latter description, which also explains our notation for this cone. Observe that,
while for m = 1 the set N̂ �>,m(X , x̄) collapses to the standard regular normal cone

N̂ �>,1(X , x̄) =
{
v ∈ R

n | v
d �> 0 ∀d ∈ T (X , x̄)
}

= N̂ (X , x̄),

the same is also true for the matrix cone

N̂�,m(X , x̄) =
{

V ∈ R
n×m | V 
d � 0 ∀d ∈ T (X , x̄)

}
,
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since the vector inequalities > and ≥ both generalize the scalar inequality >. In
addition, we define the matrix cone

N̂�,m(X , x̄) =
{

V ∈ R
n×m | V 
d � 0 ∀d ∈ T (X , x̄) \ {0}

}

as a generalization of the (possibly empty) cone

int N̂ (X , x̄) =
{
v ∈ R

n | v
d < 0 ∀d ∈ T (X , x̄) \ {0}
}

= N̂�,1(X , x̄).

These multiobjective regular normal cones satisfy the relations N̂�,m(X , x̄) ⊆
N̂�,m(X , x̄) ⊆ N̂ �>,m(X , x̄). The crucial observation for the following is that they
may be viewed as generalized polar cones of the tangent cone T (X , x̄), where differ-
ent generalizations of polarity come into play.

3.2 Definition of Generalized Polarity and Relations to Stationarity

Recall that the polar cone of a cone A ⊆ R
n is defined as A◦ = {v ∈ R

n | v
a �
0 ∀a ∈ A}. The negative formulation A◦ = {v ∈ R

n | v
a �> 0 ∀a ∈ A} of the polar
cone gives rise to its two natural generalizations

A �>,m =
{

V ∈ R
n×m | V 
a �> 0 ∀a ∈ A

}
,

A�,m =
{

V ∈ R
n×m | V 
a � 0 ∀a ∈ A

}
,

as well as to the introduction of the (possibly empty) matrix cone

A�,m =
{

V ∈ R
n×m | V 
a � 0 ∀a ∈ A \ {0}

}
.

The identities N̂ �>,m(X , x̄) = T �>,m(X , x̄), N̂�,m(X , x̄) = T �,m(X , x̄) and

N̂�,m(X , x̄) = T �,m
(X , x̄) imply the equivalences

−∇ f (x̄) ∈ N̂ �>,m(X , x̄) ⇔ C<( f , x̄) ∩ T (X , x̄) = ∅,

−∇ f (x̄) ∈ N̂�,m(X , x̄) ⇔ C≤( f , x̄) ∩ T (X , x̄) = ∅,

−∇ f (x̄) ∈ N̂�,m(X , x̄) ⇔ C�( f , x̄) ∩ T (X , x̄) = {0},

and therefore the alternative descriptions of the stationarity sets (Definition 2.4)

W St( f , X) = {x ∈ X | −∇ f (x) ∈ N̂ �>,m(X , x)}, (7)

PSt( f , X) = {x ∈ X | −∇ f (x) ∈ N̂�,m(X , x)}, (8)
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SSt( f , X) = {x ∈ X | −∇ f (x) ∈ N̂�,m(X , x)}. (9)

Likewise, the characterizations of the Kuhn–Tucker sets from Proposition 2.2 may
be rewritten as

K T ≥( f , g, h) = {x ∈ X | −∇ f (x) ∈ L �>,m(g, h, x)}, (10)

K T >( f , g, h) = {x ∈ X | −∇ f (x) ∈ L�,m(g, h, x)}, (11)

K T �( f , g, h) = {x ∈ X | −∇ f (x) ∈ L�,m
(g, h, x)}. (12)

3.3 Basic Properties of Generalized Polar Cones

The crucial properties of the three generalized normal cones stem from their polarity
structure. Therefore, in the following, we collect basic facts about the three generalized
polar cones of an arbitrary cone A ⊆ R

n .
For any cone A, the inclusions

A�,m ∪ {0} ⊆ A�,m ⊆ A �>,m (13)

are clear, and it is not hard to see that all three sets are cones. However, as opposed to
the standard polar cone A◦, neither of them is necessarily convex. This is illustrated by
the subsequent example which uses that, with any V from one of the three generalized
polar cones, also all matrices resulting from V by permutations of its columns lie in
the respective cone. Convex combinations of a matrix V and one of its permutations,
however, do not need to lie in the respective cone.

Example 3.1 For the cone X = {x ∈ R
2 | ϕ(−x1 − 2x2)ϕ(−2x1 − x2) � 0} from

Example 2.1, consider V 1 = (−e1,−e2) and V 2 = (−e2,−e1) with the first and
second unit vectors e1 and e2, respectively. Then, due to X\{0} ⊆ {x ∈ R

2 | x1 >

0 or x2 > 0}, for all x ∈ X , the relations −e

1 x < 0 or −e


2 x < 0 and, therefore,

V 1, V 2 ∈ X�,2 ⊆ X�,2 ⊆ X �>,2 hold. However, with the all-ones vector e and
the point x̄ = (−2, 1)
 ∈ X , the matrix V 3 = 1

2V 1 + 1
2V 2 = − 1

2 (e, e) satisfies

V 3 x̄ = 1
2e > 0 and, thus, V 3 ∈ (X �>,2)c ⊆ (X�,2)c ⊆ (X�,2

)c, where the notation
Ac refers to the complement of a set A. Consequently, none of the three generalized
polar cones of X is convex.

While the standard polar cone A◦ of a cone A ⊆ R
n is a closed set, for the general-

ized polar cones, we list the following properties. For their proofs, it will be convenient
that with the (n − 1)-dimensional unit sphere S

n−1 ⊆ R
n , we may alternatively write

A �>,m = {V ∈ R
n×m | V 
a �> 0 ∀a ∈ A ∩ S

n−1},
A�,m = {V ∈ R

n×m | V 
a � 0 ∀a ∈ A ∩ S
n−1},

A�,m = {V ∈ R
n×m | V 
a � 0 ∀a ∈ A ∩ S

n−1}.
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Proposition 3.1 For any cone A ⊆ R
n, the set A �>,m is closed, for any closed cone

A ⊆ R
n, the set A�,m is open, and in the case m � 2 even for closed cones A, the set

A�,m is in general neither open nor closed.

Proof The set complement of A �>,m coincides with the union of open sets
⋃

a∈A{V ∈
R

n×m | V 
a > 0}, which shows the closedness of A �>,m . This also covers the case
A = ∅ with the closed set A �>,m = R

n×m .

For A ⊆ {0}, the set A�,m = R
n×m is open, and for A � {0}, we may write

A�,m =
{

V ∈ R
n×m | max

a∈A∩Sn−1
min

k=1,...,m
(vk)
a < 0

}

with thenonempty and compact set A∩S
n−1 and the, for givenparameterV , continuous

function mink=1,...,m(vk)
a. Since the latter function is also continuous in V , so is
the optimal value function ϕ(V ) = maxa∈A∩Sn−1 mink=1,...,m(vk)
a, which proves

the openness of A�,m .
Finally, for the closed cone A = R� × {0} ⊆ R

2, the set

A�,2 = {V ∈ R
2×2 | V 
a � 0 ∀a ∈ A ∩ S

1} = {V ∈ R
2×2 | V 
e1 � 0}

= {V ∈ R
2×2 | (v11, v12)



� 0}

is neither open nor closed (where e1 denotes the first unit vector). ��

We remark that the openness of A�,m for a closed cone A implies

0 ∈ A�,m ⇐⇒ A�,m = R
n×m . (14)

Recall that, in the single-objective case, one may have ∇ f (x̄) = 0 at a constrained
locally minimal point, namely when the feasible set X may locally be replaced by
R

n . In the stationarity condition −∇ f (x̄) ∈ N̂ (X , x̄), this case is covered by the
property 0 ∈ N̂ (X , x̄). In the multiobjective setting, the generalized normal cones
contain strictly larger sets than {0} in the case that locally X can be replaced by R

n ,

except for the cone A�,m when m � n.

Proposition 3.2 For any cone A ⊆ R
n and m � 2, the following relations hold.

(a) A �>,m ⊇ (Rn) �>,m = {V ∈ R
n×m | ∃λ ≥ 0 : V λ = 0} � {0}.

(b) A�,m ⊇ (Rn)�,m = {V ∈ R
n×m | ∃λ > 0 : V λ = 0} � {0}.

(c) A�,m ⊇ (Rn)
�,m = {V ∈ R

n×m | rank(V ) = n and ∃λ > 0 :
V λ = 0}

{
� {0}, m > n,

= ∅, m � n.

Proof The first inclusions in all three assertions are clear from the definitions of the
generalized polar cones. To see the equation in part a, observe that any matrix V from
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(Rn) �>,m is characterized by the unsolvability of the system V 
y > 0 with y ∈ R
n .

By Gordan’s theorem [27], the latter is equivalent to the existence of some λ ≥ 0
with V λ = 0, which shows the assertion. The identity in part b is shown analogously,
with Stiemke’s theorem [27] in place of Gordan’s theorem, and the identity in part c is
shown with the arguments from the proof of [12, Th. 3.4]. To see the second inclusion
in parts a and b, choose V = (e1,−e1, 0, . . . , 0) with the first unit vector e1 ∈ R

n .
The second inclusion in part c for the case m > n is shown by the choice V =
(e1, . . . , en,−e, 0, . . . , 0), where e ∈ R

n denotes the all-ones vector. In the case
m � n, the condition rank(V ) = n can only be satisfied for m = n, and in this
case, the equation V λ = 0 can only be solved with λ = 0. This shows the remaining
assertion. ��
We remark that the combination of Proposition 3.2c with Proposition 2.1c and (9)
yields in particular that unconstrained strict local Pareto optimal points of order one
exist exactly in the case m > n. Moreover, for later use, let us introduce the following
definition.

Definition 3.1 We call a matrix V ∈ R
n×m starlike if rank(V ) = n holds and if there

exists some λ > 0 with V λ = 0.

In the proof of Proposition 3.2c, we have seen that in R
n×m starlike matrices exist

exactly in the case m > n. Moreover, by Stiemke’s theorem, the existence of some
λ > 0 with V λ = 0 is equivalent to the unsolvability of V 
y ≥ 0, y ∈ R

n , that is, to
V ∈ (Rn)�,m . Therefore, V is starlike if and only if rank(V ) = n and V ∈ (Rn)�,m

hold.

3.4 Geometrical Characterizations

For the geometrical intuition about generalized polar cones the following constructions
are useful. For any V ∈ R

n×m the set Γ�(V ) = {y ∈ R
n | V 
y � 0} is a polyhedral

cone. Subsequently, it will be important that it is described by m linear inequalities,
so that we refer to it as an m-polyhedral cone. With this notation, we have

A�,m = {V ∈ R
n×m | Γ�(V ) ∩ A = {0}}, (15)

and A�,m is nonempty if and only if Γ�(V ) ∩ A = {0} holds for some V ∈ R
n×m .

Example 3.2 Consider the cone A = R�×R
2 ⊆ R

3 andm = 2. Since no 2-polyhedral

cone in R
3 is pointed, the condition Γ�(V ) ∩ A = {0} is violated for any V ∈ R

3×2,

and A�,2 is empty.

For analogous characterizations of A�,m and A �>,m , observe that V ∈ A�,m and
V ∈ A �>,m hold if and only if the sets {y ∈ R

n | V 
y ≥ 0}∩ A and {y ∈ R
n | V 
y >

0} ∩ A are empty, respectively. With the (nonclosed) generalized m-polyhedral cones
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Γ≥(V ) = {y ∈ R
n | V 
y ≥ 0} and Γ>(V ) = {y ∈ R

n | V 
y > 0}, one may thus
write

A�,m = {V ∈ R
n×m | Γ≥(V ) ∩ A = ∅}, (16)

A �>,m = {V ∈ R
n×m | Γ>(V ) ∩ A = ∅}. (17)

Observe that for V ∈ R
n×m the lineality space of Γ�(V ) is the set Γ=(V ) = {y ∈

R
n | V 
y = 0}, so that

Γ≥(V ) = Γ�(V ) \ Γ=(V ) (18)

holds. Also note that Γ>(V ) = int Γ�(V ) only holds if V does not contain zero
vectors as columns.

4 Multiobjective Guignard Constraint Qualifications

4.1 Generalized Polar Cones of Matrix Cones

While for a cone A ⊆ R
n the generalized polar cones are matrix cones, we will also

consider generalized polar cones of suchmatrix cones. Indeed, for a cone B ofmatrices
in R

n×m we define the respective generalized polar cones

Bm,�> = {a ∈ R
n | V 
a �> 0 ∀V ∈ B},

Bm,� = {a ∈ R
n | V 
a � 0 ∀V ∈ B},

Bm,� = {a ∈ R
n | V 
a � 0 ∀V ∈ B \ {0}}

(where we use the notation Bm,�> rather than B �>,m , etc., to indicate that we ‘switch
back’ from matrix cones to cones in R

n). In analogy to (13), for any matrix cone B,
the relations

Bm,� ∪ {0} ⊆ Bm,� ⊆ Bm,�> (19)

are clear. It will be useful that with the notation from Sect. 3.4, they may be written as

Bm,�> = {a ∈ R
n | a /∈ Γ>(V )∀V ∈ B}, (20)

Bm,� = {a ∈ R
n | a /∈ Γ≥(V )∀V ∈ B}, (21)

Bm,� = {a ∈ R
n | a /∈ Γ�(V )∀V ∈ B \ {0}}. (22)

Lemma 4.1 The following relations hold for any cones A ⊆ R
n and B ⊆ R

n×m.

(a) A ⊆ Bm,�> ⇐⇒ B ⊆ A �>,m.
(b) A ⊆ Bm,� ⇐⇒ B ⊆ A�,m.
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(c) A \ {0} ⊆ Bm,� ⇐⇒ B \ {0} ⊆ A�,m.

Proof The proof of ⇒ in part a is trivial in the case B = ∅. Otherwise, choose some
V ∈ B. Then, for all a ∈ Bm,�>, we have V 
a �> 0. The condition A ⊆ Bm,�> implies
V 
a �> 0 for all a ∈ A and thus V ∈ A �>,m . The proof of ⇐ is trivial for A = ∅.
Otherwise, take some a ∈ A. Then, for all V ∈ A �>,m , we have V 
a �> 0. Under the
condition B ⊆ A �>,m , this yields V 
a �> 0 for all V ∈ B and thus a ∈ Bm,�>. While
the proofs of part b and c run along the same lines, note that for part c one needs to

account for 0 /∈ Bm,� and 0 /∈ A�,m . ��
The following result justifies the introduction of generalized polar cones of matrix

cones.

Lemma 4.2 For x̄ ∈ X, let −∇ f (x̄) ∈ B hold for some cone B ⊆ R
n×m. Then, the

following assertions hold.

(a) L(g, h, x̄) ⊆ Bm,�> implies x̄ ∈ K T≥( f , g, h).

(b) L(g, h, x̄) ⊆ Bm,� implies x̄ ∈ K T>( f , g, h).

(c) L(g, h, x̄)\{0} ⊆ Bm,� and ∇ f (x̄) �= 0 imply x̄ ∈ K T�( f , g, h).

(d) L(g, h, x̄) \ {0} ⊆ Bm,� and the openness of B imply x̄ ∈ K T�( f , g, h).

Proof For the proof of part a observe that, by Lemma 4.1a, the inclusion L(g, h, x̄) ⊆
Bm,�> is equivalent to B ⊆ L �>,m(g, h, x̄). The assumption−∇ f (x̄) ∈ B thus implies
−∇ f (x̄) ∈ L �>,m(g, h, x̄), and (10) yields the assertion. The proof of part b runs along
the same lines, using Lemma 4.1b, −∇ f (x̄) ∈ L�,m(X , x̄), and (11).

In the proof of part c, Lemma 4.1c yields B \{0} ⊆ L�,m
(X , x̄), so that−∇ f (x̄) ∈

B\{0} provides −∇ f (x̄) ∈ L�,m
(X , x̄), and (12) proves the assertion. The assertion

of part d follows from c in the case ∇ f (x̄) �= 0. Otherwise, in analogy to (14), the

condition 0 = −∇ f (x̄) ∈ B implies B = R
n×m . The set Bm,� = (Rn×m)

m,� = {a ∈
R

n | V 
a � 0 ∀V ∈ R
n×m\{0}} is empty, since it clearly does not contain a = 0 and

since for any a �= 0 the matrix V = ae
 �= 0 satisfies V 
a = ‖a‖2e > 0. Therefore,

under L(g, h, x̄) \ {0} ⊆ Bm,� we obtain L(g, h, x̄) = {0}, and the statement follows
in view of (12). ��

4.2 Generalized Bipolar Cones

The combinations of the stationarity conditions (7), (8) and (9) with the assertions
from Lemma 4.2 allow us to formulate nine conditions under which a stationary
point of one of the three considered types is a Kuhn–Tucker point of one of its
three considered types. For example, with the choice B = N̂ �>,m(X , x̄), the condi-

tion L(g, h, x̄) ⊆ N̂ m,�>
�>,m (X , x̄) guarantees that a weakly stationary point x̄ is a weak

Kuhn–Tucker point. The condition L(g, h, x̄) ⊆ N̂ m,�>
�>,m (X , x̄) is thus a constraint qual-

ification. In view of N̂ m,�>
�>,m (X , x̄) = (T �>,m)m,�>(X , x̄), it is actually reminiscent of the

Guignard constraint qualification L(g, h, x̄) ⊆ T ◦◦(X , x̄) from the single-objective

123



Journal of Optimization Theory and Applications

case, where the standard bipolar cone T ◦◦(X , x̄) of T (X , x̄) is replaced by the gener-
alized bipolar cone (T �>,m)m,�>(X , x̄).

The mentioned nine conditions rely on nine corresponding generalized bipolar
cones, whose properties will play a crucial role in the sequel. For their investigation,
we will use the following explicit descriptions which are based on the concept of
generalized m-polyhedral cones from Sect. 3.4.

Lemma 4.3 For any closed cone A ⊆ R
n, the following assertions hold.

(a) (A �>,m)m,�> = {d ∈ R
n | ∃ V ∈ R

n×m : Γ>(V ) ∩ A = ∅, d ∈ Γ>(V )}c,

(b) (A�,m)m,�> = {d ∈ R
n | ∃ V ∈ R

n×m : Γ≥(V ) ∩ A = ∅, d ∈ Γ>(V )}c,

(c) (A�,m
)m,�> = {d ∈ R

n | ∃ V ∈ R
n×m : Γ�(V ) ∩ A = {0}, d ∈ Γ>(V )}c,

(d) (A �>,m)m,� = {d ∈ R
n | ∃ V ∈ R

n×m : Γ>(V ) ∩ A = ∅, d ∈ Γ≥(V )}c,

(e) (A�,m)m,� = {d ∈ R
n | ∃ V ∈ R

n×m : Γ≥(V ) ∩ A = ∅, d ∈ Γ≥(V )}c,

(f) (A�,m
)m,� = {d ∈ R

n | ∃ V ∈ R
n×m : Γ�(V ) ∩ A = {0}, d ∈ Γ≥(V )}c,

(g) (A �>,m)
m,� = {d ∈ R

n | ∃ V ∈ R
n×m\{0} : Γ>(V ) ∩ A = ∅, d ∈ Γ�(V )}c,

(h) (A�,m)
m,� = {d ∈ R

n | ∃ V ∈ R
n×m\{0} : Γ≥(V ) ∩ A = ∅, d ∈ Γ�(V )}c,

(i) (A�,m
)
m,� = {d ∈ R

n | ∃ V ∈ R
n×m\{0} : Γ�(V ) ∩ A = {0}, d ∈ Γ�(V )}c.

Proof Choose some d /∈ (A �>,m)m,�>. By (20), this is equivalent to the existence of
some V ∈ A �>,m with d ∈ Γ>(V ). In view of (17), the latter means that there exists
some V ∈ R

n×m with Γ>(V ) ∩ A = ∅ and d ∈ Γ>(V ). This shows the assertion of
part a. The other eight assertions are shown analogously, by appropriate combinations
of (20), (21) and (22) with (15), (16) and (17), respectively. ��

4.3 Definition of Multiobjective Guignard Constraint Qualifications

Theconstraint qualifications L(g, h, x̄) ⊆ N̂ m,�>
�>,m (X , x̄) and L(g, h, x̄) ⊆ N̂

m,�
�>,m (X , x̄)

were introduced and studied by Haeser and Ramos [17]. More generally, Lemma 4.2
allows to formulate seven Guignard-type constraint qualifications for M O P as well
as two conditions involving the objective function. These are not proper constraint

qualifications, but rather regularity conditions. Let M OGC Q
m,�
�>,m (X) denote the set

of x̄ ∈ X at which L(g, h, x̄) ⊆ N̂
m,�
�>,m (X , x̄) holds, etc. For the proofs of Theo-

rem 4.1g, h and i with Lemma 4.2c and d, respectively, note that by Proposition 3.1,
the cones N̂ �>,m(X , x̄) and N̂�,m(X , x̄) are in general not open, while N̂�,m(X , x̄) is.

Theorem 4.1 The following assertions hold.

(a) W St( f , X) ∩ M OGC Qm,�>
�>,m(X) ⊆ K T≥( f , g, h).

(b) P St( f , X) ∩ M OGC Qm,�>
�,m

(X) ⊆ K T≥( f , g, h).

(c) SSt( f , X) ∩ M OGC Qm,�>
�,m

(X) ⊆ K T≥( f , g, h).

123



Journal of Optimization Theory and Applications

Table 1 Attributions of MOGCQs to stationarity and Kuhn–Tucker notions

W St( f , X) PSt( f , X) SSt( f , X)

KT≥( f , g, h) MOGCQm,�>
�>,m MOGCQm,�>

�,m
MOGCQm,�>

�,m

KT>( f , g, h) MOGCQ
m,�
�,m

MOGCQ
m,�

�,m

KT�( f , g, h) MOGCQ
m,�

�,m

(d) W St( f , X) ∩ M OGC Q
m,�
�>,m (X) ⊆ K T>( f , g, h).

(e) P St( f , X) ∩ M OGC Q
m,�
�,m

(X) ⊆ K T>( f , g, h).

(f) SSt( f , X) ∩ M OGC Q
m,�

�,m
(X) ⊆ K T>( f , g, h).

(g) W St( f , X) ∩ M OGC Q
m,�
�>,m (X) ∩ {x̄ ∈ X | ∇ f (x̄) �= 0} ⊆ K T�( f , g, h).

(h) P St( f , X) ∩ M OGC Q
m,�

�,m
(X) ∩ {x̄ ∈ X | ∇ f (x̄) �= 0} ⊆ K T�( f , g, h).

(i) SSt( f , X) ∩ M OGC Q
m,�

�,m
(X) ⊆ K T�( f , g, h).

By Proposition 2.1c, the set SSt( f , X) can be replaced by Str L P O(1, f , X) in
Theorem 4.1c, f and i. Moreover, the combination of (3) and (4) with the results
of Theorem 4.1a, b, d, e, g and h, respectively, shows that the MOGCQs can be
applied to stronger optimality notions while yielding the same Kuhn–Tucker proper-
ties. For example, Theorem 4.1a and (3) yield LW P O( f , X)∩ M OGC Q(X)

m,�>
�>,m ⊆

K T ≥( f , g, h), which is also shown in [17, Th. 4.1]. Analogously, Theorem 4.1d and

(3) imply LW P O( f , X) ∩ M OGC Q(X)
m,�
�>,m ⊆ K T>( f , g, h), which Haeser and

Ramos show in [17, Th. 4.2]. They point out, however, that for m > 1, the under-

lying constraint qualification L(g, h, x̄) ⊆ N̂
m,�
�>,m (X , x̄) is too strong for practical

applications, since it is not even implied by LICQ at x̄ ∈ X .
The latter observation is not surprising, since simple examples show that local weak

Pareto optimal points which are not local Geoffrion proper Pareto optimal may only be
expected to be strong Kuhn–Tucker points under rather strong additional assumptions.
Similar reasoning yields that the two regularity conditions from Theorem 4.1g and h
are too strong to be relevant for applications. Therefore, we will not consider the three
conditions from Theorem 4.1d, g and h any further in this paper. The attributions of
the remaining six MOGCQs to stationarity and Kuhn–Tucker notions, as stated in
Theorem 4.1, are visualized in Table 1.

The most ‘natural’ of the six remaining constraint qualifications are the ones from
Theorem 4.1a, e and i, which use the same generalized polarity type twice. For easier
reference, we denote them as follows.
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Table 2 Straightforward
inclusions between generalized
bipolar cones

(A �>,m )m,�> ⊆ (A�,m )m,�> ⊆ (A�,m
)m,�>

⊆ ⊆

(A�,m )m,� ⊆ (A�,m
)m,�

⊆

(A�,m
)
m,� ∪ {0}

Definition 4.1 At x̄ ∈ X , we call

(a) L(g, h, x̄) ⊆ N̂ m,�>
�>,m (X , x̄) the weak multiobjective Guignard constraint qualifica-

tion (WMOGCQ),

(b) L(g, h, x̄) ⊆ N̂
m,�
�,m

(X , x̄) the proper multiobjective Guignard constraint qualifi-

cation (PMOGCQ),

(c) L(g, h, x̄) \ {0} ⊆ N̂
m,�

�,m
(X , x̄) the strong multiobjective Guignard constraint

qualification (SMOGCQ).

As already mentioned, the WMOGCQ was introduced in [17].
While the remaining three constraint qualifications fromTheorem4.1b, c and f yield

weaker results like a sufficient condition for proper stationary local Pareto optimal
points to be weak Kuhn–Tucker points, such results are potentially helpful in applica-
tions. Rather than naming them, subsequently, we will refer to them as MOGCQm,�>

�,m
,

MOGCQm,�>
�,m

and MOGCQ
m,�

�,m
, respectively. In fact, the next section will show that

they coincide with natural MOGCQs.

4.4 Relations Between theMultiobjective Guignard Constraint Qualifications

For any cone A ⊆ R
n , the inclusions in Table 2 are clear from (13) and (19). Therefore,

the inclusions M OGC Qm,�>
�>,m(X) ⊆ M OGC Qm,�>

�,m
(X), etc., hold.

In the following, we will clarify which of the inclusions from Table 2 are actually
identities, and which ones may hold strictly.

Lemma 4.4

(a) For any nonempty closed cone A ⊆ R
n, the identity (A �>,m)m,�> = (A�,m)m,�>

holds.
(b) For any nonempty closed cone A ⊆ R

n, the identities (A�,m
)
m,� ∪ {0} =

(A�,m
)m,� and (A�,m

)m,� = (A�,m
)m,�> hold.

(c) There exists a closed cone A ⊆ R
3 with (A�,2)2,� � (A�,2)2,�>.

(d) There exists a closed cone A ⊆ R
3 with A�,2 �= ∅, (A�,2)2,�> � (A�,2

)2,�> and

(A�,2)2,� � (A�,2
)2,�.
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Proof In view of Table 2, for the proof of part a, it remains to show the inclusion
(A �>,m)m,�> ⊇ (A�,m)m,�>. Let d /∈ (A �>,m)m,�>. Then, there is a V ∈ R

n×m such that

min
j

(v j )
a � 0 ∀ a ∈ A (23)

and
V 
d > 0 (24)

hold. From V , we will construct a matrix Ṽ ∈ A�,m with Ṽ 
d > 0, which shows
d /∈ (A�,m)m,�> and completes the proof of part a.

Indeed, for all k ∈ {1, . . . , m}, we define

ṽk := vk − ε
∑
j �=k

v j (25)

with some 0 < ε < 1/m which is sufficiently small to guarantee, together with (24),

(̃vk)
d = (vk)
d − ε
∑
j �=k

(v j )
d > 0, k = 1, . . . , m,

that is, Ṽ 
d > 0. It remains to show Ṽ ∈ A�,m .
To this end, for any a ∈ A, we need to show that either min j (̃v

j )
a < 0 or
Ṽ 
a = 0 hold. Indeed, for given a ∈ A, choose some k ∈ {1, . . . , m} with (vk)
a =
min j (v

j )
a. By (23), we have (vk)
a � 0.
Case 1: (vk)
a < 0.
The choice of k and ε < 1/m yield

(̃vk)
a = (vk)
a − ε
∑
j �=k

(v j )
a � (vk)
a (1 − (m − 1)ε) < (vk)
a/m < 0,

and therefore min j (̃v
j )
a < 0.

Case 2: (vk)
a = 0.
Case 2.1: ∃ j �= k : (v j )
a > (vk)
a.
Under the present assumption, one obtains

(̃vk)
a = (vk)
a − ε
∑
j �=k

(v j )
a < (vk)
a (1 − (m − 1)ε) = 0,

and therefore min j (̃v
j )
a < 0.

Case 2.2: ∀ j �= k : (v j )
a = (vk)
a.
In this case, we have V 
a = 0 which, by the definition of Ṽ in (25), implies

Ṽ 
a = 0.
Altogether, this shows Ṽ ∈ A�,m .
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Due to Table 2, for the proof of the two assertions in part b, it is sufficient to show

(A�,m
)
m,� ∪ {0} ⊇ (A�,m

)m,�>. Let d /∈ (A�,m
)
m,� and d �= 0. Then, there exists

some V ∈ A�,m with V 
d � 0. Since A�,m is open by Proposition 3.1, for all

sufficiently small ε, we have Ṽ := V + εde
 ∈ A�,m . Moreover, d �= 0 implies

Ṽ 
d = V 
d + εe‖d‖2 > 0 for any ε > 0, which shows d /∈ (A�,m
)m,�>.

For the proof of part c, let A1 = {a ∈ R
3 | a2

1 + (a2 − a3)2 � a2
3 , a1 � 0, a3 � 0},

A2 = {a ∈ R
3 | (−2,−1, 0)a � 0 or (−1,−2, 0)a � 0} (which equals X × R with

the set X from Example 2.1) and A = A1 ∪ A2. A1 is a convex closed cone, A2 is
a nonconvex closed cone, and so is A. We will prove the assertion by showing that
d = −e1 lies in (A�,2)2,�>, but not in (A�,2)2,�.

Indeed, to show d /∈ (A�,2)2,�, consider V = (−e1,−e2) ∈ R
3×2. The condition

Γ≥(V ) ∩ A2 = ∅ is clear from the shape of A2 so that in view of (16), we have

V ∈ (A2)
�,2. Moreover, since a2 � 0 holds for all a ∈ A1, V 
a = −a ≥ 0 implies

a2 = 0 and a1 < 0. However, a ∈ A1 with a2 = 0 requires a2
1 � a2

3 − (−a3)2 = 0,

i.e. a1 = 0, a contradiction. Therefore, we also have V ∈ (A1)
�,2 and, altogether,

V ∈ A�,2. From V 
d = e1 ≥ 0, we thus obtain d /∈ (A�,2)2,�.
It remains to show d ∈ (A�,2)2,�>. Assume that this is not the case. Then, by

Lemma 4.3b, there exists some Ṽ ∈ R
3×2 with Γ≥(Ṽ ) ∩ A = ∅ and d ∈ Γ>(Ṽ ).

From Γ≥(Ṽ ) ∩ A2 = ∅, one obtains firstly Γ=(Ṽ ) = {02} × R (where 02 denotes the
zero vector in R

2), implying

ṽ13 = ṽ23 = 0, (26)

and secondly

ṽ12 � 2ṽ11, ṽ22 � 1
2 ṽ

2
1 (27)

(or the same inequalities with switched vectors ṽ1, ṽ2; w.l.o.g. we shall consider the
first case). Moreover, the condition 0 < Ṽ T d = (−ṽ11,−ṽ21)


 yields

ṽ11, ṽ
2
1 < 0 (28)

and, in combination with (27), also

ṽ12 < 0. (29)

The condition Γ≥(Ṽ ) ∩ A = ∅ also implies that all a ∈ A1 satisfy Ṽ 
a � 0. This

holds in particular for all points a� =
(
− 1

�
, 1 −

√
1 − 1

�2
, 1

)

, � ∈ N, for which

a� ∈ A1 is easily seen. In view of (26), we thus have

0 � Ṽ 
a� =
⎛
⎝ṽ11(− 1

�
) + ṽ12(1 −

√
1 − 1

�2
)

ṽ21(− 1
�
) + ṽ22(1 −

√
1 − 1

�2
)

⎞
⎠ (30)
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for all � ∈ N. For all sufficiently large �, the second entry in (30) satisfies

ṽ21(− 1
�
) + ṽ22(1 −

√
1 − 1

�2
) � ṽ21

(
− 1

�
+ 1

2 (1 −
√
1 − 1

�2
)
)

> 0

where the first inequality is due to (27), and the second inequality follows from (28)
and the negativity of the second factor for sufficiently large � (the latter can be derived

from lim�

(
� − √

�2 − 1
)

= 0).

For sufficiently large � (30) can therefore only hold if the first entry is negative.
Together with (28) and (29), we obtain

0 < ṽ11 /̃v
1
2 < �(1 −

√
1 − 1

�2
) = � −

√
�2 − 1.

Since ṽ11 /̃v
1
2 cannot be positive and simultaneously bounded above by terms which

converge to zero for � → ∞, we have arrived at a contradiction. We have thus shown
d ∈ (A�,2)2,�>, which completes the proof of part c.

For the proof of part d, consider the nonempty closed cone A = (R2
� \ R

2
>)× R ⊆

R
3. The matrix V̄ =

⎛
⎝

−1 −1
−1 −1
−1 1

⎞
⎠ satisfies Γ�(V̄ ) ∩ A = {0}, so that A�,2 �= ∅

holds in view of (15). In the following, we will show that the vector d = (1, 1, 0)


lies in (A�,2
)2,�>, but not in (A�,2)2,�>, which shows the strictness of the inclusion

(A�,2)2,�> ⊆ (A�,2
)2,�>. In fact, the matrix V =

⎛
⎝

−1 2
2 −1
0 0

⎞
⎠ satisfies Γ≥(V )∩ A = ∅

and V 
d > 0 so that Lemma 4.3b yields d /∈ (A�,2)2,�>. Assume that also d /∈
(A�,2

)2,�> holds. Then, by Lemma 4.3c, there exists some Ṽ ∈ R
3×2 with Γ�(Ṽ ) ∩

A = {0} and Ṽ 
d > 0. On the other hand, due to the shape of A, any matrix Ṽ with
Ṽ 
d > 0 satisfies Γ=(Ṽ ) = {02} × R ⊆ A. This rules out Γ�(Ṽ ) ∩ A = {0} and,
thus, implies d ∈ (A�,2

)2,�>.
To see the third assertion (A�,2)2,� � (A�,2

)2,�, note that Table 2, the sec-

ond assertion of part d and part b yield (A�,2)2,� ⊆ (A�,2)2,�> � (A�,2
)2,�> =

(A�,2
)2,�. ��

Table 3 illustrates how the results fromLemma 4.4 improve the straighforward ones
from Table 2. As seen in Lemma 4.4c,d, the three remaining inclusions are in general

not identities, not even under the condition A�,m �= ∅.
The choice A = T (X , x̄) in Lemma 4.4 a,b,d and Table 3 yields the following

result.

Theorem 4.2 The following assertions hold.

(a) At any x̄ ∈ X the WMOGCQ coincides with the MOGCQm,�>
�,m

.
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Table 3 Inclusions and
identities between generalized
bipolar cones

(A �>,m )m,�> = (A�,m )m,�> ⊆ (A�,m
)m,�>

⊆ =

(A�,m )m,� ⊆ (A�,m
)m,�

=

(A�,m
)
m,� ∪ {0}

(b) At any x̄ ∈ X the SMOGCQ coincides with the MOGCQ
m,�

�,m
and the MOGCQm,�>

�,m
.

(c) At any x̄ ∈ X the PMOGCQ is stronger than the WMOGCQ.
(d) At any x̄ ∈ X the WMOGCQ is stronger than the SMOGCQ. An example with

n = 3, m = 2 and N̂�,2(X , x̄) �= ∅ exists, for which at some x̄ ∈ X both, the

WMOGCQ and the PMOGCQ, are strictly stronger than the SMOGCQ.

Proof For the proof of part d, consider the closed cone X = (R2
�\R

2
>) × R = {x ∈

R
3 | g(x) � 0}with g(x) = (x1x2,−x1,−x2)
. At x̄ = 0, we have T (X , x̄) = X , so

that from the proof of Lemma 4.4d, we know ∅ �= X�,2 = N̂�,2(X , x̄). Furthermore,

∇g(x̄) = (0,−e1,−e2) yields L(g, h, x̄) = R
2
� × R, so that L(g, h, x̄) contains the

vector d̄ = (1, 1, 0)
. In the proof of Lemma 4.4d, we have seen d̄ /∈ (X�,2)2,�> =
N̂ 2,�>

�,2
(X , x̄) and, hence, by Theorem 4.2a, the WMOGCQ is violated at x̄ .

Finally, due to the shape of T (X , x̄), for each d ∈ L(g, h, x̄) and V ∈ R
3×2,

Γ≥(V ) ∩ T (X , x̄) = ∅ and d ∈ Γ>(V ) imply Γ=(V ) = {02} × R ⊆ T (X , x̄), so that

for no d ∈ L(g, h, x̄) there is a V ∈ T �,2
(X , x̄) with d ∈ Γ>(V ). Consequently, the

SMOGCQ L(g, h, x̄) ⊆ (T �,2
)2,�>(X , x̄) = N̂ 2,�>

�,2
(X , x̄) holds at x̄ . ��

From Lemma 4.4c, one may expect that, in analogy to Theorem 4.2d, in part c, an
example with n = 3, m = 2 exists, for which at some x̄ ∈ X , the PMOGCQ is strictly
stronger than the WMOGCQ. While such an example may exist, unfortunately, it
cannot be constructed from the example in Lemma 4.4c, since there the closed cone A

is neither contained in a halfspace, nor does (A�,2)2,�> = R
3 hold. On the other hand,

L(g, h, x̄) is either contained in a halfspace or coincides with R
3, so that the choice

A = T (X , x̄) requires that either also A ⊆ L(g, h, x̄) is contained in a halfspace, or the
validity of the WMOGCQ at x̄ means R

3 = L(g, h, x̄) ⊆ N̂ 2,�>
�,2

(X , x̄) = (A�,2)2,�>.
We postpone the construction of such an example, or the proof that the WMOGCQ
and the PMOGCQ coincide, to future research.

Table 4 illustrates how the results from Theorem 4.2a and b improve Table 1.
Theorem 4.2d shows that even in the case N̂�,m(X , x̄) �= ∅ both, the PMOGCQ and

the WMOGCQ, are strictly stronger than the SMOGCQ.
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Table 4 Improved attributions of MOGCQs to stationarity and Kuhn–Tucker notions

W St( f , X) P St( f , X) SSt( f , X)

K T ≥( f , g, h) W M OGC Q W M OGC Q ⇒
� SM OGC Q

⇑
K T >( f , g, h) P M OGC Q ⇒

� SM OGC Q

K T �( f , g, h) SM OGC Q

4.5 Relations to the Standard Guignard Constraint Qualification

This section clarifies how the three MOGCQs are related to the standard GCQ.

Lemma 4.5 For any nonempty cone A ⊆ R
n, the following assertions hold.

(a) The inclusion (A�,m)m,�> ⊆ A◦◦ is true, and there exists a closed cone A for which
it is satisfied strictly.

(b) For A�,m �= ∅ also (A�,m
)m,�> ⊆ A◦◦ is true, and there exists a closed cone A

for which the inclusion is satisfied strictly.

(c) For A�,m = ∅, one may have (A�,m
)m,�> �⊆ A◦◦, even for a closed convex cone

A.

Proof The first assertion in part a is trivially satisfied in the case A◦◦ = R
n . Otherwise,

choose some d /∈ A◦◦. Then, there exists some v ∈ R
n with v
d > 0 and v
a � 0

for all a ∈ A. The matrix V = ve
 (with e denoting the all-ones vector) thus satisfies
V 
d > 0 and V 
a � 0 for all a ∈ A, which implies V ∈ A�,m . Since we have

constructed a matrix V ∈ A�,m with V 
d > 0, we have shown d /∈ (A�,m)m,�> and,
therefore, (A�,m)m,�> ⊆ A◦◦.

An example for the second assertion of part a is given by the closed cone A := X

from Example 2.1. It satisfies A◦◦ = R
2. Assume, on the other hand,−e ∈ (A�,2)2,�>.

Then, all V ∈ A�,2 fulfill V 
e �< 0. However, in Example 3.1 we have seen that the
matrix V = (−e1,−e2) ∈ A�,2 satisfies V 
e = −e < 0. Therefore, (A�,m)m,�>

�

A◦◦ holds.
To see the first assertion of part b (which is trivially true for A◦◦ = R

n), choose
again some d /∈ A◦◦, so that there exists some v ∈ R

n with v
d > 0 and v
a � 0

for all a ∈ A. Due to A�,m �= ∅, we may also choose a matrix W ∈ A�,m and define
Vε = ve
 + εW with some ε > 0. In view of ev
d > 0, we have V 


ε d > 0 for all

sufficiently small ε > 0. Due to W = (w1, . . . , wm) ∈ A�,m , for all a ∈ A \ {0},
there exists some k ∈ {1, . . . , m}withw


k a < 0 and, in view of v
a � 0, this implies
(v + εwk)


a < 0 for any ε > 0. Therefore, all a ∈ A \ {0} satisfy V 

ε a � 0.

This means that for some sufficiently small ε > 0, we have constructed a matrix

Vε ∈ A�,m\{0} with V 

ε d > 0. This shows d /∈ (A�,m

)m,�>, and we have proved the
inclusion (A�,m

)m,�> ⊆ A◦◦.
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The cone A := X from Example 2.1 also provides an example for the second

assertion of part b, since the matrix V = (−e1,−e2) also lies in A�,2.
As an example for the assertion of part c consider A = R� × R

2 ⊆ R
3 from

Example 3.2 which, being a closed convex cone, satisfies A◦◦ = A. On the other

hand, in Example 3.2 we have seen A�,2 = ∅, so that (A�,2
)
2,� = R

3
� A◦◦ holds.

��
From Example 2.1, we know that the standard GCQ is too weak even to guarantee

that a strict local Pareto optimal point of order one is a weakKuhn–Tucker point, while
Table 4 provides three sufficiently strong constraint qualifications for six different
situations. The following result verifies that these three constraint qualifications are
not independent from, but strictly stronger than the standard GCQ.

Theorem 4.3 The following assertions hold at any x̄ ∈ X.

(a) The WMOGCQ (and therefore also the stronger PMOGCQ) is stronger than the
standard GCQ at x̄ . An example with n = m = 2 exists, for which at some x̄ ∈ X
the WMOGCQ is strictly stronger than the standard GCQ.

(b) In the case N̂�,m(X , x̄) �= ∅ also the SMOGCQ is stronger than the standard

GCQ at x̄ , and an example with n = m = 2 exists, for which at some x̄ ∈ X the
SMOGCQ is strictly stronger than the standard GCQ.

Proof By Table 3 and Lemma 4.5a, the chain of inclusions (A�,m)m,� ⊆
(A�,m)m,�> ⊆ A◦◦ holds, so that the choice A = T (X , x̄) yields the first asser-
tion of part a. Moreover, in Example 2.1, we have T ◦◦(X , x̄) = L(g, x̄) = R

2, but
N̂ 2,�>

�,2
(X , x̄) = (T �,2)2,�>(X , x̄) � R

3, as seen in the proof of the second assertion

of Lemma 4.5a. Therefore, at x̄ the standard GCQ holds, whereas the WMOGCQ is
violated. Part b follows analogously from Lemma 4.5b. ��

4.6 Relations to the Abadie Constraint Qualification

This section clarifies how the three MOGCQs are related to the Abadie constraint
qualification. It will turn out that this depends on the relation between m and n.

Asmentioned above, we are not interested in analysing the strong constraint qualifi-
cation and the regularity conditions fromTheorem4.1d, g and h. Part b of the following
result supports this point of view in that the corresponding generalized bipolar cones
from Lemma 4.3d, g, and h possess an undesirable property, as opposed to the other
six ones.

Lemma 4.6 The following assertions hold.

(a) Any cone A ⊆ R
n is a subset of its six generalized bipolar cones from Table 3

(where A is a subset of (A�,m
)
m,� ∪ {0}).

(b) Even a closed convex cone A does not need to be contained in its generalized

bipolar cone (A �>,m)m,�, and A\{0} does not need to be contained in (A �>,m)
m,�

and (A�,m)
m,�.
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Proof For the proof of part a observe that by Lemma 4.1a, the inclusion A �>,m ⊆ A �>,m

is equivalent to A ⊆ (A �>,m)m,�>, by Lemma 4.1b the inclusion A�,m ⊆ A�,m is

equivalent to A ⊆ (A�,m)m,�, and by Lemma 4.1c the inclusion A�,m \ {0} ⊆ A�,m

is equivalent to A \ {0} ⊆ (A�,m
)
m,�. The remaining three assertions follow from

Table 3.
As a counterexample for the inclusion A ⊆ (A �>,m)m,� in part b consider the closed

convex cone A = R
2 × R� and m = 2. For V = (e2, e3) we have Γ>(V ) = R × R

2
>

and Γ>(V ) ∩ A = ∅. Furthermore, Γ≥(V ) = R × (R2
� \ {02}) contains the vector

d = e2, so that Lemma 4.3d implies d /∈ (A �>,2)2,�. Due to d ∈ A, this shows
A � (A �>,2)2,�.

As a counterexample for the inclusion A\{0} ⊆ (A�,m)
m,�, consider again A =

R
2 × R� and m = 2. The choice V = (e2 + e3,−e2 + e3) yields Γ�(V ) ∩ A =

{x ∈ R
3 | |x2| � x3 � 0} = R × {02} = Γ=(V ) and, therefore, Γ≥(V ) ∩ A = ∅.

Furthermore, Γ�(V ) contains the vector d = e1, so that Lemma 4.3h yields d /∈
(A�,2)

2,�. Due to d ∈ A\{0}, this shows A \ {0} � (A�,2)
2,�.

Finally, the previous counterexample and the inclusion (A �>,m)
m,� ⊆ (A�,m)

m,�

show the third assertion of part b. ��
The choice A = T (X , x̄) in Lemma 4.6 yields the following result.

Theorem 4.4 The following assertions hold.

(a) At any x̄ ∈ X the ACQ is stronger than the WMOGCQ, the PMOGCQ, and the
SMOGCQ.

(b) Examples exist in which the ACQ holds at x̄ ∈ X, but the constraint qualification
and regularity conditions from Theorem 4.1d, g and h are violated.

The proof of Theorem 4.4a is based on the inclusions T (X , x̄) ⊆ N̂ m,�>
�>,m (X , x̄), etc.

Observe that, if also T (X , x̄) ⊆ N̂
m,�
�>,m (X , x̄)was true, then theACQwould be stronger

than the MOGCQ
m,�
�>,m at x̄ and thus, by Proposition 2.1 and Theorem 4.1d, yield that

local weak Pareto optimal points are proper Kuhn–Tucker points, which is in general
not true. Haeser and Ramos [17] give examples showing that even the LICQ and the

MOGCQ
m,�
�>,m are unrelated.

Lemma 4.7 The following assertions hold.

(a) For A = R
n, all six generalized bipolar cones from Table 3 coincide with R

n

(where ((Rn)
�,m

)
m,� ∪ {0} coincides with R

n).
(b) Let A � R

n be a nonempty closed cone and m � n. Then, all six generalized

bipolar cones from Table 3 coincide with A (where (A�,m
)
m,� ∪ {0} coincides

with A).
(c) In the case m < n, there exists a closed cone A ⊆ R

n which is a proper subset
of its six generalized bipolar cones from Table 3 (where A is a proper subset of

(A�,m
)
m,� ∪ {0}).
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Proof ByLemma4.6a, the set A, respectively A\{0}, is contained in all six generalized
bipolar cones. For A = R

n , this yields the assertion of part a and, for the proof of

part b, by Table 3 it suffices to show (A�,m
)m,�> ⊆ A. Indeed, the set Ac is a nonempty

open cone which does not coincide with R
n . Therefore, 0 /∈ Ac holds, and it suffices

to show Ac ∩ S
n−1 ⊆ ((A�,m

)m,�>)c ∩ S
n−1.

Choose any d ∈ Ac ∩ S
n−1. Then, its orthogonal complement {d}⊥ possesses

dimension n − 1. Under the assumption m � n, we may choose a starlike matrix S
in {d}⊥ in the sense of Definition 3.1, that is, a matrix S ∈ R

n×m with S
d = 0,
rank(S) = n − 1, and Sλ = 0 for some λ > 0. Then, by Stiemke’s theorem, the
system S
y ≥ 0, y ∈ R

n , is not solvable, that is, S ∈ (Rn)�,m holds.
For any ε > 0 we define Vε = S + εde
. Then, we have

V 

ε d = S
d + εe ‖d‖2 = εe > 0,

that is, d ∈ Γ>(Vε), for all ε > 0. Moreover, all y ∈ Γ�(Vε) satisfy

0 � V 

ε y = S
y + εe d
y

and therefore −d
y e � S
y/ε. In view of S ∈ (Rn)�,m , this implies −d
y � 0
and, thus, Γ�(Vε) ⊆ {y ∈ R

n | −d
y � 0}. Because of dist(−d, {y ∈ R
n | −d
y �

0}) = ‖ − d‖ = 1, we obtain

dist(−d, Γ�(Vε)) � 1. (31)

Assume that for all ε > 0, some aε ∈ (Γ�(Vε)\{0}) ∩ A exists. Then, without

loss of generality, we may assume aε ∈ S
n−1 and that there exists a sequence (a�) ⊆

Γ�(V1/�) ∩ A ∩ S
n−1 with lim� a� = ā ∈ A ∩ S

n−1. From a� ∈ Γ�(V1/�), we obtain

0 � V 

1/� a� = S
a� + 1

�
e d
a� → S
ā

and hence S
ā � 0. In view of S ∈ (Rn)�,m , we have S
ā = 0, which implies
ā ∈ S⊥ ∩S

n−1 = {td | t ∈ R}∩S
n−1 = {±d}. The case ā = −d is ruled out by (31),

(a�) ⊆ Γ�(V1/�) and lim� a� = ā. Therefore, we have ā = d /∈ A and, since A is

closed, a� /∈ A for all sufficiently large �, in contradiction to the choice (a�) ⊆ A. In
summary, we obtain Γ�(Vε) ∩ A = {0} as well as d ∈ Γ>(Vε) for some sufficiently

small ε > 0 and, by Lemma 4.3c, d ∈ ((A�,m
)m,�>)c ∩ S

n−1.
For the proof of part c, consider the closed cone A = R

n
�\R

n
>. We will see that

each of the sets (A �>,m)m,�>, (A�,m)m,� and (A�,m
)
m,� contains the setRn

> which, in
view of Table 3, shows the assertion. Indeed, assume that there exists some d > 0 with
d /∈ (A �>,m)m,�>. By Lemma 4.3a, there is some V ∈ R

n×m with Γ>(V ) ∩ A = ∅ and
d ∈ Γ>(V ). In view of m < n, the dimension of the lineality space Γ=(V ) = {y ∈
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R
n | V 
y = 0} is at least one, so that we may choose a nonzero element ȳ ∈ Γ=(V ).

Defining y(t) = d + t ȳ with t ∈ R yields y(t) ∈ Γ>(V ) for any t ∈ R.
In the case that ȳ possesses positive entries ȳi choose t̄ as the largest of the (negative)

fractions −di/ȳi with indices i such that ȳi > 0. For a corresponding index j , we
then obtain y j (t̄) = 0 and yi (t̄) � 0 for all i �= j , that is, y(t̄) ∈ A. If ȳ does not
possess positive entries, due to ȳ �= 0, we may define t̄ as the smallest of the (positive)
fractions −di/ȳi with indices i such that ȳi < 0, and analogously obtain y(t̄) ∈ A.
We have thus constructed a vector y(t̄) ∈ Γ>(V ) ∩ A, in contradiction to the choice
of V with Γ>(V ) ∩ A = ∅. The same construction shows R

n
> ⊆ (A�,m)m,� and

R
n
> ⊆ (A�,m

)
m,�. ��

The choice A = T (X , x̄) in Lemma 4.7 yields the following result.

Theorem 4.5 The following assertions hold.

(a) For x̄ ∈ X, let at least one of the conditions T (X , x̄) = R
n or m � n hold. Then,

the ACQ at x̄ coincides with the WMOGCQ, the PMOGCQ, and the SMOGCQ at
x̄ .

(b) In the case m < n, the ACQ at x̄ is in general strictly stronger than the WMOGCQ,
the PMOGCQ, and the SMOGCQ at x̄ .

We remark that Theorem 4.5b complements the claim from [17] that the ACQ is
in general strictly stronger than the WMOGCQ, which is there only supported by the
reference to the case m = 1. Our result shows that also for m > 1 such examples
exist, but only for n > m.

We close this section by a brief look at the special case of convex and closed
cones A ⊆ R

n . In this case, [32, Cor. 6.21] yields A◦◦ = A, so that Lemma 4.5 and
Lemma 4.6a imply

A ⊆ (A �>,m)m,�>, (A�,m)m,� ⊆ A◦◦ = A.

Under the additional assumption A�,m �= ∅, even

A ⊆ (A �>,m)m,�>, (A�,m)m,�, (A�,m
)
m,� ∪ {0} ⊆ A◦◦ = A

holds. Since A = T (X , x̄) is a closed cone, we obtain the following result.

Theorem 4.6 For x̄ ∈ X let T (X , x̄) be convex. Then, the ACQ, the standard GCQ,
the WMOGCQ and the PMOGCQ coincide at x̄ . In the case N̂�,m(X , x̄) �= ∅, these

four constraint qualifications also coincide with the SMOGCQ at x̄ .

5 Weakest Constraint Qualifications

Since all MOGCQs introduced in Sect. 4 are of Guignard type, one may expect that
they are weakest possible in some appropriate sense. The present section verifies this.

In the following, for x̄ ∈ R
n , let C1(Rn, R

m, x̄) denote the set of functions f :
R

n → R
m which are continuously differentiable at x̄ .
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Lemma 5.1 For x̄ ∈ X, let B(X , x̄) ⊆ R
n×m be a matrix cone, and let OB( f , X) be

a subset of X with the property

V ∈ B(X , x̄) ⇐⇒ ∃ f ∈ C1(Rn, R
m, x̄) : x̄ ∈ OB( f , X) and V = −∇ f (x̄).

(32)

Then, the following assertions hold.

(a) The weakest condition under which a point x̄ ∈ X lies in K T≥( f , g, h), for every
f ∈ C1(Rn, R

m, x̄) with x̄ ∈ OB( f , X), is L(g, h, x̄) ⊆ Bm,�>(X , x̄).
(b) The weakest condition under which a point x̄ ∈ X lies in K T>( f , g, h), for every

f ∈ C1(Rn, R
m, x̄) with x̄ ∈ OB( f , X), is L(g, h, x̄) ⊆ Bm,�(X , x̄).

(c) In addition, let B(X , x̄) be open. Then, the weakest condition under which a point
x̄ ∈ X lies in K T�( f , g, h), for every f ∈ C1(Rn, R

m, x̄) with x̄ ∈ OB( f , X),

is L(g, h, x̄) \ {0} ⊆ Bm,�
(X , x̄).

Proof For the proof of part a, we first show that L(g, h, x̄) ⊆ Bm,�>(X , x̄) is some
condition under which for every f ∈ C1(Rn, R

m, x̄) with x̄ ∈ OB( f , X) also x̄ ∈
K T≥( f , g, h) holds. Indeed, choose any f ∈ C1(Rn, R

m, x̄) with x̄ ∈ OB( f , X).
Then by (32), we have−∇ f (x̄) ∈ B(X , x̄). Therefore, L(g, h, x̄) ⊆ Bm,�>(X , x̄) and
Lemma 4.2a yield x̄ ∈ K T≥( f , g, h).

On the other hand, let x̄ ∈ K T≥( f , g, h) hold for every f ∈ C1(Rn, R
m, x̄) with

x̄ ∈ OB( f , X). We will show that then L(g, h, x̄) ⊆ Bm,�>(X , x̄) is necessarily
satisfied at x̄ . To this end, choose d ∈ L(g, h, x̄) and V ∈ B(X , x̄). By (32), there
exists some f ∈ C1(Rn, R

m, x̄) with x̄ ∈ OB( f , X) and V = −∇ f (x̄). This implies
x̄ ∈ K T≥( f , g, h) and, by Proposition 2.2a, C<( f , x̄) ∩ L(g, h, x̄) = ∅. The latter
rules out V 
d > 0 and, hence, implies d ∈ Bm,�>(X , x̄).

The proofs of parts b and c run along the same lines, employing Lemma 4.2b and
d as well as Proposition 2.2b and c, respectively. ��

In a next step, we clarify for which sets OB( f , X) the condition (32) is valid if
B(X , x̄) is chosen to be one of the cones N̂ �>,m(X , x̄), N̂�,m(X , x̄) and N̂�,m(X , x̄).

We begin by strengthening the characterization of N̂ �>,m(X , x̄) from [17, Th. 3.1],
which is a multiobjective generalization of the gradient characterization of regular
normals from [32, Th. 6.11]. In [17], the result is only shown for x̄ ∈ LW P O( f , X)

since there the authors are interested in local weak Pareto optimal points.

Lemma 5.2 For any x̄ ∈ X, we have V ∈ N̂ �>,m(X , x̄) if and only if there exists some
f ∈ C1(Rn, R

m, x̄) with x̄ ∈ L P O( f , X) and V = −∇ f (x̄).

Proof The ‘if’ part of the assertion follows from (3) and (7). To see the ‘only if’ part,
let V = (v1, . . . , vm) ∈ N̂ �>,m(X , x̄). Then, we have analogously to the proof of [17,
Th. 3.1] that

η0(r) := sup{ min
k=1,...,m

(vk)
(x − x̄) | x ∈ X , ‖x − x̄‖ � r} � r min
k=1,...,m

‖vk‖
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is nondecreasing on [0,∞) with 0 � η0(0) � η0(r) � o(r). By using arguments
analogous to the ones in the proofs of [32, Th. 6.11] and [17, Th. 3.1], there exists a
continuously differentiable function η : R� → R with η0(0) = η(0), η0(r) < η(r)

for r > 0 as well as η′(r) → 0 and η(r)
r → 0 as r → 0. Define f = ( fk)

p
k=1 with

fk(x) = −(vk)
(x − x̄) + η(‖x − x̄‖).

Then, f is continuously differentiable at x̄ with ∇ f (x̄) = −V and f (x̄) = 0.
Assume that x̄ /∈ L P O( f , X). Then, there are a sequence (x�) ⊆ X , lim� x� = x̄

and (after possibly choosing a subsequence) a constant index i ∈ {1, . . . , m} such that
for all � ∈ N fi (x�) < fi (x̄) = 0 and f j (x�) � f j (x̄) = 0, j ∈ {1, . . . , m}\{i}, hold.
Since η0(r) < η(r) for r > 0, and by definition of fk , we have for all sufficiently
large �

0 > fi (x�) = −(vi )
(x� − x̄) + η(‖x� − x̄‖) > −(vi )
(x� − x̄) + η0(‖x� − x̄‖)

and

0 � f j (x�) = −(v j )
(x� − x̄) + η(‖x� − x̄‖) > −(v j )
(x� − x̄) + η0(‖x� − x̄‖)

for all j ∈ {1, . . . , m} \ {i}. Hence η0(‖x� − x̄‖) < mink=1,...,m(vk)
(x� − x̄) holds,
contradicting the definition of η0. This shows x̄ ∈ L P O( f , X). ��

The following result addresses the set L I T P O( f , X)of local Ishizuka-Tuanproper
Pareto optimal points from (5).

Lemma 5.3 For any x̄ ∈ X, we have V ∈ N̂�,m(X , x̄) if and only if there exists some

f ∈ C1(Rn, R
m, x̄) with x̄ ∈ L I T P O( f , X) and V = −∇ f (x̄).

Proof The ‘if’ part of the assertion follows from (5) and (8). For the proof of the
‘only if’ part, choose V = (v1, . . . , vm) ∈ N̂�,m(X , x̄). Due to N̂�,m(X , x̄) ⊆
N̂ �>,m(X , x̄), we may use the same construction as in the proof of Lemma 5.2 and
obtain the continuously differentiable function f with components

fk(x) = −(vk)
(x − x̄) + η(‖x − x̄‖)

such that x̄ ∈ L P O( f , X) and ∇ f (x̄) = −V hold. Since −∇ f (x̄) = V ∈
N̂�,m(X , x̄) is equivalent to x̄ ∈ P St( f , X), we arrive at x̄ ∈ L I T P O( f , X). ��

The next result concerns strict local Pareto optimal points of order one. While, as
in the proof of Lemma 5.3, we could construct a continuously differentiable function
f with the techniques from the proof of Lemma 5.2, actually here it is sufficient to
construct a linear function f .

Lemma 5.4 For any x̄ ∈ X, we have V ∈ N̂�,m(X , x̄) if and only if there exists a

linear function f : R
n → R

m with x̄ ∈ Str L P O(1, f , X) and V = −∇ f (x̄).
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Proof The ‘if’ part of the assertion follows from Proposition 2.1c and (9). For the
proof of the ‘only if’ part, choose V = (v1, . . . , vm) ∈ N̂�,m(X , x̄) and define

f (x) = −V 
(x − x̄). The resulting condition −∇ f (x̄) = V ∈ N̂�,m(X , x̄) is

equivalent to x̄ ∈ SSt( f , X) = Str L P O(1, f , X). ��
The combination of Lemma 5.1a and Lemma 5.2 yields the following result. A

weaker version of this theorem is shown in [17, Th. 4.1], where it only covers points
x̄ ∈ LW P O( f , X).

Theorem 5.1 The weakest condition under which a point x̄ ∈ X lies in K T ≥( f , g, h),
for every f ∈ C1(Rn, R

m, x̄) with x̄ ∈ L P O( f , X), is the WMOGCQ at x̄ .

Likewise, the next result follows from the combination of Lemma 5.1a and b,
respectively, with Lemma 5.3. Note that in the proof of part a, this combination yields
the MOGCQm,�>

�,m
as the weakest condition, and that in Theorem 4.2a, we have seen

the identity of the MOGCQm,�>
�,m

with the WMOGCQ at x̄ .

Theorem 5.2 The following assertions hold.

(a) The weakest condition under which a point x̄ ∈ X lies in K T≥( f , g, h), for every
f ∈ C1(Rn, R

m, x̄) with x̄ ∈ L I T P O( f , X), is the WMOGCQ at x̄ .
(b) The weakest condition under which a point x̄ ∈ X lies in K T>( f , g, h), for every

f ∈ C1(Rn, R
m, x̄) with x̄ ∈ L I T P O( f , X), is the PMOGCQ at x̄ .

Finally, we state the weakest constraint qualifications resulting from the combi-
nation of Lemma 5.1a, b and c, respectively, with Lemma 5.4, where the appearing

constraint qualifcationsMOGCQm,�>
�,m

andMOGCQ
m,�

�,m
can be replaced by SMOGCQ

in view of Theorem 4.2b.

Theorem 5.3 The following assertions hold.

(a) The weakest condition under which a point x̄ ∈ X lies in K T≥( f , g, h), for every
f ∈ C1(Rn, R

m, x̄) with x̄ ∈ Str L P O( f , X), is the SMOGCQ at x̄ .
(b) The weakest condition under which a point x̄ ∈ X lies in K T>( f , g, h), for every

f ∈ C1(Rn, R
m, x̄) with x̄ ∈ Str L P O( f , X), is the SMOGCQ at x̄ .

(c) The weakest condition under which a point x̄ ∈ X lies in K T�( f , g, h), for every
f ∈ C1(Rn, R

m, x̄) with x̄ ∈ Str L P O(1, f , X), is the SMOGCQ at x̄ .

6 Final Remarks

As mentioned in Sect. 4.4, from Lemma 4.4c one may expect that in the assertion of
Theorem 4.2c an example with n = 3, m = 2 exists, for which at some x̄ ∈ X the
PMOGCQ is strictly stronger than the WMOGCQ. Since we were not able to provide
such an example, we leave the question of whether it exists, or if the WMOGCQ and
the PMOGCQ coincide, to future research.
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Since LG P O( f , X) ⊆ L I T P O( f , X) holds, by Theorem 4.1e and (5), the
PMOGCQ at x̄ ∈ LG P O( f , X) yields x̄ ∈ K T>( f , g, h). However, it is not clear
whether Lemma 5.3 holds for x̄ ∈ LG P O( f , X) instead of x̄ ∈ L I T P O( f , X).
Therefore, it is neither clear whether in Theorem 5.2b the set L I T P O( f , X) may be
replaced by LG P O( f , X), that is, the question remains what the weakest constraint
qualification for local Geoffrion proper Pareto optima to guarantee positive objective
function multipliers is. Nevertheless, for the local Geoffrion proper Pareto optima,
we were able to provide a weaker constraint qualification than the previously known
ACQ, in the form of the PMOGCQ.

Finally, we expect that, with appropriate modifications, the results of the present
article may be transferred to more general ordering cones and possibly also to the
infinite-dimensional setting. We leave these questions for future research.
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A Decision Space Local Borwein Properness

Since the definition of (local) Geoffrion proper Pareto optimality is restricted to the
natural ordering cone, Borwein and Benson introduced two cone-based definitions
which can easily be generalized to more general ordering cones. In fact, the following
two definitions employ the tangent cone

T (Y , ȳ) = {v ∈ R
m | ∃t� ↘ 0, y� ∈ Y : lim

�
(y� − ȳ)/t� = v}

to Y at ȳ ∈ Y and the projecting cone

cone(Y ) = {αy | y ∈ Y , α ∈ R�}
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of Y . In the following definition, the global variant is due to Borwein [5]. He also
presented a local variant, but in an image space sense. Instead, we cite here a decision
space version of local Borwein properness that was given by Jiménez and Novo in
[22].

Definition A.1 A feasible point x̄ ∈ X of M O P is called

(a) Borwein proper Pareto optimal (x̄ ∈ BoP O( f , X)), if

T ( f (X) + R
m
�, f (x̄)) ∩ (−R

m
�) = {0}

holds,
(b) local Jiménez-Novo-Type-1 proper Pareto optimal (x̄ ∈ L J N P O( f , X)), if there

exists a neighbourhood U of x̄ with x̄ ∈ BoP O( f , X ∩ U ).

In the original definition of Borwein proper Pareto optimality from [5], also Pareto
optimality of x̄ ∈ X is assumed, but for the natural ordering cone this requirement
is redundant [33], and one has BoP O( f , X) ⊆ P O( f , X). In [22], analogously the
relation L J N P O( f , X) ⊆ L P O( f , X) is shown for the natural ordering cone.

Also Benson introduced his definition in order to generalize Geoffrion’s definition.
His definition is global and, to the best of the authors’ knowledge, so far a local variant
of Benson’s proper Pareto optimality has not been considered. We provide it as a link
which allows us to show the equivalence of the local definitions of Geoffrion and
Jiménez-Novo.

Definition A.2 A feasible point x̄ ∈ X of M O P is called

(a) Benson proper Pareto optimal (x̄ ∈ BeP O( f , X)), if

cl(cone( f (X) + R
m
� − f (x̄))) ∩ (−R

m
�) = {0}

holds,
(b) local Benson proper Pareto optimal (x̄ ∈ L BeP O( f , X)), if there exists a neigh-

bourhood U of x̄ with x̄ ∈ BeP O( f , X ∩ U ).

Benson showed that his (global) definition and that of Geoffrion coincide and that
his definition is stronger than that of Borwein [3], that is,

G P O( f , X) = BeP O( f , X), (33)

BeP O( f , X) ⊆ BoP O( f , X) (34)

hold.
Equality holds in (34) under a convexity assumption [3] and, alternatively, under

boundedness of f (X) as the following result from [18] states.

Lemma A.1 Let f (X) be bounded. Then, BeP O( f , X) = BoP O( f , X) holds.

It is not hard to see that in analogy to their global counterparts (33), the local
definitions in the sense of Geoffrion and Benson coincide as well, that is,

LG P O( f , X) = L BeP O( f , X) (35)

123



Journal of Optimization Theory and Applications

holds. Moreover, using Lemma A.1, we can establish the equivalence of the local
definitions of Geoffrion and of Jiménez-Novo.

Theorem A.1 The identity

LG P O( f , X) = L J N P O( f , X) (36)

holds.

Proof In view of (35), we may as well show the identity L BeP O( f , X) =
L J N P O( f , X). The inclusion ⊆ is clear from Definitions A.1b and A.2b as well
as (34).

To see the reverse inclusion, let x̄ ∈ L J N P O( f , X). Then, a compact neighbour-
hood U of x̄ with x̄ ∈ BoP O( f , X ∩U ) exists. Since X is closed by the continuity of
g and h, the set X ∩ U is compact. The continuity of f therefore implies the bound-
edness of f (X ∩ U ) and, by Lemma A.1, BeP O( f , X ∩ U ) = BoP O( f , X ∩ U ),
which yields x̄ ∈ L BeP O( f , X). ��

By (35) and (36),wehave thus seen the identities LG P O( f , X) = L BeP O( f , X) =
L J N P O( f , X), that is, the concepts of local proper Pareto optimality in the sense
of Geoffrion, Benson and Borwein (in the formulation of Jiménez-Novo) coincide.
Since in [22] the relation Str L P O(1, f , X) ⊆ L J N P O( f , X) is shown, we obtain
in particular

Str L P O(1, f , X) ⊆ LG P O( f , X)

and, thus, (2).
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