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This paper presents a search for the rare flavor-changing neutral current process B0 → K�0τþτ− using
data taken with the Belle detector at the KEKB asymmetric energy eþe− collider. The analysis is based on
the entireϒð4SÞ resonance data sample of 711 fb−1, corresponding to 772 × 106BB̄ pairs. In our search we
fully reconstruct the companion B meson produced in the process eþe− → ϒð4SÞ → BB̄ from its hadronic
decay modes, and look for the decay B0 → K�0τþτ− in the rest of the event. No evidence for a signal is
found. We report an upper limit on the branching fraction BðB0 → K�0τþτ−Þ< 3.1 × 10−3 at 90% con-
fidence level. This is the first direct limit on BðB0 → K�0τþτ−Þ.
DOI: 10.1103/PhysRevD.108.L011102

The decay B0 → K�0τþτ− (charge-conjugate processes
are implied throughout this paper) is of interest for the
testing of lepton flavor universality (LFU) and for searches
of physics beyond the Standard Model (SM). This decay is
highly suppressed in the SM and can only proceed via a
flavor-changing neutral current, with a predicted branching
fraction of order Oð10−7Þ [1]. The branching fraction can
be enhanced if new physics (NP) effects contribute [2–5].
The flavor-changing neutral current processes such as
B0 → K�0τþτ− can provide very powerful tests for the
SM and its extensions. In particular, the decay is a third-
generation equivalent of the B0 → K�0lþl− decay, where
l is an electron or a muon. Hence, compared with electron
and muon modes, the decay is expected to be more
sensitive to new physics in a model which has a coupling
proportionate to the particle mass [6] or only couples to the
third generation [7].
Semileptonic B decay measurements in recent years

show significant deviations from SM expectations, for both
charged and neutral current transitions. The first type of
transition has been measured in the decay b → clν̄l via
RðDð�ÞÞ ¼ ½BðB → Dð�ÞτþντÞ�=½BðB → Dð�ÞlþνlÞ� by the
BABAR [8,9], Belle [10–13] and LHCb [14,15] experi-
ments. While these decays are tree-level processes, which
are not very sensitive to NP, the measured results show a

deviation of about three standard deviations, 3σ, from the
SM predictions (combined significance) [16]. The neutral
current transition b → slþl− is highly suppressed in the
SM and very sensitive to NP. The LFU ratio between
muons and electrons in the decay mode B → Kð�Þlþl− as
measured by Belle [17–19] and BABAR [20] are consistent
with the SM, while LHCb result [21–23] is 3.1σ lower than
the SM prediction. Many theoretical models are introduced
to explain these anomalies such as the NP contribution to
the Wilson coefficients [3,4] and the leptoquark model [5].
These approaches lead to an enhancement of the b →
sτþτ− branching fraction up to 1–5 × 10−4, three orders of
magnitude larger than the SM predictions. The predicted
branching fraction of B0 → K�0τþτ− is larger than that of
Bþ → Kþτþτ− as shown in Ref. [3].
The presence of at least two neutrinos in the final state

originating from the decays of τþτ− pair make analysis of
the decay challenging. To date only a search for the decay
Bþ → Kþτþτ− has been conducted by the BABAR
Collaboration setting an upper limit BðBþ → Kþτþτ−Þ <
2.25 × 10−3 at 90% confidence level (CL) [24].
In this letter, we present the first search for the rare decay

B0 → K�0τþτ−. Our analysis is based on the complete data
set collected at the c.m. energy equal to the ϒð4SÞ
resonance mass by the Belle detector [25] at the KEKB
asymmetric-energy eþe− collider [26]. This data sample
corresponds to an integrated luminosity of 711 fb−1,
containing 772 × 106BB̄ pairs. We use a full-reconstruction
technique [27] in this analysis where the companion B
meson in the process eþe− → ϒð4SÞ → BB̄ is recon-
structed in hadronic decay modes, referred to as Btag.
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We then search for the signal B meson, Bsig, in the rest of
the event not used in the Btag reconstruction.
The Belle detector [25] is a large-solid-angle magnetic

spectrometer consisting of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like arrange-
ment of time-of-flight (TOF) scintillation counters, and an
electromagnetic calorimeter comprised of CsI(Tl) crystals
(ECL). All these components are located inside a super-
conducting solenoid coil that provides a 1.5 T magnetic
field. An iron flux-return located outside of the coil is
instrumented with resistive plate chambers to detect K0

L
mesons and to identify muons (KLM).
We use Monte Carlo (MC) simulation samples, gener-

ated with EvtGen [28], to optimize the signal selection,
determine the selection efficiencies, as well as to obtain
the signal and background fitting models. The detector
response is simulated using GEANT3 [29]. Simulated
events are overlaid with random trigger data taken for
each run period to reproduce the effect of beam-associated
backgrounds. A signal sample containing 50 million
ϒð4SÞ → B0B̄0 events is generated where one B decays
to all possible final states, according to its measured or
estimated branching fractions [30], and the other decays via
B0 → K�0τþτ−, using the model described in Ref. [31].
Background MC samples consist of BþB−, B0B̄0, and
continuum eþe− → qq̄ (q ¼ u, d, s, c), where the size of
each sample is six times larger than that of collision data.
Rare Bmeson decay processes such as charmless hadronic,
radiative, and electroweak decays are simulated separately
in a sample designated Rare B. Semileptonic b → ulν
decays are simulated in a dedicated ulν sample. The sizes
of the Rare B and ulν samples are 50 and 20 times larger
than that of collision data, respectively.
A candidate Btag meson is reconstructed in one of

the 489 hadronic decay channel using a hierarchical
NeuroBayes-based (NB) full-reconstruction algorithm
[27]. In this algorithm, the continuum backgrounds are
suppressed by employed event shape variables such as the
polar angle of Btag, the cosine of the angle between the
thrust axis [32] and z-direction, and the modified second
Fox-Wolfram moment [33]. All the input variables which
used during the reconstruction are mapped to a single
classifier output, ONB, which represents the quality of Btag,
ranges from zero for combinatorial background and
continuum events to unity for an unambiguous Btag.
Event selection also exploits the energy difference ΔE ¼
EBtag − Ecm=2 and the beam-energy-constrained mass

Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEcm=2Þ2=c4 − jp⃗Btagj2=c2

q
, where Ecm is the

eþe− energy, and EBtag and p⃗Btag are the reconstructed
energy and momentum of the Btag candidate, respectively.
All the quantities are measured in the c.m. frame. We
require each Btag candidate to satisfy lnðONBÞ> −7,
jΔEj< 0.06 GeV, and 5.275<Mbc < 5.290 GeV=c2.

The net tagging efficiency which is defined as number
of truly reconstructed B-tag divided for total number of
generated event is 0.24%. It is slightly higher than that
reported in Ref. [27], due to lower average particle
multiplicity in this signal sample compared to generic
sample. The signal side of the B0 → K�0τ−τþ sample
contains of leptons and only two hadron tracks. The
possibility of the interference from signal side to the tag
side reconstruction is lower than that of the generic
samples, where both B mesons decay generically. The
tagging efficiency is calibrated by comparing the known
branching fraction from PDG [30] of the decays B →
Dð�Þlνl and the measured values which use this hadron tag
reconstruction method [34].
For events where a Btag is reconstructed, we search for

the decay B0 → K�0τþτ− in the rest of the event. The
remaining tracks are examined to remove duplicate
ones due to the curling of low transverse-momentum
particles (pt < 0.3 GeV=c). A pair of tracks is considered
as duplicate if the cosine of the angle between them is either
larger than 0.9 or smaller than 0.1, and the difference in
transverse momentum is less than 0.1 GeV=c. All tracks
are constrained to originate from the interaction point (IP)
by the requirements jdrj< 2 cm and jdzj< 4 cm, where dr
and dz are the impact parameter with respect to IP in
the transverse and longitudinal directions, respectively. We
select events as signal candidates if there are four remaining
tracks with zero net charge. The number of signal candi-
dates doubles after removing duplicate tracks.
We reconstruct candidate K�0 mesons from K�0 →

Kþπ− decays using two of the four remaining tracks.
We identify kaons and pions based on combined informa-
tion from the CDC, ACC, and TOF [35]. A charged track is
identified as a kaon if the likelihood ratio RK ¼ LK=
ðLK þ LπÞ> 0.6, and as a pion if RK < 0.4, where Li is
the PID likelihood for the particle type i. The momenta of
Kþ and π− candidates are required to be greater than
0.1 GeV=c. The flavor of the reconstructed K�0 and hence
the corresponding flavor of Bsig is required to be opposite to
that of Btag. This requirement rejects 20% of the events. We
fit the vertex for K�0 candidates, and reject candidates if the
vertex fit fails. If more than one K�0 candidate is success-
fully reconstructed, the one having the reconstructed mass
closest to the known K�0 mass is retained. We require
the mass of the reconstructed K�0 candidate to be in the
range ½0.8; 1.0� GeV=c2, which is approximately twice the
decay width of K�0. We consider three τ decay modes in
this analysis: τ− → e−ν̄eντ, τ− → μ−ν̄μντ, and τ− → π−ντ,
resulting in six different decay topologies: K�0eþe−,
K�0e∓μ�, K�0μþμ−, K�0e∓π�, K�0μ∓π�, and K�0πþπ−.
We regard the two remaining tracks not used in the Btag

or the K�0 candidates as τ decay products. The recon-
structed mass of these two tracks is required to be less
than 2.5 GeV=c2.
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All the tracks and clusters in a signal event are used for
the reconstruction of Btag and Bsig. However, there are still
tracks and clusters from beam background and possible
duplicate tracking reconstruction. We require that there
be no extra π0 nor K0

S candidates, and at most one K0
L

candidate cluster, to allow for beam-associated back-
grounds or electronic noise. We reconstruct K0

L candidates
based on the hit patterns in the KLM subdetector not
associated with any charged track. A π0 candidate is
reconstructed from π0 → γγ in which neither daughter
photon is included in the reconstructed Btag and whose
reconstructed mass is within 25 MeV=c2 of the nominal π0

mass [30], corresponding to 3σ of the π0 mass resolution.
Energy of photon candidates must exceed 50 MeV and we
require their shower shape, characterized as the ratio of
total energy detected in a 3 × 3 versus 5 × 5 array of ECL
crystals in which the center crystal has the maximum
detected energy, to be larger than 0.75. We reconstruct
candidate K0

S from K0
S → πþπ− decays, where the recon-

structed mass is within 15 MeV=c2 of the nominal mass,
corresponding to 3σ of K0

S mass resolution.
We determine the number of signal candidates by fitting

the distribution of extra calorimeter energy, Eextra
ECL , which is

defined as the total energy of the neutral clusters detected in
the ECL not associated with either Btag or Bsig. We reduce
the contribution of beam-associated backgrounds while
estimating Eextra

ECL by only counting clusters with energy
greater than 0.15 GeV, 0.05 GeV and 0.10 GeV for the
backward, barrel, and forward regions, respectively. In
signal events Eextra

ECL should be zero or have a small value due
to the residual energy from beam-associated backgrounds
or mismatched tracks. Background events tend to have
larger values due to contributions from additional neutral
clusters. We select events with Eextra

ECL < 0.2 GeV as the
signal region and those with Eextra

ECL < 2 GeV for sideband
studies. The selection criteria in this study are chosen to
maximize the search sensitivity in the signal region
following the Punzi figure of merit [36].
In the c.m. frame, the Btag and Bsig have opposite

flight directions, and the Btag is fully reconstructed and
its four-vector is determined. The momentum of Bsig is
thus derived from the Btag reconstruction. Its direction
is opposite the Btag and its magnitude is calculated

as jp⃗Bsigj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEcm=2Þ2=c2 −m2

Bc
2

p
, where p⃗Bsig is the

momentum vector of Bsig, Ecm=2 is the beam energy
measured in c.m frame, and mB is the nominal B0 meson
mass [30]. We calculate the τþτ− pair invariant mass,
Mτþτ− , by subtracting the reconstructed K�0 c.m. four-
vector from the Bsig’s giving its kinematic limits. We
require Mτþτ− to be greater than 3.55 GeV=c2 to suppress
combinatorial background.
After the selections above, the remaining background is

final-state dependent. We classify the remaining events into
signal modes based on final-state particles for further

background suppression. We identify electron candidates
using an electron likelihood ratio, Re ¼ Le=ðLe þ LēÞ, ē
indicates nonelectron hypothesis. Le (Lē) are calculated
based on dE=dx information from the CDC, the ratio of the
energy deposited in the ECL to the momentum measured
by the CDC and SVD, the shower shape in the ECL, hit
information from the ACC, and matching between the
position of the charged track and the ECL cluster [37].
Muon candidates are identified using a muon likelihood
ratio,Rμ ¼ Lμ=ðLμ þ Lπ þ LKÞ, which is estimated based
on the difference between the range of the track in KLM,
estimated assuming no hadronic interactions, and the actual
range observed in the KLM. A χ2 from extrapolating a track
to the signals identified in the KLM using a Kalman filter
also contributes to the likelihood [38]. Tracks are identified
as electrons if Re > 0.8, as muons if not satisfying the
electron requirement and have Rμ > 0.8, and as a pion if
not either an electron or a muon. The average of electron
(muon) identification efficiency for the selection ReðμÞ >
0.8 is 92 (92)% with pion fake rate of 0.25 (2.5)%. In
the signal decay modes K�0πþπ− and K�0l�π∓, there
remains a large background contribution from the decay
B0 → Dð�Þ−lþνl, where Dð�Þ− → K�0π−ðπ0Þ. We suppress
this by requiring the invariant mass MK�0π− to lie outside
the D− mass region, MK�0π− < 1.84 GeV=c2 or MK�0π−>
1.94 GeV=c2, where MK�0π− is the combination of the K�0
candidate and a track that is opposite to the charge of the
kaon candidate in the K�0 decay. Combinatorial back-
ground is also significant in these signal modes, and so the
ONB selection criterion is tightened to lnðONBÞ > −4 for
these modes.
After we apply above selection criteria, our simu-

lation predicts that the remaining backgrounds with low
Eextra
ECL are primarily B0B̄0 events in which a Btag is properly

reconstructed opposite B0 → D−lþνl decaying to D− →
K�0l−ν̄l. Such events have the same final-state particles as
signal events. The different number of missing neutrinos
results in a different missing mass distribution, Mmiss.
We calculate this by subtracting the measured part of the
four-momentum of Bsig from the derived four-momentum
of Bsig from the recoil against Btag. In addition to the
missing mass, we find MK�0π− is also powerful distinguish-
ing signal from the remaining background. For K�0l−lþ
modes, we calculate MK�0π− by combining the negatively
charged lepton with the K�0 assuming a pion mass. We
optimize selection criteria based on M2

miss and MK�0π−

together mode-by-mode. These are summarized in
Table I. Since the number of missing neutrinos from the
K�0πþπ− mode is the same as that from the B0 → D−lþνl
background, the M2

miss is ineffective in rejecting this back-
ground. We only apply the selectionM2

miss < 9 GeV2=c4 to
reject combinatorial background which is significant in this
mode. Despite the continuum suppression performed by the
full reconstruction algorithm, a small fraction of continuum
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events remains in the K�0πþπ− signal mode. In this case,
further constraints on the event shape are imposed.
Specifically, the event thrust is required to be smaller
than 0.85, the cosine of the angle between the thrust of Bsig

and that of Btag must be smaller than 0.85, and the modi-
fied second Fox-Wolfram moment is required to be less
than 0.4.
We estimate the signal reconstruction efficiency after

applying all of the selection criteria and Btag efficiency
corrections. The overall selection efficiency, determined
using simulated B0 → K�0τþτ− decays, is approximately
ð1.23� 0.05Þ × 10−5, where the uncertainty is statistical.
The signal yield is extracted with a binned extended
maximum-likelihood fit to the Eextra

ECL distribution, with a
bin width of 0.1 GeV. The probability density functions
(PDFs) for signal and background components are taken
from MC expectations after applying the B-tag efficiency
correction. To reduce the uncertainty due to low statistics, a
simulation sample three times larger than the data is used to
construct the background PDFs, the signal PDF is derived
from 50 million ϒð4SÞ → B0B̄0 signal events, and signal
modes are combined in the fit. The BþB− and B0B̄0

samples are normalized to the data and their ratio is fixed
in the fit. Contributions from Rare B and ulνl components
in the final sample are negligible, and are normalized to the
number of BB̄ pairs and fixed in the fit. We float the BB̄,
continuum, and signal normalizations. We have validated
the fitting procedure in tests with MC samples.
We test the analysis procedure and shape of the simu-

lated Eextra
ECL distribution using B0 → D−lþνl decays, with

D− → K�0π−. The analysis steps and selection criteria for
the decay are the same as those for the B0 → K�0τþτ−

decay, except the requirement on M2
miss is removed and the

selection on MK�0π− is reversed, requiring 1.84<MK�0π−<
1.94 GeV=c2. We divided the sample into the two sub-
samples, one withM2

miss < 0.5 GeV2=c4 and the other with
M2

miss > 0.5 GeV2=c4. The first subsample where events
are mainly from B0 → D−lþνl is useful for checking the
signal shape. The latter containing mostly background
events is used for validate the background shape. Within
statistics, the signal and background models obtained from
simulation are in good agreement with the data and are used

to model the signal and background in the final fit. As a
cross-check, we measure the branching fraction of the
decay B0 → D−lþνl from a fit to the Eextra

ECL distributions,
similar to our search for the decay B0 → K�0τþτ−, and also
to the M2

miss distribution. Results of these fits are shown in
Fig. 1. The branching fraction measured by fitting to Eextra

ECL
for the first subsample is ð2.45� 0.17Þ% and to M2

miss is
ð2.37� 0.15Þ%, where the quoted uncertainties are stat-
istical only. The results are in good agreement with the
world average of 2.31� 0.10% [30]. We obtained a zero

TABLE I. Summary of the selection criteria imposed onMK�0π−

and M2
miss for each of the signal modes.

Signal mode MK�0π− (GeV=c2) M2
miss (GeV

2=c4)

K�0eþe− >1.4 >3.2
K�0e∓μ� >1.4 >1.6
K�0μþμ− >1.6 >1.6
K�0π∓e� >1.4 >2.0
K�0π∓μ� >1.4 >2.0
K�0πþπ− >1.5 <9

FIG. 1. Fit results for M2
miss (upper) and Eextra

ECL (lower) for the
decays B0 → Dð�Þlνl. The dots with error bars represent the
data, and the blue line indicates the fitted results. The dashed
lines indicate different fit components. Eextra

ECL is plotted with the
selection M2

miss < 0.5 GeV2=c4.
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signal for the fit to Eextra
ECL distribution of the second

subsample (M2
miss > 0.5 GeV2=c4) as expected.

We perform the fit to Eextra
ECL for the decay B0 → K�0τþτ−

using the procedure as described above, where all signal
modes have been combined. The numbers of signal and
background events in the signal window [0; 0.2] GeV
obtained from the fit are Nsig ¼ −4.9� 6.0 and Nbkg ¼
122.4� 4.9, respectively. We find no evidence for a signal.
Data are consistent with background as shown in Fig. 2,
where the background-only model is fitted to data and a
signal with branching fraction of 3.1 × 10−3 is super-
imposed on the top.
Systematic uncertainties on the number of background

events, the signal reconstruction efficiency, and number of
BB̄ pairs arise from several sources and affect the branching
fraction upper limit. The uncertainty on number of BB̄ pairs
is 1.8%. The statistical uncertainty on the selection effi-
ciency due to limited MC sample size is estimated to be
4.0%. The uncertainty associated with the Btag efficiency is
5.1%, which is estimated using various decays as studied in
Ref. [34]. Tracking uncertainty is assigned to be 1.4% for
the four Bsig charged tracks. The uncertainty due to the
charged track selection is estimated to be 4.1%. Particle
identification impacts K�0 reconstruction and signal mode
separation, hence the uncertainties from electron, muon,
and pion identification are weighted following their fraction

in the signal mode. The total particle identification uncer-
tainty is 2.55%. The difference in reconstruction efficiency
for π0 and K0

S leads to a systematic uncertainty in
application of the corresponding vetoes. Their uncertainties
are estimated to be 0.17% and 1.56% for π0 and K0

S,
respectively. The uncertainty on the branching fraction of τ
is 0.57%. The total systematic uncertainty is 8.5% calcu-
lated by summing the above uncertainties in quadrature.
The systematic uncertainty due to the statistical error of

the PDF templates is estimated by varying bin contents
of the templates following the Poisson distribution and
repeating the fit to the data. This step is repeated 1000 times
for each of the PDF. The standard deviation of the number
of signal distribution obtained from the fits is considered
as systematics uncertainty. The total uncertainty is 4.59
events.
The signal yield obtained from the extended maximum-

likelihood fit is translated into an upper limit on the B →
K�0τþτ− branching fraction using the CLs method [39,40].
We account for statistical and systematic uncertainties on
the number of background events and signal efficiencies by
modeling them as Gaussian functions with standard devia-
tions given by their uncertainties. Our observed upper limit
on the B → K�0τþτ− branching fraction is 3.1 × 10−3

at 90% CL.
In conclusion, we have performed a search for the decay

B → K�0τþτ− using the full Belle data set collected at the
c.m. energy of the ϒð4SÞ resonance. We find no signal and
set an upper limit on the branching fraction to be 3.1 × 10−3

at 90% CL. This is the first experimental limit on the
decay B → K�0τþτ−.
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