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a b s t r a c t

An increasing number of household and firm surveys ask for subjective probabilities
that the inflation rate falls into various outcome ranges. We provide a new measure
of the uncertainty implicit in such probabilities. The measure has several advantages
over existing methods: It is robust, trivial to implement, requires no functional form
assumptions, and is well-defined for all logically possible probabilities. These advantages
are particularly relevant when analyzing microdata from extensive consumer surveys.
We illustrate the new measure using data from the Survey of Consumer Expectations.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Expectation uncertainty matters in economics. Con-
umers who experience high inflation uncertainty, es-
ecially during economic turmoil, increase their savings
Armantier et al., 2021). Uncertain firms tend to respond
ess to monetary or fiscal policy (Bloom, 2009). Monitor-
ng inflation expectations and the associated uncertainty
ay help recognize early signs of eroding central bank
redibility or de-anchoring of inflation expectations (Gr-
shchenko, Mouabbi, & Renne, 2019); central banks are
aying increasing attention to consumer and firm expec-
ations for this purpose (ECB, 2019). Subjective uncer-
ainty also features prominently in theoretical models of
xpectation formation, such as rational inattention (Mack-
wiak & Wiederholt, 2009; Sims, 2003).
There is hence much interest in measuring uncer-

ainty, both at the level of the aggregate economy (e.g.
aker, Bloom, & Davis, 2016; Carriero, Clark, & Mar-
ellino, 2018) and at the level of individual persons or
irms. In the present paper, we propose a new mea-
ure of individual-level uncertainty based on reported
ubjective probabilities. Such a measure is an impor-
ant input to studies considering the determinants or the
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consequences of subjective uncertainty. See, for exam-
ple, Coibion, Gorodnichenko, and Kumar (2018) for an
analysis of firms’ expectations, Ben-David, Fermand, Kuh-
nen, and Li (2019) for a household finance perspective,
and Clements, Rich, and Tracy (2023) for an overview of
macroeconomic expert forecasts.

Manski (2004, 2018) review many economic surveys
in which participants assess the probability of a variable
falling into various outcome ranges. In macroeconomics,
the Survey of Professional Forecasters (SPF; Croushore,
1993) and its European counterpart (Garcia, 2003) are
popular data sources covering expert forecasts. Further-
more, several surveys address the probabilistic expec-
tations of consumers and firms. Examples include the
Survey of Consumer Expectations (SCE) launched by
the Federal Reserve Bank of New York (Armantier, Topa,
van der Klaauw, & Zafar, 2017), a similar initiative by the
Bank of Canada (Gosselin & Khan, 2015), and the firm
survey by Coibion et al. (2018). These data on probabilistic
expectations promise to shed new light on consumers’
uncertainty, complementing more traditional surveys us-
ing point expectations. The latter do not contain direct
information about uncertainty. However, Binder (2017)
utilizes a rounding pattern in the point forecasts data,
namely respondents reporting multiples of five, to con-
struct a measure of individual uncertainty.
ainty in survey expectations. International Journal of Forecasting (2023),
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Fig. 1. Illustration of probabilistic inflation expectations from the April 2020 wave of the SCE. The area of a rectangle corresponds to the subjective
probability of the corresponding outcome range. For example, in the bottom left panel, the probability for an outcome between 2 and 4 equals
2 × 0.1 = 0.2. Solid lines indicate fitted probability density functions via the EMW method.
Fig. 1 illustrates subjective probability distributions
(‘histograms’) from the April 2020 wave of the SCE.1

Each survey participant provides probabilities for various
outcome ranges (‘bins’) of next year’s inflation rate, as
represented by the horizontal axis. The SCE contains a
substantial share of responses using only one or two bins.
Such responses, called ‘sparse histograms,’ are made by
roughly a third of the SCE participants. Sparse histograms
pose a challenge for existing measures of individual un-
certainty (notably Engelberg, Manski, & Williams, 2009,
henceforth EMW), which are based on fitting a parametric

1 Source: Survey of Consumer Expectations©,2013–2023 Federal Re-
erve Bank of New York (FRBNY). The SCE data are available without
harge at http://www.newyorkfed/microeconomics/sce and may be
sed subject to license terms posted there. FRBNY disclaims any
esponsibility for this analysis and interpretation of Survey of Consumer
xpectations data.
2

distribution. For sparse histograms, fitting a flexible dis-
tribution is not possible, and a simple triangular shape is
commonly used instead (see the two examples in the top
row of Fig. 1).

Motivated by the SCE data, we propose a new uncer-
tainty measure that is transparent, trivial to implement,
and well-defined even for sparse histograms. By contrast,
existing approaches require assumptions on the support
of the subjective histogram, the distribution within each
bin, or the functional form of the underlying continu-
ous distribution. Our proposed measure can be theoreti-
cally motivated as the generalized entropy function of the
ranked probability score (Epstein, 1969), a strictly proper
scoring rule. We, therefore, refer to the new measure as
ERPS, for Expected Ranked Probability Score.

The remainder of this paper is structured as follows.
Section 2 summarizes some stylized facts of the SCE prob-
abilities. Section 3 describes existing methods for quanti-
fying uncertainty. Section 4 develops the ERPS, detailing

http://www.newyorkfed/microeconomics/sce
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Table 1
Summary statistics on the number of bins used in the SCE (January 2014 to March 2020
waves) and SPF (2014:Q1 to 2020:Q1 waves); n denotes the total number of responses.
We exclude histograms that do not sum to one (less than 0.4% of responses in both
surveys).

n Share of respondents using Mean nr.
one bin two bins outer bin(s) of bins

SCE

Average Home Price 85155 16.3 16.0 39.1 4.2
Inflation (one-year) 97019 12.6 17.3 38.9 4.4
Inflation (three-year) 97213 13.1 17.9 38.5 4.4
Personal Wage 65240 26.8 24.1 28.3 3.3

SPF

Inflation (GDP def.) 843 2.0 13.6 15.5 4.5
GDP 875 3.1 19.3 6.5 4.5
Inflation (CPI) 842 1.3 14.4 12.7 4.6
Inflation (PCE) 803 0.9 15.4 13.4 4.6
Unemployment 834 8.9 34.4 52.3 3.1
its advantages as mentioned above. Sections 5 and 6 study
the behavior of the ERPS for simulated and empirical data,
respectively. Section 7 concludes. The appendix contains
details, proofs, and additional results.

2. Subjective probabilities in the SCE data

The SCE is conducted monthly with a sample size of
bout 1,300 respondents per month. The core module
f the SCE asks, among others, for subjective probabili-
ies of various outcome ranges, covering three variables:
he inflation rate at two different horizons, real estate
rices, and the respondent’s personal earnings. In the SCE
uestionnaire made available by Federal Reserve Bank of
ew York (2020), the relevant question codes are Q9 and
9c (inflation rate), C1 (growth rate of the average home
rice nationwide), and Q24 (growth rate of the respon-
ent’s personal earnings). The relevant outcome ranges
in percent), which are the same for all variables, can be
epresented by the intervals

−∞, −12]; (−12, −8]; (−8, −4]; (−4, −2];
(−2, 0]; (0, 2]; (2, 4]; (4, 8]; (8, 12]; (12, ∞).

hese outcome ranges are depicted in the horizontal axis
abels of Fig. 1. In the case of inflation, for example, the
wo rightmost intervals refer to an inflation rate between
% and 12% and to an inflation rate of 12% or more.2
Table 1 compares the SCE to expert forecasts in the

PF in terms of response behavior. The table’s upper panel
resents summary statistics on the number of histogram
ins SCE participants used (the number of bins containing
trictly positive probability mass). We focus on the period
rom January 2014 to March 2020 for comparability to
he SPF (see below). For inflation and the average home
rice, around 30% of the participants uses one or two bins
‘sparse histograms’). For personal earnings, roughly half

2 The inclusion (or exclusion) of interval limits is not specified by
the SCE survey questions. For example, the survey question leaves it
unspecified whether an inflation rate of exactly 12% belongs to the last
or penultimate bin. Our choice of half-open intervals is arbitrary – as
is any choice in that regard – but seems unlikely to be of empirical
relevance.
3

of the participants use one or two bins. The mean number
of bins used is higher for inflation and the average home
price (4.2−4.4) than personal earnings (3.3). Finally, over
a quarter of the participants use one or both outer bins
corresponding to the intervals (−∞, −12] and (12, ∞).

The lower panel of Table 1 presents analogous statis-
tics for the SPF. The SPF questions are similar in design to
those of the SCE, except that the two surveys use different
numerical ranges for the histogram bins. While the SPF’s
bin definitions have been adapted over time (Federal Re-
serve Bank of Philadelphia, 2022), they are constant over
the period reported in Table 1. The number of bins (ten)
is the same as in the SCE, except for GDP (eleven). While
the share of participants using two bins and the mean
number of bins used are comparable, there are some ma-
jor differences to the SCE: First, the SPF features a much
smaller share of participants who use a single bin. For ex-
ample, this share is about ten percentage points lower for
the inflation variables. Second, for the inflation variables,
the share of participants using at least one outer bin is
much lower in the SPF than in the SCE. Unemployment
is the only SPF variable in Table 1 for which participants
actively use an outer bin. However, this finding appears
quite distinctive and is driven by a mismatch between
the SPF’s bin definitions and the empirical unemployment
rate during the sample period considered in Table 1.3

Given its large sample size and the empirical pat-
terns just reported, the SCE necessarily contains some
histograms with non-standard shapes that are hard to
capture by parametric distributions. Examples include
distributions with multiple modes, distributions with
‘holes’ (strictly positive probability assigned to non-
adjacent bins), or substantial probability mass in one or
both outer bins. These features call for simple and robust
methods that quantify the uncertainty in any possible
histogram.

3 As documented by Federal Reserve Bank of Philadelphia (2022),
the bins for unemployment range from ‘less than 4%’ to ‘more than
9%’ for the sample period in question. Given that the actual US
unemployment rate was close to or below 4% during much of the
second half of the sample period, survey participants’ use of the
left outer bin seems empirically plausible. In retrospect, the SPF’s
bin definitions seem at odds with the empirical unemployment rate.
Indeed, the SPF bin definitions were changed from 2020:Q2 onwards,
reflecting a wider range of unemployment outcomes.
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. Existing uncertainty measures

Survey probabilities, as in Fig. 1, do not specify a full
robability distribution since the endpoints of the his-
ogram’s support, as well as the distribution within each
in, are unknown. Based on the raw probabilities alone,
t is impossible to compute each participant’s subjective
ean or variance. In the following, we briefly review two
ethods that use parametric assumptions to account for

he missing information.

.1. Distribution fitting

Following earlier work by Dominitz and Manski (1997),
ngelberg et al. (2009, EMW) propose to fit a contin-
ous distribution to the histogram probabilities. Their
hoice of continuous distribution depends on the number
f histogram bins being used: EMW propose fitting a
imple triangular distribution if the histogram is sparse
nd fitting a flexible generalized Beta distribution if the
orecaster uses three or more bins. If the forecaster uses
he leftmost bin (left limit of −∞) or rightmost bin (right
limit of +∞), EMW propose treating the limits of the
istribution’s support as a free parameter. We provide
etails on the EMW method in Appendix A.1. The method
s used to derive uncertainty measures that are reported
n official SCE publications such as Armantier et al. (2017),
nd are made available for download by Federal Reserve
ank of New York (2020).
The EMW method provides a full analytical distribu-

ion from which any feature of interest (such as subjective
easures of location, spread, or tail risk) can be com-
uted. However, this wealth of information comes at a
ost. First, choosing a particular parametric distribution
eems hard to justify for sparse histograms and is poten-
ially restrictive even for dense histograms. For example,
he generalized Beta distribution cannot accommodate
ultimodal histograms, which may be empirically rel-
vant in some situations. (In principle, the generalized
eta distribution could accommodate two modes at the
eft and right end of the support. However, this type of
imodality seems empirically implausible, and Engelberg
t al. propose to exclude it when fitting the distribution.
ee Appendix A.1 for details.) Second, the approach entails
discontinuity when moving from a histogram with two
ins (approximated via a triangular distribution) to one
ith three bins (approximated via a generalized Beta
istribution). Finally, practical implementation requires
udgmental choices pertaining, e.g., to parameter limits
mposed in numerical optimization or to the handling of
ertain ‘undefined’ cases that are not covered by EMW’s
roposal (because they did not or rarely occur in their
PF data) but that inevitably occur in large data sets like
he SCE. Such implementation choices may reasonably be
ade differently by different authors. Full reproducibility
ence requires careful documentation of all choices.
For the SPF data, the drawbacks of the EMW method

rguably play a minor role since both the share of sparse
istograms and the share of ‘undefined’ cases are small.
his observation explains the widespread and successful
se of the EMW method for the SPF and similar data
ets. By contrast, given the properties of the SCE dis-
ussed above, the EMW method seems less well-adapted
o large-scale consumer surveys.
4

3.2. Mass-at-midpoint method

The mass-at-midpoint (MAM) method (see Glas, 2020,
and the references therein) assumes that the subjective
distribution is discrete, with a point mass at {mk}k:pk>0,
where mk denotes the midpoint of bin k = 1, . . . , K .
Hence the method assumes point mass at the subset
of bins that receive nonzero probability. Under this as-
sumption, the subjective mean and standard deviation
can easily be computed. An advantage of this method is
that it can be applied irrespective of the number of bins
used. In particular, it avoids the discontinuity inherent in
the EMW method. A disadvantage of the MAM method
arises whenever the participants use one of the outer
bins (i.e., whenever p1 > 0 or p10 > 0). In this case,
the subjective mean and standard deviation depend on
the endpoints of the outer bins, which are not specified
by the survey design and for which assumptions seem
hard to justify. This disadvantage is especially relevant for
the SCE, where about one-third of the participants use at
least one outer bin. We provide evidence on this aspect in
Appendix A.4.

4. A new approach to quantifying uncertainty in survey
histograms

4.1. General idea: Quantifying uncertainty via entropy

We treat each survey response as a vector of prob-
abilities p :=

(
p1, p2, . . . , pK

)′, where pk denotes
the subjective probability that the outcome is within the
interval rk that defines the range of bin k. In practice, the
intervals {rk}Kk=1 are disjoint, and their union is the real
line. Hence the probabilities p form a subjective survey
histogram as in Fig. 1.

Our proposed measure of uncertainty is based on the
concept of entropy. Informally, if the entropy of a distri-
bution p is large, then a forecaster with subjective dis-
tribution p places a high probability on making large
forecast errors. In that sense, p corresponds to high un-
certainty. Vice versa, under a low-entropy distribution p,
large forecast errors are unlikely, and hence low entropy
corresponds to low uncertainty.

More formally, entropy relates to strictly proper scor-
ing rules (Gneiting & Raftery, 2007). In economics, scoring
rules are commonly used for eliciting beliefs in experi-
ments (Schotter & Trevino, 2014) and for evaluating prob-
abilistic forecasts (e.g. Boero, Smith, & Wallis, 2011). In
a discrete setup, scoring rules are functions of the form
S(p, k∗) that measure the performance of the probabilistic
forecast p if the outcome k∗ realizes. The integer k∗

∈

{1, 2, . . . , K } indicates the histogram bin that contains the
realization. We consider specific choices of S below. For
each choice, a smaller value of S indicates a better fore-
cast. A scoring rule S is called strictly proper if a forecaster
minimizes their expected score by stating what they think
is the true probability distribution p (conditional on their
information set); see Gneiting and Katzfuss (2014, Section
3.1.1) for a formal definition. The function

ES(p) =

K∑
pk S(p, k)
k=1
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s called the entropy function associated with the scoring
ule S (e.g. Gneiting & Raftery, 2007, Section 2.2). We
ropose to use this function to measure the subjective
ncertainty in a probabilistic survey forecast p.

.2. Expected ranked probability score (ERPS)

As our preferred choice of scoring rule S, we consider
he ranked probability score (RPS; Epstein, 1969):

PS(p, k∗)

=

{∑K
k=1(1 − Pk)2 if k∗

= 1∑k∗−1
k=1 (Pk)2 +

∑K
k=k∗ (1 − Pk)2 if k∗

∈ {2, 3, . . . , K },

here Pk =
∑k

j=1 pj is the cumulative probability of the
irst k bins. As its name suggests, the RPS is designed for
anked categorical variables. That is, the RPS treats the
ealizing bin k∗

∈ {1, . . . , K } as an ordinal variable, with
∗

= 1 representing a smaller outcome of the underlying
variable than k∗

= 2.4 Thus, the RPS rewards forecasters
ho put much probability mass into bins equal to or close
o the realizing bin k∗. For example, if a forecaster places
nit probability mass on the third bin, then k∗

= 2 yields
a lower (i.e., better) RPS than k∗

= 1. Boero et al. (2011)
persuasively argue that this feature of the RPS is well in
line with survey histograms, and propose to use it for
evaluating the histograms’ predictive accuracy.

The entropy function of the RPS is given by

ERPS(p) =

K∑
k=1

pk RPS(p, k)

=

K∑
k=1

Pk(1 − Pk). (1)

The latter equation, our proposed uncertainty measure, is
trivial to compute from the histogram probabilities.

Since it attaches only an ordinal but not a numerical
interpretation to the bins, the ERPS at (1) does not depend
on the bins’ outcome ranges or the (unknown) distri-
bution of probability mass within each bin. The ordinal
interpretation renders parametric assumptions obsolete
and explains the simplicity and robustness of the ERPS.
For example, the ERPS easily accommodates sparse or
multimodal histograms. A drawback of the ordinal in-
terpretation is that the ERPS is not comparable across
different bin definitions, such as design A involving ten
bins of length one and design B involving five bins of
length two covering the same interval. This concern may
be relevant if the bin definitions must be adapted over
time to account for changes in the distribution of the
predictand. Such redefinitions occurred several times for
the SPF since it was launched in 1968 (see Federal Re-
serve Bank of Philadelphia, 2022). However, the concern
is less relevant for the SCE, whose probability ranges have
remained unchanged since its start in 2013 and have

4 In our empirical analysis based on the SCE’s bin definitions, the
first bin, k = 1, ranges from (−∞, −12], the second bin, k = 2, ranges
rom (−12, −8], and similarly for the other bins. The last bin, k = 10,
epresents outcomes in the range [12, ∞).
5

lso been adopted by many other consumer surveys such
s the Bundesbank Online Panel (Deutsche Bundesbank,
022).

.3. Comparison to other entropy-based measures

Here we relate the ERPS to entropy functions for two
ther popular scoring rules. The logarithmic score (LS;
ood, 1952) and Brier score (BS; Brier, 1950) are given
y

LS(p, k∗) = − log pk∗

BS(p, k∗) =

K∑
k=1

(Ik=k∗ − pk)2,

here Ik=k∗ is an indicator function that equals one if k =
∗, and equals zero otherwise. Their respective entropy
unctions are given by

ELS(p) = −

K∑
k=1

pk log pk.

EBS(p) =

K∑
k=1

pk(1 − pk).

The ELS was famously developed by Shannon (1948)
and is typically called ‘Shannon Entropy’. In economics,
it plays a key role in the theory of rational inatten-
tion (Sims, 2003). Rich and Tracy (2010) use the ELS
to measure uncertainty in the SPF histograms. The EBS
is much less widely used, with the interesting excep-
tion of López-Menéndez and Pérez-Suárez (2019), who
quantify uncertainty in (aggregate) tendency surveys.

The BS and LS are designed for multinomial random
variables; the outcome categories k∗

∈ {1, . . . , K } are
considered interchangeable. Hence the EBS and ELS are
invariant to permutations of the histogram probabilities
p1, . . . , pK . For example, for a hypothetical three-bin his-
togram, the probabilities p

a
= (1/4, 1/2, 1/4)′ yield the

same EBS as the probabilities p
b

= (1/2, 1/4, 1/4)′. This
assessment seems implausible, given that p

b
is obtained

from p
a
by shifting probability mass from the central bin

to the more extreme leftmost bin. Under the ERPS, which
utilizes an ordinal interpretation, p

b
is considered more

uncertain than p
a
.

ELS and EBS are both maximized by the vector

p∗∗
= τ × (1/K ),

where τ is a K × 1 vector of ones (see López-Menéndez
and Pérez-Suárez 2019, Shannon 1948). Hence flat proba-
bilities represent maximal uncertainty, as seems natural
in a multinomial setup. By contrast, we show in Ap-
pendix A.2 that the maximal ERPS is attained for the
vector

p∗
=
(
1/2, 0, . . . , 0, 1/2

)′
that places probability one-half on each of the two outer
bins. The intuition for this solution is that under p∗, it is
certain that one of the two outer bins will materialize.
Both outcomes produce a large score RPS(p∗, k), since p∗

places no probability mass on the neighboring bins.
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While the RPS accounts for ordering the outcome cat-
egories k∗

∈ {1, . . . , K }, it does not reflect informa-
ion about the width of the corresponding histogram
ins. This information requires a numerical, rather than
ust ordinal, interpretation of the outcome categories. As
entioned, the numerical interpretation is challenging in

he present context. Nevertheless, relating the (E)RPS to
ntropy-based uncertainty measures for numerical out-
omes is interesting. We provide such a comparison in
ppendix A.3.

. Simulation studies

This section compares the ERPS to the EMW and MAM
ethods of quantifying survey uncertainty.

.1. Survey histograms as noisy realizations

Our first simulation design views survey histograms
s a noisy realization of an underlying true continuous
istribution. Survey noise could arise, for example, from
articipants’ limited attention when answering the sur-
ey. In the following, we analyze which histogram-based
ncertainty measure is most closely aligned with the un-
ertainty of the true distribution. We implement this idea
ia the following design:

• Draw an independent sample of size n from a ran-
dom variable X with continuous distribution F

• Set the ‘survey’ probability for the jth bin equal to

p̂j =
1
n

n∑
i=1

1(xi ∈ binj),

where 1(A) is the indicator function of the event A,
xi is the ith realization of the simulated sample, and
binj is the jth SCE interval as defined in Section 2,
with j ∈ {1, 2, . . . , 10}.

• Denote the corresponding true probability for bin j
by

pj = P(X ∈ binj) =

∫
binj

dF (x).

We next compute various uncertainty measures based
on the simulated survey probabilities {p̂j}10j=1 and, pos-
sibly, the corresponding bin limits. We then compare
these measures to the underlying ground truth measure
of uncertainty. Specifically, for the EMW-SD and MAM-SD
methods, we compare the estimated standard deviation
σ̂ to σ , the true standard deviation implied by F .5 Simi-
larly, we compare the interquartile range estimated by the
EMW method (EMW-IQR) to the true interquartile range
implied by F , and we compare the estimated ERPS (based
on the p̂js) to the true ERPS (based on the pjs).

The degree of noise in the histograms is governed by
n. While a small sample size n may entail large deviations
between p̂j and pj (and, possibly, empty bins p̂j = 0

5 In both simulation studies, we implement the MAM method by
assuming that the left and right end of the histogram’s support is
given by −16 and 16, respectively. We provide further evidence of
this implementation choice in Section 6 below.
6

Table 2
Spearman rank correlation between estimated and true uncertainty,
across 1000 Monte Carlo simulations.

Normal Quantified
(triangular or gen. Beta)

n = 20 n = 50 n = 20 n = 50

EMW-SD 0.97 0.99 0.97 0.99
MAM-SD 0.95 0.97 0.95 0.96
EMW-IQR 0.97 0.98 0.97 0.99
ERPS 0.97 0.98 0.97 0.99

for some j), each p̂j converges in probability to pj as
n → ∞. It remains to choose a true distribution F for
simulating the data. We consider two variants: First, a
Gaussian distribution N (µ, σ ), where µ and σ are the
quantified mean and standard deviation associated with a
randomly selected SCE histogram drawn from June 2013
to April 2020 waves and requiring that the histogram
uses at least two bins. Second, the EMW method’s quan-
tified (triangular or generalized Beta) distribution for a
randomly selected SCE histogram, again requiring at least
two bins. While the first variant is somewhat simpler,
the second variant intentionally favors the EMW method
because it simulates data that, by construction, are closely
in line with its functional form assumptions.

Table 2 summarizes the results, across 1 000 Monte
Carlo simulations and for two sample sizes n ∈ {20, 50}.
Reassuringly, there is generally a high agreement be-
tween the estimated and true uncertainty values, with
all rank correlations in Table 2 exceeding 0.94. As ex-
pected, all methods perform better in the setup with less
noise (n = 50). While the methods perform very simi-
larly in the Gaussian case, the second variant indicates a
modest advantage of the EMW and ERPS methods com-
pared to MAM-SD. Given that the second variant favors
EMW uncertainty measures by construction, the good
performance of the ERPS confirms its robustness.

5.2. Sparse histograms

As we have argued, a key advantage of the ERPS over
the EMW method is that the former requires no case dis-
tinction when moving from a sparse histogram (using two
bins) to a histogram using three bins. We demonstrate
the quantitative relevance of this point in a simulation
study based on June 2013 to April 2020 waves of the SCE.
For comparability, we focus on participants who use two
adjacent bins, none of which is an outer bin in the SCE’s
histogram design shown in Section 2. We further require
that the histogram probabilities sum to one and exceed
one percent, which is the magnitude of the perturbation
we consider. These selection criteria leave us with 15961
two-bin histograms. For each histogram, we consider two
simple perturbations. First, we move one percentage point
of probability mass from the left bin to its left neighboring
bin. For example, suppose that the original histogram
allocates 50% probability to each of the two bins (0, 2] and
(2, 4]. The perturbed histogram then places probability
1%, 49% and 50% to the three bins (−2, 0], (0, 2] and (2, 4]

respectively. Second, we apply an analogous perturbation
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o the right histogram bin, such that the perturbed his-
ogram contains one percent of probability mass in a third
in located to the right of the original histogram. We
hoose a perturbation size of one percentage point since
t is the smallest size that seems empirically plausible.

For each setup (no perturbation, left perturbation, and
ight perturbation), we again consider the ERPS, as well
s the standard deviation (EMW-SD) and interquartile
ange (EMW-IQR) of the distribution obtained via the
MW method, and the standard deviation obtained via
he MAM method (MAM-SD). Given the small perturba-
ion size, we contend that an uncertainty metric should
e robust to the perturbation.6 To measure the similarity
etween the perturbed and baseline histograms, we con-
ider the rank correlation between the uncertainty mea-
ures and their mean absolute deviation (MAD). Table 3
ummarizes the results, indicating that the perturbation
ignificantly impacts the two EMW measures. The rank
orrelation between the original and perturbed measures
an be as low as 0.38, which is remarkable given the
mall magnitude of the change. Similarly, the mean ab-
olute deviations in the first two rows of Table 3 are
onsiderable, given the mean values of the uncertainty
easures reported in the first column. The results further

ndicate that the impact of the right perturbation is larger
han the impact of the left perturbation. This effect is
ue to the empirical pattern that many of the two-bin
istograms focus on the bins (2, 4] and (4, 8]. According to
he SCE’s bin design shown in Section 2, the left neighbor
f these bins is at (0, 2], whereas the right neighbor is at
8, 12]. Hence, the left perturbation expands the support
f the histogram by two units, whereas the right pertur-
ation expands the support by four units. This asymmetry
atters here since the (Engelberg et al., 2009) algorithm
upports the histogram if only interior bins are used.
MAM-SD is robust to both left and right perturba-

ion, attaining rank correlations close to one and reducing
ean absolute deviations by about 50% compared to the
MW method. For ERPS, the impact of the perturbation
an be described analytically. Let p denote a two-bin
histogram, and p̃

L
and p̃

R
its perturbed version with prob-

ability mass shifted to the left and right neighboring bin,
respectively. Let δ denote the perturbation size (with δ =

0.01 in our simulation study). Then Eq. (1) yields that

ERPS(p̃
L
) = ERPS(p̃

R
) = ERPS(p) + δ (1 − δ),

i.e., both perturbations lead to an additive increase in
ERPS by δ (1 − δ). Hence, the perturbation affects all
histograms in the same way, leading to correlations of one
and mean absolute deviations of about 0.01, demonstrat-
ing the robustness of the ERPS.

The present simulation experiment aims to quantify
the impact of the EMW method’s known discontinu-
ity when moving from two to three bins. The two-bin
case is empirically relevant for individual-level SCE his-
tograms but less common in other contexts (such as av-
erage histograms across many survey participants). When
the baseline histogram uses three or more bins, we expect

6 For larger perturbation sizes, it is no longer clear whether the
uncertainty measure should be robust to the perturbation or not.
7

Table 3
First column: Mean of uncertainty measure (without perturbation).
Second to fifth column: Rank correlation of uncertainty in perturbed
and baseline histograms and mean absolute deviation (MAD) between
uncertainty in perturbed and baseline histograms.

Mean Left perturbation Right perturbation

Correlation MAD Correlation MAD

EMW-SD 0.75 0.66 0.10 0.38 0.19
EMW-IQR 1.08 0.70 0.13 0.54 0.24
MAM-SD 1.00 0.99 0.05 0.97 0.09
ERPS 0.19 1.00 0.01 1.00 0.01

the EMW method to be reasonably robust to the types
of small perturbations considered above, as the switch
from a triangular to a generalized Beta distribution for
quantification does not occur in these situations.

6. Empirical comparisons

We next compare the ERPS to the EMW and MAM
methods based on empirical survey data. For EMW, we
focus on the EMW-SD variant; the results based on EMW-
IQR are qualitatively identical and are hence omitted for
brevity. For MAM, we initially assume that the lower and
upper support limits are given by −16 and 16, such that
the open bins have the same length as their neighboring
closed bins. We then study the impact of this parameter
at the end of the section and in Appendix A.4.

Overall, the three uncertainty measures display strong
positive associations. For a given survey date and variable,
the rank correlation between any two uncertainty mea-
sures is at least 0.87 and often as high as 0.95. We next
analyze whether respondents who express high uncer-
tainty about inflation also express high uncertainty about
house prices and their personal earnings. To this end, we
consider the rank correlation coefficient of uncertainty
across variables. We consider six pairs of variables and 83
monthly survey waves (June 2013 to April 2020). Fig. 2
illustrates house prices and inflation, indicating that ERPS
and MAM generally yield a higher rank correlation than
EMW-SD. Similar patterns also hold more broadly: Across
all variable pairs and survey dates, the ERPS attains the
highest rank correlation in about 64% of all cases. The
corresponding shares for MAM and EMW are 34% and
2%. There is hence clear evidence that the ERPS is more
consistent across variables than the EMW method. In the
absence of a ‘ground truth’ measure of uncertainty, we
cannot tell whether this feature of the ERPS is desir-
able. However, these findings indicate an interesting and
robust difference between both measures.

We further compare the persistence of uncertainty as
measured by EMW, ERPS, and MAM. We measure persis-
tence by the rank correlation of uncertainty in two sub-
sequent SCE waves for the subset of participants present
in both waves. A small rank correlation may indicate a
genuine shift in relative uncertainty from one month to
the next (e.g., Anne is more uncertain than Bob in January,
whereas Bob is more uncertain than Anne in February).
Alternatively, a small rank correlation may reflect noise
in the uncertainty measure.
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Fig. 2. Rank correlation of subjective uncertainty regarding house prices and inflation (one year ahead). The lines correspond to different measures
of uncertainty.
Fig. 3. Rank correlation of subjective uncertainty over two subsequent survey months, based on participants present in both months.
Fig. 3 presents results on the persistence of uncer-
ainty. The observed correlation of all three uncertainty
easures is similar for personal earnings. Genuine shifts

n relative uncertainty seem particularly plausible for this
ariable since it is individual-specific and prone to id-
osyncratic information updates (such as Anne signing a
ew labor contract in February). MAM-SD is most per-
istent overall for house prices and inflation, followed by
8

ERPS and EMW-SD. Similar to the findings across vari-
ables, this indicates that MAM-SD and ERPS are less sen-
sitive to small changes in the raw probabilities p than
EMW-SD.

Until now, all of our (simulation and empirical) results
for MAM have assumed lower and upper support limits of
−16 and 16. This choice is necessarily judgmental as the
histograms yield no information on support limits. One
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ould argue that support limits of ±16 are too narrow and
onsider wider limits instead. However, any particular
hoice of wider limits is arbitrary as well. In Appendix A.4,
e provide empirical results on this topic for inflation
xpectations in the SCE. As shown there, the largest stan-
ard deviations in the sample are especially sensitive to
he choice of support limits and become very large for
ide choices (such as ±38 used in the ‘wide’ scenario
f Appendix A.4). On the other hand, these wide choices
re not easily refuted as implausible, for example, when
onsidering the presence of extreme point expectations in
onsumer surveys.7

. Discussion

This paper introduces the ERPS, a new measure of
ncertainty in probabilistic survey expectations. The ERPS
s based on an ordinal interpretation of the survey out-
ome categories, which prevents parametric assumptions
nd explains its simplicity and robustness. The Engel-
erg et al. (2009, EMW) method, the current standard for
uantifying uncertainty in economic surveys, uses a nu-
erical interpretation of outcome categories instead. The
umerical interpretation is more demanding and requires
he researcher to make parametric assumptions about
nknown aspects of the histogram. In return, it provides
full picture of subjective uncertainty.
We think that a user’s choice between the ERPS and

he EMW method should depend on the signal-to-noise
atio in the subjective probability data. If this ratio is high,
hen the EMW method – which is more sensitive to small
hanges in the probabilities – seems more appropriate.
xamples of this situation include average histograms
cross time or across socio-demographic groups (which
ay be based on hundreds of individual responses) and
erhaps probability assessments by individual expert fore-
asters. By contrast, the ERPS seems preferable in the
ontext of individual-level probabilities by consumers,
uch as the ones covered by the SCE. This data type is
n innovative source for monitoring and studying the
eneral public’s inflation expectations. In particular, mi-
rodata from the SCE and similar surveys allow us to an-
lyze the heterogeneity in economic expectations across
ocio-demographic subgroups of society. Such analyses
re highly relevant to study the general public’s response
o economic policy measures (see, e.g. D’Acunto, Mal-
endier, & Weber, 2023). Finally, for aggregate measures
f uncertainty (obtained, e.g., by computing an individual-
evel measure of uncertainty and then averaging this
easure across survey participants), we typically expect

he difference between the EWM method and the ERPS
o be limited. Due to averaging, the sensitivity of the
MW method will often be of minor importance in such
ituations.
Our simulation and empirical results also cover the

ass-at-midpoint (MAM) method, which can estimate the

7 Consider, for example, one year ahead inflation expectations in
the SCE (variable code Q8v2part2). Across the June 2013 – April 2020
urvey waves, 1.3% of the point expectations are −25% or lower, and
5% of the point expectations are +25% or higher.
9

standard deviation corresponding to an individual-level
histogram. While MAM seems more attractive than the
EMW method for two-bin histograms (see Section 5.2), its
use of judgmental support limits makes it less attractive
for histograms involving outer bins (see Appendix A.4).
Compared to the ERPS, MAM enables more detailed infor-
mation on a forecast histogram (in particular, estimates
of its mean and standard deviation) at the cost of making
assumptions and implementation choices that are hard to
justify rigorously. This trade-off is similar to the trade-
off that arises when comparing the ERPS and the EMW
method.

Finally, while we have focused on measuring sub-
jective uncertainty by itself, an interesting question is
whether subjective uncertainty lines up with measures
of realized uncertainty based on expectation errors. This
comparison is of economic relevance since over- or under-
estimating objective uncertainty has possibly severe im-
plications for decision-making (see, e.g. Ben-David, Gra-
ham, & Harvey, 2013). In Appendix A.5, we demonstrate
that the ERPS can also be used in this context.
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Appendix

The appendix provides details on the EMW method
(Appendix A.1), proves a claim on the ERPS (Appendix A.2),
relates the ERPS to the CRPS (Appendix A.3), investi-
gates the choice of bin limits for the MAM method (Ap-
pendix A.4), and sketches a comparison of the ERPS to its
realized counterpart (Appendix A.5).

A.1. Details on the EMW method

Here we provide details on our implementation of
the Engelberg et al. (2009, EMW) method for quantifying

forecast histograms.
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ase A: Forecaster uses one or two bins
Following Engelberg et al. (2009, EMW), we construct

sosceles triangles that are completely characterized by
heir support which we denote by [a, b]. The mode of the
istribution is located at c = (a + b)/2.
If a forecaster uses only one bin, we use a triangular

istribution with support equal to that of the bin used.
his approach, which is recommended in EMW’s Section
.1.1, differs from the one implemented in the SCE, which
ssumes a uniform distribution over the support of the
in (Armantier et al., 2017, Footnote 28).
In the case of a forecaster using two adjacent bins,

ecker, Duersch, Eife, and Glas (2021) note that the orig-
nal procedure by EMW may yield counterintuitive tri-
ngular fits when applied to survey probability intervals
f varying widths (like the SCE). Suppose the two bins
ith nonzero probability are given by [L,M) and [M, R),
nd denote the corresponding probabilities by pL and pR.
imilar to Becker et al., we set a = L if the left interval
eatures weakly higher density, i.e., if pL/(M−L) ≥ pR/(R−

). Otherwise, we set b = R. Unlike Becker et al., we
hen choose the other endpoint of the isosceles triangle by
umerically optimizing the squared difference between
he empirical and fitted CDFs. This approach is motivated
y the fitting criterion used in the case of three or more
ins, described below. In most empirical two-bin cases, a
quared difference of zero is attainable, and the numerical
olutions coincide with the formulas proposed by Becker
t al.. However, exceptions to this situation exist, includ-
ng the example of a participant placing 30% and 70%
robability on the (2,4] and (4,8] bins, respectively.
The preceding description does not cover two scenar-

os:

• The forecaster uses two non-adjacent bins such as
(0, 2] and (4, 8].

• The forecaster uses one or two bins, including one of
the outer bins (i.e., p1 > 0 or pK > 0).

The EMW method does not prescribe a solution for the
ormer scenario. In the latter scenario, any solution would
eem to hinge on an arbitrary choice of support limit. In
ur analysis, we drop observations from either of the two
cenarios to not distort our findings on the EMW method.

ase B: Forecaster uses three or more bins
If the forecaster uses three or more bins, EMW propose

o fit a generalized Beta distribution given by

gBeta(x; a, b, l, r) =

⎧⎪⎨⎪⎩
0 x ≤ l,

1
B(a,b)

∫ x
l

(u−l)a−1(r−u)b−1

(r−l)a+b−1 du l < x ≤ r,

1 x > r,

(2)

B(a, b) =
Γ (a)Γ (b)
Γ (a + b)

,

Γ (a) =

∫
∞

0
ua−1 exp(−u) du.

Instead of the limits 0 and 1 of the regular Beta distri-
bution, FgBeta entails flexible left and right limits l, r ∈ R
ith l < r . The two shape parameters a, b ∈ R+ play the

same role as in regular Beta distributions. EMW impose
10
the constraint that a > 1 and b > 1 to obtain a unimodal
shape, which seems plausible in the present context.

To fit the distribution at (2) to a vector of histogram
probabilities p, EMW propose to fix the limits l and r at
the endpoints of the bins that are being used. If one or
both of the two outer bins are being used, the authors
propose to treat the limits l and/or r as free parameters to
e estimated. That is, l is a free parameter if p1 > 0, and r

is a free parameter if pK > 0, where K = 10 in the case of
the SCE. Following Armantier et al. (2017, Appendix C), we
impose the constraint that l > −38 and that r < 38 when
estimating l and/or r . We further impose that l < −12 and
r > 12, as is logically required by the SCE’s bin design. The
shape parameters a and b are estimated in either case. In
the most general case where l and r are both estimated,
the fitting problem is thus given by

min
a>1,b>1,

−38<l<−12,
12<r<38

K∑
k=1

[
FgBeta(xk; a, b, l, r) − Pk

]2
,

where xk is the right endpoint of the kth histogram bin,
and Pk =

∑k
j=1 pj is the cumulative probability of the first

k bins.
R code for implementing the described quantification

method is available via the first author’s website. We drop
a small number of individual survey responses (12, out
of 367 728) for which our quantification method leads to
excessive numerical challenges, primarily due to a large
probability mass in one of the outer histogram bins.

A.2. Maximal ERPS

Here we prove a claim made in Section 4.3 of the
paper.

The ERPS of a distribution p is given by

ERPS(p) =

K∑
k=1

Pk(1 − Pk)

In matrix notation, let p be the K×1 vector with probabil-
ities pk, and P be the corresponding vector of cumulative
probabilities Pk. We have that P = C ′p, where C is a K ×K
upper triangular matrix with all elements above the main
diagonal equal to one, and all diagonal elements equal to
one. We can write

ERPS(p) = P ′(τ − P) = p′Cτ − p′CC ′p,

where τ is a K × 1 vector of ones. To find the maximand
of the ERPS, we solve the following problem:

arg maxp ERPS(p) such that p′τ = 1;

note that the constraint that probabilities be nonnegative
need not be enforced explicitly. Setting up the Lagrangian
and solving the resulting quadratic problem then shows
that the maximand is given by

p∗
=
(
1/2, 0, . . . , 0, 1/2

)′
;

note that the second-order condition for a maximum is
satisfied since CC ′ is strictly positive definite.
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.3. Relating the ERPS to probability distributions for numer-
cal outcomes

ummary
The ERPS attaches an ordinal interpretation to the

istogram bins and depends only on the vector p of bin
probabilities. Here we relate this perspective to the un-
known probability distributions for numerical outcomes
that may underlie a given vector p. In particular, consider
two different probability distributions F1, F2, such that
both F1 and F2 match p, i.e., they both assign probability
pk to the interval defining bin k = 1, . . . , K . F1 and F2
ttain the same ERPS. By contrast, uncertainty measures
or numerical outcomes will typically assign different lev-
ls of uncertainty to F1 and F2. In that sense, the ERPS
ummarizes the uncertainty of all probability distribu-
ions F that match p. Below we discuss this conceptual
spect in more detail, providing explicit results for one
articular subclass of distributions that match p and for

the simplified case of a histogram with bins of equal
width. The requirement of equal bin widths is natural and
essential. Since the ERPS does not use information on bin
length, there is no meaningful way to study the ERPS in a
setup where bin length is a relevant parameter.

Details
Consider a discrete random variable X with support

v1, v2, . . . , vK , where vj ∈ R for all j = 1, . . . , K , va < vb

or a < b, P(X = vj) = pj, and
∑K

j=1 pj = 1. We think
of X (and its modified versions below) as a draw from
the probability distribution that underlies a given survey
histogram. The cumulative distribution function (CDF) of
X is given by

F (x) = P(X ≤ x) =

∑
j: vj≤x

pj.

Hence F (x) is a piecewise constant function that satisfies
F (x) = 0 for x < v1 and F (x) = 1 for x ≥ vK .
Since X is supported on the real line, we can measure
its underlying uncertainty using the continuous ranked
probability score (CRPS; Matheson & Winkler, 1976), a
strictly proper scoring rule. Observe that using the CRPS
requires a numerical interpretation of the support of X ,
in contrast to the ordinal interpretation underlying the
ERPS. The expected CRPS (ECRPS), or CRPS entropy, for X
is given by

ECRPS(F ) =

∫
∞

−∞

CRPS(F , x) dF (x) (3)

=

∫
∞

−∞

F (x)(1 − F (x)) dx

=

∫ vK

v1

F (x)(1 − F (x)) dx

=

K−1∑
j=1

(vj+1 − vj)F (vj)(1 − F (vj))

=

K−1∑
(vj+1 − vj)Pj(1 − Pj), (4)
j=1

11
where Pj =
∑j

l=1 pl is the cumulative probability of the
first j categories. The second equality follows the known
properties of the CRPS. See, e.g., Gneiting and Raftery
(2007, Section 4.2). The expression at (4) is identical to
the expression for the ERPS at (1) if vj+1 − vj = 1 for all j,
i.e., if all support points of X are exactly one unit apart. We
will focus on this case in the following, and we investigate
the properties of the CRPS entropy in this setup.

For concreteness, suppose the support of X is given
by v1, v2, . . . , vK = 0, 1, . . . , K − 1. Furthermore, for a
given integer n ∈ N and s = 1, 2, . . . , n, define the
shifted random variables Xn

s = X + s/(n + 1), and P(Xn
s =

j + s/(n + 1)) = P(X = j) for j = 0, 1, . . . , K − 1. Fig. 4
illustrates this construction for n = 3 (top panel) and
n = 20 (bottom panel).

For given n and p, we next consider the following
family of mixture distributions:

Fn(p)

=

{
Z :P(Z ≤ z) =

n∑
s=1

ωn
s F

n
s (z), 0 ≤ ωn

s ≤ 1,
n∑

s=1

ωn
s = 1.

}
.

hat is, Fn(p) collects all distributions that can be con-
structed as a finite mixture of the random variables Xn

1 ,

Xn
2 , . . . , Xn

n , where F n
s (z) = F (z−s/(n+1)) is the CDF of the

sth mixture component, and F is the CDF of the discrete
random variable X with support points 0, 1, 2, . . . , K −

1 and associated probabilities p. An interesting special
case arises for n → ∞ and ωn

s = 1/n for all s =

1, 2, . . . , n, yielding a piecewise uniform distribution be-
tween [0, 1], (1, 2], . . . , (K − 1, K ], as alluded to in the
bottom panel of Fig. 4. Such a setup is sometimes assumed
for quantifying survey histograms (see, e.g. Glas, 2020).
Another practically relevant special case arises when n is
odd, and ωn

(n+1)/2 = 1, i.e., the ‘central’ mixture compo-
nent receives a weight of one. In this case, we obtain the
distribution assumed by the mass-at-midpoint method,
with support at 0.5, 1.5, . . . , K −0.5 and associated prob-
abilities p.

Consider a forecast histogram with bins [0, 1], (1, 2],
. . . , (K − 1, K ]. Then for a given choice of n, each random
variable in the family Fn(p) yields the same histogram, in
the sense that P(Z ∈ binj) = pj for each Z ∈ Fn(p), where
binj denotes the interval that defines the jth histogram
bin. All members of Fn(p) yield the same ERPS. Further-
more, Eq. (4) implies that all shifted random variables
Xn
s , s = 1, . . . , n, yield the same expected CRPS. By con-

trast, the expected CRPS typically differs across members
that are non-trivial mixtures of the Xn

s ’s, i.e., members
that place strictly positive weight ωn

s on at least two com-
ponents s. The following result describes how the ERPS
summarizes uncertainty across all members of Fn(p).

Proposition 1. Consider the CDF
∑n

s=1 ωn
s F

n
s of a member of

the family Fn(p) described above, and let ECRPS
(∑n

s=1 ωn
s F

n
s

)
denote the expected CRPS of this CDF. Then

minωn
1,ωn

2,...,ωn
n∈∆n ECRPS

(
n∑

ωn
s F

n
s

)
=

K−1∑
Pj(1 − Pj),
s=1 j=1



F. Krüger and L. Pavlova International Journal of Forecasting xxx (xxxx) xxx

s

w
t
(

Fig. 4. Illustration of the shifted random variables Xn
s , for n = 3 (top panel) and n = 20 (bottom panel). Each color corresponds to one value
∈ {1, 2, . . . , n}.
here ∆n is the set of all nonnegative weights that sum
o one. Furthermore, the minimum is attained by setting
ωn

1, . . . , ω
n
n) equal to a unit vector of length n (with ωn

s = 1
for exactly one value s = s∗, and ωn

s = 0 for all other values
of s.)

Proof. The result follows directly from the fact that
ECRPS is a strictly concave function of its (CDF-valued)
argument, which in turn results from the CRPS being a
strictly proper scoring rule (see Gneiting & Raftery, 2007,
end of Section 2.1). Note that Gneiting and Raftery define
strictly proper scoring rules in positive orientation. Since
we use them in negative orientation (such that smaller
scores are better), their ‘strictly convex’ must be replaced
by ‘strictly concave’ in our setting. Strict concavity of the
ECRPS function means that

ECRPS(
n∑

s=1

ωn
s F

n
s ) ≥

n∑
s=1

ωn
s ECRPS(F n

s )  
=
∑K−1

j=1 Pj(1−Pj)

=

K−1∑
j=1

Pj(1 − Pj),

with equality if and only if ωn, . . . , ωn is a unit vector. □
1 n

12
In words, the proposition states that ERPS(p) =∑K−1
j=1 Pj(1−Pj) is the minimal CRPS entropy in the family

of distributions Fn(p), all of which are consistent with the
same survey histogram p. The analysis also implies that in
the given setup of a histogram with bins [0, 1], (1, 2], . . . ,
(9, 10], each shifted random variable Xn

s is compatible
with p, and its ECRPS coincides with the ERPS of the his-
togram. Hence, we can identify several numerical random
variables replicating the ERPS’ uncertainty assessment.

The specific bin width of one considered here is not
essential: Choosing equal-sized bins of another length c
would render the ECRPS of each Xn

s equal to c times the
ERPS of p (see Eq. (4)). By contrast, using bins of different
lengths would make the link between ECRPS and ERPS
less clear, which seems natural: Given that the ERPS is
based on an ordinal interpretation of the bins, it cannot
usefully reflect information on differences in bin length.

The family Fn(p) of distributions we consider ensures
that each member is compatible with p. Furthermore, it
is easily possible to characterize the individual members’
uncertainty (here, their ECRPS). This makes this family a
suitable choice for studying the link between the ERPS
and the uncertainty of distributions for numerical out-
comes. At the same time, the result that the ERPS is
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Table 4
Summary statistics for quantified standard deviations for the EMW and mass-at-midpoint (MAM) methods. Based on
SCE histograms for inflation (one year ahead), between June 2013 and April 2020.
Std. dev. of all histograms (n = 103 734)

Variant 5% quant. 25% quant. Median Mean 75% quant. 95% quant.

EMW 0.41 0.82 1.52 2.61 3.14 8.66
MAM-Narrow 0.00 1.02 2.04 2.71 3.63 8.27
MAM-Medium 0.00 1.02 2.06 2.90 3.98 8.97
MAM-Wide 0.00 1.02 2.10 3.81 5.69 12.42

Std. dev. of histograms using at least one outer bin (n = 38 737)

Variant 5% quant. 25% quant. Median Mean 75% quant. 95% quant.

EMW 1.37 2.48 3.89 4.99 6.82 11.77
MAM-Narrow 2.30 3.25 4.15 4.96 6.45 9.42
MAM-Medium 2.55 3.60 4.61 5.45 6.93 10.34
MAM-Wide 3.48 5.18 6.95 7.89 9.69 15.01
a
F
o
d
h
a
s

a
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p

the minimal expected CRPS does not hold across broader
classes of distributions G(p) that are compatible with p.

e demonstrate this via the following example:

xample. Consider the bins [0, 1], (1, 2], . . . , (9, 10], and
et p =

(
0.1, 0.1, . . . , 0.1

)′. The discrete distri-
bution G which places probability 0.1 on the ten points
g1, g2, . . . , g10 = 0.99, 1.99, 2.99, 3.99, 4.99, 5.01, 6.01,
7.01, 8.01, 9.01 is compatible with p, and attains an ex-
pected CRPS of 1.405 (see Eq. (4)). This is strictly less than
the ERPS of p, given by 1.65.

.4. Choice of support limits for mass-at-midpoint (MAM)
ethod

Here we analyze the sensitivity of the MAM method
o the choice of limit for the two outer bins, focusing
n inflation expectations for brevity. Recall that the SCE’s
eftmost bin has an upper limit of −12, whereas the SCE’s
ightmost bin has a lower limit of +12. We consider the
ollowing three variants for closing the SCE’s outer bins:

• Narrow: Leftmost bin equals [−16, −12], rightmost
bin equals (12, 16]. This implies a bin width of four,
shared by the widest interior bins.

• Medium: Leftmost bin equals [−20, −12], rightmost
bin equals (12, 20], i.e. doubling the bin width of the
narrow variant.

• Wide: Leftmost bin equals [−38, −12], rightmost
bin equals (12, 38]. This choice corresponds to the
maximal limit of 38 (or minimal limit of −38) that
we impose in our implementation of the EMW
method, following a proposal by Armantier et al.
(2017). As noted in Footnote 7, a wide choice of
bin limits could also be motivated by the empir-
ical occurrence of extreme point expectations of
inflation.

he narrow and wide choices of bin limits are at the lower
nd upper end of what we consider plausible. However,
his assessment is necessarily subjective as no rigorous
ustification exists for one particular choice.

We implement the MAM method for these three
hoices of outer bins and consider the standard deviation
btained via the EMW method as a benchmark. Table 4

ummarizes the empirical results, focusing on one year

13
head of inflation expectations (SCE, variable code Q9).
or histograms that use only interior bins, the choice of
uter bin limit is irrelevant by construction. Hence the
ifferences in standard deviations are driven entirely by
istograms that use at least one outer bin (about 37% of
ll histograms). The bottom panel of Table 4 thus presents
ummary statistics for this subsample.
For example, in the bottom panel of Table 4, the aver-

ge standard deviation is 4.96 for the narrow choice, and
.45 for the medium choice, corresponding to a relative
ncrease of about 10%. The wide choice of outer bins
enerates substantially larger standard deviations, with
n average of 7.89 (about 46% larger than the medium
hoice). Compared to EMW, all MAM variants yield higher
ean and median values. However, the right tail of stan-
ard deviations tends to be higher for EMW than for the
arrow and medium variants of MAM.
The practical relevance (or irrelevance) of these dif-

erences in standard deviations seems specific to the ap-
lication considered. However, given the lack of a rigor-
us justification for the choice of bin limit for the MAM
ethod, checking the robustness of empirical results to

his parameter will often be necessary and burdensome.

.5. Comparing subjective and objective uncertainty

Here we provide a statistical justification for using
he (expected and realized) RPS to compare subjective
nd objective measures of uncertainty and assess whether
onsumers’ uncertainty assessment is realistic. The latter
spect is economically relevant in that misperceptions of
ncertainty lead to economically suboptimal decisions in
wide range of situations (see, e.g. Ben-David et al., 2013,
nd the references therein). Comparisons of expected and
ealized loss that are conceptually similar to the ones
ketched here have been proposed by Clements (2014),
alvao and Mitchell (2019), and Wei, Balabdaoui, and
eld (2017).
We consider a so-called prediction space setup (Gneit-

ng & Ranjan, 2013) that models the joint distribution of
xpectations and realizations. We treat the K histogram
robabilities p as a random vector and denote the bin

containing the realization by the discrete random vari-
able k∗

∈ {1, . . . , K }. The sample space of interest, Ω ,
consists of forecast-observation pairs (p, k∗). We omit
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ime indexes for simplicity; to obtain an intuition, sub-
equent realizations of (p, k∗) can be thought of as in-
dependent (whereas one would expect contemporaneous
dependence between p and k∗, of course).8 As in Ehm,
Gneiting, Jordan, and Krüger (2016, Section 3.1), let Q be
probability measure on (A, Ω), where A is a σ -field on

Ω . The following result then provides a formal condition
under which the expected and realized RPS coincide in
expectation.

Assumption 1. Assume that there is some information
set F ⊆ A such that

Q(k∗
= k|F) = pk

holds almost surely for k = 1, . . . , K , where Q(k∗
= k|F)

is the true conditional probability that k∗
= k (conditional

on the information set F), and pk is the kth element of p.

roposition 2. Under Assumption 1, it holds that
(RPS(p, k∗)) = E(ERPS(p)).

Proof. We have that

E(RPS(p, k∗)) = E(E(RPS(p, k∗)|F))

= E(
K∑

k=1

pk RPS(p, k))

= E(ERPS(p)),

where the first equality follows from the law of iterated
expectations, the second equality follows from Assump-
tion 1, and the final equality follows from the definition
of ERPS. □

Assumption 1 requires that the probability forecast
p is correctly specified, in the sense that there is some
nformation set relative to which the forecast is optimal.
s noted by Gneiting and Resin (2022), the assumption is
quivalent to p being auto-calibrated (Tsyplakov, 2013),

a notion of unbiasedness studied in the forecast evalua-
tion literature. Under Assumption 1, Proposition 2 states
that the RPS and ERPS of p coincide in expectation. As a
simple example (loosely following Gneiting, Balabdaoui,
& Raftery, 2007, Table 1), let Y = X + ε, where both
variables on the right are independently standard normal.
Suppose for simplicity that there are only two outcome
bins, r1 = (−∞, 0] and r2 = (0, ∞). Consider forecaster

with pA
1 = Φ(−X), pA

2 = 1 − Φ(−X) = Φ(X). For
orecaster A, Assumption 1 is satisfied with F = σ (X), the
igma algebra generated by X . In line with Proposition 2,
t can be shown that the expected RPS and expected ERPS
f forecaster A equal 1/6. In the notation of Proposition 2,
t holds that E(RPS(pA, k∗)) = E(ERPS(pA)) = 1/6. For
a second forecaster B with pB

1 = pB
2 = 0.5, Assump-

ion 1 is satisfied with F = ∅, the empty information

8 It can be shown that the methodology of comparing ERPS to
RPS remains valid under serial dependence in the forecast-observation
tuples, as long as their joint process is strictly stationary. See Strähl
and Ziegel 2017 for a technical treatment of a prediction space under
serial dependence.
14
set. The expected ERPS and expected RPS of forecaster B
equal 1/4, confirming the intuition that B’s forecast is less
informative than A’s forecast.
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