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Abstract

The human driver is one of the main reasons for traffic accidents. Therefore,
autonomous driving or Advanced Driver Assistance Systems (ADAS) have the
potential to reduce the number of human-related traffic accidents drastically
by supporting or replacing the human driver. Driven by the potential impact
of ADAS and autonomous driving, the understanding and interpretation of
a vehicle’s 3D environment has become increasingly important. Knowledge
about drivable space, the position and motion of other traffic participants,
such as cars or pedestrians, and the static environment is of utmost impor-
tance. Therefore, autonomous vehicles are usually equipped with a variety
of sensors, such as camera, lidar, radar, and ultrasonic sensors. Lidar sensors
and their recorded point clouds are particularly interesting for the challenge
of 3D scene understanding since they provide accurate 3D information about
the current environment. An essential task in this context is panoptic segmen-
tation, which enhances every 3D point with semantic and instance informa-
tion. However, the unstructured and sparse nature of 3D point clouds requires
novel approaches and algorithms to achieve high quality and robust results.
Established technologies from the 2D image domain, such as Convolutional
Neural Networks, cannot be applied directly. Hence, the first key challenge
is the representation of point clouds to effectively leverage the power of ap-
proaches based on deep learning. Alongside the chosen representation, the
sequential nature of the recorded sensor data over time offers great potential
as an additional modality to improve the 3D panoptic segmentation. Never-
theless, it is challenging to propagate information through time from a 3D
point cloud to its successor since spatial correspondences must be found. Fi-
nally, different sensor modalities with distinct measurement principles offer
further potential for enhancement. However, sensor fusion requires an effi-
cient combination of diverse information from distinct sensor spaces. An even
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greater and still unsolved challenge is a joint solution for these aspects and
dense 3D tasks, such as semantic or panoptic segmentation.

The objective of this thesis is the design of a multimodal approach based on
deep learning for 3D panoptic segmentation. It builds upon and combines the
three key aspects multi view point cloud architecture, temporal feature fu-
sion, and deep sensor fusion. The multi view architecture exploits multiple
point cloud representations, also called views, to combine their strengths and
compensate for individual weaknesses. The complementary 2D range view
and bird’s eye view are utilized for efficient context aggregation to support a
high resolution point view. The point view combines multi view context while
preserving fine details. Afterwards, a recurrent temporal fusion approach is
introduced to exploit temporal dependencies by aggregating and propagating
feature maps through time. It builds upon a temporal memory in range or
bird’s eye view containing the aggregated past information, which is updated
in every step with the current information. A temporal alignment step com-
pensates for the ego motion and ensures spatial consistency between frames.
Furthermore, a novel deep sensor fusion approach combines lidar and camera
features to enhance 3D panoptic segmentation. Motivated by the promising
combination of image and depth information, camera and lidar feature maps
are fused in the range view following either an iterative or pyramid-based fu-
sion strategy. Finally, the individual contributions are combined into a novel
multimodal multi view architecture that simultaneously exploits the proposed
multi view, temporal, and sensor fusion frameworks.

Extensive experiments on the two large scale public datasets nuScenes and
SemanticKITTI are conducted to investigate the benefits of the three main
contributions and the combined multimodal framework. First, the evaluation
shows the superiority of the multi view approach over single view methods.
Next, it underlines the value of learning temporal dependencies by revealing
significant improvements of the presented temporal framework over single
frame baselines. Furthermore, it confirms the value of fusing distinct sensor
features. Finally, excellent results are achieved by combining the presented
approaches into a multimodal framework, which outperforms state-of-the-art
results for various tasks and benchmarks.
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Kurzfassung

Einer der Hauptgriinde fiir Verkehrsunfille ist oftmals der menschliche Fah-
rer. Fahrerassistenzsysteme und autonomes Fahren haben deshalb das Poten-
zial, die Zahl der Verkehrsunfille drastisch zu senken, indem sie den mensch-
lichen Fahrer unterstiitzen oder ersetzen. Eine wichtige Voraussetzung dafiir
ist das zuverléssige Erfassen und Verstehen der 3D-Fahrzeugumgebung. Au-
tomatisierte Systeme bendtigen Informationen tiber den Stralenverlauf, die
statische Umgebung und uiber die Position und Geschwindigkeit anderer Ver-
kehrsteilnehmer, wie Autos oder Fufiganger. Dafiir sind autonome Fahrzeuge
iiblicherweise mit einer Vielzahl von Sensoren, wie beispielsweise Kamera-,
Lidar-, Radar- und Ultraschallsensoren ausgestattet. Die von Lidarsensoren
aufgezeichneten 3D-Punktwolken leisten dabei einen zentralen Beitrag zur
3D-Umfelderfassung, da diese prézise 3D-Informationen tiber die aktuelle Um-
gebung liefern. Eine elementare Aufgabe ist in diesem Kontext die panopti-
sche Segmentierung, die jeden 3D-Punkt der Punktwolke einer semantischen
Klasse und individuellen Objektinstanz zuordnet. Fiir diese Aufgabe sind auf-
grund der ungeordneten und unregelméfligen Struktur von 3D-Punktwolken
jedoch neue Ansitze und Algorithmen erforderlich, um qualitativ hochwer-
tige und robuste Ergebnisse zu erzielen. Etablierte Technologien aus der 2D-
Bildverarbeitung, wie z.B. Convolutional Neural Networks, sind aufgrund der
ungeordneten Struktur nicht direkt anwendbar. Eine zentrale Herausforde-
rung ist deshalb 3D-Punktwolken geeignet zu repriasentieren, um Deep Lear-
ning Ansitze anwenden und deren Potenzial ausnutzen zu kénnen. Neben der
Reprisentation der Punktwolken bietet auch die zeitlich sequentielle Natur
der Sensordaten ein erhebliches Potenzial zur Verbesserung der panoptischen
Segmentierung. Eine grofle Herausforderung ist dabei jedoch, die aus einer
Punktwolke extrahierten Informationen auf die zeitlich nachfolgende Punkt-
wolke zu tibertragen, da rdumliche Korrespondenzen in 3D gefunden werden
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miissen. Eine weitere vielversprechende Verbesserungsmoglichkeit bietet die
Fusion verschiedener Sensormodalititen mit unterschiedlichen Messprinzi-
pien. Die Sensorfusion erfordert jedoch eine effiziente Kombination verschie-
dener Informationen aus unterschiedlichen Sensorrdumen. Eine noch gréfie-
re und ungeloste Herausforderung ist eine kombinierte Losung, die all drei
Aspekte vereint.

Das Ziel dieser Arbeit ist die Entwicklung eines multimodalen Ansatzes ba-
sierend auf Deep Learning fiir die panoptische Segmentierung von 3D Punkt-
wolken. Die drei zentralen Aspekte des Ansatzes sind dabei eine Multi-View-
Architektur fiir 3D-Punktwolken, die zeitliche Fusion von 3D Punktwolken
sowie deren Fusion mit Kamerainformationen. Die Multi-View-Architektur
vereint verschiedene Reprisentationen von 3D Punktwolken, auch Views ge-
nannt, um deren Starken zu kombinieren und individuelle Schwichen zu kom-
pensieren. Dabei kommen mit der Range View und Bird’s Eye View zwei kom-
plementére 2D Reprisentationen fiir die effiziente Aggregation von Features
und Kontext zum Einsatz. Beide unterstiitzen die dritte verwendete Reprisen-
tation, die sogenannte Point View. Diese dient als Bindeglied, um die Features
aller drei Repréasentationen fiir jeden 3D-Punkt zu fusionieren. Die Ausgabe
des Point View Netzwerkes ist ein individueller Feature-Vektor fiir jeden 3D
Punkt fiir dessen semantische Klassifikation. Anschlieflend wird ein rekur-
renter zeitlicher Fusionsansatz vorgestellt, um zeitliche Abhangigkeiten zu
lernen und auszunutzen. Dafiir werden Feature Maps in Range und Bird’s
Eye View iiber die Zeit aggregiert, wodurch ein zeitliches Gedédchtnis ent-
steht. Dieses enthilt durch die rekursive Aggregation die Informationen der
vorangehenden Punktwolken und wird in jedem Schritt mit den aktuellen In-
formationen aktualisiert. Ein Transformationsschritt kompensiert die Eigen-
bewegung des Fahrzeuges und gewéhrleistet die rdumliche Konsistenz des
Gedéachtnisses iiber die Zeit. Im nachfolgenden Schritt wird ein Sensorfusions-
Ansatz fiir die Fusion von Lidar- und Kamerainformationen vorgestellt, um
die panoptische Segmentierung weiter zu verbessern. Motiviert durch die er-
folgreiche Kombination von RGB- und Tiefeninformationen werden Kamera-
und Lidar-Feature Maps in der Range View kombiniert. Dafiir kommt ent-
weder eine iterative oder Pyramiden-basierte Fusionsstrategie zum Einsatz.
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Am Ende werden die einzelnen Beitrége zu einer multimodalen Multi-View-
Architektur kombiniert, die als erster Ansatz die Vorteile einer Multi-View-
Architektur, zeitlichen Fusion und Sensorfusion fiir die 3D panoptische Seg-
mentierung vereint.

Fiir die Evaluation werden vielfiltige Experimente auf den beiden umfang-
reichen und 6ffentlichen Datensétzen nuScenes und SemanticKITTI durchge-
fihrt. Dabei werden die Vorteile der einzelnen vorgestellten Ansitze sowie
des kombinierten multimodalen Ansatzes untersucht. Die Experimente zei-
gen im ersten Schritt die Uberlegenheit des Multi-View-Ansatzes gegeniiber
Single-View-Methoden. Zusétzlich wird der Wert gelernter zeitlicher Abhan-
gigkeiten unterstrichen, da die durchgefiihrten Experimente signifikante Ver-
besserungen als Ergebnis der zeitlichen Fusion zeigen. Weiterhin bestitigen
die Experimente wesentliche Verbesserungen der panoptischen Segmentie-
rung durch die vorgeschlagene Fusion von Lidar- und Kamerainformationen.
Als Gesamtergebnis der Arbeit erzielt die Kombination der vorgestellten An-
satze zu einem multimodalen Ansatz hervorragende Ergebnisse und verbes-
sert den Stand der Technik fiir verschiedene Arten der Segmentierung.
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Notation

This chapter introduces the notation and symbols that are used in this thesis.

General Notation

Scalars italic Roman and Greek letters x,H,a
Vectors bold Roman lowercase letters f
Matrices and Tensors bold Roman uppercase letters F
Functions calligraphic Roman uppercase letters F
Sets bold calligraphic Roman uppercase letters &
Scalars

b bias

c channel index

Co speed of light under vacuum conditions

d dimension index

e Euler’s number

i training iteration

kxk kernel size

l neural network layer index

n point index

r distance

Frins Fnax lower and upper bound of distance field of view

Xi
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rfov’ afov’ ¢fov
SH> Sw

t,T

u,v,w

X, ¥,z

Zfov

Zmin> Zmax

DO I3 Yy ™W Q

~

6down ’ o
A

4

¢
Prnin> Punax
§
b

w

up

xii

spherical field of view

vertical and horizontal stride

discrete points in time

grid coordinates

Cartesian coordinates

vertical field of view for cylindrical coordinates

lower and upper bound of vertical field of view

significance level

negative slope of Leaky Rectified Linear Units
sequence length

learning rate

polar angle

lidar intensity

lower and upper bound of vertical field of view
loss weight

view

azimuth angle

lower and upper bound of horizontal field of view
temporal alignment discount factor
momentum factor

perceptron weight

number of residual blocks

number of kernels of a convolutional layer
tensor dimensions

loss value

number of perceptrons

number of elements
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N, classes

Q
S

acc
IoU
mloU
PQ
mPQ
RQ
mRQ
s5Q
mSQ

Vectors

(= ol )

Py P R
o]
Z

s L - T = T~ T T - ol U~ ol -]

number of semantic classes
number of probes

Sensor

accuracy
intersection-over-union
mean intersection-over-union
panoptic quality

mean panoptic quality
recognition quality

mean recognition quality
segmentation quality

mean segmentation quality

all ones vector

bias vector

feature vector

network layer activations
normalized network layer activations
Cartesian position of grid cell

hidden state vector

candidate state of a Gated Recurrent Unit
2D offset vector

Cartesian 3D point

spherical 3D point

cylindrical 3D point

reset vector of a Gated Recurrent Unit

xiii
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u 2D or 3D grid coordinate

X perceptron input

y neural network output

z update vector of a Gated Recurrent Unit

y view weight vector

Mo channel-wise mean over batch

oo channel-wise variance over batch

w perceptron weight vector

WpN»> BN Batch Normalization learnable parameters

Matrices and Tensors

F feature map

G Cartesian position of grid cells

H hidden state

(0] offset tensor

P point cloud

S semantic class scores

T homogeneous transformation matrix
U projection index matrix

A% projection index tensor

w weight matrix of neural network layer
Functions

F multi view fusion

A activation function

(& center assignment function

Xiv
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bijective ordering

loss function

point cloud projection

Cartesian to polar conversion

Cartesian to cylindrical conversion
spatial feature map transformation
combined transformation and projection

temporal memory update

batch

point cloud as set of points
valid matrix index matrices
valid matrix index tensors
instance center candidates

semantic classes

true positives

false positives

false negatives

true positive instances
false positive instances

false negative instances
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1 Multimodal Scene Understanding
with 3D Point Clouds

1.1 Motivation

Advanced Driver Assistance Systems (ADAS) and autonomous driving are
among the most impactful and disruptive technologies in the automotive in-
dustry and beyond. The purpose of these systems is to make driving safer and
more convenient. According to the National Highway Traffic Safety Admin-
istration (NHTSA), the human driver is the critical reason for approximately
94% of traffic accidents in the United States [Sin15]. Therefore, ADAS and
autonomous driving have the potential to support or replace the driver and
to reduce the number of human-related accidents drastically. The capabilities
of these systems are characterized by two key properties. The first one is the
level of autonomy, which determines if the system takes over full responsi-
bility or must be supervised by the human driver. The second one is the op-
erational design domain, which specifies the use cases the system can handle.
Hence, five levels have been proposed [SAE18] to classify these systems, start-
ing from level one with limited functionality and restricted use cases while the
entire responsibility remains with the driver. On the other hand, systems of
the fifth level provide full autonomy for any use case and take over full re-
sponsibility. The increasing amount of autonomy, functionality, and variety
in the covered use cases impose tremendous requirements on the autonomous
system and especially its environmental perception. Therefore, without a ro-
bust and comprehensive understanding of its environment, an autonomous
vehicle can neither fulfill its purpose nor drive at all safely.
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Consequently, the understanding and interpretation of a vehicle’s 3D envi-
ronment has become increasingly important. The foundation is the sensor set
of an autonomous vehicle, which usually comprises a variety of different sen-
sors, such as camera, lidar, radar, and ultrasonic sensors. Based on measure-
ments provided by these sensors, a comprehensive and unified environment
model must be predicted to provide a holistic understanding of a vehicle’s cur-
rent 3D environment. Among others, this includes knowledge about drivable
space, the static world, or the position and motion of other traffic participants,
such as cars or pedestrians. Therefore, the different and complementary sen-
sors are combined by sensor fusion to create the required unified environment
model and to compensate for the shortcomings of individual sensor types. In
addition, sensors in the context of autonomous driving record their environ-
ment sequentially, and previous recordings contain valuable information also
for the current time step. Hence, a temporal fusion of current and past infor-
mation has the potential to improve the environment model.

The individual sensor types provide different data, such as camera images or
lidar point clouds. Lidar sensors and their recorded point clouds are partic-
ularly interesting for 3D scene understanding or environment models since
they provide accurate 3D information. Various tasks can be solved based on
these 3D points to provide valuable information for autonomous driving, such
as object detection and semantic or panoptic segmentation. The latter is an
important and complex task, depicted in Fig. 1.1, that enhances every 3D point
with semantic and instance information. Semantic information describes the
object class, whereas instance information allows distinguishing between in-
dividual instances of a semantic class. Hence, 3D panoptic segmentation pro-
vides a valuable combination of geometric, semantic, and instance knowledge.

Motivated by the high value of 3D panoptic segmentation for environment
perception, this thesis focuses on solving this task for lidar point clouds. Meth-
ods based on deep learning achieve excellent results for scene understanding
tasks in the image domain, such as panoptic segmentation. Therefore, the pro-
posed approach builds upon deep learning to leverage its power for 3D point
clouds. Furthermore, this thesis focuses on a multimodal approach capable
of performing sensor and temporal fusion. It predicts panoptic segmentation
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for lidar point clouds while additionally exploiting camera and temporal in-
formation.
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Figure 1.1: The task of 3D panoptic segmentation. It is composed of semantic and instance seg-
mentation subtasks, shown in the middle and at the bottom, respectively. Different
colors visualize the semantic classes and individual instances.

1.2 Challenges

Panoptic segmentation of 3D point clouds is a challenging task due to the
irregular and sparse nature of point clouds and the necessity to distinguish
simultaneously between a significant number of semantic classes and their in-
stances. Additionally, existing training data is considerably unbalanced with
respect to the semantic classes and their instances. Furthermore, approaches
that include sensor and temporal fusion face additional challenges related to
calibration, ego motion, and temporal synchronization.
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The first set of challenges originates from the particular properties of lidar

point

clouds. These point clouds
do not provide an intrinsic ordering but are an unordered set of points,

are sparse and often provide only some measurement points on indi-
vidual objects and structures, and

have a spatially varying density, which decreases with increasing
distance to the sensor.

These properties complicate the computation and exploitation of relations be-

tween individual points and the capturing of local structures. As a result, the

hierarchical aggregation of information required to understand objects and

structures sparsely represented in a point cloud is challenging. Furthermore,

the unordered nature prevents the direct application of established deep learn-

ing architectures from the image domain. These require their input data to be

organized as a grid and face additional challenges related to the training data:

The semantic subtask significantly and systematically suffers from class
imbalance. The number of points for small classes, such as pedestrians,
is orders of magnitude smaller than for dominating classes, such as road,
building, or vegetation. In addition, only a few unique instances of rare
semantic classes exist, which makes learning the underlying concept
difficult.

Pointwise labeling of point clouds is time-consuming. Therefore, exist-
ing datasets are small compared to other tasks and domains, e.g., image
classification.

Pointwise labeling of point clouds is difficult. Hence, the ground truth
of existing datasets usually contains a significant amount of labeling
errors. Examples are wrong semantic classes, inaccurate boundaries
between semantic classes or instances, and missing instances.

No huge dataset similar to ImageNet [Rus15] exists for pre-training in
the lidar domain. As a result, models must be trained from scratch,
even for complex tasks such as panoptic segmentation.



1.3 Contributions

Independently of the considered panoptic segmentation task and deep learn-
ing, more challenges arise when temporal and sensor fusion are considered:

« Errors in sensor calibrations and ego poses complicate the transforma-
tion of different sensor data from potentially different time steps into a
unified space for fusion.

» Different sensor types usually record at distinct points in time and with
different frame rates. Consequently, the perceived environment differs
due to moving instances and ego motion.

« The individual sensors’ Fields of View (FoVs) often overlap only par-
tially, limiting the potential of sensor fusion.

1.3 Contributions

The objective of this thesis is the design of a multimodal architecture based on
deep learning for robust and high quality panoptic segmentation of 3D point
clouds. The proposed framework builds upon three main concepts: a multi
view point cloud architecture, a temporal feature fusion, and a deep sensor
fusion. The multi view architecture relies on different point cloud represen-
tations, also called views, to exploit their strengths and compensate for weak-
nesses. A recurrent temporal feature fusion considers information from pre-
vious time steps to exploit temporal dependencies. Finally, deep sensor fusion
exploits cameras as an additional sensor modality to improve the 3D panop-
tic segmentation. The evaluation is performed on two challenging and large
scale outdoor datasets, where the individual contributions and their combina-
tion outperform state-of-the-art results for various tasks. The contributions
of this thesis are in detail:

« A novel multi view framework [Due22] addresses the shortcomings of
single view approaches and individual views. It is based on range view,
bird’s eye view, and point view and obtains significantly improved fea-
tures compared to single view approaches. Range and bird’s eye view
provide efficient context aggregation, while the high resolution point
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view maintains a unique feature vector for every 3D point. Due to the
carefully chosen views, the introduced approach considerably reduces
the computational complexity compared to established multi view ap-
proaches. The framework also includes an enhanced multi view, multi
task strategy. The point view provides the 3D semantic segmentation,
whereas the bird’s eye view is used for center-based instance recogni-
tion, required for instance segmentation.

+ A temporal fusion framework [Due20a] with novel recurrent feature
map fusion in range and bird’s eye view considerably improves the 3D
panoptic segmentation in both views. It provides enhanced features
based on a temporal memory containing aggregated past information.
The memory is recursively updated in every step with the current infor-
mation. Two novel temporal alignment strategies compensate for the
ego motion and ensure spatial consistency between two time steps. The
alignment enables the recurrent architecture to reuse past computations
and decouples runtime from the number of considered past steps. Con-
sequently, and in contrast to existing methods, the temporal memory
can propagate information over sequences of arbitrary length.

« A multi sensor framework [Due20b, Due21, Sch22a] with novel deep
feature fusion for lidar and camera information in the range view. Two
multi scale fusion strategies are proposed, following either an iterative
or pyramid-based pattern to improve the feature map fusion. Further-
more, these strategies can counteract camera failure and mitigate its
impact.

« The first multimodal multi view architecture that successfully combines
and leverages the potential of a multi view architecture, temporal fea-
ture fusion, and deep sensor fusion. All three contributions enhance the
results as part of the proposed unified architecture, which outperforms
state-of-the-art methods for different tasks and datasets. Additionally,
several combined frameworks for different use cases and based on two
of the three contributions are presented. These provide a significantly
enhanced 3D panoptic segmentation compared to approaches that ex-
ploit only one of these aspects.



2 Related Work

Panoptic segmentation [Kir19] is the combined task of semantic and instance
segmentation, which provides semantic and object information about the en-
vironment. The subtask of semantic segmentation assigns one of the prede-
fined semantic classes to every image pixel or 3D point. Instance segmen-
tation, on the other hand, clusters pixels or points into instances. However,
distinguishing between instances is only possible and useful for some seman-
tic classes. Foreground or “thing” classes are countable classes that require in-
stance segmentation, specifically traffic participants, such as car, bicyclist, or
pedestrian. On the other hand, background or “stuff” classes are uncountable,
such as road and sidewalk, or their instances are irrelevant for the considered
scenario, such as buildings or poles. Therefore, instance segmentation is only
provided for the subset of thing classes, which are determined by the seman-
tic segmentation. Overall, panoptic segmentation simultaneously requires a
high quality semantic segmentation and sophisticated instance recognition
for convincing panoptic results. Furthermore, it requires mutually consistent
predictions for both subtasks instead of an independent and trivial combina-
tion of both.

The overall goal of this thesis is a multimodal, deep learning-based approach
for panoptic segmentation of 3D point clouds. It builds upon the foundations
of deep neural networks and their success in 2D scene understanding. Related
work is investigated in the areas of 3D semantic, instance, and panoptic seg-
mentation, as well as deep learning-based temporal and sensor fusion.



2 Related Work

2.1 Deep Neural Networks

While the mathematical foundations and basic unit have already been pro-
posed in the middle of the last century [Ros57], the path from this early and
simple linear classifier to a deep neural network that exceeds human-level
performance in image classification [Rus15, He15b] took more than halfa cen-
tury. Neural networks in computer vision experienced their renaissance with
the growing computational power of GPUs [Kri12], which were able to opti-
mize these networks in reasonable time. In the following years, tremendous
progress and improvements have been achieved across various computer vi-
sion tasks, and in other areas, such as neural language processing. The follow-
ing section summarizes the fundamentals of neural networks and specialized
network architectures, such as convolutional and recurrent neural networks.
Further theoretical and mathematical details can be found in [Dud00, Bis06].
While x and y describe Cartesian coordinates throughout this thesis, they are
used as scalar components of input and output vectors x and y in this section
to follow established conventions [Dud00, Bis06].

2.1.1 Multi-Layer Perceptron

The basic building blocks of neural networks are individual neurons, called
perceptrons [Ros57], and their structure is depicted in Fig. 2.1. Perceptrons
take M scalar input values and produce a scalar output y. For that reason,
the input vector x € RM is multiplied with a weight vector w € RM and a
scalar bias b is added. Finally, an activation function A : R — R is applied
to produce the output:

y = A(w" x + b). (2.1)

Common choices for the activation function of Convolutional Neural Net-
works (CNNs) are nowadays Rectified Linear Units (ReLUs) [Jar09, Nai10]

A(x) = max(x, 0) (2.2)
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and their leaky counterpart, Leaky Rectified Linear Units (LReLUs) [Maal3]
A(x) = max(x, 0) + 8 - min(x, 0), (2.3)

where f8 is a small number, such as 0.01. Alternatively, the sigmoid or hyper-
bolic tangent activation functions are other possible choices.

b
X
1 W,
X )
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Figure 2.1: Structure of a perceptron.

A Multi-Layer Perceptron (MLP) combines multiple perceptrons to solve com-
plex and nonlinear problems. The perceptrons are grouped into N layers and
only connected to perceptrons of the previous and next layer, illustrated in
Fig. 2.2. No connections exist inside a layer, and outputs are only provided to
the next layer, which prohibits feedback loops to previous layers. The layer [
with M, perceptrons receives the output or feature vector f;_; € RMi-1 of
the previous layer, representing the scalar outputs of M;_; perceptrons. A
weight matrix W; € RM*Mi-1 and bias vector b; € RM! contain the weight
vector and scalar bias of every perceptron in the I-th layer. This leads to the
overall equation

fi =AW f_, + b)), (2.4)

where f, = X is the input, like an image, and fyy = y € RMN is the output
of an MLP with N layers.
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Figure 2.2: Multi-Layer Perceptron (MLP) composed of individual perceptrons.

Weight matrices and bias vectors, in the following summarized as W, are the
parameters of an MLP, which are optimized during training. The usual super-
vised training strategy requires pairs of input and ground truth output data
(%, y&) for which the network computes its output y*. A task-dependent loss
function £(y*, y#') measures their alignment. Common loss functions for re-
gression are mean-squared error (MSE) and mean-absolute error (MSA):

1 2
Lyse (5, y®) = M_”YX - Ygt”z = Lyse,
1” (2.5)
Lyae (Y%, y8) = ]V[—N”YX - Ygt”l = Lyiag-

For classification, the output vector y contains the individual class scores, and
its dimension My matches the number of classes N .- In this case, Cross-
Entropy (CE) loss is commonly used:

classes Yel
e’cls t
Log (y%,y8) == D) log| ———— | - ¥ds = Lee- (2.:6)
cls=1 ch;l,as:ls eYels!

Backpropagation [Rum86] computes the gradient for the loss with respect to
the network parameters and is the foundation for the optimization process.

10
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The commonly used stochastic gradient descent computes in every iteration
i the gradient over a subset of the training set, called batch 98;, and applies
a given learning rate 7):

aL(y*,y&)
AW, = —n- ) 222 (2.7)
wyves;, W

Afterwards, the parameters are updated accordingly:
Wi+1 = Wi + AWl (28)

Momentum extends this update step with a portion ¢ of the previous weight
update to overcome plateaus in the loss function and converge more quickly:

AW = AW, + pAW,_,
(2.9)
Wi+1 = Wi + AW{.

2.1.2 Convolutional Neural Networks

The previously presented layers of an MLP are called fully connected because
every perceptron of one layer is connected to every perceptron of the next
layer. As aresult, the number of connections and associated weights increases
quadratically with the number of perceptrons. This is especially challenging
for high dimensional inputs, like images, with potentially millions of pixels.
Convolutional layers address this challenge for data with a grid-like topology
by sparsity and parameter sharing. The sparsity is achieved by restricting con-
nections to nearby perceptrons, illustrated in Fig. 2.3, based on the assumption
of strong local structure and correlation [Lec98]. This locally connected re-
gion is the receptive field of a convolutional layer. Additionally, the weights
are shared among all perceptrons of one layer to regularize the parameters
and further reduce their number. Therefore, the weights are independent of a
perceptron’s position and grant spatial invariance. As a result, the operation
of a convolutional layer can be considered as applying filter kernels with the
size of the receptive field to its input.

11
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fully connected locally connected convolutional
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Figure 2.3: Comparison of a fully connected and 1D convolutional layer. Illustration based on
[Her18].

Convolutional layers are the main building blocks of CNNs, together with
pooling and fully connected layers [Lec98]. The first part of CNNs, made of
convolutional and pooling layers, is called feature extractor or backbone and is
responsible for extracting meaningful features from the network input. Con-
volutional layers apply C distinct and learnable k X k kernels to their input
to compute C so-called feature maps, depicted in Fig. 2.4. These feature maps
contain the extracted features, such as edges or corners when considering
image input. Pooling layers, on the other hand, subsample feature maps by
applying a reduction operation to local regions, e.g., of size 2 X 2 or 3 X 3.
Most commonly, the maximum is taken from each region, which has shown
better results than taking the average [Sch10]. In order to achieve the de-
sired subsampling, pooling operations are usually applied with a stride of two.
As a result, the pooling operation is only applied to every other spatial lo-
cation, which halves the feature map resolution. A common alternative to
reduce the feature map resolution are convolutional layers with a stride of
two or higher [Spr15]. The downsampling aggregates features and reduces the
sensitivity of the output to shifts and distortions [Lec98]. Most importantly,
repeated downsampling allows subsequent layers to extract higher-order fea-
tures with increasing abstraction levels.

The basic setup of a CNN are alternating convolutional and pooling layers in
the feature extractor followed by fully-connected layers in the second part,
which is often referred to as head. It computes the task-specific final output,

12
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such as a classification vector, based on the feature maps from the feature ex-
tractor.

C filter kernels

Figure 2.4: Operating principle of a convolutional layer. C learnable filter kernels are applied to
C;, input feature maps and produce C new feature maps.

Deep Convolutional Neural Networks

Over time, state-of-the-art network architectures have become more complex,
which is reflected in an increasing number of layers and has shaped the term
deep learning [Sim14]. Starting with just a few layers for the task of docu-
ment recognition [Lec98] and later image classification [Kri12], the number
rose to 16 layers [Sim14] and afterwards up to 100 layers and beyond [Sze15,
He16]. This was mainly driven by the challenging classification task of Im-
ageNet [Den09], where images have to be classified as one of 1,000 classes.
However, training very deep neural networks comes with several challenges.
In order to address the vanishing or exploding gradient problem [Ben94], the
activation function and weight initialization must be carefully chosen. As a
result, ReLU or LReLU are the established choices, and the initial layer weights
are sampled from a Gaussian distribution with zero mean, and a variance based
on layer size [Glo10] or based on layer size and activation function [He15b].
Furthermore, Batch Normalization (BN) [Iof15] has been proposed to nor-
malize the outputs of convolutional layers before the activation function is
applied. Looking at the 1D case, the layer activations f; = W, f;_; + b; are
normalized to zero mean and unit variance fl“‘”m by mean pg and variance
o4 computed over the current batch 9. The learnable parameters wgy and

13
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bgy ensure that the normalization layer does not negatively impact the rep-
resentational capabilities:

leN = WpN © flnorm + bBN’ (210)

where o denotes the Hadamard product. Batch Normalization makes the net-
work’s weight initialization more robust and allows higher learning rates for
faster convergence. Since batches are usually only used for training, running
mean and variance are stored during training and applied during inference.

Based on these techniques, “going deeper” [Sze15] has shown great success
and surpassed human-level performance [He15b] on the classification task of
ImageNet. However, experiments have shown that the improvement achieved
by stacking more layers not only diminishes but turns into a negative impact
beyond a certain number [Sril5, Hel5a]. This effect cannot be explained by
overfitting because the training error increases as well [He15a]. Residual net-
works [Hel6] are motivated by the consideration that increasing the number
of layers should not negatively impact the results since they can be turned
into identity functions. Therefore, instead of directly learning a mapping from
input to output, a residual mapping is proposed, which is implemented by
an identity skip connection and illustrated in Fig. 2.5. This enables deeper
networks with improved results and allows the successful training of over a
thousand layers. The core elements are residual Basic Blocks (BBs) and resid-
ual Bottleneck Blocks (BoBs) with the characteristic skip connection. These
are grouped into stages which contain all layers applied to one specific fea-
ture map resolution or scale. The stages start with a subsampling layer, such
as maximum pooling or strided convolution. As illustrated in Fig. 2.5, resid-
ual networks are composed of five stages with a varying number of residual
blocks, depending on the specific setup. Commonly used configurations are
ResNet-34, ResNet-50, ResNet-101, and ResNet-152, where the number indi-
cates the total number of layers. Their detailed configurations can be found
in [He16]. These networks have been, and still are, the predominant feature
extractor in state-of-the-art methods across many tasks.
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Bottleneck Block

Basic Block identity

stage 1
stage 2

identity

1x1 conv
BN, A

BN, A

3x3 conv

stage 5

1 I = 3
- 2 8

relative feature map resolutions

Figure 2.5: Building blocks and architecture of residual networks.

2.1.3 Recurrent Neural Networks

The huge success of neural networks is not limited to computer vision but
influences other fields like natural language processing too. In this area, data
is often arranged in sequences, like a sequence of words forming a sentence
or text. As a result, neural architectures emerged, which are able to extract
information along a sequence of data. When considering time, these princi-
ples are also fundamental for computer vision, especially in the context of
2D scene understanding, since it allows processing and exploiting video data
instead of individual images.

In contrast to the feed forward networks discussed so far, Recurrent Neu-
ral Networks (RNNs) have a feedback loop, giving access to information from
previous inputs. Figure 2.6 shows this recurrent loop, where the so-called hid-
den state h loops back to the network input. In addition, Fig. 2.6 illustrates
the unrolled network for a sequence of three inputs x, X;, and X, to visualize
the repeated application of an RNN to the elements of a sequence and their
relations more clearly. The recurrent network receives not only the input vec-
tor but also the hidden state vector with features from the processing of the
previous input. As a result, the predictions y are not only based on the corre-
sponding input but also on the sequence context provided by the hidden state.
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Figure 2.6: Recurrent Neural Network (RNN) with an unrolled example on the right. The gradi-
ent flow is indicated in orange.

As the unrolled architecture indicates, RNNs can also be interpreted as very
deep neural networks, especially for long sequences. Therefore, they also suf-
fer from exploding and vanishing gradients since the gradient must be propa-
gated along the recurrent application, depicted as orange path in Fig. 2.6. One
way to address this is to use gating mechanisms proposed by Long Short-
Term Memory (LSTM) [Hoc97] and Gated Recurrent Units (GRUs) [Cho14].
Figure 2.7 exemplarily illustrates the latter with a focus on time series data,
where the sequence index equals a discrete point in time ¢. Its output y; is
computed by the following equations:

r, = sigmoid (W, . X, + Wy, h;_; +b,),

z, = sigmoid (W, , X, + Wy, h,_; +b,), 211
— 2.11
ht = tanh (Wx,h X + Wh,h (rt o ht—l) + bh) ,

yi=h;=Q-2z)oh,_; +z OBt-

The reset gate computes the reset vector r; and decides which information
from the previous state h,_; to forget and which to keep. The update vector
z, on the other hand controls the element-wise combination of the previous
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hidden state and the new candidate state h,. The latter is computed from the
previous hidden state multiplied by the reset vector and the current input. All
three gates are implemented based on a single-layer MLP with the respective
weight matrices W and bias vectors b. When propagating the gradient along
the processed sequence, it only has to pass the element-wise addition and
multiplication, but not an entire MLP. This advantage also holds when the
output of an MLP is provided to the GRU instead of the raw input x;. The
gating mechanism counteracts vanishing or exploding gradients by reducing
the number of layers the gradient passes when being backpropagated along
the sequence. ConvGRU [Sial7] transfers this concept to the image domain,
where input and hidden states are 2D feature maps instead of feature vectors,
and the gates build upon convolutional layers instead of MLPs.

Yt
hidden state ~ T
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candidate
gate
A
. H 1
.............. H
pmde e _Jd
1
1
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input X;

Figure 2.7: Structure of a Gated Recurrent Unit (GRU). It computes its output based on the pre-
vious hidden state h;_; and input X; using a reset, update, and candidate gate.

2.2 2D Scene Understanding

After the overwhelming success of CNNs in image classification [Rus15], they
have been quickly deployed for other application areas, such as 2D scene un-
derstanding. The latter comprises, among others, the tasks of semantic and
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instance segmentation, depicted in Fig. 2.8. This was also supported by the
release of a constantly increasing number of semantic datasets [Bro09, Sil12,
Lin14, Mot14, Cor16, Zho17, Yu20, Gey20] providing pixelwise semantic la-
bels. Some of these datasets [Sil12, Lin14, Cor16, Zho17, Yu20] additionally
provide pixelwise instance labels and enable the development of panoptic seg-
mentation approaches. Since scene understanding is one of the key challenges
of autonomous driving, many of these datasets belong to the outdoor driving
domain [Bro09, Cor16, Yu20, Gey20]. In general, 2D scene understanding is
a huge field with countless published work. The following section focuses on
pioneer work and approaches that influenced this thesis or are directly used.

(a) Camera image. (b) Semantic segmentation. (c) Instance segmentation.

Figure 2.8: Semantic and instance segmentation, two tasks of 2D scene understanding [Cor16].

2.2.1 Semantic Segmentation

The task of assigning a semantic class to every pixel of an image is called
semantic segmentation. One fundamental concept for approaches based on
CNNs are Fully Convolutional Networks (FCNs) [Lon15], which compute a
pixelwise prediction for a given input image in an end-to-end fashion. This
requires a new architecture for the network head because a classification vec-
tor is required for every individual pixel instead of one for the entire image.
Therefore, a 1 X 1-convolutional layer replaces the standard fully-connected
classification layer to generate a prediction for every pixel. However, the out-
put of a CNN’s feature extractor usually has a considerably smaller resolution
than its input due to pooling or convolutions with a stride greater one. As a re-
sult, the low resolution predictions provided by the 1 X 1-convolutional layer
must be upsampled again. Different FCN architectures are proposed, with a
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single or multiple upsampling steps. Alongside bilinear interpolation, a new
layer called deconvolution or transposed convolution learns the upsampling
instead of applying a fixed one. The fully convolutional network with three
upsampling steps (FCN-8s) is visualized in Fig. 2.9.

semantic class scores

Figure 2.9: Architecture of Fully Convolutional Networks (FCNs). The low-resolution predic-
tions are upsampled in three steps by transposed convolutions.

U-Net [Ron15] enhances FCNs by improving the upsampling processes. The
number of upsampling steps is matched to the number of downsampling steps
of the feature extractor. For every upsampling step, the corresponding feature
maps with matching resolution are concatenated to improve spatial feature
propagation, see Fig. 2.10. In contrast to native FCNs, U-Net upsamples the
feature maps and not predictions. Overall, the downsampling and upsampling
paths form a U-shaped architecture and are often called encoder and decoder,
respectively. U-Net started to address one of the main challenges introduced
by the pixelwise semantic segmentation task, which makes it necessary to
simultaneously capture the global context of a scene and fine details. The for-
mer requires large receptive fields and is usually achieved by iteratively reduc-
ing the feature map resolution while dropping spatial information. However,
the loss of spatial information negatively affects the capturing of fine details
since information about the features’ exact location is lost.
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skip connections

Figure 2.10: U-Net architecture for 2D semantic segmentation.

PSPNet [Zha17] addresses this challenge by introducing a pyramid pooling
module. Different pyramid levels divide the feature maps into different-sized
subregions and compute an aggregated representation for each region using
pooling, depicted in Fig. 2.11. Aggregated context varies from local to global
dependent on the subregion size. The outputs of the different pyramid levels
are upsampled and concatenated with the original feature maps. As a result,
the final classification layer is provided with feature maps containing local and
global context at different scales, illustrated in Fig. 2.11, which significantly
improves the segmentation results.

ResNet

Figure 2.11: PSPNet with its pyramid pooling approach, illustration based on [Zha17].

The DeepLab family [Che18, Che17a] relies on atrous convolutions to increase
the receptive fields’ size without reducing the feature map resolution or in-
creasing filter sizes. Additionally, Atrous Spatial Pyramid Pooling (ASPP) is

20



2.2 2D Scene Understanding

implemented by deploying atrous convolutions at different rates in parallel to
exploit context at different scales. This pyramid pooling is similar to PSPNet
but with atrous convolutions instead of pooling operations. Its goal is again
the aggregation of multi scale context.

Deep Layer Aggregation (DLA) [Yu18] replaces simple skip connections with
an enhanced aggregation architecture, as depicted in Fig. 2.12. Two neighbor-
ing stages of the feature extractor provide their feature maps to an aggregation
node, which combines and compresses its inputs. This requires an upfront up-
sampling of the lower-resolution feature maps. The compression is achieved
by ensuring that the output channel size matches the channel size of a single
input. The aggregation nodes are stacked in a tree-like fashion, and each iter-
ative deep aggregation path, which replaces a conventional skip connection,
aggregates features from shallow to deep.
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Figure 2.12: Structure of Deep Layer Aggregation (DLA), illustration based on [Yu18].
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2.2.2 Panoptic Segmentation

For a long time, semantic and instance segmentation have been approached
individually and were considered separate tasks. Kirillov et al. [Kir19] pro-
posed panoptic segmentation, which unifies both tasks and requires a seman-
tic and instance label for every pixel. Following the categorization for instance
segmentation methods, approaches can generally be grouped into two cate-
gories. First, top-down or proposal-based methods rely on parallel seman-
tic and object detection branches, where the latter predicts bounding boxes,
which are further refined with the semantic segmentation to instance masks.
Second, bottom-up or proposal-free approaches cluster pixels based on pix-
elwise instance embeddings, such as predicted features, relative positions, or
semantic segmentation. This thesis uses the terms top-down and bottom-up
because some methods generate instance proposals by clustering instance em-
beddings. In this case, the term proposal-free would be misleading. Neverthe-
less, these methods are considered bottom-up since they generate instances
by clustering pixelwise embeddings instead of deploying a detection network.

Top-Down Approaches

Current state-of-the-art methods [Por19, Xio19, Moh20] mostly rely on Mask
R-CNN [He17] because it predicts not only bounding boxes but also object
masks. Additionally, it uses a Feature Pyramid Network (FPN) [Lin17] to bet-
ter recognize objects at multiple scales. Similar to U-Net, and novel for the
object detection task, FPNs upsample feature maps again after the feature ex-
tractor with the help of skip connections. However, predictions are not only
performed on the last feature maps but are made independently for all fea-
ture map scales to improve multi scale object recognition, depicted in Fig. 2.13.
UPSNet [Xio19] proposes a panoptic architecture based on Mask R-CNN with
an additional semantic segmentation branch relying on deformable convo-
lutions [Dail7b]. A parameter-free panoptic head resolves class conflicts be-
tween semantic and instance predictions and introduces a dedicated unknown
class for non-resolvable conflicts. Seamless [Por19] also uses an architecture
similar to Mask R-CNN and relies on a ResNet backbone enhanced with an
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FPN. A novel semantic head exploits the multi scale features by applying indi-
vidual ASPP modules to each scale to improve the aggregated information for
semantic segmentation. EfficientPS [Moh20] deploys an EfficientNet [Tan19]
followed by a novel 2-way FPN. The latter improves multi scale feature ag-
gregation since aggregation is not only performed from low to high resolu-
tion but also vice versa. An enhanced semantic head captures fine details and
long-range context more effectively.

7 redictions
— 17 T— 1 P
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........... > predictions

......... » predictions

Figure 2.13: Feature Pyramid Networks (FPNs) provide predictions based on multi scale feature
maps to improve object recognition.

Bottom-Up Approaches

One of the first proposal-free panoptic approaches was DeeperLab [Yan19c].
It relies on a keypoint-based representation of instances based on the four
bounding box corners and its center. The instance branch predicts a heatmap
for these keypoints and multiple short- to long-range offset maps, which are
the foundation of the instance clustering. Single-Shot instance segmentation
with Affinity Pyramids (SSAP) [Gao19] predicts a pixel-pair affinity pyramid,
determining the probability that two neighboring pixels belong to the same
instance. The instance clustering is computed by an efficient graph partition-
ing module based on affinity and semantics. Panoptic-DeepLab [Che20] pro-
poses a clustering strategy built upon center and offset regression, illustrated
in Fig. 2.14. It comprises a shared backbone followed by a dual ASPP and
dual decoder setup for independent semantic and instance branches. The lat-
ter predicts a center heatmap indicating the position of instances which are
represented by their centers. The second prediction, the offset vectors, point
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for every pixel to its corresponding center. The class-agnostic clustering is
performed based on these two predictions. It extracts k. centers with the high-
est score as instance candidates from the heatmap and assigns thing pixels to
the closest offset-indicated center candidate, illustrated in Fig. 2.14. Center
candidates without assigned pixels are discarded.

. o

center heatmap offset vectors

M W center candidates
—> offset vector
== shortest distance

Figure 2.14: Panoptic-DeepLab clusters instances based on a center heatmap and offset vectors.
The offset vectors are converted to an angle for visualization by a color wheel. The
clustering assigns pixels to the center closest to the offset position, and each center
represents a unique instance.

24



2.3 3D Scene Understanding

2.3 3D Scene Understanding

Robots and autonomous vehicles operate in a 3D environment, which makes
3D geometric information provided by 3D point clouds highly valuable. Com-
mon sources of point clouds are RGB-D cameras and light detection and rang-
ing (lidar) sensors. The former are usually used in indoor scenarios [Sil12,
Son15, Arm16, Dail7a], while lidar sensors are used outdoors [Hac17, Roy18,
Beh19, Cae20, Pan20a, Xia21, Kur21]. The basic measurement principle of a
lidar sensor is the emission of a laser pulse at time ¢, which is reflected when
hitting an obstacle. The sensor’s detector recognizes this reflection at time #;,
and the distance r to the obstacle can be computed based on the time of flight
and speed of light cy:

1
r = z . (tl - to) . Co. (212)

Polar and azimuth angles (8, ¢) specify the laser direction for these measure-
ments and are an intrinsic property of the sensor, determined by design or
sensor rotation. The result is a measured 3D position in spherical coordinates
p = (r,6, ¢), which can be transformed into Cartesian coordinates

X r cos(¢) sin(6)
p=|y|=|rsin(¢)sin(®) |. (2.13)
z r cos(6)

Repeating this measurement process thousands or even millions of times pro-
vides a point cloud of the sensor’s surroundings, which can be represented as
set P ={p, |1 <n < N}ormatrix P = [p1 P2 pN]T e NN%3 One
possible and frequently used sensor setup in current outdoor datasets is a ver-
tical stack of laser emitters and detectors spinning around the vertical axis, see
Fig. 2.15. Compared to point clouds recorded with RGB-D cameras in indoor
environments, outdoor point clouds from a lidar usually cover a much larger
area, are relatively sparser, and have a point density strongly varying with
distance. These properties impose additional challenges on approaches for
3D scene understanding.
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Figure 2.15: Common setup of a lidar sensor with pairwise vertically stacked laser emitters and
detectors spinning around the vertical axis.

Driven by the value and importance of 3D information for scene understand-
ing, approaches based on deep learning for various related tasks emerged,
building upon the huge success of CNNs in the image domain. However, one
of the main challenges is the unstructured nature of point cloud data, which
CNNs cannot directly process. Therefore, a significant research effort is put
into developing suitable representations across various tasks to enable the
efficient processing of point clouds by CNNs. These are discussed in the fol-
lowing Section 2.3.1. Early approaches [Mat15, Wan15, Qi16] mainly tackled
the tasks of 3D object classification, retrieval, or detection. Soon after, point-
wise tasks like semantic or instance segmentation followed [Qi17a, Tch17,
Wan18b, Mil19]. More recently, the combined task of panoptic segmenta-
tion gained more and more attention [Zho21, Hon21, Sir22]. Sections 2.3.2
to 2.3.4 present a detailed overview of the current state-of-the-art for these
pointwise 3D tasks.

2.3.1 Point Cloud Representations

Unlike images, point clouds cannot be processed with native 2D or 3D convo-
lutions. Therefore, and independently of the task, a point cloud representation
is required, which allows the processing with established CNN architectures.
Alternatively, point-based approaches [Qil17a, Tho19] propose adapted con-
volution operations and architectures directly applicable to point clouds in
point view (PV), see Fig. 2.16, without requiring a preliminary transforma-
tion. One major advantage is that no transformation-induced loss of informa-
tion occurs. However, no neighborhood relations are inherently represented
in an unordered set of points but instead must be explicitly computed. Also,
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the usual hierarchical aggregation of local context based on consecutively sub-
sampled grid-shaped feature maps must be explicitly formulated and com-
puted. Both operations are potentially expensive, especially for large scale
point clouds. Hence, different representations based on regular grids have
been derived to enable the application of conventional CNNs, which are sub-
sequently called views. Motivated by the discussed polar nature of lidar mea-
surements, these views can also represent point clouds in spherical or cylin-
drical coordinates. If required, Cartesian coordinates p can be transformed
into spherical coordinates p

NezrsTE i
z ~
Q9 (p) = | arccos (m) =16|=p, (2.14)
atan2 (y, x) ¢

or cylindrical coordinates p?:

Vx2 +y2 r
9% (p) = |atan2(y,x) | = [¢ [ =P~ (2.15)
Z zZ

(b) Semantic segmentation. (c) Instance segmentation.

Figure 2.16: Point clouds in their native point-based representation. Visualized are the distance
channel of the point cloud, as well as semantic and instance labels.
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Without loss of generality, the following discretizations and projections are
considered for a lidar sensor with a vertical and horizontal field of view de-
fined as g,y = Gjown — Oup and Proy = Prmax — Pmin, Whose measurements are
in a distance and height interval of r¢, = ¥ — finin and Zgy = Ziax — Zmin-
To transform the predictions from the individual views back to the point cloud,
every 3D point receives the prediction of its corresponding grid cell.

Voxel View

Motivated by the 3D nature of point clouds, a straightforward discretization
into a grid are Cartesian or cylindrical voxels, the building blocks of the voxel
view (VX). The discretized voxel coordinates of cylindrical 3D points for a
voxel grid of size H X W X D can be computed by [Zhu21b]:

[(r_rmin)'rf;\}'HJ u
PYX®?) = | (@ = buin) * Piov - W] | =| v | =0 (2.16)
l(Z = Zpin) * ZfT)\% ’ DJ @

The X, y, and z coordinates of the Cartesian representation can be discretized
accordingly. Point clouds and their input features can be transformed into
a voxel grid based on these coordinates. In general, the transformation suf-
fers from the many-to-one problem, meaning that multiple 3D points lie inside
one voxel. Therefore, a handcrafted or learned fixed-sized feature vector is re-
quired, also called encoding, which represents an arbitrary number of points.

The voxel view’s advantages are that it retains the 3D structure of the data and
inherently contains 3D neighborhoods. On the other hand, the major draw-
back of the dense voxel view, alongside the introduced quantization error,
is the explicit representation of empty space, resulting in high memory and
computational demands. At the same time, the sparsity of point clouds results
in predominantly empty voxels. Sparse convolutions [Gral5] have been pro-
posed to speed up computation and reduce the memory footprint for inputs
with predominantly empty voxels. Therefore, only non-empty voxels are rep-
resented, and convolutions are only applied to these cells. One drawback of
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this implementation is the reduction of sparsity after each layer. The result-
ing voxel of a convolutional or pooling operation is only empty if all its inputs
within the according receptive field are empty. Submanifold Sparse Convolu-
tional Networks [Gra18] address this by restricting the output of these layers
to the initially non-empty voxels, keeping the sparsity and the full benefit of
sparse convolutions. While sparse convolutions significantly reduce memory
and runtime overhead and enable the voxel view for large scale point clouds,
neighborhoods are no longer implicitly represented. Nevertheless, the gains
for omitting empty space outweigh the additionally required computations as
long as the grids have less than 10% occupied cells [Gral5].

Range View

The range view (RV) is a 2D representation resulting from a spherical pro-
jection [Mil19]. It is closely connected to lidar sensors since it exploits the
spherical representation of 3D points, which is directly provided by many li-
dar sensors. For a range image of size H X W the 2D projection coordinates
of a spherical point are defined by:

|(6—6,) - 6 - H l ~ [u] I

(2.17)

PR(p) = [
|(@ = Puin) - Pior - W]

The point cloud and associated features, such as intensity, as well as the ground
truth, can then be transformed into the range view based on these 2D coordi-
nates, as depicted in Fig. 2.17. The advantages of the range view are its dense
2D representation, which allows for very efficient processing. Additionally,
it does not depend on the covered area because the range image size is inde-
pendent of rg,,. Its disadvantages are the distortion of physical dimensions
due to the spherical projection and adjacent points with a significant differ-
ence in distance r and 3D position. Furthermore, a combined point cloud from
multiple overlapping lidar sensors introduces the many-to-one problem.
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(c) Semantic segmentation.

(d) Center heatmap.

(f) Instance segmentation.

Figure 2.17: Point clouds represented in range view. The upper images show the distance (a)
and intensity (b) measurements, followed by the ground truth semantic segmenta-
tion (c). Images (d) and (e) depict the ground truth center heatmap and offset vectors
required for bottom-up instance clustering to predict an instance segmentation (f).
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Bird’s Eye View

The bird’s eye view (BEV) projection omits the z-axis to project the 3D point
clouds onto the xy-plane. Alternatively, a projection based on cylindrical co-
ordinates onto the r¢-plane is also possible [Zha20c]. The 2D image coordi-
nates for a polar bird’s eye view image of size H X W are computed by:

:PBEV(ﬁZ) —

l(l" - rmin) : rf;\} ’ HJ l = [u = uBEV_ (218)

| = Pmin) - Pior - W]
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The results of this projection are depicted in Fig. 2.18. Similar to the voxel
view, the bird’s eye view has to deal with the many-to-one problem by com-
puting handcrafted or learned encodings based on the points inside each cell.
It is similarly efficient as the range view, while the spatial separation of indi-
vidual instances is superior since there are rarely occlusions along the z-axis
for common thing classes. This is a valuable property for the clustering of
bottom-up panoptic segmentation. However, the bird’s eye view is not par-
ticularly dense, with more than half of the cells being empty for standard lidar
sensors. Additionally, small vertical objects are improperly represented.

2.3.2 Semantic Segmentation

After the first approaches [Mat15, Wan15, Qi16] have predominantly tack-
led object classification and detection, the pioneer PointNet [Qil17a] also ad-
dressed semantic segmentation. However, the first 3D semantic segmentation
methods rarely scale to large scale outdoor scenarios due to the mentioned
challenges of large covered areas, increased sparsity, and varying point den-
sity. With the rise of outdoor datasets [Hac17, Roy18, Beh19, Cae20, Pan20a,
Xia21, Kur21], a significant amount of research effort shifted towards these
scenarios, which originate mainly from the driving domain. Approaches have
been proposed based on the different point cloud views discussed in the pre-
vious section, which are also combined to multi view approaches.
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(a) Occupancy. (b) Semantic segmentation.

(c) Center heatmap. (d) Offset vectors.

(e) Instance segmentation.

Figure 2.18: The polar bird’s eye view. The first image (a) shows the occupied cells, followed
by the semantic segmentation (b). Bottom-up instance clustering requires center
heatmap (c) and offset vectors (d) to predict the instance segmentation (e).
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Point-based Approaches

Point-based approaches directly process raw point clouds in the point view
without preceding transformation. New network architectures and redefined
convolution operations have been proposed for this purpose, which can be
roughly assigned to different categories, loosely following the survey of Guo
et al. [Guo21]. The most influential categories are architectures based on the
pointwise application of MLPs and point convolutions directly applica-
ble to 3D points. Graph-based methods as the third category, such as [Lan18,
Lan19a], do not play a notable role in the current state-of-the-art outdoor se-
mantic segmentation. The interested reader is referred to [Guo21].

The pioneering approach of directly processing raw point clouds and point-
wise application of MLPs was PointNet [Qi17a]. It repeatedly applies shared
MLPs to every input point to compute individual feature vectors. Hence, these
MLPs are called pointwise Multi-Layer Perceptrons (pMLPs) and are followed
by a symmetric aggregation function for global feature aggregation, such as
max pooling, illustrated in Fig. 2.19. The symmetric property ensures that the
order of points does not influence the results since point clouds are unordered
sets of points. For semantic segmentation, the global output feature vector y
is concatenated with the local feature vectors and further processed by pMLPs
to predict the semantic labels based on local and global information. While
PointNet has a low computational complexity, a single global feature aggre-
gation strongly limits the capturing of hierarchical spatial relations, which
are important for semantic segmentation. Its successor PointNet++ [Qi17b]
tackles these shortcomings by applying individual PointNets to local regions
in a hierarchical fashion. A sampling layer determines the region centers
based on iterative Farthest Point Sampling (FPS), and a grouping layer selects
points from the center’s neighborhood to form local regions. Subsequent ap-
proaches propose new and improved neighborhood aggregation strategies to
capture context hierarchically. The proposed strategies are inspired by Scale
Invariant Feature Transform (SIFT) [Jia18], build upon concentric spherical
shells [Zha19a], are based on densely connected local webs [Zha19b], or com-
bine geometric and feature neighborhoods [Eng19]. Other approaches deploy
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attention [Yan19b, Hu20b] or RNNs [Eng17, Ye18] to exploit relations between
points for context aggregation.

ps—[1
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Figure 2.19: The PointNet architecture applies layer-wise shared MLPs followed by a symmetric
operation, such as channel-wise maximum.

Many of the approaches mentioned so far face difficulties in scaling to outdoor
scenarios, either in terms of computational complexity or quality of the re-
sults. The computational complexity is mainly impacted by FPS and k-nearest
neighbor (kNN) search, with up to 57% of the overall runtime spent on data
structuring [Liu19b]. The mediocre results are caused by the fact that local
and global context aggregation is more challenging for outdoor point clouds,
as discussed at the beginning of Section 2.3. More recent approaches started
to address this challenge to improve the results. PointASNL [Yan20] refines
the region centers sampled with FPS based on learned shifts and introduces a
local-nonlocal module to improve the capturing of local and long-range con-
text. Another strategy is multi task learning [Una21] with the added predic-
tion of 3D objects. However, none of these approaches solves the high runtime
demands. RandLA-Net [Hu20b] addresses both shortcomings by simultane-
ously improving the quality and efficiency of the neighboring feature pooling.
It replaces the expensive FPS by random sampling. In addition, a novel at-
tentive local feature aggregation module improves local context aggregation.
Another approach is presented by Qiu et al. [Qiu21] and comprises a bilat-
eral context and adaptive fusion module. The former augments pointwise
features with explicit geometric information provided by the point cloud at
different resolutions. The latter adaptively fuses multi resolution features to
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provide enhanced features for 3D semantic segmentation. Both approaches
significantly reduce runtime and considerably improve the results.

Approaches belonging to the point convolution category adapt the convolu-
tion operation for point clouds. They are frequently used for 3D shape classi-
fication [Guo21] but also for indoor semantic segmentation, such as convolu-
tion on X-transformed features [Li18], PointConv [Wu19b], and dilated point
convolutions [Eng20b]. However, only a few approaches of this category are
designed for large scale point clouds with tens of thousands of points [Wan18a,
Tho19, Bou20]. Parametric continuous convolution [Wan18a] is a learnable
operator based on parameterized kernel functions which are approximated by
an MLP. Kernel point convolutions (KPConv) [Tho19] use a flexible number of
continuous and learnable locations in Euclidean space as kernel points. This
property considerably increases the flexibility over fixed grid convolutions be-
cause these so-called deformable convolutions learn to adapt their kernel to
local geometry. In addition, a regular subsampling strategy ensures increased
robustness to varying point densities.

Despite the achieved improvements [Tho19, Hu20b, Qiu21] in the outdoor
domain, point-based approaches still suffer from mediocre segmentation re-
sults [Hu20b] or high computational complexity [Tho19, Qiu21]. Hierarchical
context aggregation is still more sophisticated and efficient in structured grid
representations. This is reflected in a lower computational complexity while
achieving predominantly better segmentation results.

Projection-based Approaches

Aiming for the application of established and efficient 2D CNNs, projection-
based approaches project 3D point clouds onto 2D subspaces. Commonly de-
ployed methods are the spherical or bird’s eye view projection presented in
Section 2.3.1. However, also more complex projections exist, such as virtual
tangent planes [Tat18].

Approaches based on the range view predominantly build upon existing 2D
architectures from the image domain with novel extensions or adaptions tar-
geted for processing the projected 3D point clouds. SqueezeSegV1 [Wu18]
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was one of the first methods relying on the range view as input represen-
tation for segmenting the road-object classes car, pedestrian, and cyclist. Its
backbone is based on SqueezeNet [Ian16] and followed by a Conditional Ran-
dom Field (CRF) to refine the road-object segmentation. The enhanced version
SqueezeSegV2 [Wul9a] has an improved model structure and exploits syn-
thetic data combined with unsupervised domain adaption to reduce domain
shift. The most recent version SqueezeSegV3 [Xu20] predicts semantic seg-
mentation and introduces spatially-adaptive convolutions to counteract the
spatially-varying feature distribution in range images. RangeNet++ [Mil19]
exploits the DarkNet architecture [Red18] and presents a back-projection of
range view labels to the point cloud based on the nearest neighbors. Measure-
ment uncertainties and ego motion during the continuous scan can introduce
projection errors with multiple points projected onto the same cell. The most
basic strategy simply assigns the same label to all points of one cell. In con-
trast, RangeNet++ additionally considers the neighborhood of a point to re-
duce the impact of these projection errors on the segmentation. Instead of an
expensive k-nearest neighbor (kNN) search, the 5 X 5-neighborhood in range
view is used as a proxy. Weighted majority voting based on the differences in
radial distance r determines the label for every 3D point. SalsaNext [Cor20]
is an enhanced version of SalsaNet [Aks20] and introduces a set of improve-
ments, such as the use of Lovasz-Softmax loss [Ber18] and the replacement
of transposed convolution layers with pixel-shuffle layers [Shi16]. While pri-
marily designed for 3D object detection, one of LaserNet’s [Mey19b] interme-
diate results is a semantic segmentation of the range view input. Their archi-
tecture is based on the previously introduced DLA and also inspired the range
view backbone of this thesis. LiteHDSeg [Raz21b] proposes harmonic dense
convolutions and an improved global contextual module to capture multi scale
context. A multi class Spatial Propagation Network (MCSPN) tackles the re-
finement of semantic boundaries. A parameter-free full interpolation decod-
ing module is proposed by FIDNet [Zha21c], which is based on bilinear inter-
polation, as a more efficient upsampling alternative compared to transposed
convolutions.

The bird’s eye view was originally proposed and is widely used for the task
of 3D object detection. Early approaches [Chel7b, Yan18, Sim19] relied on a
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handcrafted feature encoding for each cell, which was subsequently replaced
by learned encodings. PointPillars [Lan19b], influenced by VoxelNet [Zho18],
proposes a PointNet-based bird’s eye view encoding, which is also beneficial
for semantic segmentation. A PointNet is applied to all 3D points inside one
cell and maps them to a fixed-size feature vector, illustrated in Fig. 2.20. As
a result, the input to the 2D backbone is a learned feature encoding of the
projected point cloud.

Looking at semantic segmentation, Zhang et al. [Zha18] use a Cartesian bird’s
eye view and a handcrafted feature encoding, which concatenates all points
inside one cell. PolarNet [Zha20c] builds upon the ideas of PointPillars and
relies on a learned polar bird’s eye view encoding based on PointNet. They
empirically show that a polar grid better matches the point distribution of
lidar sensors than a Cartesian grid and leads to fewer empty cells. Both ap-
proaches apply a U-Net to compute the required semantic segmentation.
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Figure 2.20: A PointNet is applied to every bird’s eye view cell to learn an embedding vector.

As a result of the 2D projections, range and bird’s eye view are the most effi-
cient representations among the presented ones. In a direct comparison, range
view methods achieve predominantly better results. While projection-based
approaches outperform point-based methods in terms of segmentation quality
and computational complexity, they cannot entirely compete with the current
state-of-the-art segmentation results achieved in the voxel view. The projec-
tion induces either a significant amount of information loss due to the many-
to-one problem or places points next to each other, which are far apart in 3D.
The latter increases the challenge of separating class boundaries since implicit
spatial separation along the distance or height axis is omitted.
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Discretization-based Approaches

Most of the early semantic segmentation approaches [Dail7a, Tch17, Ret18],
which relied on the dense voxel view as input representation, focused on
indoor scenes, where this view’s runtime and memory downsides are less se-
vere. SEGCloud [Tch17] deploys a 3D FCN followed by a trilinear interpo-
lation and 3D CRF. The interpolation converts coarse voxel-level predictions
back to the 3D points, and the CRF ensures global consistency and provides re-
fined semantic segmentation. The Fully Convolutional Point Network [Ret18]
applies a PointNet to the points in uniformly sampled regions to create a 3D
feature map, which is processed by a 3D CNN. Nearest neighbor interpola-
tion converts the voxel features back to the 3D points. PointLabeling [Hua16]
was the only early approach for outdoor semantic segmentation. The point
cloud is converted into a 3D occupancy grid and fed to a 3D CNN to predict
voxel-level semantics. Afterwards, all points inside one cell receive the se-
mantic label of this cell. The reported runtime of several minutes for an area of
100 m X 100 m shows that, despite a huge voxel size of 0.3 m X 0.3 m X 0.3 m,
the dense voxel view cannot deal with large scale outdoor point clouds. This
is also supported by the observation that representing at least 90% of a point
cloud’s points in unique cells requires about 82.6 GB of memory when train-
ing with a batch size of 16 [Liu19b], even for compact indoor scenes.

Sparse convolutions enable the usage of the voxel view for outdoor sce-
narios and are frequently used by recent methods. These approaches propose
new learnable modules to improve the segmentation quality and rely on a
3D U-Net architecture. S3Net [Che21c] introduces a sparse intra- and inter-
channel attention module. The former addresses the local information loss
caused by the discretization and usage of sparse convolutions, and the lat-
ter re-weights the channels of a feature map to learn better representations.
JS3C-Net [Yan21] uses semantic scene completion as a supervisory signal to
learn contextual shape priors from the dense aggregation of multiple point
clouds. An improved sparse architecture based on attentive feature fusion and
adaptive feature selection is presented by Cheng et al. [Che21d]. Attentive
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feature fusion deploys small, medium, and large kernels in parallel. The for-
mer focuses on fine details and small semantic classes, while the latter aggre-
gate global context and larger semantic classes. A learnable, weighted combi-
nation merges the features of these three branches. The second module, called
adaptive feature selection, learns relations between channels across the three
multi scale feature maps from the attentive feature fusion module to improve
contextual information. A cylindrical [Zhu21b] instead of a Cartesian voxel
view better matches the distribution of lidar point clouds, similar to the 2D
polar bird’s eye view. Zhu et al. [Zhu21b] further introduce an asymmetri-
cal residual block to better match the point distribution and object shapes in
point clouds of driving scenes. Additionally, context modeling based on di-
mension decomposition merges several low-ranked feature tensors into the
final high-rank tensor.

The sparse voxel view achieves high quality 3D semantic segmentation and
outperforms all other views discussed so far. Despite the sparse nature, one
downside is still the considerably higher computational complexity compared
to 2D representations such as range and bird’s eye view.

Multi View Approaches

Considering the point cloud representations or views discussed so far, they all
have individual strengths and weaknesses. Multi view approaches build upon
the distinct properties of different views and exploit multiple representations
to combine their strengths and compensate for individual weaknesses. These
methods further improve the state-of-the-art or introduce efficient approaches
with high quality results.

One category of multi view approaches builds upon voxel and point view to
combine their complementary strengths. The main challenge of point-based
approaches, the expensive sampling and forming of neighborhoods, can be
omitted in this multi view setup since the voxel view implicitly provides 3D
neighborhoods. One drawback of the voxel view, the loss of information dur-
ing voxelization is simultaneously counteracted by the point view, which di-
rectly processes the original point cloud. Motivated by this, Point-Voxel CNN
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(PVCNN) [Liu19b] deploys a low resolution voxel branch to extract coarse
neighborhood context, combined with a high resolution point-based branch to
provide individual point features. Sparse Point-Voxel CNN (SPVCNN) [Tan20]
improves this further by replacing the dense voxel view with its sparse coun-
terpart, which allows for higher voxel resolution and considerably improves
the results. The combination of sparse voxel and point view can be further
extended by the range view as a third branch [Xu21a]. Range and voxel fea-
tures are repeatedly transformed back to the 3D points and fused across all
three views by a gated fusion module. Afterwards, the fused multi view fea-
tures are transformed back to the individual views and further processed by
the individual backbones. FusionNet [Zha20a] proposes a VoxelMLP to ex-
ploit the voxel view for a fast neighborhood search to compute pointwise
features using PointNet under consideration of a point’s neighborhood. Its
sparse voxel branch additionally computes voxel features, which are fused
with the pointwise features from the VoxeIMLP. DRINet [Ye21b] builds upon
the alternating application of Sparse Point-Voxel and Sparse Voxel-Point Fea-
ture Extraction. The former receives pointwise features as input, aggregates
context with multi scale pooling, and transforms the pointwise features into
voxel features. Sparse Voxel-Point Feature Extraction processes voxel fea-
tures with a 3D backbone, and a geometry-aware attentive gathering gener-
ates high quality pointwise features. The successor DRINet++ [Ye21a] further
improves the architecture by treating voxels as points, motivated by the ob-
servation that voxels can be considered an abstraction of the points inside
with their 3D position defined by their center. In general, these multi view
approaches cannot completely mitigate the computational complexity draw-
back of the voxel view [Liu19b, Tan20, Zha20a, Xu21a] or have to use very
small 3D networks [Ye21b].

Motivated by the distinct underlying projections, another popular combina-
tion is range and bird’s eye view. Since the point clouds are projected onto
complementary 2D planes, both views contribute distinct and valuable fea-
tures. Additionally, this combination can be very efficient because the compu-
tational complexity of both views is relatively low. Early approaches proposed
rather simple fusion strategies, e.g., Ali et al. [Ali21], which sum over the pre-
dictions from a range and bird’s eye view network to get the final 3D semantic
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segmentation. However, they achieve only mediocre results, especially for a
multi view approach. AMVNet [Lio21] proposes another late fusion strategy
based on range view and polar bird’s eye view predictions. The respective
backbones compute the semantic predictions in both views, which are back-
projected to the 3D points. If the predictions of both views disagree, a point-
based network refines these uncertain points based on the range and bird’s
eye view features of the considered point and its nearest neighbors. Therefore,
AVMNet requires an expensive nearest neighbor search and inherits one of the
point view’s weaknesses. TornadoNet [Ger21] combines both views consecu-
tively instead of deploying parallel backbones and starts with a bird’s eye view
network, called pillar projection learning, to compute bird’s eye view features.
Afterwards, these features are transformed into range view, combined with
the range view input data, and processed by the main backbone. The meth-
ods considered so far combine multi view features or predictions only once
and cannot exploit the full potential of this view combination. Recent ap-
proaches propose advanced range and bird’s eye view fusion strategies, like
CPGNet [Li22c]. Pointwise features computed by a pMLP are projected into
range and polar bird’s eye view and processed by individual backbones. In
the next step, the features are back-projected using bilinear interpolation and
fused across both views by another pMLP. Afterwards, the entire process is re-
peated. GFNet [Qiu22] also deploys individual backbones for range and polar
bird’s eye view. In order to bidirectionally align and propagate complemen-
tary geometric information between both backbones and across views, a geo-
metric flow module is proposed, which is applied after each upsampling step.
Except for CPGNet [Li22c], these approaches are outperformed by 2D single
view approaches [Ali21, Ger21] or still need expensive 3D operations [Lio21,
Qiu22], leading to a computational complexity similar to single or multi view
voxel-based approaches while achieving inferior results.

2.3.3 Instance Segmentation
Similar to the 2D image domain, instance segmentation is an essential task

for 3D scene understanding. Significant progress has been achieved over the
last years, enabled by two datasets, ScanNetV2 [Dail7a] and S3DIS [Arm16],
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which provide pointwise semantic and instance labels for indoor scenes. As
a result, most existing approaches tackle indoor instance segmentation and
can be grouped into top-down and bottom-up methods, similar to the image
domain. Another consequence of the indoor domain is the predominant focus
on the point and voxel view.

Starting with top-down and point-based methods, Yi et al. [Yi19] introduce
a Mask R-CNN inspired generative shape proposal network, which generates
high quality 3D object proposals. Instances are predicted based on these pro-
posals, supported by a semantic segmentation computed by a PointNet++.
Based on pMLPs, 3D-BoNet [Yan19a] directly regresses 3D bounding boxes
for all instances in a point cloud combined with the prediction of a point-
wise mask. The result is a single-stage, anchor-free approach, which is end-
to-end trainable.

The bottom-up approaches predominantly deploy a PointNet or PointNet++
as backbone to predict pointwise feature embeddings and focus on improv-
ing the clustering step. Similarity Group Proposal Network (SGPN) [Wan18b]
computes a similarity matrix for all paired points based on the predicted em-
beddings. This matrix is used to generate an intermediate clustering, which is
further heuristically refined and passed through Non-Maximum Suppression
(NMS). Joint Semantic-Instance Segmentation (JSIS3D) [Pha19] applies a multi
value CRF and incorporates the predicted semantics and embeddings for joint
optimization to generate semantic and instance segmentation. Associatively
Segmenting Instances and Semantics (ASIS) [Wan19a] and JSNet [Zha20d]
fuse instance and semantic features before the final predictions to mutually
improve these features and enhance predicted semantics and instance embed-
dings. Both approaches use mean shift clustering [Com02] to generate the
instances. Zhang et al. [Zha21a] propose probabilistic embeddings and rep-
resent each 3D point as a tri-variate normal distribution. The core idea of
the AS-Net [Jia20a] is to treat instance segmentation as candidate assignment
problem. Candidates are selected based on pointwise features and represent
different instances. An assignment module allocates points to the candidates,
and a suppression module removes redundant candidates.
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The top-down method 3D-SIS [Hou19] builds upon the dense voxel view to
predict 3D bounding boxes with class labels. It is combined with a 3D mask
network to predict a voxel-level instance mask. Bottom-up approaches pre-
dominantly rely on sparse U-Nets for feature extraction and, once more, focus
on improving the clustering. The sparse backbone of 3D Multi Proposal Ag-
gregation (3D-MPA) [Eng20a] predicts semantic and offset vectors, which the
authors call object center votes. Proposal locations are then sampled from the
predicted centers, and proposal features are learned by grouping and aggre-
gating votes in the neighborhood of sampled centers. A graph neural network
refines these features for a final proposal clustering. Liang et al. [Lia20] pro-
pose a structure-aware loss function, considering geometrical and embedding
information to improve the learned 3D instance embeddings. A graph neu-
ral network refines the embeddings, which are finally clustered by mean shift.
PointGroup [Jia20b] computes offset vectors pointing to the corresponding in-
stance center instead of conventional embedding features. A dual clustering
step based on original and offset positions produces candidate clusters. These
are fed to a subnetwork, called ScoreNet, to provide a score for each clus-
ter used by NMS to generate the final instances. Multi Task Metric Learning
(MTML) [Lah19] combines feature embeddings with directional information
for clustering. The clustering is provided by offset vectors pointing to the cor-
responding instance center. Mean shift clustering and NMS compute the final
instances based on these predictions. Hierarchical Aggregation for 3D In-
stance Segmentation (HAIS) [Che21a] improves the clustering based on offset
vectors using a hierarchical aggregation strategy to generate instance propos-
als progressively. OccuSeg [Han20] additionally predicts an occupancy out-
put, while its instance clustering follows a graph-based segmentation schema.

Some approaches also combine bottom-up and top-down elements. Semantic
Superpoint Tree Networks (SSTNet) [Lia21] over-segment point clouds in the
first step to create superpoints. These are geometrically homogeneous neigh-
borhoods, similar to superpixels in the image domain. Afterwards, a seman-
tic superpoint tree is constructed bottom-up and based on semantic features
of the superpoints, which are pooled from predicted pointwise semantic fea-
tures. The tree is traversed top-down and split at intermediate tree nodes to
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create instance clusters. SoftGroup [Vu22] performs clustering on soft seman-
tic scores to reduce the influence of wrong semantic predictions. The instance
proposals originating from the soft grouping step are refined in a top-down
manner based on proposal features.

Only Zhang et al. [Zha20b] tackle instance segmentation in the outdoor do-
main. Point clouds are projected into bird’s eye view and processed by a
2D CNN to predict 2D offset vectors to instance centers for the clustering,
complemented by predicted object heights used as a constraint. The other
discussed methods are mostly not applicable to the outdoor domain. As ex-
plained in Section 2.3.2, approaches based on PointNet or PointNet++ are un-
able to aggregate sophisticated context in large scale outdoor scenarios, and
runtime increases prohibitively with scenario size. The sparse voxel-based ap-
proaches predominantly use a voxel size of 2 cm, which is impractical out-
doors. There, the covered area approximated for automotive grade lidar scans
is about (50 m)? - 7 ~ 7854 m?, compared to a typical indoor area [Dail7a] of
22.6 m%. State-of-the-art voxel-based approaches for outdoor semantic seg-
mentation build upon larger voxel sizes [Tan20, Xu2la, Ye21b] and need to
address the loss of resolution by novel extensions. Consequently, a signifi-
cant research effort is still required for outdoor instance segmentation. This
also applies to the clustering since the predominantly used mean shift cluster-
ing already requires at least 100 ms for small point clouds with 4096 points,
which is an order of magnitude smaller than common outdoor point clouds.

2.3.4 Panoptic Segmentation

Many instance segmentation methods from the previous section also predict
semantic segmentation and could potentially be extended to the task of panop-
tic segmentation. However, most of them use the semantics solely to support
the instance task and neither jointly optimize both nor consider stuff classes,
which is required for panoptic segmentation. Hence, they have been consid-
ered as instance segmentation approaches. Nevertheless, there are some ex-
ceptions [Wan19a, Phal9, Zha20d, Lia20] already aiming for the joint pre-
diction of instance and semantic segmentation and can be considered among
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the first 3D panoptic segmentation approaches, although their authors never
call it panoptic. Supported by the public release of two large scale datasets,
SemanticKITTI [Geil2, Beh19] and nuScenes [Cae20, Fon22], with pointwise
semantic and instance labels, most of the recently published panoptic meth-
ods tackle outdoor panoptic segmentation of driving scenarios. Consequently,
research not only focuses on improving the clustering [Gas21, Hon21, Li22a]
but also on improved backbones and feature extraction [Mil20, Zha20c, Sir22,
Xu22, Li22b]. Additionally, runtime complexity and real-time capabilities are
considered. Again, existing methods follow the bottom-up [Mil20, Gas21, Li21,
Hon21, Li22a, Xu22, Li22b] or top-down [Sir22] strategy, while others [Raz21a,
Li21] do not follow the established patterns.

Panoster [Gas21] is a proposal-free approach with a novel learnable cluster-
ing step instead of a fixed post-processing one. Therefore, Panoster’s instance
branch directly predicts instance IDs and is trained based on a differentiable
confusion matrix over ground truth and predicted clusters. In addition, a post-
processing step based on DBSCAN [Est96] merges fragmented instances or
splits wrongly fused instances and significantly improves the results. While
Panoster can be used in combination with arbitrary backbones, it has been
evaluated for the point-based method KPConv and the range view-based ap-
proach SalsaNext, where KPConv achieves superior results.

Milioto et al. [Mil20] introduce a proposal-free, range view-based approach
based on a shared DarkNet53 [Red18] encoder and dual decoder setup to pre-
dict semantics and instance centers. Instead of transposed convolutions or
bilinear upsampling, which both leverage 2D proximity in the range view,
a differentiable trilinear upsampling layer is introduced. It exploits 3D ge-
ometric information of the point cloud to upsample the 2D feature maps in
both decoders. CPSeg [Li21] is a proposal- and clustering-free method with
a task-aware attention module to force both decoders to learn comprehen-
sive task-aware features. Geometric features extracted from the surface nor-
mals further assist the instance decoder. A similarity matrix based on the
learned embeddings determines the instances. The proposal-based approach
EfficientLPS [Sir22] uses a shared backbone followed by a semantic branch
and a Mask R-CNN-based instance branch. A proximity convolution module
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aggregates 3D neighborhoods into the range image prior to the backbone ap-
plication, followed by a 2-way FPN for multi scale feature aggregation. The
latter is supported by a novel range encoder network providing spatial infor-
mation based on the distance channel. Additionally, a novel panoptic periph-
ery loss is introduced to refine boundaries between instances.

The bird’s eye view approach Panoptic-PolarNet [Zho21] stands on the shoul-
ders of PolarNet and extends it to the panoptic segmentation task. Motivated
by Panoptic-Deeplab from the image domain, their instance branch predicts
a center heatmap and offset vectors for the clustering of instances. Panoptic-
PolarNet shares not only the encoder among tasks but also the first part of
the decoder to reduce the computational effort and simultaneously improve
the results.

Based on the sparse cylindrical voxel view, DSNet [Hon21] introduces a clus-
tering-based framework. The sparse backbone computes voxel features, which
are shared among both tasks and further refined in the semantic and instance
branch. The predicted voxel-based semantic classes and offset vectors are then
transformed back to the 3D points. A learnable clustering module, called dy-
namic shifting, and motivated by mean shift clustering, can adapt its kernel
functions on-the-fly for different instances. GP-S3Net [Raz21a] builds upon
AF?-S3Net [Che21d] to compute a 3D semantic segmentation in the first step.
Instead of a parallel instance branch, a downstream instance network per-
forms over-segmentation on the thing classes. A graph is built based on these
segmented clusters and processed by a graph neural network to predict the
final instance segmentation.

The multi view approach SMAC-Seg [Li22a] presents sparse multi directional
attention clustering. The predicted offsets are transformed from range to bird’s
eye view for clustering, and an attention module aggregates instance features
for the individual clusters. Finally, a centroid-aware repel loss improves the
separation of instances. Sparse Cross-Scale Attention Network (SCAN) [Xu22]
uses a sparse 3D backbone to compute multi scale voxel features and derive
point features. A cross scale attention module aggregates the multi scale voxel
features, followed by a reduction into sparse bird’s eye view to compute a
sparse 2D centroid distribution. The pointwise features are used to predict
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offset vectors and semantic classes for the 3D points. SCAN clusters instances
based on the centroid predictions and offset vectors. PHNet [Li22b] starts with
the computation of voxel features for occupied cells, which are then trans-
formed into polar bird’s eye view. Semantic and instance features are com-
puted by a 2D CNN and combined with the voxel features. The proposed
kNN-transformer models interactions among instance classes and predicts the
offset vectors for every voxel. Based on these, a pseudo-heatmap in bird’s eye
view for potential instance centers is derived. A final clustering step provides
the required instances.

2.4 Temporal Point Cloud Fusion

Sensors mounted on autonomous vehicles provide a constant stream of se-
quential measurements, such as 3D point clouds. The sequential nature com-
bined with the continuity of the world provides a substantial potential to im-
prove various tasks by considering past frames in order to exploit temporal
information and dependencies. A frame comprises all relevant sensor mea-
surements from one point in time. For approaches solely based on lidar, this
is only the point cloud. On the other hand, a frame contains the data of mul-
tiple sensors for sensor fusion approaches. Early temporal attempts focused
on object detection, quickly followed by temporal semantic segmentation ap-
proaches. Recently, the first approach started to tackle temporal panoptic seg-
mentation. Five categories of fusion strategies can be identified across these
tasks: aggregating the inputs, adding a temporal grid dimension, exploiting
neighborhoods across time, employing the popular attention mechanism, or
passing information recurrently through time.

Input Aggregation

The simplest temporal fusion is an early fusion strategy, merging multiple in-
put point clouds and providing the aggregated point cloud to the backbone.
In order to compensate ego motion, the point clouds are transformed to the
current ego position beforehand. For the task of object detection, this can
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be used [Cas18, Hu20a] to aggregate multiple point clouds before transform-
ing them into bird’s eye view to increase its density and the detection results.
Panoptic segmentation also benefits from input aggregation [Wan22b], where
instance points of previous time steps are aggregated into the current point
cloud. Another possibility to exploit past information on the input level are
residual images in range view for the tasks of moving object [Che21b] and
semantic segmentation [Wan22a]. Residual images represent the difference
in the range channel of an ego motion compensated previous time step and
the current range channel. The residual values are close to zero for the static
environment and significantly deviate from zero for dynamic objects. While
residual images are a valuable temporal input for moving object segmentation,
the input aggregation strategy achieves only mediocre improvements for se-
mantic segmentation and cannot convincingly exploit temporal information.

Temporal Grid Dimension

Approaches in this category stack feature maps from multiple time steps along
a temporal dimension. Afterwards, 3D or 4D convolutions are applied to pro-
cesses and fuse the stacked feature maps. Luo et al. [Luo18] extract feature
maps from point clouds in bird’s eye view for multiple time steps. These fea-
ture maps are stacked along a temporal axis and subsequently fused by a 3D
CNN. Alongside improving 3D object detection, the temporal approach also
enables the forecasting of object motion. One additional dimension is required
by MinkowskiNet [Cho19], which introduces 4D sparse tensors to incorporate
previous frames. The temporally stacked sparse input tensor is processed by
a 4D U-Net with generalized sparse operations to deal with the memory and
runtime requirements. A hybrid kernel replaces the hypercube kernel to re-
duce the kernel size and the computational requirements, e.g., from 3% = 81
to 29 for a 3 X 3-kernel. Building upon these ideas, Mersch et al. [Mer22]
propose an approach for moving object segmentation. The spatio-temporal
information extracted by the sparse 4D CNN is the foundation for the de-
cision about moving versus non-moving objects. The major drawback of the
extra grid dimension is the significant impact on computational requirements,
which increases with each considered past frame.
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Spatio-Temporal Neighborhood

Neighborhood relations also exist across time since all point clouds can be
transformed to the current pose. In contrast to input aggregation, the time is
explicitly modeled as the fourth dimension in this category, and points must
be spatially and temporally close to be considered neighbors. Consequently,
these spatio-temporal neighborhoods allow the aggregation of point features
across time. MeteorNet [Liu19a] deploys a PointNet++ for pointwise feature
extraction followed by its main contribution, a temporal aggregation module
called meteor module for pointwise spatio-temporal feature aggregation. A
shared MLP aggregates the spatial-temporal neighborhood of a point, which is
computed by a new chained-flow clustering strategy. The module is used in an
early fusion strategy for semantic segmentation and applied to the aggregated
point cloud. However, it can also be used in a late fusion setup. Point Spatio-
Temporal Network (PSTNet) [Fan21] proposes point spatio-temporal convo-
lutions for temporal semantic segmentation to exploit spatio-temporal neigh-
borhoods. After disentangling space and time for consecutive point clouds,
spatial convolutions capture the geometric structure of the point clouds, and
temporal convolutions extract the temporal dynamics of the spatial regions.
The high computational effort of computing neighborhoods in point clouds is
further increased for spatio-temporal neighborhood search since the spatio-
temporal point cloud is considerably bigger, or neighborhoods must be com-
puted for multiple point clouds.

Attention

Another strategy is based on concatenating past and current features followed
by channel-wise attention to fuse both. SpSequenceNet [Shi20] relies on the
sparse voxel view and proposes cross-frame global attention for temporal fu-
sion. This attention layer uses global information from the previous frame to
compute channel-wise attention for the features of the current frame. Ad-
ditionally, cross-frame local interpolation aggregates local information from
a point’s neighborhood in the previous frame. The follow-up work [Han22]
uses the same attention mechanism but replaces the interpolation step with
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an improved temporal-variation-aware interpolation module, which consid-
ers the feature variation inside the neighborhoods. Channel-wise attention
is also used for moving object segmentation based on features from stacked
residual images [Sun22] or ego motion compensated range images [Kim22].
The latter method additionally applies spatial attention to the fused feature
maps. Another attention-based strategy is introduced in STELA [Kni21] and
fuses the feature maps of multiple time steps after each encoder stage in order
to aggregate every voxel’s sparse neighborhood across time.

Recurrent Neural Network

RNN-based approaches recursively aggregate feature maps by updating a tem-
poral memory with current information. The memory transports the tem-
poral information from time step to time step. This strategy was first used
to improve 3D object detection [Els18, McC20] by recursively aggregating
the last feature map prior to the detection head with a ConvLSTM [Shi15].
Yin et al. [Yin20] follow the same strategy but deploy an enhanced ConvGRU
called attentive spatio-temporal transformer instead of a ConvLSTM. In con-
trast to the previous approaches, which rely on the bird’s eye view, Huang
et al. [Hua20a] build their approach on the sparse voxel view. The extracted
features are fed to a sparse ConvLSTM and recurrently aggregated. Instead
of compensating the ego motion for the input point clouds, like previous ap-
proaches, the sparse 3D locations of the hidden state features are transformed
to the current time step to compensate for the ego motion. The only semantic
segmentation approach [Sch22b] proposes multiple fusion steps instead of a
single temporal fusion step after the backbone. Recurrent temporal connec-
tions implemented by ConvGRU aggregate and pass feature maps at multiple
locations inside the backbone from time step to time step to improve 3D se-
mantic segmentation. In general, RNNs offer the potential to reuse their tem-
poral memory at ¢ + 1 when the next lidar scan is recorded. Except for Huang
et al. [Hua20a], existing approaches compensate for ego motion in the input
point clouds, prohibiting the reuse of already computed features and limiting
the potential of RNNs. The other presented fusion strategies generally lack
this potential, in addition to their already discussed drawbacks.
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2.5 Sensor Fusion for Point Clouds

Autonomous vehicles or robots are often equipped with different sensor types
and multiple sensors of the individual types. These offer the potential to ex-
ploit additional sensor data to improve various 3D tasks. Independently of
the task, different fusion strategies with neural networks emerged [Chel7b].
Early fusion combines multi sensor data directly at input level, deep fusion
fuses intermediate feature maps potentially multiple times, and late fusion
relies on the predictions of the different sensor modalities.

Sensor fusion is well established in the area of 3D object detection, especially
for the combination of lidar and camera. Early fusion approaches generate
regions of interest in camera images to determine where to look in the point
cloud [Qi18, Wan19b]. Other methods [Vor20, Xu21b] enhance point clouds
with semantic labels from image segmentation. Late fusion approaches com-
bine bounding box predictions from both modalities [Pan20b, Pan22]. Deep
fusion approaches can be further divided into feature-level and proposal-
level fusion [Che17b, Ku18]. Strategies related to regions of interest, proposal,
or bounding box fusion are specific to object detection. On the other hand,
deep sensor fusion is task agnostic and can also be exploited for multimodal
panoptic segmentation. Therefore, it will be the focus of this section. A com-
prehensive overview of the other categories is provided in [Mao22].

The first challenge to address for sensor fusion on feature-level is spatial
alignment since camera and lidar features exist in different spaces. One com-
mon strategy is the projection of 3D lidar points [Hua20b, Zhu21a, Wan21b,
Wan21a, Zha21b] or voxel centers [Sin19] onto the 2D camera image to ex-
tract spatially matching camera features. Zhao et al. [Zha21b] further im-
prove this projection by learning pointwise correction offsets to compensate
for deviations in the projection caused by calibration or time synchroniza-
tion errors. Another strategy is the projection of camera features into bird’s
eye view based on voxel projection [Yoo020], lift splat shoot [Phi20, Liu22],
parametric continuous convolution [Lia18, Lial9], or cross-attention [Che22].
For semantic segmentation, the geometric projection of camera features into
range view is another popular strategy [Elm19, Mey19a, Kri20, Zhu21c].
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The second challenge after the spatial alignment is the fusion of lidar and
camera features. Proposed methods build upon simple addition [Lia18, Lia19],
concatenation followed by convolution [Wan21a, Zha21b, Liu22] or residual-
based addition [Zhu21c], cross-sensor attention [Che22], and gated fusion.
The gating signal for the latter is computed from the concatenated [Yo020,
Wan21b] or added [Hua20b] lidar and camera features.

Only some mentioned approaches [Mey19a, Elm19, Kri20, Zha21b, Zhu21c]
tackle semantic segmentation, which requires different architectures than ob-
ject detection to restore the original resolution. This difference enables addi-
tional and distinct fusion strategies and architectures. Some methods [Elm19,
Kri20] achieve notable improvements, however, for relatively weak baselines
and only predict the road-object classes car, pedestrian, and cyclist. The fusion
strategies of other approaches [Mey19a] achieve only small improvements,
indicating that the camera’s full potential is not yet exploited. Additionally,
none of the existing approaches consider the camera failure case or evaluate
its impact on the results.
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This thesis aims to design a multimodal network architecture based on deep
learning for panoptic segmentation of 3D point clouds, which can exploit vari-
ous information sources of an autonomous vehicle for high quality and robust
results. The point cloud is the main source of information, usually originating
from a lidar sensor, which can be supported by multiple other sources. First,
time and temporal dependencies provide additional and valuable information
when not only the current frame but also previous frames are considered.
These offer the potential of temporally more consistent predictions since tem-
porally aggregated features provide a more stable and dense context for ev-
ery 3D point, compared to the sparse and incomplete context of a single lidar
scan. Next, other sensors, such as camera or radar, provide complementary
information about the environment based on their respective measurement
principles. In particular, cameras with their usually much higher spatial reso-
lution than a lidar contribute additional information. Consequently, different
requirements can be derived, which the designed architecture needs to fulfill:

1. Process unstructured 3D point clouds based on either a single point
cloud representation or a combination of multiple representations.

2. Incorporate information from previous frames to exploit temporal in-
formation and learn temporal dependencies.

3. Include information from complementary sensors, such as camera or
radar, to exploit different measurement principles.

Fulfilling all these requirements provides a multimodal architecture for 3D
panoptic segmentation. Therefore, the individual requirements are tackled by
the main contributions of this thesis, which are then combined into one uni-
fied architecture:
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1. A multi view framework [Due22] for processing unstructured and large
scale point clouds based on range view, bird’s eye view, and point view.

2. A temporal fusion framework [Due20a] with novel recurrent feature
map fusion enhances single frame approaches by recursively aggregat-
ing features of past frames.

3. A multi sensor framework [Due20b, Due21, Sch22a] for deep feature
fusion of lidar and camera information based on two novel multi scale
fusion strategies.

4. The first multimodal architecture that successfully leverages the com-
bined potential of a multi view, temporal, and multi sensor architecture.

While the multimodal architecture provides the full potential and best results,
the contributions of this thesis can be flexibly combined. For example, com-
bining the multi view and temporal architecture provides strong results with-
out using other sensors. Reasons not to use existing other sensors are, for
example, a minor or no overlapping field of view or safety and redundancy
considerations. Alternatively, if the entire multimodal framework is compu-
tationally too complex, combining the temporal and multi sensor fusion pro-
vides a sophisticated and highly efficient range view-based approach.

3.1 Multi View Architecture

Over time, various point cloud representations with different strengths and
weaknesses have been proposed, with the most relevant ones introduced in
Section 2.3.1. One possibility to combine different strengths and counteract
weaknesses is the combination of individual views. Promising combinations
are the sparse voxel and point view to reduce voxel resolution and omit neigh-
borhood aggregation in unstructured point clouds [Tan20, Ye21b]. The sparse
voxel view provides the 3D neighborhood aggregation, and the pointwise in-
formation in the point view allows a lower voxel resolution. Another promis-
ing combination is the range and bird’s eye view [Lio21, Li22c], motivated
by the distinct underlying projections which omit different axes. Hence, the
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2D neighborhoods of projected points differ and complement each other to
reduce the impact of far apart points belonging to the same 2D neighbor-
hood. The proposed multi view architecture [Due22] builds upon the range
and bird’s eye view, motivated by four reasons:

« The range view provides a dense 2D representation of a sparse 3D point
cloud with little to no loss of information for a single lidar. Small verti-
cal objects, such as pedestrians, poles, and traffic signs, are well repre-
sented. Furthermore, the range view is independent of the covered area
and directly represents a 3D point cloud without requiring a learned
feature embedding for its cells.

» The bird’s eye view benefits from a low number of occlusions along
the z-axis, especially for thing classes, such as traffic participants. This
property facilitates the separation of individual instances and structures
since they are often still spatially separated, despite the 2D projection.
As a result, the bird’s eye view achieves great results for 3D object de-
tection [Yin21], which is an essential property for the instance segmen-
tation subtask.

« The combination of range and bird’s eye view approximates the voxel
view by linearly separating it into two orthogonal 2D views. As a result,
it provides a low computational complexity while preserving a strong
representational power for 3D information. On the other hand, com-
bining the sparse voxel and point view cannot completely mitigate the
computational complexity drawback of the sparse voxel view [Tan20,
Xu2la, Xu22].

» The range and bird’s eye views’ 2D structures support cell-based fea-
tures association and aggregation across time, which is impossible in
other views or amplifies their drawbacks. As discussed in Section 2.4,
the aggregation of spatio-temporal neighborhoods in the point view is
even more challenging than aggregating spatial neighborhoods. Addi-
tionally, the sparse voxel view requires either an additional dimension
or becomes denser when aggregating features across time steps. The
increased density is caused by the 3D points of previous frames, which

55



3 Concept

occupy previously empty voxels. While an increased density is gener-
ally favorable, it drastically reduces the computational benefits of the
sparse representation. Above a certain density, it eventually becomes
inefficient [Gral5].

Motivated by the success of Panoptic-DeepLab’s [Che20] bottom-up cluster-
ing approach in the image domain and the success of representing objects by
center points [Yin21], this thesis relies on a bottom-up clustering for instance
segmentation based on a center heatmap and offset vectors, introduced in
Section 2.2.2.

Existing approaches [Zha20a, Lio21, Ger21, Qiu22] that rely on the range and
bird’s eye view deploy either a simple fusion strategy with only minor im-
provements or require 3D neighborhoods for refinement and inherit the point
view’s main drawback. In contrast, the presented approach [Due22] intro-
duces a sophisticated point view backbone as a third parallel network and
superior multi view link over late fusion, which simultaneously mitigates this
drawback. The proposed multi view architecture illustrated in Fig. 3.1 ag-
gregates neighborhoods and context in the range and bird’s eye view. Con-
sequently, no context aggregation, neighborhood relations, and hierarchical
point cloud subsampling are required in the point view. Instead, a unique fea-
ture vector is maintained and refined for each 3D point based on the aggre-
gated features of range and bird’s eye view extracted at different scales. For
that purpose, 2D CNNs are employed as backbones for both 2D views, which
enable efficient context aggregation by exploiting the implicit neighborhood
relations provided by the representations’ grid topology. Alongside mitigat-
ing the main drawbacks, this architecture provides a superior multi scale fu-
sion strategy over late fusion for range and bird’s eye view features.

Furthermore, existing approaches based on range and bird’s eye view pro-
vide only semantic instead of panoptic segmentation. In contrast, the pro-
posed architecture and its novel panoptic head exploit multi view benefits
also for panoptic segmentation and the different requirements of its subtasks.
The head relies on the point view for semantic segmentation and bird’s eye
view for instance recognition. Offset vectors and center heatmap required for
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bottom-up instance segmentation are predicted based on bird’s eye view fea-
ture maps. This allows a dense 2D center heatmap and decouples object cen-
ter positions from the measured 3D points since their center position is usu-
ally not directly measured. The head clusters all 3D points belonging to thing
classes based on the 2D offset vectors and object center candidates in the bird’s
eye view to compute the 3D instance segmentation.
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Figure 3.1: High-level architecture for multi view panoptic segmentation of 3D point clouds,
which combines the range view, point view, and bird’s eye view.
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3.2 Temporal Multi View Architecture

Considering not only the current but also past frames provides the capabil-
ity to exploit valuable temporal information and dependencies. This is espe-
cially beneficial for sensors with a high intra- and inter-class variance but
a spatially rather low information density. For the targeted domain of real-
time applications, waiting for a fixed number of frames and predicting them
all at once is not feasible. Instead, a prediction with low latency is required
for every arriving frame, as soon as it is provided by the sensor. This repet-
itive recording is rarely considered by existing approaches, see Section 2.4.
Instead, they predominantly compute a prediction for the current frame by
transforming a short sequence or temporal window of previous point clouds
(< 5) to the current frame and processing them all at once. This strategy has
two major drawbacks. First, it limits the temporal information that can be
exploited due to the limited temporal window size, which linearly increases
computational complexity and memory requirements. Second, all frames in
the temporal window have to be processed in every time step. Consequently,
individual frames are processed multiple times, as illustrated in Fig. 3.2.

temporal window

I
t—5 t—4 t-3 t-2 t-1 t t+1 t+2 time

Figure 3.2: Processed frames for three arriving frames at £, t + 1, and ¢ + 2. Existing approaches
have to process their temporal window and individual frames repeatedly. In contrast,
the proposed approach exploits recursion and processes only the arriving frame.

To address these limitations, the proposed architecture [Due20a] follows a
different approach and introduces a novel temporal fusion of features and
feature maps. It reuses a significant amount of computations from previous
time steps and recursively aggregates features and information through time,
without a limiting temporal window size. The general idea, which follows a
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recursive filtering pattern, is shown in Fig. 3.3. Point clouds are processed in
one of the chosen representations by a common backbone to compute deep
aggregated feature maps for the current time step, similar to a conventional
single frame approach. A temporal memory is passed through time and re-
cursively updated with the features computed by the backbone and provides
temporally aggregated features to the head for the final predictions. This re-
cursive strategy allows reusing previous feature computations and only adds
the update step as additional computation compared to single frame meth-
ods. As a result, the runtime is no longer connected to the temporal window
size and the features of a potentially unlimited number of past frames can be
aggregated into the memory.

t—1 t+1
¥ ¥
Single Frame Single Frame Single Frame
Backbone Backbone Backbone
------ »>| Update Step Update Step Update Step | s--->»

Figure 3.3: Recursive temporal update for aggregating features across time.

While this approach significantly enhances single view approaches, it is fur-
thermore integrated into the multi view architecture to combine multi view
and temporal benefits. Therefore, the range and bird’s eye view branch are ex-
tended by the proposed recursive memory aggregation, as depicted in Fig. 3.4,
to incorporate feature maps from previous time steps in both views. The mo-
tivation for choosing the 2D views over the point view was already briefly
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discussed in the previous section. Aggregating context across time requires
finding spatially close features in the last time steps for all 3D points of the
current time step, which is more efficient in a 2D grid than a 3D point cloud.
Additionally, the choice of the 2D views allows both subtasks to benefit from
the temporal fusion, see Fig. 3.4. Temporally fused feature maps are provided
to the point view backbone to improve the point-based features for the 3D
semantic segmentation. In parallel, the offset vector and center heatmap pre-
dictions required for the instance segmentation benefit from the temporally
fused bird’s eye view feature maps.
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Figure 3.4: Temporal multi view concept for panoptic segmentation of 3D point clouds. It em-
ploys a recurrent temporal fusion in range and bird’s eye view to exploit temporal
dependencies.
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3.3 Multimodal Multi View Architecture

The presented temporal and multi view frameworks are single modality ap-
proaches focusing on the lidar sensor. However, other sensor modalities with
distinct measurement principles, such as camera and radar, have great po-
tential to provide additional information when fused with point clouds. In
general, sensor fusion with neural networks follows early, deep, or late fu-
sion, introduced in Section 2.5. Deep fusion offers the potential to fuse aggre-
gated feature maps at multiple stages. Consequently, less information is lost
when fusing sensors with different resolutions since features are spatially ag-
gregated prior to fusion. Furthermore, deep fusion offers the potential to fuse
features at multiple scales. In contrast, early and late fusion lacks these poten-
tials. Early fusion of lidar and camera for 3D panoptic segmentation typically
omits a significant amount of camera information since the camera resolution
is usually much higher compared to a lidar. Late fusion combines both sensor
modalities at the latest possible moment and therefore lacks the potential to
improve feature extraction at earlier stages of the networks. These consider-
ations motivate the choice of deep sensor fusion as the underlying strategy.

A promising sensor combination consists of camera and lidar because both
sensors provide rather complementary information. Camera sensors usually
measure RGB intensity values at high resolution, whereas lidar sensors pro-
vide valuable 3D geometric information with a relatively low resolution. Ad-
ditionally, the considerable success of image-based scene understanding in-
dicates the value of camera image information for understanding a vehicle’s
environment. The successful combination of RGB and depth images for 2D
scene understanding [Sil12] motivates the fusion of camera and lidar infor-
mation in the range view. The main advantage over the point view is, again,
the grid topology which allows aggregating context for the fused features
with standard 2D convolutions.

The proposed fusion architecture performs multi scale feature fusion of li-
dar and camera. Improving over existing approaches [Elm19, Mey19a, Kri20,
Zhu21c], it ensures that the lidar baseline performance is still achieved in
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case of missing camera information. Furthermore, two novel multi scale fu-
sion strategies improve the exploited camera information and fused features.
The underlying setup is illustrated in Fig. 3.5 and builds upon individual sen-
sor backbones to extract lidar range view and camera features. These are pro-
vided at multiple scales to the proposed fusion branch, which geometrically
transforms camera feature maps into range view feature maps. Afterwards,
one of two proposed fusion strategies combines the multi scale feature maps.
The fusion branch decouples the fusion from the backbones and is combined
with an adapted training strategy so that each backbone can still provide sin-
gle modality predictions as a backup in case of sensor failure. This property
increases robustness against missing or unexpected camera output and is a
considerable advantage over existing approaches.

Camera Fusion Range View
Backbone Branch Backbone

Range Fusion
Panoptic Head Backbone

Figure 3.5: Range view-based lidar and camera fusion. The multi scale fusion branch decouples
the individual sensor backbones from the fusion.

While this fusion approach considerably improves the panoptic segmentation
in the range view, another important step is the integration into the temporal
multi view architecture to ultimately combine multi view, temporal, and multi
sensor benefits. This multimodal architecture is illustrated in Fig. 3.6, where
the range fusion backbone replaces the single sensor range view backbone.
Consequently, the temporal range view is applied to the multimodal features
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and provides temporally enhanced multimodal range view features. In this
setup, the range view feature maps propagated to the point view contain the
fused features across lidar, camera, and time. On the other hand, the bird’s eye
view and its predictions lack the camera information. However, the main neg-

ative impact on the panoptic results are errors in the semantic segmentation,

shown with an oracle test in [Zho21], which directly benefits from the sensor
fusion. Additionally, the bird’s eye view allows the integration of additional
sensors in the future, such as radar or even online cloud-based map data.
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Figure 3.6: The multimodal architecture, which combines multi view, temporal, and sensor fu-
sion benefits for 3D panoptic segmentation.
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3 Concept

3.4 Multimodal Feature Map Transformation

The presented architectural concepts require the combination and fusion of
features and entire feature maps across different sensors, time steps, and point
cloud representations. Therefore, a spatial transformation is required to trans-
form feature maps between different modalities and views. The enabling ele-
ment is 3D information provided by the lidar point clouds or the lidar views
themselves. These 3D points can be geometrically transformed to other sen-
sors or time steps and can be projected into different views. The transforma-
tion requires ego poses and sensor extrinsics defined by homogeneous trans-
formation matrices T and are illustrated for a generic vehicle setup in Fig. 3.7.
The transformation from the lidar (li) at time ¢ to sensor S at time 7 is de-
fined by:

THZS = (T T5) . T . Tl Ti=S € R4, (3.1)
The ego poses can be omitted if the source and destination time steps are
identical. This combined transformation matrix transforms a homogeneous

!
point cloud P = [py, -+, Pns -] € RN*4 to another sensor and time step:

T =
(\P) =T/ - Pl (3.2)

N

x-axis y-axis

<

Figure 3.7: Vehicle with two sensors S and S’ at two distinct points in time. The vehicle poses
in the global coordinate system at time T and t are given by T5> and ngo. The
sensor poses with regard to the vehicle coordinate system are specified by extrinsics

TS and TS'.
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3.4 Multimodal Feature Map Transformation

Afterwards, a projection P projects the original or transformed points into
one of the considered views v:

PY:R* 5 {1,2,.. ,H}x{1,2,... W}

2 ®) =[] -v .
v

Relevant views for this thesis are lidar range view, polar bird’s eye view, and
camera image view (IMG). The specific computation of the projection P de-
pends on the view and has been introduced in Section 2.3.1. The camera pro-
jection follows the pinhole model [For12]. Additionally, Cartesian points must
first be converted into spherical or cylindrical coordinates for range and polar
bird’s eye view, achieved by the functions Q% and QZ, introduced in Egs. (2.14)
and (2.15). Computing the projection or cell index for a point p and a target
view v at time 7 usually requires more steps than just the projection itself and
motivates a combined transformation J:

T2 R* > {1,2,..,H x{1,2,...,W}

. (3.4)
i2e(p) = (PY 0 Q%) (TiZ7 -p).

Equation (3.4) combines the transformation, spherical or cylindrical conver-
sion, and projection, where the first two steps are not always required:

1. Transform the points to another sensor S and/or time step 7 via THE7S.
2. Convert Cartesian into spherical or cylindrical coordinates via Q°17.
3. Project transformed points into target view v of sensor S via P?.

Computing the projection or cell index for each point p,, of a point cloud
provides an index matrix:

Ul,l U1,2
ur=| : P =[Una] =[72c(Pn)g] € NN*2, (3.5)

Un,1 Un,2

Equations (3.4) and (3.5) are illustrated for camera and range view images in
Fig. 3.8. The projection index u,, of p,, can be found in the n-th row of U.

65



3 Concept

(:;)RV ° Qa)(POT ] : ‘ b ':T_-.,-- F\‘n L:Hr.r ’;F.

URV:

i

J

(P10 09) () f———
: ] I [

P IMG (T li-cam pl)T
UMG — :

pIMG (T li-cam , pn)T mE

Figure 3.8: Projection of a 3D point cloud into lidar range view and camera image view.

RN*C in point view, which originate from neural networks

Feature maps Fe
directly applied to unstructured point clouds, are in the most general sense
matrices with individual entries F; n,c- These feature maps contain in the n-th
row the feature vector of the n-th point p,, of a point cloud, with p,, residing
in the n-th row of the point cloud matrix P. On the other hand, feature maps
F € RHEXWXC of 2D CNNs are in the most general sense 3D tensors. Their
entries are in the following denoted as F,, ,, ., following [Goo16]. Since these
feature maps are the result of processing a 2D input, such as camera or range
view images, they can also be considered as a 2D grid of feature vectors at grid
coordinates u = (u, v) € N2. Consequently, they are called 2D feature maps.
Since 3D points can be projected into these grid cells, feature vectors from
a 2D feature map can be assigned to every 3D point. Based on this relation,
the 1D feature map transformation 8 transforms a 2D feature map F into a
point view feature map F:

S: RHxchxcu N RNXC

_ _ (3.6)
S(F’ U) = [FUn,l:Un,Z: C] =F= [Fn,c] € IRNXC
for all valid index matrices:
U={U|UeNV2A1<U,, <HAL1SU,,<W} (3.7)

The underlying idea is illustrated in Fig. 3.9. Equations (3.5) and (3.6) allow
transforming feature maps F? from an arbitrary 2D view and time step to the
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3.4 Multimodal Feature Map Transformation

point view of the current time step ¢:
YF{Y = 8(F,UY). (3.8)

Equation (3.8) is the foundation for the multi view architecture to transform
range and bird’s eye view feature maps back to the point view.

24)
*3)
S , Gy =
3)
3)

F6R4><4><3 UeNSxZ F“ER5><3

Figure 3.9: Visualization of the point view feature map transformation introduced in Eq. (3.6).
The features in this example are RGB values visualized by color.

In addition, the proposed temporal and sensor fusion requires the transforma-
tion of camera image feature maps to the range view and the transformation
of range and bird’s eye view feature maps between time steps. Therefore, the
ideas of Eq. (3.6) are extended to a general 2D feature map transformation S:

S RH’XW’XCXW — RHxWxC

. , (3.9
S(F,’V) = [FVu,v,l,Vu,v,z’ C] =F= [Fu,v,c] € RHXWXC

for all valid index tensors:

YV ={V|VeNDWX2 1 <V, , 1<H ALV, ,,<W'}L (3.10)

An example of the 2D feature map transformation is depicted in Fig. 3.10.
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Figure 3.10: Visualization of the 2D feature map transformation introduced in Eq. (3.9).

In contrast to the index matrix U, which is based on the point cloud itself,
the index tensor V is computed based on the 3D position g, , of the target
view’s cells:

VTV = [Vu’v’d] = [j;ZT (gu,v)d] E NHXWXZ’
T (3.11)
Suyv = [Gu,v,l Gu,u,z Gu,v,3 1] .

The definition of G = [Gu,v,d] € RHXWX3 depends on the view. A range
view cell’s 3D position is defined by the 3D point of the point cloud, which
is projected into the considered cell, illustrated in Fig. 3.11. If multiple points
are projected into one cell, only one is kept, which is discussed in detail in
the next chapter. On the other hand, the center of a bird’s eye cell determines
its 3D position independently of the point cloud when making a flat-earth
assumption with z = 0.
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3.4 Multimodal Feature Map Transformation

bird’s eye view
< time T
1
|
|
u u ;! time ¢
[ [
PRV, gF =(u,v) > = [ Xmin + (U —0.5) - Ax
( )(Pn) ( ) Su,v = Pn e (b= 0.5)- Ay
Suy = 0
u,0,1 IMG -
[ Vuo, 2] T (gu U) L 1
— ?IMG(Th—wam gu,v) = Vu’v’1 BEV( )
MG emi w,v,2 t—7 \Bu,v) =
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( Pn) — prEV(Tt_)T_ gu,v)

Figure 3.11: Examples for computing the index tensors. The left example illustrates the mapping
from range view to camera image view and the left from bird’s eye view at time ¢
to time 7. The bird’s eye view resolution or distance between cells is defined by Ax
and Ay.

69






4  Multi View Panoptic Segmentation
of 3D Point Clouds

The multi view approach presented in this chapter addresses the challenge
of predicting an improved 3D panoptic segmentation for unstructured point
clouds. It comprises individual backbones for range and bird’s eye view, which
support a point view backbone. In the first step, range and bird’s eye view
are considered individually to introduce single view approaches and derive
2D backbones for the multi view architecture. The novel multi view frame-
work [Due22] for 3D panoptic segmentation builds upon and extends these
backbones and is presented in the second half of this chapter.

4.1 Range View Network

Range view-based panoptic segmentation relies on point clouds represented
as range images. These are processed by a 2D backbone to compute feature
maps for semantic and instance segmentation, illustrated in Fig. 4.1. Multiple
heads are deployed to provide the parallel predictions required for panoptic
segmentation. On the one hand, the semantic head predicts a 2D semantic
segmentation based on semantic feature maps F. ;. On the other hand, the
center and offset head use instance feature maps F;,; to compute a heatmap
and offset vectors for 2D bottom-up instance segmentation. The overall range
view network is called RVNet, and its final 3D panoptic segmentation is the
result of a kNN-based back-projection.
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Figure 4.1: The range view network RVNet. It is composed of a 2D fully convolutional backbone
based on feature extractors (FEs) and feature aggregators (FAs) [Mey19b], and three
different heads. The edges are labeled with the feature maps sizes.
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4.1 Range View Network

Input Representation

The underlying idea of the range view is to represent point clouds in spher-
ical coordinates and discretize azimuth and polar angle into cell coordinates
following Eq. (2.17). Ideally, all 3D points are projected to different grid cells.
However, this requires that a point cloud is recorded from a single point of
view and measurements are performed in equidistant azimuth and polar in-
tervals. Since these requirements are rarely satisfied for point clouds origi-
nating from moving lidar sensors in the considered context, collisions occur
when multiple points are projected into the same grid cell. One strategy to
address this is the consideration of the intrinsic properties of the deployed
lidar to adapt the mapping from angles to cell coordinates accordingly. This
can significantly reduce collisions and information loss but omits the under-
lying regularity of the range view grid, which is an important property for
convolution-based processing with CNNs. Hence, further projection strate-
gies are discussed in addition to the regularly-spaced strategy of Eq. (2.17).

As a result of the functional principle of common lidar sensors introduced in
Section 2.3, the resulting measurements are usually represented in spherical
coordinates. While the distance measurement r depends on the environment,
both angles are usually determined directly or indirectly by design. Many ro-
tating 360° lidars use a vertical stack of laser heads rotating around their ver-
tical axis. The position in this stack maps to a fixed polar angle and can be
used as row index. On the other hand, the azimuth angle usually depends
on the angular velocity and time. In this case, the column can be determined
by enumerating the measurements for each laser head. The result is a purely
sensor-dependent projection without collisions or information loss and is di-
rectly provided by most lidar sensors. However, the cells of the resulting grid
are not necessarily equidistant.

For some use cases, such as many public datasets, it is impossible to derive
the cell coordinates directly from the sensor since only the Cartesian point
clouds are provided. These are often already pre-processed to compensate
the ego motion during the continuous scan, which prevents restoring the raw
measurements. However, sensor properties can still be taken into account to
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4 Multi View Panoptic Segmentation of 3D Point Clouds

optimize the projection. Considering lidar sensors with a grid-like measure-
ment pattern of size (H, W) defined by intrinsic measurement angles (éu, ¢v),
spherical point clouds can be projected by [Due20a]:

ue argmin,_, g (|éu - 6|> (4.1)

argmin, _, _y, (‘$v - ¢|) ‘

While Eq. (4.1) works for any arbitrary and irregular angle distribution, it has
a higher computational complexity than Eq. (2.17). A combination of the pre-
sented projection strategies is also possible and applies distinct strategies for
the individual dimensions. Some sensors, such as a Velodyne HDL-64E, have
an equidistant azimuth but no entirely equidistant polar angle distribution.
However, the upper and lower half individually does. In order to reduce the
number of collisions and information loss, the computation of the column in-
dex follows Eq. (2.17), and the computation of the row index is optimized to:

[O.S-H-ﬂj IO <6y
emid_eup
u= o . (4.2)
lO.S -H- (1 + _—'M)J otherwise
6down_smid

The decision boundary 6,4 is an intrinsic property of the sensor and separates
the upper and lower half. Independent of the used projection, the result is a
range image of size H X W X 6 with channels r, x, ¥, z, intensity ¢, and an
occupancy flag. The latter indicates if at least one point was projected into
the respective cell. In case of collisions, the point with the smallest distance r
is selected. The resulting tensor is the input to the range view backbone and
overall network. The second, third, and fourth channel contain the projected
Cartesian points and are used as PXV € RHXWx3 in the following chapters.

Backbone

The backbone is a fully convolutional network depicted in Fig. 4.1 whose ar-
chitecture is motivated by Deep Layer Aggregation (DLA) [Yul8] and related
to the backbone of LaserNet [Mey19b]. It consists of two different building
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4.1 Range View Network

blocks, feature extractors (FEs) and feature aggregators (FAs) [Mey19b]. An
extractor consists of B stacked residual blocks, illustrated in Fig. 4.2. The first
convolutional layer of its first block downsamples the input by applying a
stride s = (Sg, Sy) and optionally increases the number of channels. All re-
maining blocks of a feature extractor keep the resolution and channel size con-
stant. Three feature extractors with B = 4, 5, and 6 build the encoder of the
network, see Fig. 4.1, and consecutively downsample the feature maps. The
first and second feature extractor apply a stride of s = (1, 2) and horizontally
downsample by a factor of two, whereas the last one with s = (2,2) down-
samples also vertically. The asymmetrical downsampling is motivated by the
intrinsic properties of the deployed lidar sensors. Their horizontal resolution
is roughly four times higher than their vertical. With its 30 layers in total, the
encoder is comparable to a ResNet-34, however with only three stages.

HxW xC HxwxC LW cr
| SH | Sw

BB
| Hxwxc'
Feature BB Feature
Extractor Aggregator
E X K xC' HxWxC'

SH Sw

Figure 4.2: The building blocks of the range view backbone based on [Mey19b], which consist
of Basic Blocks (BBs) [Hel6].

Feature aggregators, as the second building block, receive feature maps of
two different stages and resolutions. They upsample their lower-resolution
input with a transposed convolution, concatenate both inputs and apply two
residual blocks. As a result, the upsampling of the lower-resolution feature
maps with more context is guided by feature maps from the previous stage
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4 Multi View Panoptic Segmentation of 3D Point Clouds

with higher resolution and more spatial information. This strategy improves
the combination of aggregated context with fine details. The decoder com-
prises four feature aggregators, depicted in Fig. 4.1. It uses the multi scale
feature maps and context provided by three feature extractors to compute the
final feature maps for the heads. As panoptic segmentation requires multiple
heads, two feature aggregators are deployed in parallel at the end, one for the
semantic head and another for the instance heads. This dual setup showed
improved results for existing methods [Che20, Zho21].

Heads and Loss

The range view predictions for semantics, centers, and offsets are computed
based on the backbone’s final feature maps and multiple parallel heads. The
semantic head is a single 1 X 1-convolution that computes the semantic seg-
mentation. Both instance heads for the center and offset predictions have the
same architecture consisting of a 3 X 5-convolution which reduces the fea-
ture channels to 32, followed by BN, LReLU, and a final 1 X 1-convolution.
All predictions are horizontally upsampled by a factor of two to match the
original input resolution. Afterwards, Non-Maximum Suppression (NMS) ex-
tracts the k. range view cells with the highest scores as center candidates
U = (4, V) € K based on the center heatmap. In addition, the semantic seg-
mentation determines the range image cells u belonging to a thing class. Fi-
nally, the assignment € allocates each of these cells to one of the center can-
didates Ui based on the predicted offset vectors O € RHEXWx2.

u Ou,v1 u
Hv] #lom |- [ ) (43)
2
A kNN-based back-projection strategy [Mil19], introduced in Section 2.3.2,

transforms the predicted 2D semantic and instance segmentation back to the
3D point cloud to provide the required 3D panoptic segmentation.

C (u) = arg min
ueH

Since all heads are trained simultaneously, a multi task loss is required. The
semantic head is trained with CE and Lovasz loss [Ber18], the center head
with MSE loss, and the offset head with MAE loss, leading to a weighted loss
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4.2 Bird’s Eye View Network

term with weights A:

L= Asem : (L cE T+ LLovész) + Actr : LMSE + /loff . LMAE (4‘4)

4.2 Bird’s Eye View Network

The bird’s eye view is the second view which plays an essential role in the
multi view architecture. Similar to the range view, the first step is a transfor-
mation of the point clouds into the desired input representation. The bird’s
eye view input tensor is then fed to the backbone, which follows the same
architecture as the range view backbone, with the only difference of a sym-
metric feature map downsampling, see Fig. 4.3. The final feature maps of the
backbone are again provided to three parallel heads. A sparse semantic head
and 3D clustering step provide the final 3D panoptic segmentation. Similar
to the range view network, the loss function of Eq. (4.4) is used. The overall
bird’s eye view architecture (BEVNet) is depicted in Fig. 4.3.

Input Representation

The point clouds are transformed into the polar bird’s eye view to create the
input tensor. The motivation for a polar instead of a Cartesian representa-
tion lies in the underlying sensor properties discussed in Section 2.3. Its point
density naturally diminishes with distance, and therefore, a polar grid is less
sparse and requires a smaller number of cells to cover the required area. Ev-
ery 3D point is projected to its corresponding bird’s eye view cell following
Eq. (2.18). However, multiple points will be projected into most of the cells.
While these collisions are undesirable for the range view and can ideally be
avoided, it is unavoidable for the bird’s eye view since there is no one-to-one
correspondence between cells and measurements. Hence, a learned function
based on PointNet transforms the varying number of points inside each cell
into a fixed-size feature vector, following the ideas of PointPillars [Lan19b]
and PolarNet [Zha20c]. Its lightweight structure proposed in this approach
is shown in Fig. 4.4.
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Figure 4.3: The bird’s eye view network BEVNet. It is composed of a fully convolutional back-
bone and three different heads. The edges are labeled with the feature maps sizes.
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Figure 4.4: PointNet setup for computing a fixed-size feature vector for every grid cell based
on the set of points {py, ..., Px} which are projected into the considered cell. Every
PMLP consists of a single layer and uses BN and LReLU.

Sparse Semantic Head

Current state-of-the-art approaches [Zha20c, Zho21] compute the semantic
segmentation in the bird’s eye view, which is then transformed back to the
point cloud to obtain a 3D semantic segmentation. Since a 2D bird’s eye view
semantic segmentation leads to mediocre results, the classification layer of ex-
isting approaches predicts D - N, Semantic class scores for every bird’s eye
view cell, leading to a predicted segmentation S € RHXWXD-Neases | These can
be interpreted as predictions for a vertical stack of voxels per bird’s eye view
cell and results overall in a voxel-based prediction SY* € R HXWX DX Netasses

depicted on the left in Fig. 4.5.

However, this is quite expensive and ineffective due to the sparsity of the un-
derlying voxel grid. Therefore, a novel sparse bird’s eye view head improves
this final step by omitting empty cells and only considering cells with at least
one point inside:

qloccupied = (y |u e {l1,2,.. H} X {1,2,..,W}A

(4.5)
A 3p € P: (PPEVo Q%) (p) = u}.

The set of occupied cells and an arbitrary but fixed ordering defined by the
bijective function

& Wowwried 5 (1,2, N}, N’ = [oceuried) (4.6)
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can be used to transform the 2D semantic feature maps F,., into a sparse
representation. The transformation is based on the spatial feature map trans-
formation § introduced in Eq. (3.6):

Ssepr?lrse =8 (Fsem’ Uoccupied) ,
' , (4.7)
Uoccupled — [Un',d] — [(c:—l(n/)d] c NN ><2.

Figure 4.5 visualizes the underlying idea and equations. Every row of the
matrix Fsom . contains the feature vector of a non-empty bird’s eye view cell.
The ordering & associates the corresponding row to the 3D points when trans-
forming the predictions back to the point cloud. It is worth mentioning that
omitting the underlying grid structure is possible because the classification
layer individually maps the final feature vectors to class scores without us-

ing the grid.

pole with traffic sign

u
PVX(p) :'{é]

5<[u )‘*\ ----------- \
sVX Feem v EEE v oqT
Ssparse = . D <~
[ |
[ |
Eq. (4.7)

B £ f, £ £ 5]

Figure 4.5: Idea of the sparse semantic head. A Cartesian grid instead of the deployed cylindrical
grid ensures a clearer visualization. The additional dimension for the class scores is
replaced by class colors for visualization. Empty cells or voxels are depicted in gray.

The classification layer of the deployed sparse head computes D - Ny, Class
scores for every occupied cell based on Fsem , which provides a vertical stack

. . ! .
of predictions SP¥%¢ € RN *DXNauses - These can be transformed into a 3D
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point cloud semantic segmentation by:
sparseQ PV _ g (S sparse Ijsparse) c RNdeasses' (48)

The index matrix U P2 for the sparse representation is based on voxel coor-
dinates for the cylindrical voxel view

UV =[Up,a] = [(PV* 0 27)(pn)y] € NNV3, (4.9)
and is computed as follows:

- ~ ~ U ~
[ sparse — [Un,d] , Un,l = 8([U:’;]) S UVL,Z = Un,3' (4.10)

The ordering € identifies for every point the row in S*P***¢ based on the first
two voxel coordinates, as illustrated in Fig. 4.5. These correspond to the bird’s
eye view coordinates, which cannot be directly used since the underlying grid
structure was abandoned. Simultaneously, the third voxel coordinate U, 5
identifies the column and corresponds to the voxel position in the vertical
stack. Overall, the sparse segmentation head significantly reduces inference
and training time as well as memory demands due to the sparsity of approx-
imately 86 %.

Instance Heads

Both instance heads consist of a 3 X 3-convolution which reduces the number
of feature channels to 32, followed by BN, LReLU, and a final 1X1-convolution.
In contrast to the semantic head, expanding the predictions to voxel-based
predictions is unnecessary since the clustering is based on 2D centers and off-
sets. Furthermore, the employed instance clustering directly considers and
clusters the individual 3D points instead of bird’s eye view cells. As a result,
the explicit computation of a 2D instance segmentation can be skipped, which
avoids processing the empty cells. The first step of the clustering is again NMS
to extract the k, center candidates U with the highest score. Afterwards, the
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assignment € allocates every 3D point p,, to one of the extracted center can-
didates Ui based on the offset vectors O and the point’s projection index u,,:

H] N [32’”’1] B H ) (1)
» U, 2

Consequently, the combined predictions of the sparse semantic and the in-

uex

C(u,) = arg min(

stance heads provide the final 3D panoptic segmentation.

4.3 Multi View Network

The main drawback of the presented approaches is the focus on an individual
view. Depending on the chosen view, these approaches suffer from differ-
ent weaknesses. Consequently, a multi view framework [Due22] is proposed,
which combines distinct views and addresses these drawbacks to improve the
predicted 3D panoptic segmentation. It builds upon three distinct represen-
tations, the 2D range and bird’s eye view combined with the unstructured
point view. The backbones of the previously introduced single view networks
are two primary components of the multi view network and extract feature
maps of the point cloud represented in range and bird’s eye view. Their 2D
grid structure allows for efficient feature and context aggregation, and as a re-
sult of the different projections, both views contribute valuable features based
on different 2D neighborhoods. A novel point view backbone, illustrated in
Fig. 4.6, is responsible for the vital combination of features across views. These
multi view features are fused at feature level inside the point view backbone,
instead of a simple late fusion step, to leverage their full potential. The panop-
tic head also exploits the multi view setup and provides semantic and instance
predictions in different views. On the one hand, it predicts a 3D semantic seg-
mentation based on the pointwise multi view features. On the other hand, it
builds upon bird’s eye view feature maps for bottom-up instance segmenta-
tion, which is most suitable for a dense heatmap prediction. Furthermore, it
allows the range and point view to focus on semantic features. The overall
architecture of the multi view approach MVNet is shown in Fig. 4.6.
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Figure 4.6: Architecture of the multi view framework MVNet based on range view, bird’s eye
view, and point view.

Point View Backbone

The key element and important link between the range and bird’s eye view is
the point view backbone. Its overall structure mimics the architecture of the
2D backbones. However, it omits some cross-connections since it deploys no
feature aggregators, which require two feature map inputs of different scales.
Consequently, the architecture is more related to the U-Net family [Ron15]
with a single skip connection. The backbone itself consists of two elements,
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PMLPs and Multi View Aggregation (MVA). The single-layer pMLPs refine the
pointwise features, while the MVA is the actual link between the backbones,
combining and fusing the features across three different views. This architec-
ture is flexible and can be deployed in different configurations to decide for
each block of the backbone whether a multi view fusion should be applied.
Depending on the choice, an MVA module or pMLP is deployed. The setup
shown in Fig. 4.6 deploys multi view aggregation three times. At the begin-
ning, to collect low level features with little context but high spatial resolution,
after the last feature extractor to gather features with strong context but re-
duced spatial resolution, and at the end to exploit the final feature maps, which
contain the aggregated context and have a high spatial resolution. Another
evaluated configuration is the aggregation after every block, which replaces
the remaining three core pMLPs with MVA modules. Independently of the
chosen configuration, the last MVA module receives two point view inputs
which are concatenated and processed by a pMLP prior to the aggregation.

The multi view aggregation follows a two-step process to aggregate features
across three views. The first and most important step is the transformation
of feature maps from range and bird’s eye view to point view. This step is
required to provide the aggregated context for every 3D point p,, in the point
cloud. Based on Eq. (3.8), the 2D bird’s eye view feature maps are transformed
following

BEVR PV _ BEV BEV NxC
Fj¥ = 8(F™ UJ™) € RNGm,

BEV BEV (412)
U = [(2 2 2%)@a)a ]
The range view feature maps are similarly transformed:
RVEPV =38 FRV’URV c RNXC}{V’
J ( J J ) (4.13)

U = [(# 0 29)@aal

The projections P depend on the level j due to different feature map sizes.
After this step, three feature maps are present in the point view while orig-
inating from different views. The second step fuses these into a combined
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4.3 Multi View Network

feature map for the next level j + 1:
ETY, = 7,y (Y, VRV BEVERY), (4.14)

Four different fusion strategies %y with fixed and learnable fusion opera-
tions are proposed and investigated. These are addition, elementwise max-
imum, concatenation followed by a 1 X 1-convolution, and a weighted sum
with learnable parameters W” € R ©v*3 and weight vectors y”:

FJY, =Y diag(y”)-YF]¥, v € {PV,RV,BEV},
v

(4.15)
[]/PV 7/RV J/BEV] = Oy fimax (Z VFJFV . Wv) c RNX3.

v

The softmax function is applied row-wise. All strategies apply a final pMLP
in the end and require Cpy = Cgry = Cygy to be applicable, except for the con-
catenation. The steps and setup of the MVA module are illustrated in Fig. 4.7.

PV
F;

RV Feature Map Feature Map
F j=—=>| Transformation Transformation |«— Fjl}EV
Eq. (4.13) Eq. (4.12)

L

RV PV BEVR PV
Fj F;

Fusion Strategy
Eq. (4.14)

o ]

PV
Finh

Figure 4.7: Setup and steps of the multi view aggregation module. Range and bird’s eye view fea-
ture maps are transformed into the point view. Afterwards, the features originating
from three different views are fused.
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4 Multi View Panoptic Segmentation of 3D Point Clouds

Multi View Panoptic Head and Loss

The semantic head consists of a pMLP, which maps the final pointwise fea-

tures Fsi}fj to semantic class scores. On the other hand, the offset and center

FBEV

ins . and have the same

head are applied to bird’s eye view feature maps
structure as the respective heads of the bird’s eye view network BEVNet. In
analogy to the range and bird’s eye view network, MAE loss is applied to the
predicted offsets and MSE loss to the predicted center heatmap. The semantic
loss is adapted to the multi view setup. Instead of applying the semantic loss
L m = Lcg + Loy, only to the predicted semantic segmentation of the point
backbone, auxiliary semantic heads are added to the range and bird’s eye view
backbone during training, depicted in Fig. 4.6. These heads are equal to the
semantic heads presented for the range and bird’s eye view approaches. As
a result, the multi view architecture benefits from the previously presented
sparse semantic bird’s eye view head too, which speeds up the multi view
training. An auxiliary loss is computed based on their predictions to support
both backbones to learn meaningful features. Additionally, the auxiliary loss
prevents the bird’s eye view backbone from focusing too much on the instance

segmentation. The overall loss used to train the multi view framework is then
defined as:

L= /11526\:/m : le;]m +/1153§r\r{ : nggr\r{ + Ao - LE +/10tr : L%/IIE‘S% + Aoff : LIISV]EXE (416)

sem sem

Data Augmentation

Pointwise tasks usually suffer from an imbalanced class distribution, since
points of classes, such as road or building, occur much more frequently than
points of small ones, such as pedestrian or cyclist. One strategy for 3D panop-
tic segmentation to mitigate this imbalance is the extraction of instances of
these classes across the training set to create an instance database. During
training, instances from this database are randomly pasted into the 3D point
clouds. This data augmentation technique [Zha20c, Xu21a] is called random
object augmentation (ROA) in the following and is further improved in this
thesis to reduce the domain gap [Due22] as follows:
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4.3 Multi View Network

« Instances are only inserted above their respective ground classes. Four-
or-more-wheelers such as cars, trucks, or buses are placed above the
road or parking areas, two-wheelers above the road and sidewalk, and
pedestrians above the sidewalk.

« Collisions with other points are avoided. Therefore, positions that in-
clude other points inside the axis-aligned bounding box of the inserted
instance are excluded.

« Instances are inserted close to their original distance and with the same
relative orientation to minimize the deviation from the sensor measure-
ment pattern.

The second step is approximated by using a fixed bounding box size for each
class, which allows pre-computing valid positions for each point cloud and
class. To account for the class imbalance, the probability of a class being cho-
sen is inversely proportional to its point frequency.
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5 Temporal Panoptic Segmentation
of 3D Point Clouds

The multi view approach presented in the previous chapter focuses on improv-
ing 3D panoptic segmentation based on the point cloud information of the
current time step. The temporal framework [Due20a] proposed in this chap-
ter goes one step further and exploits temporal information and dependencies
in point cloud sequences. These are the result of the consecutive and repeated
sensor measurements performed by autonomous vehicles or robots. The pro-
posed recurrent fully convolutional approach aggregates and memorizes in-
formation over time to improve the predictions for the latest point cloud based
on past information. It builds upon a novel recurrent temporal feature fusion
for 2D feature maps, which extends range and bird’s eye view approaches with
a temporal memory to exploit past feature maps. Subsequently, the multi view
architecture is extended by the temporal fusion in range and bird’s eye view
to combine multi view and temporal benefits.

5.1 Temporal Range View

Temporal approaches use and exploit previous predictions, feature maps, or
input data to improve current predictions, which distinguishes them from sin-
gle frame approaches considering only the latest frame. In order to develop
a beneficial temporal fusion strategy and architecture for the range view, it
is essential to consider the requirements of the targeted domain of real-time
autonomous systems. In this domain, sensors provide new recordings every
At and the autonomous system requires new predictions with low latency for
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5 Temporal Panoptic Segmentation of 3D Point Clouds

these. The proposed recurrent architecture with recursive feature fusion ad-
dresses the drawbacks of overlapping and fixed-size temporal windows dis-
cussed in Section 3.2 for recurring recordings. It builds upon RNNs, which
compute their output based on the input and previous outputs and resemble
infinite impulse response filters. As a result, the underlying idea is based on
two elements, a single frame backbone and a hidden state or temporal mem-
ory. The single frame backbone was presented in Section 4.1 and computes
feature maps FRV for the latest input range image to provide the informa-
tion extracted from the current point cloud. The temporal memory H;, on the
other hand, contains the temporal feature maps recursively aggregated over
time. The recursive update step ' combines both elements and updates the
temporal memory with the latest feature maps provided by the single frame
backbone. It can generally be formulated as:

H, =H(FF, H,_ ) = HFN, H(FF,H,,)) = ... (5.1)

One significant advantage of the recursive update is the reuse of all previous
feature computations. When a new recording arrives, the backbone computes
F!V, analogous to the single frame approach. The temporal memory H,_;
has already been computed in the previous time step and is reused. There-
fore, the computational effort is only increased by the temporal update H,
which is performed once in every time step. This increase is independent of
the processed sequence length, and no fixed temporal window size or trade-
off between exploited past frames and computational effort is necessary. The
number of considered past frames is potentially unlimited since their informa-
tion is aggregated in the temporal memory. The network learns to integrate
or forget information as part of the training. One remaining challenge is the
alignment of feature maps between two time steps. The backbone extracts
the feature maps F}V in the range view defined relative to the current ego
position. However, the latter constantly changes due to ego motion. Conse-
quently, a spatial transformation has to recursively transform the temporal
memory H,_; from the range view of the last to the range view of the cur-
rent ego position.
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5.1 Temporal Range View

The proposed recurrent fully convolutional architecture T-RVNet is depicted
in Fig. 5.1, where the temporal alignment is applied prior to the update step.
Different alignment and update strategies are proposed and discussed in the
following. Since the single frame backbone returns semantic and instance fea-
ture maps, the temporal pipeline and memory are required twice, illustrated in
Fig. 5.1. The panoptic head and loss are inherited from the range view network
of Section 4.1. The proposed temporal training strategy trains the temporal
framework on short data sequences, comprising several tens of frames. This
strategy ensures the presence of temporal dependencies and simultaneously
retains a significant variation in the data.

input t —1

v
Range View Range View
Backbone Backbone
w7 F
Temporal Temporal : Temporal Temporal ‘
""" Alignment Update Alignment | 1 Update il
g P Ht—l & 1 p Ht
1
1
w H
Hx 5 % 128 Panoptic S Panoptic
Head Head

Figure 5.1: The recurrent temporal architecture T-RVNet with its components and unrolled for
two time steps. The temporal memory H has the same spatial dimensions and chan-

nel size as the backbone feature maps FXV. The temporal pipeline is required twice

and applied to the semantic features maps FXY, and instance feature maps FRY.

5.1.1 Temporal Memory Alignment

The temporal memory alignment enables the recurrent architecture and recur-
sive memory update depicted in Fig. 5.1. It addresses the underlying challenge
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5 Temporal Panoptic Segmentation of 3D Point Clouds

of transforming the temporal memory H,_; into the current range view, de-
fined relative to the current ego pose, prior to the memory update. The trans-
formation into the latest range view is based on Egs. (3.9) and (3.11):

i Hp =8H,_1, V). (5.2)

Afterwards, the transformed memory ,_;H, is spatially aligned with FXV.
Two strategies for the computation of the index tensor V,_; are introduced,
the backward (bwd) strategy

Vo = [Vi,a] = [jii\zt—l)(gu,v)d] , G=P{,

(5.3)
TN ® = (PR e %) (TLgoyy - 8)

and the forward (fwd) strategy:
V4 = reverse (V}),
Vi = [sz,v,d] = [‘T(Fyl)—»t(gu,v)d] , G=P}Y, (5.4)

Tt @) = (P70 2°) (T - ).

The transformation 8 used with the forward strategy natively transforms from
t to t —1. However, the temporal memory must be transformed from ¢ —1 to t.
Therefore, the native index tensor V/, which contains index u’ in cell u*, must
be reversed, see Fig. 5.2. Afterwards, the new index tensor contains index u*
in cell w’, which allows 8 to access the previous temporal memory H,_; at
u* and moves its content to cell u’ in the temporally aligned memory ;_;H;,.

At first glance, both strategies look rather similar. However, there is an im-
portant difference in the index tensors V%4 and V¢, On the one hand, the
backward strategy computes for every cell of the current time step where its
contained 3D point would have been in the last time step, illustrated in Fig. 5.2.
It transforms the 3D points PRY from the current to the previous ego pose, fol-
lowed by a range view projection. On the other hand, the forward strategy
considers for every cell of the previous time step where its content would be
in the current time step. It transforms the points PY; of the previous time
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5.1 Temporal Range View

step to the current ego pose, followed by a range view projection. The under-
lying assumption in both cases is that the cell u* in the previous and the cellu
in the current range view contain spatially close measurements. The notable
difference between the backward and forward strategy is that the former uses
PV and the latter P}Y] to associate the cells u* and u. Consequently, forward
and backward association is sometimes asymmetric:

Ju: ‘Tti\gt_l) (pu,t) =u* A :T(FYD_,[ (pu*,t—l) =u #u, (5.5)

where p, ; is the 3D point that was projected into cell u at time £ and py 3
was projected into cell u* at time ¢ — 1. The underlying reason for the asym-
metry is that py ; # Pu:,;—1. In general, this is expected since a lidar sensor
never records the exact 3D point in the current and last time step. Most of the
time, these points are spatially close, and u’ equals u or is an adjacent cell, de-
pending on the quantization. In this case, the spatial deviations are small, and
the temporal alignment works well without considerable differences between
both strategies.

range view at t — 1 range view at ¢

~ -
_____
--------------

reverse

Figure 5.2: Association of range view cells across time, based on the backward (dotted) and for-
ward strategy (dashed). In the first example, both strategies are symmetric, while in
the second, they provide different pairs of associated cells.

However, there are additional and more severe reasons for py ¢ # Pys,¢—1,
shadowing and moving objects. They have different causes but a similar im-
pact, with an example for shadowing shown in Fig. 5.3. In scenario (a), the
point p; of a pole is measured. This point is projected into cell u of the latest
range view and into cell u* when transformed and projected into the range
view of the previous ego pose and time step. However, this pole was invisi-
ble in the previous time step since a building was in the line of sight. Hence,
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5 Temporal Panoptic Segmentation of 3D Point Clouds

the point p . ;—1, which was actually recorded and projected into cell u*, lies
on the corner of the building, with a significant spatial distance to p,, ;. Sce-
nario (b) shows the opposite setup, where the corner of the building recorded
in the previous time step is no longer visible because the pole shadows it.
While moving objects cause similar effects, the reason there is predominantly
the movement of the objects themselves and not the change of sensor view-
point induced by ego motion.

The forward and backward strategies are prone to different errors in these sce-
narios. The forward strategy generates wrong associations in scenarios simi-
lar to (b), where an obstacle or moving object hides previously recorded areas.
Since it transforms the hidden point p;_;, it wrongly matches u and u*. The
backward strategy, on the other hand, handles these scenarios well and only
associates cell u with u’ since it relies on p;. However, it struggles in scenar-
ios where previously hidden areas become visible, such as scenario (a), and
incorrectly associates u and u*. As a counterpart, the forward strategy can
be applied successfully in these scenarios.

Scenario (a) Scenario (b)

Building Building
Pt-1
. Ap
* % b
" u PR AN
-7 W e
ego €go

T T !

Figure 5.3: Two different scenarios illustrate a wrong association for either the backward (a) or
forward (b) strategy.

The examples and discussion above show that scenarios exist for both strate-
gies where wrong cells get associated across time. While it is possible to leave
it up to the network to learn to handle this kind of error, further investigation
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5.1 Temporal Range View

is beneficial. Therefore, a detection mechanism is proposed to detect wrong
associations based on the spatial distance Ap of expected and measured 3D
points, illustrated in Fig. 5.3. Based on the decision criterion Ap < &, the
affected cells of the temporal memory can be discounted with & € [0,1] or
explicitly deactivated. Based on this mechanism, combining both strategies
and choosing the strategy with the smallest Ap for each cell is also possible.

5.1.2 Temporal Memory Update

The temporal memory update fuses the latest feature maps with the aligned
temporal memory. Initially, RNNs in neural language processing used LSTMs
or GRUs to combine the temporal memory, or hidden state, with the current
input. Both approaches emerged to address the vanishing or exploding gra-
dient problem and have also been adapted to the 2D image domain by replac-
ing fully connected layers with convolutional layers [Shil5, Sia17]. Although
LSTMs have more gates and thus more parameters, GRUs showed similar per-
formance [Chu14], and no clear advantage of any of the approaches could be
demonstrated. Hence, the investigated baseline fusion strategy is based on a
ConvGRU, introduced in Section 2.1.3.

However, one drawback of the established ConvGRU is that it considers only a
small spatial context based on a single convolutional layer. In fact, ConvGRUs
aggregate no context at all if a 1 X 1-convolution is used. This section pro-
poses improved strategies to address this drawback. These can generally be
grouped into two categories, gated strategies based on extended ConvGRUs
and residual non-gated strategies. The gated update strategy is an enhanced
ConvGRU, called ContextGRU and illustrated in Fig. 5.4. It aggregates sophis-
ticated context based on the temporal memory and current feature maps. A
small residual network is applied to the concatenation of the temporal mem-
ory ;_1H, and the latest feature maps F}" to aggregate combined context
for a significantly improved candidate memory H . The chosen location also
ensures that the gradient flow through time stays untouched to prevent rein-
troducing exploding or vanishing gradients.
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5 Temporal Panoptic Segmentation of 3D Point Clouds

The residual update strategies use no gating mechanisms but rely on a con-
catenation followed by a residual network. At first glance, these approaches
are prone to the vanishing or exploding gradient problem. The number of lay-
ers the gradient has to pass increases with every additional time step the gra-
dient is backpropagated. Nevertheless, a residual strategy is promising since
residual networks were designed as very deep networks with many stacked
layers. Additionally, gradients will usually be backpropagated only a few time
steps in the considered context. The reasons are twofold. First, the last few
frames contain the most valuable information, which naturally diminishes
with temporal distance. Therefore, backpropagating the gradient dozens or
even hundreds of time steps adds no significant benefit. Secondly, computa-
tional and especially memory demands allow only a few steps and up to ten in
this thesis. Based on this discussion, the maximum depth for the backpropa-
gation can be computed. Considering ten steps in time and a residual network
consisting of four BBs for the update, the maximum number of layers from
output to input are 118 convolutional layers. Since residual networks with
up to 152 layers are frequently used [He16, Zha17, Yu18], the residual update
strategy is well-suited and promising.

ContextGRU Residual Update
t—1H; FY

t-1H¢ H;

H; BB
o
\3><3 |

tanh |
CJ conv

e Residual Network

T <

-

RV
Ft

Figure 5.4: Update strategies for the temporal memory based on a gated ContextGRU and a resid-
ual network. The ContextGRU extends the original GRU, illustrated in Fig. 2.7.
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5.1.3 Temporal Training

The underlying training strategy for recurrent architectures differs signifi-
cantly since temporal dependencies only exist for a sequence of consecutive
point clouds. On the one hand, this requires datasets that contain sequen-
tial data. On the other hand, training with randomly drawn samples from
the dataset, which is a common strategy, no longer works. A straightforward
strategy provides the data sequentially based on the native sequences in the
underlying dataset. However, this strategy has several drawbacks:

« Native sequences often contain very similar data, e.g., driving for sev-
eral minutes on a highway. Training continuously on long sequences
results in updating the network repeatedly and for many iterations on
similar data.

« Variation between epochs is relatively small since only the native se-
quences can be shuffled, which is especially critical for datasets with
few but long sequences.

The proposed sequence-based training strategy addresses these challenges by
training the temporal approaches with subsequences of ¢ point clouds. Dif-
ferent sequence lengths ¢ € {25, 50,100} are investigated. This strategy sig-
nificantly improves the variety because every { frames a new and, in most
cases, distinct subsequence is randomly drawn. Additionally, the variation
between epochs is considerably improved since the number of sequences to
shuffle is usually two or three orders of magnitude higher with short subse-
quences than with native sequences. The restriction of the sequence length
is a negligible limitation since the most valuable temporal dependencies are
short-term. Point clouds which are minutes or hundreds of meters away con-
tain little relevant information for the current frame.

Alongside the training strategy, also the gradient flow differs from optimizing
a single frame network. Predictions not only depend on the current but also on
previous input and computations. As a result, error and gradients can be back-
propagated through time. Thereby, the single frame backbone learns to com-
pute valuable feature maps for the current and future frames. Additionally,

97



5 Temporal Panoptic Segmentation of 3D Point Clouds

the memory update learns to combine current and past information. Trun-
cated Backpropagation Through Time (TBPTT) [Wil90] makes gradient prop-
agation through time computationally manageable by truncating it after x,
steps. While the training with subsequences already increases the training
variation, they still contain similar data. Therefore, the proposed strategy up-
dates the weights only every x; steps to reduce the number of weight up-
dates on strongly related data. These sparse updates also enable training on
datasets, where only every x;-th point cloud has labels. Since training on
a subsequence starts with a zero-filled memory, the first weight update is
delayed for x5 steps. The delay allows the memory to aggregate meaningful
temporal information prior to the first weight update. The zero-filled memory
is also the initial state for inference. An overview of the presented temporal
training configuration is shown in Fig. 5.5.

gradient flow through time loss <
for x; steps T

> 6> 7> 8> 09 11->12> 13 >14 15>

first update at x3

Figure 5.5: The proposed temporal training strategy [Due20a]. After a warm-up phase of x3
steps to fill the initially empty memory, loss and weight updates are computed every
K, steps. The gradient is propagated Xk, past frames back through time before it is
truncated.

5.2 Temporal Bird’s Eye View

The presented recurrent temporal fusion with recursive feature map transfor-
mation is not restricted to the range view. It can extend arbitrary approaches
relying on grid-based views as long as a unique 3D position can be assigned
to the cells of the respective view. Therefore, this concept can also be ap-
plied to the bird’s eye view to create a similar recurrent temporal architec-
ture, depicted in Fig. 5.6 and called T-BEVNet. It extends the bird’s eye view
network introduced in Section 4.2, which consists of the presented bird’s eye
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5.2 Temporal Bird’s Eye View

view backbone and the sparse panoptic head. The latter comprises the intro-
duced sparse semantic, offset, and center head. The notable difference to the
temporal range view approach concerns the temporal alignment step, which
needs to transform polar bird’s eye view cells across time instead of range
view cells. The memory update and temporal training strategies are equal to
the strategies presented in the previous section.

input t — 1

Bird’s Eye View Bird’s Eye View
Backbone Backbone
wy w7
_____ Temporal Temporal Temporal Temporal ‘
Alignment Update H, Alignment [ | 1 Update H, i
1
1
H W _+H
T XTX 128 Sparse Panoptic 1 Sparse Panoptic
Head Head

Figure 5.6: The recurrent temporal bird’s eye view T-BEVNet architecture unrolled for two time

steps. The temporal pipeline is required twice and applied to the semantic features

maps F2LY and instance feature maps FEEV.

Temporal Memory Alignment

In general, the temporal alignment for the bird’s eye view feature maps fol-
lows Eq. (5.2). The difference between the range and bird’s eye view align-
ment originates from the definition of the 3D cell positions. Bird’s eye view
cells usually contain multiple points and simultaneously have a unique 3D
position, independently of the contained data. These properties motivate the
choice of the cell center as 3D position. On the other hand, a range view cell
has no 3D position without considering the data since empty cells do not have
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an assigned distance. Therefore, the backward strategy
V2 = [Viv,a] = [TzEE(\t/—l)(gu,v)d], G =G",

(5.6)
7.2 ® = (PP 0 Q%) (Ti_ (1) - 8)

and forward strategy

VM = reverse (V}),

Vi = [Vli,v,d] = [T(tBE\I/)at(gu,v)d] , G=GPY, (5.7)

TN @) = (PP 0 0%) (T(1_1)~s - 8)

rely on the 3D positions G®EV =[G, , 4] of the bird’s eye view cells. These
are defined by their centers:

Gu,v,l =Fyy - COS (¢u,v) > Gu,v,z =l sin (¢u,v) > Gu,v,3 =0,

u—0.5

05 (5.8)
Fu,v = hain + T *Tovs ¢u,v = ¢min + T : ¢fov'

The grid is fixed in the ego coordinate system and as such independent of
any input data and time. The data independence also eliminates alignment
errors induced by shadowing. Therefore, moving objects are the only cause
of alignment errors in the bird’s eye view. Figure 5.7 depicts both strategies.

bird’s eye view at time ¢ — 1 bird’s eye view at time ¢
Ko T <L
S se el ~:}a
reverse
ol
.................................. X
------------------------- \ Cell
center

Figure 5.7: Association of bird’s eye view cells across time with the backward (dotted) and for-
ward strategy (dashed).
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5.3 Temporal Multi View Network

The next important step is the successful combination of the multi view and
temporal framework to combine multi view and temporal benefits. However,
two challenges arise when attempting to add temporal capabilities to the pro-
posed multi view approach. First, temporal fusion is required for the seman-
tic and instance branch to fully benefit from temporal information. The se-
mantic branch is based on the point backbone’s multi view features, and the
instance branch relies on bird’s eye view feature maps. Second, the multi
view features of the point backbone are pointwise features and challenging
to associate with aggregated temporal information from the previous time
step. Spatio-temporal proximity in the point view requires kNN search, which
is computationally expensive for large point clouds and even more for com-
bined point clouds across time. The presented temporal framework for 2D ap-
proaches in range and bird’s eye view is the foundation to address these chal-
lenges. It integrates temporal fusion into the range and bird’s eye view branch.

The combined architecture T-MVNet is depicted in Fig. 5.8. It extends the
range view branch with the temporal range view fusion presented in Sec-
tion 5.1. Since the backbone, as part of the multi view architecture, returns
only semantic feature maps, a single temporal pipeline is sufficient. On the
other hand, the bird’s eye view branch is enhanced with the temporal bird’s
eye view fusion proposed in Section 5.2, which requires the temporal pipeline
twice. The architecture of the point backbone is unchanged. However, the last
multi view aggregation step no longer uses the final feature maps of the back-
bones but the aggregated temporal memories of both 2D views. Therefore,
it aggregates temporal range and bird’s eye view features to compute tem-
poral multi view features, which improve the 3D semantic segmentation. In
parallel, the second temporal bird’s eye view pipeline computes the temporal
memory for the instance feature maps provided to the offset and center head.
Hence, the offset vectors and center heatmap are also temporally enhanced
and, thereby, the instance segmentation. As a result, both subtasks of panop-
tic segmentation benefit from the proposed temporal multi view approach.
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Figure 5.8: Temporal multi view architecture T-MVNet, which combines multi view and tem-
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6 Multimodal Panoptic Segmentation
of 3D Point Clouds

The proposed temporal multi view framework focuses on the lidar sensor as a
single sensor modality combined with temporal information. The multimodal
multi view framework introduced in this chapter goes one step further and
exploits the camera as an additional sensor modality. Since sensor fusion is
combined with the multi view architecture, different lidar views are available
for fusion. A promising combination is based on camera images and the lidar
range view, as motivated in Section 3.3. Consequently, this chapter inves-
tigates the fusion of camera and lidar and presents a novel multi scale deep
fusion network [Due20b, Due21, Sch22a] to fuse lidar range view feature maps
with camera feature maps. Based on the resulting range fusion backbone, the
temporal multi view approach is enhanced to a multimodal framework, which
combines multi view, temporal and, multi sensor benefits.

6.1 Multi Sensor Range View

The sensor fusion range view network SF-RVNet is designed to combine and
fuse lidar and camera information in the range view. It addresses two main
drawbacks of the mentioned existing approaches in Section 2.5. First, the
novel multi scale fusion provides considerably improved multi sensor features
to enhance both semantic and panoptic segmentation. Second, the architec-
ture and training strategy decouple both sensor backbones to keep them in-
dependent for increased robustness against sensor failure. A major drawback
of many fusion approaches [Mey19a, Kri20, Zhu21c] is their dependency on
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6 Multimodal Panoptic Segmentation of 3D Point Clouds

both sensors. Without the proposed design, a fusion approach will consider-
ably degrade when a sensor fails or provides invalid output.

The suggested fusion architecture depicted in Fig. 6.1 relies on lidar and cam-
era backbones, which are connected by the fusion branch. The lidar range
view backbone presented in Section 4.1 is used again and computes range
view feature maps at multiple stages and scales. The exchangeable camera
backbone has the same task and provides multi scale camera feature maps.
At least three different scales are required for the proposed and deployed fu-
sion strategies. In general, an arbitrary image network can be used as long as
it provides the three different scales of camera feature maps, which is fulfilled
by most established architectures. Since ResNets are predominantly used as
feature extractors in state-of-the-art image networks, ResNet-50 and ResNet-
101 are chosen exemplarily in this approach. The feature maps at the end of
each stage are potential candidates for fusion, illustrated in Fig. 6.1, and iden-
tified by the respective block based on the official naming convention [He16].
The final block of the fourth stage differs between ResNet-50 and ResNet-101.

Y
| Block2_3 |

Y

; IMG

Y Fj: 1
I Block3_4 |—)

7 C=512
I ) kt = I FJHS Fusion Branch

= ¢_ C=1024 |Figs. 6.2 and 6.3

‘l FIMG

| Block5_3 I+_3)
C=2048 1 1 PRV
Camera Backbone l« l« ™ Lidar Range View Backbone

| Panoptic Head

Figure 6.1: Range fusion network SF-RVNet based on lidar range view and camera backbone. A
fusion branch connects the backbones by fusing the feature maps of both sensors.
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6.1 Multi Sensor Range View

The fusion branch is the vital link between both backbones, which is respon-
sible for the fusion of lidar and camera features. It transforms camera feature
maps from camera image to range view, followed by their fusion with differ-
ent strategies introduced in the following. The fused semantic and instance
feature maps are finally provided to the standard panoptic head, introduced in
Section 4.1. Furthermore, to train the overall range fusion framework success-
fully, different training strategies are investigated regarding panoptic results
and the impact of sensor failure.

6.1.1 Sensor Fusion

The core element of the fusion network is the fusion branch, which combines
lidar range view and camera image feature maps to provide improved features
containing the information of both sensors. Following the concept discussed
in Section 3.3, deep feature fusion is chosen as the overarching fusion strat-
egy, motivated by the discussed advantages over early and late fusion. In con-
trast to the latter, deep fusion is a generic strategy because the high number
of intermediate feature maps offers countless possibilities for their combina-
tion and fusion. Hence, specific deep fusion strategies or architectures have
to define several steps. First, feature maps from both sensors and different
stages must be selected for fusion. In the second step, a common representa-
tion is required for both sensor modalities and a spatial feature transformation
into the chosen representation. Finally, a multi scale aggregation strategy for
the fused feature maps is required to provide the final multi sensor feature
maps. Two novel deep fusion strategies [Due21, Sch22a] are proposed in the
following, which address the discussed challenges while proposing different
aggregation strategies.

In order to achieve a multi scale fusion, both strategies rely on multiple li-
dar and camera feature maps, which originate from different scales. The lidar
backbone computes feature maps at three different scales, depicted in Fig. 6.1.
Therefore, the fusion strategies combine these three scales with camera fea-
ture maps at the same number of distinct scales to fully exploit the multi scale
potential. The ResNet camera backbone offers up to five different scales. Since
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6 Multimodal Panoptic Segmentation of 3D Point Clouds

there is no obvious most promising combination, the most beneficial one is
evaluated by experiments. In the next step, the camera feature maps are trans-
formed into the lidar range view since the target is a lidar panoptic segmen-
tation. This transformation is based on Eq. (3.9) and the following equation:

IMGFJRV — g(F}MG, V}MG) ,
VJ;MG — [Vu,v,d] — [j}IMG(gu’U)d]’ G =P}V, (6.1)
j}IMG(g) — :]?].IMG(Tli—x:am . g) .

The projection depends on the stage j due to the different camera feature
map sizes. Initially, projected camera features IMGF}W
view have still the range view’s original resolution. After a bilinear down-
sampling step to match the size of the lidar feature maps, both sensors can be

fused. The last step aggregates the three stages to combine and exploit fea-

of stage j in the range

tures at different scales.

The first strategy follows an iterative or hierarchical pattern [Due21] and is
illustrated in Fig. 6.2. The main component is a fusion module, which trans-
forms the camera feature maps into the range view following Eq. (6.1) and re-
duces their large feature channel size to CM® = CIMS =64, and CIM6=128.
This reduction ensures equal channel sizes for lidar and camera feature maps
and equal influence of both sensors. Afterwards, they are concatenated and
processed by a residual block to provide fused feature maps with C; =C5 =96
and C;=192. In the second step, the fused features from the previous stage
and scale are combined with the current stage by concatenation and two ad-
ditional residual blocks. By splitting every module in a sensor fusion and fu-
sion refinement step, the network can focus on a beneficial sensor fusion first,
then on combining multi scale multi sensor features. The refinement step is
omitted for the first stage since there is no preceding one. By stacking three
fusion modules, all three scales of lidar and camera backbone are iteratively
exploited and aggregated for the final multi sensor feature maps. Two par-
allel modules are deployed in the last step to fuse and provide semantic and
instance feature maps to the panoptic head.
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Figure 6.2: Iterative fusion strategy based on alternating sensor fusion and feature refinement
steps.

The second strategy [Sch22a] builds upon the idea of FPNs and is depicted in
Fig. 6.3. Lidar range view and camera feature maps are combined by the pre-
viously presented sensor fusion step. The three resulting multi sensor feature
maps are then simultaneously aggregated in a bottom-up and top-down fea-
ture pyramid to compute multi scale features. On the one side, the top-down
pyramid (Dn) aggregates multi sensor features starting with fine details and
incorporates more and more context. On the other side, the bottom-up pyra-
mid (Up) starts with aggregated context and adds more and more details. Both
pyramids build upon the feature refinement step depicted in Fig. 6.2. An ab-
lation study investigates the replacement of this module by a simple concate-
nation and 3 X 3-convolution as a more lightweight alternative. The outputs
of both pyramids are combined by a convolutional layer, BN, and optionally
LReLU (Py). While the iterative strategy doubles only the last module for par-
allel semantic and instance features, this is impossible for the pyramid fusion.
The reason is that the parallel semantic and instance feature maps from the
range view are not fused in the last but in the first step of the bottom-up
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6 Multimodal Panoptic Segmentation of 3D Point Clouds

pyramid. Therefore, two parallel pyramid branches are deployed to provide
semantic and instance features.
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Figure 6.3: Pyramid fusion based on two parallel FPNs. The channel size of the feature maps for
all non-labeled edges is C = 256.

6.1.2 Training Strategy

The training strategy plays an important role when training multi sensor ap-
proaches, especially for the presented range fusion approach. Its decoupled
camera and lidar backbone offer the possibility to pre-train them individually
on lidar and camera data. Depending on the existing data and sensor setup,
this has potentially two advantages. First, no combined data is necessary for
this step, which allows using data where only one sensor modality is present,
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6.2 Multimodal Multi View Network

potentially increasing the amount of training data. Second, the training is not
restricted to the overlapping field of view of both sensors. Again, this can sig-
nificantly increase the amount of training data, e.g., when considering a 360°
lidar and front camera.

During the training of the overall architecture, the pre-trained backbones can
be further trained or kept unchanged. While fixed backbones might nega-
tively impact predictions, it offers a major advantage in terms of redundancy.
In case of sensor failure or unavailability, the backbones can still compute
their single sensor predictions as a fallback. This requires as little overhead
as applying the single sensor head to the last feature maps of the respective
backbone, which ensures a low latency. The required head is needed for and
optimized during pre-training in any case. As a result, the following two-step
training strategy is deployed:

1. Train both backbones individually on their respective data to fully ex-
ploit existing data. The camera backbone can also be trained on other
tasks, such as object detection.

2. Train the overall fusion approach with both backbones frozen. This en-
ables the fusion branch to learn a beneficial fusion of lidar and camera
without constantly changing backbone features.

6.2 Multimodal Multi View Network

The combination of the previously presented temporal multi view approach of
Section 5.3 and the proposed range fusion network is the last step of this thesis
and provides the overall multimodal multi view framework. The combined
architecture TSF-MVNet is able to simultaneously leverage the potential of a
multi view, temporal, and multi sensor architecture.

As a result of the chosen design, the range fusion backbone seamlessly re-
places the range view backbone of the temporal multi view architecture, as
illustrated in Fig. 6.4. The temporal memory of the range view is now provided
with the fused camera and lidar features and aggregates multi sensor features
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6 Multimodal Panoptic Segmentation of 3D Point Clouds

over time. Consequently, the point view backbone receives multi sensor fea-
tures at the first level (j =1) and temporally fused multi sensor features at the
last level (j =3). The intermediate level (j =2) provides lidar features since no
sensor fusion is performed at this stage. In addition, the range fusion can also
be combined individually with the multi view and temporal framework, called
SF-MVNet and TSF-RVNet, respectively. SF-MVNet replaces the range view
backbone of MVNet, and TSF-RVNet the range view backbone of T-RVNet,
with the range fusion backbone.
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Figure 6.4: The multimodal multi view architecture TSF-MVNet, which combines multi view,
temporal, and sensor fusion benefits. The bird’s eye view branch equals the one de-
picted in Fig. 5.8.
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7  Evaluation

The following chapter thoroughly evaluates the individual contributions of
this thesis. The first section introduces the datasets and metrics used for the
evaluation. Afterwards, the three main contributions of this thesis are eval-
uated, starting with the multi view framework presented in chapter 4, fol-
lowed by the temporal framework introduced in chapter 5, and finally, the
sensor fusion approach proposed in chapter 6. In addition, another set of ex-
periments investigates the benefits of combining the individual contributions
of this work. The respective temporal and multimodal multi view frameworks
have been presented in Sections 5.3 and 6.2. All contributions are first eval-
uated and analyzed by extensive ablation studies, followed by a comparison
to state-of-the-art approaches.

7.1 Experimental Setup

The main elements of the experimental setup for evaluation are the selected
datasets and metrics. First, the two chosen public, large scale, and challeng-
ing datasets from the driving domain are presented and analyzed in the next
section. Afterwards, the metrics for semantic and panoptic segmentation are
introduced. The reliance on established and frequently used metrics ensures
comparability to other state-of-the-art methods.
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7.1.1 Datasets

A considerable number of point cloud datasets have been published over the
last years, see Section 2.3.2. However, only a few have the necessary proper-
ties for the training and evaluation of the proposed multimodal framework,
which requires sequential lidar scans and camera images. Additionally, the
considered task of panoptic segmentation needs pointwise semantic and in-
stance labels for supervision. These requirements reduce the set of eligible
datasets to SemanticKITTI [Beh19] and nuScenes [Cae20], two large scale and
distinct outdoor datasets, which are also the predominant choices of other
state-of-the-art methods.

SemanticKITTI is a multimodal outdoor dataset recorded in the city of Karls-
ruhe in Germany and provides pointwise semantic and instance labels based
on the KITTI Odometry Benchmark [Gei12]. The 360° lidar scans with up
to 64 - 2,083 = 133,312 points originate from a Velodyne HDL-64F and are
recorded with 10 Hz. Two front-facing cameras are triggered by the lidar and
provide camera images with a resolution of approximately 1,245 X 375 after
rectification. The dataset is divided into 22 individual sequences, which are
officially grouped into training and test split. Sequences 0-10 with 23,201
frames serve for training and validation, while the remaining sequences 11-21
with 20,351 frames serve for testing. The evaluation on the test set is only pos-
sible on the official benchmark server since no labels have been published. To
prevent optimizing on the test set, an overall maximum of ten submissions
per account is possible. Sequence 8 with 4,071 frames is used for validation
throughout the experiments.

The semantic labels of the official benchmark contain 19 distinct classes with
eight thing and eleven stuff classes. The classes motorcycle (mcycle), motorcy-
clist (mcyclist), other-vehicle (vehicle), and other-ground (ground) are abbre-
viated throughout the evaluation to increase the readability of tables and plots.
An overview of the thing classes is shown in Fig. 7.1. It illustrates the fre-
quency of semantic class labels and the number of total and unique instances
for the train and validation set. While most classes are self-explanatory, the
difference between bicycle and bicyclist is not obvious. The former refers to a
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bicycle without a rider, whereas the latter describes bicycles with a rider and
includes both. The same applies to motorcycle and motorcyclist. In general,
the thing classes represent only a small proportion of the overall point labels
except for the more common car class. The total instance count ranges from
750 to approximately 15,000, which are different recordings of 26-193 unique
instances. The exception is again the class car with about 2,200 unique and
a total of over 200,000 instances. The distribution of the stuff classes with a
combined share of nearly 95% is depicted in Fig. 7.2.
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Figure 7.1: Overview of the thing classes of SemanticKITTI with the absolute number and
percentage of pointwise semantic labels. Additionally, the number of total ll and
unique M instances is shown. The colors correspond to the class label visualization
in figures.

SemanticKITTI offers additional tasks alongside the introduced semantic and
panoptic benchmarks. The multi scan or dynamic semantic segmentation task
further distinguishes between moving and non-moving for the classes car,
truck, vehicle, person, bicyclist, and motorcyclist. Consequently, it contains
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25 distinct semantic classes and is predominantly used to evaluate tempo-
ral approaches. Furthermore, the binary task moving object segmentation re-
quires approaches to classify each point as moving or non-moving,.
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Figure 7.2: Overview of the stuff classes of SemanticKITTI with the absolute number and per-
centage of pointwise semantic labels.

NuScenes is also a large scale multimodal outdoor dataset with pointwise se-
mantic and instance labels and has been recorded in Boston and Singapore.
The 360° lidar scans from a Velodyne HDL-32 were recorded at 20 Hz and
contain up to 32 - 1,084 = 34,688 points per scan. Additionally, six cameras
mounted around the car provide camera images of the car’s 360° environment
with a resolution of 1,600 X 900 each. The dataset is divided into 1,000 indi-
vidual sequences, each approximately 20 s in length. The official split assigns
700, 150, and 150 sequences or 28,130, 6,019, and 6,008 frames for train-
ing, validation, and testing. Similar to SemanticKITTI, the results for the test
set can only be evaluated on the official benchmark server, which restricts
to three evaluation runs per year. Labels only exist for keyframes sampled
across the sensor modalities at 2 Hz, which results in a predominant number
of unlabeled intermediate frames. These intermediate frames are required for
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temporal training, in contrast to the non-temporal case. Since two consecu-
tive frames are very similar due to the high frame rate of 20 Hz, every other
frame is omitted. This speeds up training time without impacting the results.

The semantic segmentation task of nuScenes contains 16 classes, which can be
divided into ten thing and six stuff classes. Similar to SemanticKITTI, motor-
cycle (mcycle) and construction-vehicle (con-vehicle) are abbreviated in the
following. Figure 7.4 illustrates the frequency of thing classes for the train
and validation set. These classes represent less than 9% of the overall point
labels, and most of them individually represent less than 1%. However, trucks
and especially cars are more common. The total instance count for the rarer
classes lies between approximately 10,000 and 20,000, which corresponds to
600-1000 unique instances. More common classes have more than 70,000 to-
tal and 4,000 unique instances up to around 360 000 total and 20,000 unique
car instances. The distribution of the stuff classes with a combined share of
nearly 92% is depicted in Fig. 7.4.
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Figure 7.3: Overview of the thing classes of nuScenes with the absolute number and percent-
age of pointwise semantic labels. Additionally, the number of total ll and unique Ml
instances is shown.
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The distinct properties of the datasets motivate the evaluation on both of them.
They have been recorded in different countries and use different lidar sensors
and cameras. Therefore, the point clouds are much sparser for nuScenes with
only one-fourth of the points. SemanticKITTI, on the other hand, has less
traffic with only 23 000 moving instances compared to 300 000 of nuScenes.
Additionally, the thing classes significantly differ between both datasets, and
SemanticKITTI requires a more detailed differentiation of stuff classes.
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Figure 7.4: Overview of the stuff classes of nuScenes with the absolute number and percentage
of pointwise semantic labels.

7.1.2 Metrics

Different metrics have been established to evaluate semantic and panoptic
segmentation approaches, which are introduced in the following. Important
concepts for classification tasks are true positives, false positives, and false
negatives. Applied to semantic segmentation and a semantic class cls € €6,
the set of true positives TE.j; are all pixels or points which are correctly classi-
fied as class cls. The false positives FE,j; are classified as class cls but belong
to another class, and the false negatives FN; belong to class cls but have
been wrongly classified otherwise, see Fig. 7.5. The visualizations of the con-
cepts in this section rely on image pixels instead of 3D points for a clearer
illustration, while the concepts equally apply to 3D points.
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The first metric for semantic segmentation based on these concepts is the
accuracy acc, which is defined by the number of correctly classified points
divided by the total number of points Ny,

ZClSE% |TPClS|

acc =
]Vtotal

(7.1)
However, accuracy favors dominating classes. For example, an algorithm can
achieve an accuracy greater than 99% on SemanticKITTI and still ignore all
thing classes except car due to their small proportion. Hence, the prevailing
metric to assess semantic segmentation is the mean of the class-wise intersec-
tion-over-union IoU,:

1 1 |TPcls|
mloU = —- IoU.s = o . (7.2)
|(€| Clszelcg o |<‘€| Clszez% |TPcls| + |FPcls| + |FNcls|

ground truth pixel of class cls

EFN,

L fFPas

predicted pixels of class cls

Figure 7.5: Visualization of true positives, false positives, and false negatives on pixel level.

In case of panoptic segmentation, the sets of true positives TPI;, false pos-
itives FPI s, and false negatives FNI,, are defined on instance level. Ground
truth and predicted instances I g and I eq establish a match (I, Iprea) € TPI s
if their IoU,,,, is greater than 0.5. This threshold ensures that ground truth
or predicted instances are only matched once. An unmatched ground truth
instance is considered a false negative, and an unmatched predicted instance
is a false positive. Predicted instances are required to have a uniform class,
which is why the standard evaluation procedure splits not only based on the
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predicted instance but also based on semantics. Consequently, points with
the same instance label but different semantic classes are considered different
instances. Alternatively, a uniform semantic class can be explicitly computed
upfront. An exemplary matching is shown in Fig. 7.6.
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Figure 7.6: The matching of predicted and ground truth instances results in the illustrated sets
of true positives (T PI), false positives (FPI), and false negatives (FNT).

The instance detection performance is assessed based on these sets by the
mean recognition quality mRQ, defined by

1 1 |TPI.s|
MRQ = — > RQus = » (7.3)
l%|clsze"€ “ |C6|CISZ€<.€ |TPIcls|+0-5‘(|FPIcls|+|FNIcls|)

and equals the well-known F;-score commonly used for object detection. Ad-
ditionally, the mean segmentation quality mSQ assesses the instance segmen-
tation over TPI s and measures its quality:

Umatch

Z Dimatche TPIy 10

(7.4)
|TPILs|

1 1
msSQ = @ z SQeis = @

clse® clse®
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Finally, both metrics are combined into the unified panoptic quality [Kir19]:

1 1
mPQ = 1 D PQus = @l Y. SQus - RQqs. (7.5)

clse® clse®

These metrics also include the stuff classes, which are considered one-instance
classes. All ground truth and predicted points of a stuff class belong to one
ground truth and one predicted instance, respectively.

Statistical significance in machine learning is commonly demonstrated with
k-fold cross-validation. However, applying this method to approaches based
on deep learning is often challenging and rarely seen in literature. The un-
derlying reason is that training a single deep learning approach on one of
the folds may take days, and training on all folds can take weeks or even a
month. The average training time of the experiments in this thesis was about
2.6 days, which results in 26 days for a 10-fold cross-validation for a single
experiment. Since this is infeasible, the statistical significance is shown by a
randomization test [Smu07], which tests the likelihood that one approach is
truly better than another instead of achieving better results by coincidence.
A randomization test checks for paired probes of both compared approaches
if they originate from the same underlying distribution, without making any
assumptions about this distribution.

The test computes a metric my for two approaches and Q predictions or sets
of predictions, which results in Q paired probes. The test’s null hypothesis
assumes that both approaches are equally good and, therefore, originate from
the same underlying distribution Ml y: mgo ~ My and mg, ~ M 4. Un-
der this assumption, the assignment of mg o, and mg; to their respective ap-
proach is irrelevant for the paired probes, and switching would not influence
the measured results. The test creates a large amount of these permutations
and computes the test metric, such as the mean m, for both approaches to
verify or reject the null hypothesis. Consequently, the p-value is the fraction
of permutations with an equal or higher difference |[m, — m;| than the orig-
inally measured difference. The null hypothesis is rejected if the p-value is
smaller than a selected significance level a. The following evaluation aims for
a confidence of about two standard deviations and selects & = 0.05.
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The natural way to apply a randomization test to the setup of this thesis is
to consider the results for each frame as paired probes. However, mIoU and
mPQ are not computed for each frame individually. After aggregating true
positives, false positives, and false negatives over all frames, they are com-
puted over the entire validation set. As a result, the individual frames have a
different influence depending on the occurring classes and the frequency of
their points or instances. This inequality prevents the application of the test
for mIoU and mPQ on frame-level. One possibility to address this is con-
sidering each 3D point and its prediction as a probe. However, this requires
comparing all point predictions and computing the metrics over the entire
validation set with hundreds of millions of points from scratch for each per-
mutation. Consequently, it would take days just to compare two approaches
when a meaningful number of 100 000 or more permutations are used. In or-
der to make this test computationally feasible, a subset of five million points
is randomly drawn for every permutation. The original and permuted differ-
ence of the two approaches is computed on these subsets and both allow the
computation of the p-value. While these computations are still too expensive
for the mPQ, they allow showing the statistical significance for the mIoU. An
underlined mIoU in the following tables indicates a significant difference to
the previous underlined value, or the first line. The row showing a significant
difference to all other lines is underlined twice.

7.1.3 General Implementation Details

All experiments are implemented based on PyTorch® and use distributed par-
allel training in mixed precision mode on up to eight NVIDIA V100 GPUs.
Adam optimizer [Kin15] is used across all experiments with a weight decay
of 0.0005 and optimizes the networks for up to 100 000 iterations. The initial
learning rate 4, is exponentially reduced during training following:

A=Ay - e=5107, (7.6)

! https://pytorch.org/
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All non-temporal experiments are trained with a batch size of 32. Due to the
high memory demands of TBPTT, and to ensure a constant batch size across
all temporal experiments, the batch size is reduced to 16 for temporal train-
ings. All non-temporal lidar experiments are pre-trained on the semantic task
with an initial learning rate of 45 = 0.001, followed by the panoptic training
with a smaller initial learning rate of 15 = 0.0001. The same initial learning
rate is also used for temporal and sensor fusion experiments, which use pre-
trained single frame or single sensor backbones.

Data augmentation is important to reduce overfitting and improve the results.
All trainings randomly flip the point clouds along the x- and y-axis with a
probability of 0.5 for every dimension. Additionally, the point clouds are ro-
tated for a random angle around the z-axis. Finally, random 180° crops of the
360° scans are used for training. Purely range view-based experiments devi-
ate slightly from this crop and use 2D crops of size 64 X 1024. Finally, up to 10
instances are pasted randomly into the scene. The augmentations are applied
temporally consistent for temporal trainings to retain the temporal dependen-
cies and spatial consistency across time. The range images’ size is 64 X 2083
for SemanticKITTI and 32X 1084 for nuScenes. Furthermore, a bird’s eye view
grid of size 480 X 360 is employed in both cases, with x;, =2m, r,,,, =50 m,
and covering the entire 360°. Points outside are mapped to the closest cell.

To generate the heatmap and offset vector targets for the instance clustering,
the instance centers are determined by the mean over all instance points. An
unnormalized Gaussian kernel with o = (2, 8) for range view and o = (4,4)
for bird’s eye view is added at this position to the ground truth heatmap. NMS
suppresses a 5X 5-area in bird’s eye view and a 3 X 7-area in range view when
the best 50 candidates are extracted from the predicted heatmap. The default
loss weights are A, =1, 1, =100, and 1,4 =0.1.

Runtime measurements are performed in single precision and are reported as
mean and with standard deviation (std) over the validation set. One related
challenge is the usage of different GPUs across state-of-the-art approaches. If
an official repository exists, the inference time is remeasured on a V100, indi-
cated by (*). Otherwise, and on condition that the used GPU is specified, the
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values are estimated (=) for the V100 based on inference benchmark results
published online' and shown in Table 7.1.

Table 7.1: Relative inference performance of different GPUs.

GPU Relative Performance
RTX 2080 Ti 0.89
V100 1.00
RTX 3090 1.28

7.2 Multi View Panoptic Segmentation

The evaluation of this thesis starts with the multi view panoptic segmentation
approach as the first contribution. It is thoroughly evaluated by an extensive
number of experiments, starting with the evaluation of the range and bird’s
eye view network and the benefits of the proposed improvements. Follow-
up experiments assess the multi view architecture and fusion. If not stated
otherwise, the default multi view architecture presented in Fig. 4.6 is used with
concatenation as fusion strategy and trained with AR, = ABEV = APV — 1,

7.2.1 Range View Experiments

The network RVNet presented in Section 4.1 is a single view approach, and its
backbone is one of the core elements of the multi view framework. It is based
on DLA from the image domain and related to LaserNet, which successfully
applies this architecture to lidar data. However, the initial results of this ar-
chitecture for the task of 3D panoptic segmentation are mediocre, as shown in
the first line of Table 7.2, despite the usage of an established architecture from
the image domain. For that reason, Section 4.1 proposed different improve-
ments for the network, which are investigated in the following. Additionally,
an improved data augmentation strategy has been presented in Section 4.3.

! https://mtli.github.io/gpubench/
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7.2 Multi View Panoptic Segmentation

The proposed approach considers the sensor properties by deploying the im-
proved range view projection and asymmetric stride, motivated in Section 4.1.
This sensor-aware architecture (SAA) reduces the amount of lost information
during the projection based on the improved range view projection. Its asym-
metric stride considers the asymmetric distance between range view cells.
Next, and building upon the findings of [Aks20], Lovasz loss (LV) is added to
the loss and applied equally weighted with CE loss. It is robust to imbalanced
class distributions and an improved surrogate for optimizing the mIoU. Fi-
nally, random objects are pasted into the range images (ROA) to increase the
occurrence frequency of rare thing classes. All three proposed and discussed
enhancements significantly improve the panoptic results and achieve a large
overall improvement for both metrics, as illustrated in Table 7.2. Additionally,
LV and ROA only influence the training procedure but not the inference time.
Solely the asymmetric stride increases the latter.

Table 7.2: Improvements achieved by sensor-aware architecture (SAA), Lovasz loss (LV), and
random object augmentation (ROA) on the validation set of SemanticKITTL Bold met-
rics indicate the best values of each column, and underlining indicates significance,
see Section 7.1.2.

SAA LV ROA | mPQ mlIoU | t+ std in ms
0401 0487 | 353+16
0427 0496 | 464+14

v 0.486 0.535 464+ 1.4
v v' | 0519 0.597 470+14

AN

Another experiment evaluates the choice of the general backbone architecture
compared to other established architectures. Therefore, two representatives of
common 2D architectural families are evaluated with the same set of improve-
ments. DeepLabV3 has been chosen as a representative for ResNet-based net-
works with a pyramid pooling module, which has already been successfully
applied for panoptic segmentation in the image domain [Che20]. The corre-
sponding experiment uses the official architecture of Panoptic-DeepLab with
ResNet-101 and additionally applies the proposed improvements. However,
the results and runtime depicted in Table 7.3 are significantly worse than the
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results and runtime of the DLA backbone. The second architecture, U-Net,
has been chosen since it is frequently used for lidar segmentation tasks and
was also one milestone in the image segmentation domain. While it achieves
better results than the DeepLab backbone and is slightly faster than the DLA
backbone, it lacks segmentation quality. Consequently, the chosen architec-
ture is the strongest and most promising backbone choice for the single view
and also the multi view approach.

Table 7.3: The achieved panoptic results and number of trainable parameters of different back-
bone architectures on the validation set of SemanticKITTL

Backbone | mPQ mlIoU | Parameters | t;,; + std in ms

DeepLab | 0.456 0.556 743 M 1350+ 1.6
U-Net 0.490 0.575 43.2M 441+1.4
DLA 0.519 0.597 52M 470+ 14

7.2.2 Bird’s Eye View Experiments

The bird’s eye view network BEVNet presented in Section 4.2 is the second
single view approach, and its backbone is the second core element of the multi
view approach. While it follows the same backbone architecture as the range
view network, its initial results are considerably better, see Table 7.4. Nev-
ertheless, combining CE and Lovasz loss significantly improves the results,
similar to the range view network. The same holds for adding random object
augmentation to insert rare instances into the point clouds. The combination
of both enhancements achieves a considerable improvement of the semantic
and panoptic segmentation, measured by mIoU and mPQ, respectively.

The bird’s eye view network is further enhanced with the proposed sparse
semantic head (SH), which restricts the convolution operations in the seman-
tic head to occupied cells. This restriction avoids the expensive expansion of
the 2D bird’s eye view feature maps to 3D voxel predictions used by exist-
ing approaches [Zha20c, Zho21]. Table 7.4 underlines the benefits regarding
inference time. In addition, the training time is also reduced by approximately
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7.2 Multi View Panoptic Segmentation

30 %. Simultaneously, the prediction quality remains unaffected, which makes
the sparse head a valuable addition.

Table 7.4: Panoptic improvements achieved by Lovasz loss (LV) and random object augmenta-
tion (ROA) on the validation set of SemanticKITTL The sparse semantic head (SH)
improves the inference time.

SH LV ROA | mPQ mlIoU | t+ stdin ms
v 0.491 0.559 36.4+1.4

v Vv 0.523  0.570 358+1.3
v Vv v 0.552  0.611 36.2+1.4
v v/ | 0554 0.613 40.7+1.4

The chosen DLA backbone architecture is also compared to the already mo-
tivated representatives DeepLab and U-Net for the bird’s eye view. While
DeepLab achieves better results in the bird’s eye view than in the range view,
it still achieves the lowest values for the considered metrics and has the high-
est inference time. The choice of U-Net is additionally motivated by Polar-
Net [Zha20c], which successfully uses a U-Net backbone in its bird’s eye view
network. While it achieves the highest mIoU, it is outperformed for panop-
tic segmentation by the DLA backbone, which also has a considerably lower
inference time. The general differences in the runtime compared to the range
view originate from a higher resolution and symmetric strides. The former
impacts the inference time negatively, the latter positively. Depending on the
architecture, this leads to faster or slower inference times. Overall, the chosen
DLA architecture is the most promising choice for panoptic segmentation.

Table 7.5: The achieved panoptic results and number of trainable parameters of different back-
bone architectures on the validation set of SemanticKITTI.

Backbone | mPQ mlIoU | Parameters | f;+ std in ms
DeepLab | 0.495 0.572 74.8 M 70.4 + 1.7
U-Net 0544 0617 | 433M 43.9+1.0
DLA 0.552 0.611 53M 36.2+1.4
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7.2.3 Multi View Experiments

The multi view approach proposed in this thesis combines the range, bird’s
eye, and point view to exploit the strengths of the individual views and com-
pensate for weaknesses. An initial set of multi view experiments analyzes
the effects of different view combinations, and the corresponding results are
depicted in Table 7.6. Both previously evaluated single view approaches are
the initial baselines and provide the first important insights. The results of
BEVNet are superior to RVNet, especially when considering the panoptic met-
rics. This superiority supports the decision of this thesis to choose the supe-
rior bird’s eye view for instance clustering. In the next step, two out of three
views are combined to investigate the influence of the individual views and
to reveal the combination with the most potential. All these experiments fol-
low the exact same architecture proposed in Section 4.3 to ensure a fair com-
parison, except that one of the three views is removed. The first experiment
RVNet+PV combines range and point view and shows that this setup achieves
no improvements. Instance clustering is still performed in range view, with-
out any influence of the point view, which is challenging because of instances
occluding each other. As a result, instance centers are close together and the
clustering is prone to errors in the offset predictions. One minor advantage
is the direct prediction of a 3D semantic segmentation without the necessity
of a back-projection. RVNet+PV achieves the same panoptic results as RVNet
with the kNN-based back-projection strategy. The combination of bird’s eye
and point view BEVNet+PV also does not improve the panoptic segmentation,
which is the consequence of the point view only affecting the predicted 3D
semantic segmentation. Since the sparse head of the bird’s eye view already
predicts high resolution 3D voxel semantics, the benefits of pointwise fea-
tures are negligible. The following experiments combine range and bird’s eye
view, initially with simpler fusion strategies and not yet with the proposed
point view network. It is the first setup that predicts the center heatmap and
offset vectors in the bird’s eye view, while the 3D semantic segmentation ben-
efits from range and bird’s eye view features. The first and simplest fusion of
both views is based on the final predictions, which are fused by computing
the geometric mean. Even this simple fusion strategy significantly improves
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7.2 Multi View Panoptic Segmentation

the panoptic and semantic segmentation and confirms the value of combin-
ing range and bird’s eye view due to their distinct underlying projections. The
panoptic results are further improved if the geometric fusion is replaced by a
learned late fusion of the final pointwise range and bird’s eye view features.

Table 7.6: Impact of different view combinations on panoptic and semantic results on the vali-
dation set of SemanticKITTI and nuScenes.

Approach RV BEV PV | mPQ mlIoU | t+ stdinms
RVNet v 0519 0597 | 47.0+14
= | BEVNet v 0.552  0.611 | 36.2+1.4
S | RVNet+PV | v/ v [ 0519 0597 [ 57.8+1.0
-é BEVNet+PV vV | 0547 0613 | 482x%15
g | Geom. Fusion | v/ V/ 0.568  0.632 56.9 + 5.2
& | Late Fusion | v v/ 0.574 0.638 | 58.7+4.7
MVNet v v Vv 0592 0657 760+17
MVNetAll v v v 0591 0657 | 858+15
Approach RV BEV PV | mPQ mlIoU | t,=+ stdinms
g | RVNet v 0.614 0704 | 321423
& | BEVNet v 0.603 0.680 | 35.7+1.6
2 | MVNet v Vv Vv |0651 0.756 57.6 +1.5

While these results are already promising, this simple multi view architecture
still lacks in leveraging the full multi view potential. Therefore, the approach
presented in Section 4.3 deploys a third backbone for the point view, which
repeatedly fuses the features at multiple scales from range and bird’s eye view
to refine and enhance the pointwise features. As a result, and shown in Ta-
ble 7.6, the proposed MVNet improves the panoptic segmentation even further
and significantly outperforms every combination of two views. Since MVNet
aggregates multi view features after selected feature extractor and aggregator
blocks, see Fig. 4.6, an additional experiment, MVNetAll, evaluates the poten-
tial of fusing after every block. However, the higher number of aggregation
steps provides no enhancements. MVNet achieves similar improvements on
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nuScenes and outperforms both single view approaches by a large margin,
depicted in the lower part of Table 7.6. One notable difference is the, in rela-
tion, worse performing BEVNet, which results from nuScenes’ sparser point
clouds. With only a quarter of SemanticKITTI’s point cloud size, the bird’s
eye view gets increasingly sparse, which negatively impacts its results.

To investigate the multi view benefits more closely, the class-wise outcomes
for thing and stuff classes are presented in Table 7.7 and Table 7.8, respectively.
The overall improvements of the mIoU are directly reflected in the individual
class IoU with better results for six out of eight thing classes. The results of
the other two classes are similar to BEVNet or RVNet. Enhancements of the
semantic segmentation for stuff classes are even more pronounced, and all

classes but two benefit.

Table 7.7: Comparison of the class-wise results for thing classes on the validation set of Se-
manticKITTL Due to space limitations, leading zeros are omitted in this and the fol-
lowing class tables.

&

g

. IR g g 2 2=

‘0 [3) 3) e = o 3) o =]

R - N N A

Approach | = 8§ = g E O - T g =
RVNet 900 .514 .669 .683 .414 .651 .818 .008 | .582
BEVNet IoU | 947 .483 .720 .702 .524 .629 .794 .042 | .605
MVNet 955 541 .777 929 .516 .715 .819 .077 | .666
RVNet 816 492 512 297 484 728 .842 .013 | .523
BEVNet PQ | 910 .516 .649 .494 491 .725 .833 .059 | .585
MVNet 914 550 .664 .629 .504 .764 .860 .101 | .623

When comparing the PQ of thing classes, MVNet predominantly outperforms
RVNet due to the superior instance predictions in the bird’s eye view. Com-
pared to BEVNet, MVNet again enhances all classes but by a smaller margin.
This is expected since the instance clustering is provided by the bird’s eye
view part of MVNet and equals BEVNet. In this case, the main improvements
originate from the semantic segmentation, which is confirmed by the fact that
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7.2 Multi View Panoptic Segmentation

almost all thing or stuff classes with improved PQ also have improved IoU.
Especially for stuff classes as one-instance classes, improving the semantic
segmentation is the only possibility to improve the PQ. Consequently, the
stuff classes show similar enhancements for the PQ as for the IoU. Overall,
the predominantly improved class metrics emphasize the value of combined
range and bird’s eye view features and the proposed approach’s capability to
successfully combine and exploit them.

Table 7.8: Comparison of the class-wise results for stuff classes on the validation set of Se-

manticKITTL
g £ £ E £ s g o | 2
E|lw & & 2 B g & £ 8 o €& g
e/ 8 § = 2 B § ¢ 2 5§ © 2|¢g
Approach| = | 2 & &% & =2 & & EB &8 & B | E
RVNet 938 .362 .804 .020 .851 .493 .848 .597 .706 .592 .470|.607
BEVNet |[IoU|.938 .449 .793 .003 .891 .499 .857 .595 .709 .584 .448|.615
MVNet 950 .471 .824 .011 .906 .597 .859 .670 .697 .651 .523|.651
RVNet 940 .181 .767 .000 .802 .186 .830 .402 .518 .525 .530|.516
BEVNet | PQ |.935 .252 .758 .000 .870 .180 .836 .417 .529 .514 .522|.528
MVNet 949 .297 .792 .005 .882 .247 .840 .507 .539 .608 .605|.570

These findings are illustrated by the selected semantic and instance examples
shown in Fig. 7.7. In the semantic example, BEVNet fails to accurately seg-
ment the static environment and misses a pole = entirely (a). In addition, it
classifies parts of the yard as terrain I, which is considered sidewalk B in the
ground truth (b). On the other hand, MVNet correctly segments the pole and
yard area as a result of the multi view architecture. The second example shows
instance segmentation results and two major errors of RVNet. It is unable to
correctly separate the highlighted parked cars (c) and (d), whereas MVNet
provides the correct instance segmentation. This example underlines the ad-
vantage of relying on instance segmentation based on the bird’s eye view.
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Front Camera

Ground Truth

MVNet

BEVNet

Figure 7.7: Two selected examples showing the superiority of MVNet over the single view ap-
proaches BEVNet and RVNet. The left example shows semantic and the right example
instance segmentation. Black points in the ground truth indicate unlabeled points.
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Extended Ablation Studies

After the general multi view setup has been evaluated, the pointwise fusion of
range, bird’s eye, and point view features is investigated more closely. The dif-
ferent strategies proposed in Section 4.3 are addition, element-wise maximum,
concatenation (concat), and learned weighted sum (Iws). The corresponding
results are depicted in Table 7.9 and show that all fusion strategies achieve a
similar panoptic quality. Concatenation and addition achieve slightly better
semantic segmentation than the other strategies and are therefore the favor-
able choices.

Table 7.9: Panoptic results and inference times of different multi view fusion strategies on the
validation set of SemanticKITTL

Fusion Strategy | mPQ mlIoU | t; =+ std in ms
concat 0.592  0.657 76.0 +1.7
max 0592 0.647 | 79.4+18
lws 0.593 0.651 81.2+1.6
add 0.595 0.654 74.0 £ 1.7

The proposed loss for the multi view framework comprises several weighted
components related to the semantic or instance task, see Eq. (4.16). Crucial
components are the auxiliary semantic losses for range and bird’s eye view,
which improve the semantic results significantly, illustrated in Table 7.10. This
first set of experiments evaluates the influence of different semantic weights
by training the multi view approach solely for semantic segmentation with
different weight combinations. The best semantic segmentation is achieved
with equally weighted views, whereas preferring individual views negatively
impacts the results. The semantic loss is completed by the center and offset
losses for the instance task, and all three are of different magnitudes. There-
fore, the primary goal of the respective weights A, = A%y, + ABEY + APV |
Ao and A, is to equalize their magnitudes. Table 7.10 presents the results of
additional experiments, which evaluate permutations of weights used in exist-
ing works [Yan19c, Che20, Zho21]. However, no significant best combination
is observable across the evaluated permutations.
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Table 7.10: Results of different weight combinations for the semantic and instance loss on the
validation set of SemanticKITTIL.

ARV O ABEVE ARV | mIoU Aeem Ao Ay | MPQ  mlIoU
0 0 1 0.626 1.0 0.1 100.0 | 0.588 0.652
1/4 1/4 1/2 0.648 3.0 0.1 100.0 | 0.592 0.657
1/3 1/3 1/3 M 1.0 0.1 200.0 | 0.590 0.652
3/8 3/8 2/8 0.654 3.0 0.1 200.0 | 0.587 0.655

Overall, the presented results motivate the choice of the architecture of Fig. 4.6
with three MVA modules and concatenation-based fusion as the final multi
view approach. Furthermore, the best loss weights are 4., = 3, with equally
weighted views, 1,5 = 0.1, and A, = 100. This setup is used for all subse-
quent multi view experiments and its comparison to state-of-the-art. Since
the comparison equals the one of the final multimodal multi view approach,
it is jointly presented later in this chapter. In this case, the panoptic head
unifies the semantic class of each instance to the dominating class, improving
the mPQ to 0.604.

7.3 Temporal Panoptic Segmentation

As the second contribution, the temporal panoptic segmentation approaches
are extensively evaluated in the next step, starting with the evaluation of the
temporal range and bird’s eye view networks. The conducted experiments an-
alyze the benefits of the proposed recurrent temporal architecture in both
views, and several ablation studies investigate the influence of the proposed
components. Finally, the presented methods are compared to other state-of-
the-art temporal approaches.

If not stated otherwise, the memory update is based on the residual strategy
with four BBs. The default temporal training strategy updates the weights
every x; = 5 steps, propagates the gradient x, = 4 steps back in time, and
performs the first update after k3 = 10 warm up steps. The sequence length
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defaults to ¢ = 50, and the pre-trained backbone of RVNet or BEVNet is used
as initialization instead of training from scratch.

7.3.1 Temporal Range View Experiments

The temporal range view network T-RVNet introduced in Section 5.1 builds
upon a recurrent architecture to recursively aggregate and propagate features
and information through time. T-RVNet builds upon several individual com-
ponents and a temporal training strategy to exploit temporal information. The
first experiments investigate the contribution of the individual components to
the improved panoptic results, with an overview depicted in Table 7.11. One
of these components is the backbone of RVNet as single frame backbone (SFB).
Consequently, RVNet is the appropriate single frame baseline shown in the
first row of Table 7.11, allowing the evaluation of temporal improvements.

Table 7.11: Influence of the individual components of the temporal architecture. Starting with
the single frame backbone (SFB) as a baseline and consecutively adding the tempo-
ral memory (TM), alignment (TMA) and Truncated Backpropagation Through Time
(TBPTT) [Wil90].

SFB TM TBPTT TMA | mPQ mIoU | t+ std in ms
0.519 0597 | 47.0+1.4
0.559 0.615 | 66.6+ 1.4
v 0.556 0615 | 66.5+1.5
v | 0573 0640 | 66.7+1.3
v

0.575 0.658 669+ 1.3

SemanticKITTI
AN AN RN
LKL

v

2[SFB TM TBPTT TMA | mPQ mloU | t; + std in ms
=1

L 0614 0704 | 321+23
2l v v Vv v | 0669 0744 | 413+21

The first step towards the proposed temporal architecture is the addition of
the temporal memory (TM), which significantly improves the panoptic re-
sults. Although no temporal alignment and training has been applied yet,
the temporal network is already able to benefit from temporal information.
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Adding TBPTT only improves the panoptic segmentation in conjunction with
the temporal alignment. The alignment is crucial to ensure the correct asso-
ciation of past and current features by compensating ego motion in the range
view. Consequently, aligning the memory based on the backward strategy
further improves the results and additionally allows the architecture to benefit
from TBPTT. With the alignment, the errors are correctly propagated through
time, and the semantic segmentation is further enhanced. Overall, T-RVNet
achieves major improvements over the single frame network RVNet with a
significantly higher mPQ and mIoU. Equally convincing improvements on
nuScenes are depicted in Table 7.11. The increased runtime is a consequence
of the temporal memory added to the semantic and instance branch of RVNet.

To further investigate the temporal benefits, the individual class results are
considered and compared with the non-temporal approach RVNet. The se-
mantic and panoptic segmentation is improved for every thing class, as illus-
trated in Table 7.12. The strong benefits for these seem counterintuitive since
the temporal approach disregards their movement. However, a considerable
number of the respective instances are stationary, such as parked cars or bi-
cycles, or move slowly like pedestrians. In these cases, no alignment errors
exist or are negligible. In the case of higher motion velocity, the resulting er-
ror depends on the relative movement direction and is also small in many sce-
narios. Therefore, thing classes strongly benefit from temporal information in
most situations. In addition, stuff classes similarly benefit, as illustrated in Ta-
ble 7.13. The highest absolute improvements of all classes are revealed for the
classes truck and vehicle. Both classes are often confused due to the vehicle
class containing object types with a partially similar shape to trucks, such as
buses and trailers. Since individual instances are only partially observed, this
leads to shape ambiguities and confusion. Temporal information reduces this
confusion based on the aggregated information, which is reflected in a con-
siderable reduction of instances with classifications alternating between truck
and vehicle over time. Overall, T-RVNet achieves predominantly enhanced
results for class-wise IoU and PQ, as well as significant improvements of the
means over thing and stuff classes.
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Table 7.12: Comparison of the class-wise panoptic results for thing classes on the validation set

of SemanticKITTL

0

g

3 = = = =) g E =

= [3) [3) A = o [3) Q =]

s 2 ¢ B £ § & g|¢

Approach | = § = g i= > a4 & g =

RVNet IoU 900 .514 .669 .683 .414 .651 .818 .008 | .582
0

T-RVNet 952 538 .699 906 .758 .700 .833 .017 | .675

RVNet PO 816 .492 512 .297 484 .728 .842 .013 | .523

T-RVNet 839 540 .536 .641 .596 .796 .865 .070 | .610

Table 7.13: Comparison of the class-wise panoptic results for stuff classes on the validation set

of SemanticKITTL
) g 8 £ 5 = o | 2
Bl - = g 5 = g & F 8 o &E g
O S 8 =® g = g ¥ 2 5 3 @
Approach| = | &8 & & & & & £ B & a E g
RVNet ToU 938 .362 .804 .020 .851 .493 .848 .597 .706 .592 .470|.607
o]
T-RVNet 949 .531 .821 .038 .877 .606 .847 .624 .698 .612 .498|.645
RVNet PO .940 .181 .767 .000 .802 .186 .830 .402 .518 .525 .530|.516
T-RVNet 951 .314 .782 .000 .833 .222 .823 .459 .519 .562 .571|.549

These findings are illustrated by the selected example shown in Fig. 7.8. De-
in the first frame, RVNet
fails to accurately segment the parking spot in the following frames. On the
other hand, T-RVNet correctly predicts this area across all frames due to the
exploitation of temporal information and provides improved and temporarily

spite the correct segmentation of the parking area

consistent predictions.
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Front Camera

Ground Truth

T-RVNet

RVNet

temporally
inconsistent

frame ¢ frame ¢ + 1 frame £ + 2
Figure 7.8: Example for temporally robust and improved results of T-RVNet.
Extended Ablation Studies

In the next step, the discussed components are evaluated individually. The
core element of the temporal architecture is the temporal memory, which re-
cursively fuses temporally aggregated feature maps from the past with the
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latest feature maps. Table 7.14 illustrates the results of the different fusion
strategies proposed in Section 5.1 and provides several key insights. Gating
mechanisms commonly used for RNNs provide no advantages over a residual-
based fusion. This finding confirms the previous claim that a residual strategy
does not suffer from exploding or vanishing gradients. The underlying rea-
sons are that the gradient is backpropagated only for a few steps and that
residual networks were designed as very deep networks, see Section 5.1 for a
detailed discussion. On the other hand, the native ConvGRU suffers from the
discussed limited or missing spatial aggregation after the feature fusion. The
spatial aggregation is especially beneficial in the considered setup since it adds
the capability to compensate for small errors in the alignment step. Therefore,
the native ConvGRU achieves the worst mPQ and mIoU, barely improving
over RVNet. The importance of sophisticated context aggregation is addition-
ally confirmed by the results of the proposed ContextGRUs, which integrate
a residual network into their candidate branch. The provided context aggre-
gation by two or four BBs significantly improves the panoptic segmentation,
while two blocks are already sufficient. However, and despite the established
gating mechanism, directly applying the residual networks as residual strat-
egy without gating achieves a better panoptic segmentation. Hence, the best
strategy and preferred choice is a residual update based on four BBs.

Table 7.14: Results of different fusion strategies for the memory update on the validation set of

SemanticKITTI.

Category | Strategy mPQ mlIoU | t,¢+ std in ms
2XBB 0.568  0.646 585+1.4

residual | 4 xXBB 0.575 0.658 66.9+1.3
BB + BoB + BB 0.567 @ 61.6+1.3
ConvGRU 0.533  0.605 529+1.5

gated ContextGRU 2X BB | 0.564  0.642 67.0+1.3
ContextGRU 4 xBB | 0.566 0.644 754+ 1.5
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The second investigated component is the temporal memory alignment. Two
distinct alignment strategies and a range gating mechanism have been pro-
posed to compensate ego motion and disable wrong feature alignments caused
by moving objects or occlusion. The overview in Table 7.15 reveals that both
strategies perform similarly well, with a minor advantage for the backward
strategy. Consequently, the backward strategy is preferable since it is faster
and provides better values. Independent of the strategy, the temporal method
requires no explicit alignment error detection provided by the proposed range
threshold because the panoptic results remain unchanged. These errors either
have no negative impact on the memory update, or their frequency is too low
to influence the considered metrics. On the other hand, if the range gate is
too restrictive, e.g., 2 cm, which is the standard deviation of the sensor’s mea-
surement error, a considerable amount of valuable information is ignored.
Consequently, the results are negatively influenced.

Table 7.15: Results of the two alignment strategies and different range gate thresholds on the
validation set of SemanticKITTL

Strategy | Syunge | MPQ  mIOU | ty¢ % std in ms

0.02m | 0.548 0.635 70.5+1.5
forward 0.lm | 0.570 0.655 70.4+1.5

none | 0.568 0.653 69.6 +1.4
0.02m | 0.555 0.638 67.6+1.4

backward | 0.1m 0.568 0.655 67.8 +1.4

none | 0.575 0.658 66.9+1.3

inf

Another set of experiments investigates the influence of the temporal train-
ing parameters sequence length and temporal backpropagation steps. These
parameters influence the training procedure proposed in Section 5.1.3 instead
of the model architecture. The results in Table 7.16 show that the proposed
approach is insensitive to changes in these parameters. Especially the mPQ
is very similar across all parameter combinations, whereas the differences in
the mIoU are more prominent. Overall, no clear tendency is visible that a
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particular sequence length or number of backpropagation steps achieves su-
perior results. Hence, no sequence lengths longer than 100 have been evalu-
ated. The maximum number of backpropagation steps was limited by mem-
ory requirements, which increases nearly linearly with this number. Another
key insight provided by Table 7.16 is the importance of training with artifi-
cial subsequences. Training with the nine native sequences of SemanticKITTI
fails and cannot leverage any temporal potential for the reasons discussed in
Section 5.1.3. It achieves no improvements over the non-temporal baseline
approach RVNet.

Table 7.16: Influence of the temporal training parameters sequence length ¢ and backpropaga-
tion steps %, evaluated on the validation set of SemanticKITTIL

¢ =25 ¢ =50 ¢ =100 ¢ =native
mPQ miIoU | mPQ miIoU | mPQ mlioU || mPQ mloU
¥, =11 0573 0.652 | 0.574 0.649 | 0.569 0.640
x, =4 | 0.570 0.643 | 0.575 0.658 | 0.576 0.656 || 0.515 0.597
X, =8 - - 0.576 0.656 | 0.573 0.647

The recursive feature aggregation over time is the core idea of the proposed
temporal approach with the important and novel benefit of an unrestricted
temporal window without influence on the runtime. An unrestricted tempo-
ral memory raises the question of how many past frames actually contribute
to the improvements of the latest frame. To answer this question, experiments
with restricted temporal memory are conducted. While trained with the de-
fault temporal setup, the number of past frames aggregated in the temporal
memory is restricted during evaluation. The corresponding results are plot-
ted in Fig. 7.9. The first insight is the expected importance of past informa-
tion, confirmed by the considerable degradation of the mPQ if the temporal
memory is disabled during evaluation (.., = 0). In this case, even the sin-
gle frame baseline achieves a better panoptic segmentation. When the num-
ber of considered past frames increases, the panoptic results considerably im-
prove up to ten frames. Afterwards, the improvements slow down, and with
¢nem = 50, the results of the unbounded memory are nearly achieved. These
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findings underline that a double-digit number of past frames is required to
fully exploit the potential of temporal information and emphasize the value
of the runtime independence.

Influence of Memory Length
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Figure 7.9: Influence of the number of considered past frames, or memory length, on the results.

Furthermore, an important factor for temporal fusion is the ego velocity and
time step size. The velocity influences the change of the static environment
between frames and the step size the distance traveled by moving objects.
Hence, another experiment investigates the influence of increasing the ve-
locity and time step size on the results, which are depicted in Fig. 7.10. For
this experiment, the evaluation skips frames to simulate higher velocities and
larger time steps. Both factors are coupled for existing datasets and cannot be
simulated independently. The first data point for both datasets are the default
result at the given mean ego velocity over the evaluation set. The second entry
corresponds to aggregating only every other frame into the temporal memory.
This setup simulates a velocity or time step size twice as high. Therefore, the
evaluation starts with the first frame and skips every other frame, which is re-
peated starting with the second frame to provide predictions for every frame.
The third entry corresponds to skipping two frames, tripling velocity or time
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step size, and so on. Naturally, the improvements achieved by temporal fu-

sion decrease with increasing velocity since the jointly observed area in both

time steps decreases. Consequently, the area increases where temporal fusion
provides no benefits. Additionally, the errors induced by disregarding object

movement increase with larger time step sizes. Nevertheless, the proposed

temporal approach achieves considerable improvements up to very high ve-
locities occurring, e.g., on the highway. The enhancements are higher for
SemanticKITTI because its lidar provides point clouds with a higher density,

compensating for larger distances between frames to some extent. Further-

more, nuScenes suffers more from the higher time step size due to a higher

number of moving objects.
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Figure 7.10: Influence of the ego velocity and time between frames on the results. The time step
size is 0.1s for the first entry and increases by 0.1 s with each entry to the right.
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7.3.2 Temporal Bird’s Eye View Experiments

The temporal bird’s eye view network T-BEVNet builds upon the same con-
cepts as T-RVNet. Therefore, a reduced subset of the previous experiments is
conducted to investigate and confirm the temporal benefits in the bird’s eye
view. The influence of the individual components on the results is shown in
Table 7.17. Since T-BEVNet builds upon the backbone of BEVNet as a single
frame backbone, BEVNet is the respective non-temporal baseline shown in the
first row of Table 7.17. The first added component is again the temporal mem-
ory, which considerably improves the panoptic results. The improvements are
slightly lower compared to the temporal range view, which can be explained
by the superior panoptic segmentation of BEVNet compared to RVNet. Again,
temporal alignment and training are not required in order to benefit from
temporal information. However, this reduced setup lacks in exploiting its full
potential. The following lines confirm that the temporal memory alignment
is crucial to further improve the panoptic results and to leverage the full po-
tential of TBPTT. Similar to T-RVNet, major overall improvements over the
single frame network BEVNet are achieved with significantly higher mPQ
and mIoU. The enhanced results on nuScenes depicted in Table 7.17 confirm
the convincing outcomes provided by the temporal approach.

Table 7.17: Benefits provided by the individual components. Starting with the single frame back-
bone (SFB) as baseline and consecutively adding the temporal memory (TM), tem-
poral alignment (TMA) and Truncated Backpropagation Through Time (TBPTT).

SFB TM TBPTT TMA | mPQ mlIoU | t,,+ std in ms
0.552  0.611 36.2+ 1.4
0573 0.624 | 49.1+13
v 0.585 0.621 | 49.1+1.2
0.593 0.648 | 53.4+12

v
v v’ 10.609 0.670 53.5+1.2

SemanticKITTI
LKL
AN NN

% | SFB TM TBPTT TMA | mPQ mIoU | ty+ stdin ms
=

S|V 0.603  0.680 35.7+1.6

2l v Vv v v’ | 0.686 0.732 458 +3.1
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The evaluation of the memory update in the bird’s eye view focuses on the
most promising strategies revealed in the previous chapter. Table 7.18 shows
the results for the two best residual strategies and ContextGRU as the best
gated strategy. Again, the gating mechanism provides no benefits and is out-
performed by both residual strategies. While the residual network built from
two BBs achieves a similar mPQ with less runtime, four BBs achieve a sig-
nificantly higher mIoU.

Table 7.18: Results of different fusion strategies for the memory update on the validation set of

SemanticKITTIL
Category | Strategy mPQ mlIoU | t+ std in ms
. 2XBB 0.610 0.656 47.5+1.3
residual
4 X BB 0.609 0.670 53.5+1.2
gated ContextGRU 2XBB | 0.596  0.653 59.2+1.2

The investigation of the temporal training parameters sequence length ¢ and
backpropagation steps through time %, depicted in Table 7.19 show similar
results as for T-RVNet. However, the configuration with a sequence length
of 50 and 4 backpropagation steps is the best strategy for temporal bird’s eye
view training when considering the semantic results.

Table 7.19: Influence of the temporal training parameters sequence length ¢ and backpropaga-
tion steps %, evaluated on the validation set of SemanticKITTIL

¢ =25 ¢ =50 ¢ =100
mPQ miloU | mPQ miloU | mPQ mloU
x, =11 0.594 0.658 | 0.606 0.658 | 0.602 0.660
x; =4 0605 0.651 | 0.609 0.670 | 0.603 0.648
X, =8 - - 0.611 0.654 | 0.609 0.641

Overall, the best temporal range and bird’s eye view results are achieved with
the backward strategy for temporal alignment without range gate and a tem-
poral memory update based on four residual BBs. The best training strategy
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uses subsequences with a length of 50 and propagates the gradient four steps
back in time.

7.3.3 Comparison to State-of-the-Art

A comparison of the proposed temporal framework to other temporal meth-
ods follows the detailed ablation studies of the previous sections. Therefore,
it is compared to the approaches presented in Section 2.4 across various seg-
mentation tasks. As introduced in Section 7.1.3, the inference time of existing
methods that used different GPUs is reproduced (*) if the code was released
or converted (=) based on public benchmarks otherwise.

Table 7.20: Panoptic and semantic segmentation results of temporal approaches on the test set of
SemanticKITTL Additionally, the achieved temporal improvements over the respec-
tive non-temporal baseline on the validation set are reported. The inference times
for T-RVNet and T-BEVNet are for the panoptic and semantic setup, respectively.

Test Set Validation Set
Approach mPQ mlIoU | AmPQ AmlIoU | ft,in ms
Wang et al. [Wan22b] 0.546  0.606 | 0.009 —0.003 r70/ -
SpSequenceNet [Shi20] - 0.571 - 0.027 -/ 647"
MetaRange [Wan22a] - 0.610 - 0.023 -/ 44*
T-RVNet (Ours) 0.546 0.614 | 0.056 0.061 | 66.9/36.3
T-BEVNet (Ours) 0.554 0.629 | 0.055 0.057 | 53.5/28.9

In the first step, the results and relative improvements for semantic and panop-
tic segmentation are considered, which only a few existing approaches ex-
plicitly address. The overall results are reported on the test set. On the other
hand, the improvements are reported on the validation set because the abla-
tion studies, which reveal the temporal benefits, are performed thereon. The
overview in Table 7.20 shows the superiority of the proposed temporal frame-
work, achieving with both representations the best results and the lowest in-
ference time. The approach of Wang et al. [Wan22b] uses a sophisticated base-
line which provides good results. However, their aggregation of input points
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for thing classes as temporal fusion strategy achieves only minor improve-
ments. SpSequenceNet [Shi20] only considers one previous frame, which con-
siderably limits the leveraged temporal potential. Consequently, it is clearly
outperformed by the proposed method in overall results and achieved im-
provements. Finally, MetaRange [Wan22a] relies on input level fusion based
on residual images. Their semantic results show that this strategy cannot
compete with the proposed feature-based strategy.

Table 7.21: Results of temporal approaches for the task of dynamic semantic segmentation on
the test set of SemanticKITTL

Approach mloU | t,;in ms
SpSequenceNet [Shi20] 0.431 647"
TemporalLattice [Sch22b] | 0.471 ~ 199

MetaRange [Wan22a] 0.495 44
TVSN [Han22] 0.525 -

Wang et al. [Wan22b] 0.529 ~ 70
T-RVNet (Ours) 0.530 36.3
T-BEVNet (Ours) 0.530 28.9

Next, the results for the dynamic semantic segmentation task are compared
and depicted in Table 7.21. The presented temporal framework achieves once
more the best results with the lowest runtime. Some already discussed ap-
proaches also tackle this task but again cannot compete with the proposed
approach for the reasons mentioned. The exception is Wang et al. providing
similar results, which indicates that their aggregation of instance points at the
input level provides valuable information for identifying moving points. The
recurrent approach of TemporalLattice [Sch22b] achieves considerably worse
results while having a higher computational complexity than T-RVNet and
T-BEVNet. These findings show that a careful design of RNN-based architec-
tures is required to exploit its potential with low computational complexity.

Finally, the temporal framework of this thesis is compared to other approaches
for the task of moving object segmentation, and the results are illustrated
in Table 7.22. These approaches predominantly rely on residual images and
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are designed specifically for this task. They exploit the temporal information
solely to identify moving points and not to improve learned features in gen-
eral. Nevertheless, the proposed temporal approach achieves the second-best
results while being the fastest.

Table 7.22: Moving object segmentation results on the test set of SemanticKITTIL

Approach mloU | t,¢in ms
SpSequenceNet [Shi20] | 0.399 647"
LMNet [Che21b] 0.625 35
4DMOS [Mer22] 0.652 | 146
Sun et al. [Sun22] 0.702 168*
RVMOS [Kim22] 0747 | ~37
T-RVNet (Ours) 0.710 36.3
T-BEVNet (Ours) 0.712 28.9

To summarize, the temporal framework shows excellent performance and im-
provements across four different tasks and outperforms all other temporal ap-
proaches on three of them. These convincing results underline the benefits of
the proposed temporal feature fusion and confirm its capabilities of exploit-
ing these. None of the existing approaches is capable of achieving convinc-
ing results across all these tasks simultaneously. Furthermore, the presented
approach achieves the best inference time, which shows the value of the re-
cursive aggregation and reuse of previously computed feature maps. Overall,
the presented temporal framework achieves excellent results with low com-
putational complexity.

7.4 Multi Sensor Panoptic Segmentation

The next step of the evaluation investigates the proposed sensor fusion of li-
dar and camera for panoptic segmentation, which is the third contribution.
Various experiments thoroughly evaluate the presented multi sensor fusion
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architecture and training strategy to analyze the benefits of the proposed ap-
proach. Finally, it is compared to other state-of-the-art sensor fusion methods.

In contrast to previous sections, the following experiments are conducted on
nuScenes, if not stated otherwise. Unlike SemanticKITTI, it provides cam-
era images for the entire 360° environment and allows using the entire lidar
scan for fusion instead of a small overlapping field of view in the front. The
ResNet-50 of BEVDepth [Li22d] pre-trained on the nuScenes object detec-
tion task is used as the camera backbone for these experiments. On the other
hand, a PSPNet with default architecture is used for the experiments on Se-
manticKITTL which is pre-trained on the semantic segmentation provided by
the KITTI-STEP dataset [Web21]. Furthermore, the pre-trained backbone of
RVNet is used as initialization for the lidar backbone. If not stated otherwise,
the camera feature maps of the second, fourth, and fifth stage are fused by the
iterative architecture, and both sensor backbones are frozen during the fusion
training. The inference time reported for sensor fusion approaches excludes
the runtime of the camera backbone since it is not the focus of this thesis.

7.4.1 Range View Fusion Experiments

The sensor fusion network SF-RVNet introduced in Section 6.1 relies on a
multi scale feature fusion for lidar and camera feature maps to improve panop-
tic segmentation based on multi sensor features. The first multi sensor experi-
ments investigate the impact of the individual iterative fusion components on
the results, which are depicted in Table 7.23. The baseline is RVNet since its
backbone is one of the components of the fusion approach. Instead of adding
the entire fusion branch at once, its modules A, B, and C are added individu-
ally to investigate the influence of each stage. The first experiment solely uses
the last fusion module, which already improves the results by a considerable
margin. This finding underlines the effectiveness of the proposed fusion mod-
ule and the value of camera features in general. The mPQ is further enhanced
when the second and first fusion modules are added. This leads to the conclu-
sion that a multi scale fusion is beneficial, as well as the iterative refinement
of the fused features.
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Table 7.23: Influence of the individual fusion stages on the results.

Baseline +C +BC +ABC | mPQ mlIoU | t,;+ std in ms
N 0.614 0704 | 321423
g vV 0.680 0739 | 41.9+0.7
2 v vV 0.705 0.741 | 445+0.8
v v o v v 0707 0743 470+08
E Baseline +C +BC +ABC | mPQ mlIoU | t,+ std inms
g v 0.559  0.617 -
§ v v v Vv |0577 0642 -

These findings are illustrated by selected semantic and instance examples de-
picted in Fig. 7.11. In the former, RVNet fails to classify the bus M correctly and
confuses it with a truck ~, which has a similar shape. In contrast, SF-RVNet
exploits camera information to resolve this confusion and correctly detects
the bus. The second example shows instance results and the advantage of
the high camera resolution. SF-RVNet provides a more accurate instance seg-
mentation on the border of two trailers. This example also shows errors in
the ground truth, one of the challenges mentioned in the introduction.

Extended Ablation Studies

Additional experiments investigate the revealed benefits of SF-RVNet over the
baseline RVNet more closely. One possible and unwanted source of improve-
ment is the increased model capacity due to the added fusion branch. There-
fore, SF-RVNet is trained with empty camera features to exclude this possi-
bility. Consequently, it uses the increased model capacity but cannot exploit
camera features. The results in Table 7.24 show only a small improvement for
mPQ and no improvements for mIoU, which eliminates the increased model
capacity as the main source of enhancement. The second experiment exam-
ines the dependence of the fusion approach on camera features during infer-
ence. Hence, SF-RVNet is trained with camera features but receives no camera
features during inference. The huge quality drop depicted in Table 7.24 is an-
other strong evidence that the proposed fusion approach intensively exploits
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camera features. This simulated camera failure can be mitigated by applying
the lidar head deployed during pretraining to the lidar backbone feature maps
to achieve the panoptic results of RVNet instead of the degraded ones.

Ground Truth Front Camera

SF-RVNet

RVNet

Figure 7.11: Improved semantic and instance segmentation of SF-RVNet due to the fusion of
lidar and camera information.
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Table 7.24: Relevance of camera information for SF-RVNet during training and inference, eval-
uated on the validation set of nuScenes.

Baseline mPQ mloU
RVNet 0.614  0.704
SF-RVNet, trained without camera 0.639 0.701
SF-RVNet, inference without camera | 0.600  0.683
SF-RVNet 0.707 0.743

The next step investigates the impact of the selected camera feature maps
and fusion strategy. The ResNet architecture provides feature maps at five
different stages. However, the first stage is not further considered since it
consists solely of an initial 3 X 3-conv and max pooling, which provides only
shallow features. All combinations of the other four stages are evaluated, and
all perform equally well, with the results shown in Table 7.25.

Table 7.25: Influence of the chosen ResNet stages for extracting intermediate camera feature
maps, evaluated on the validation set of nuScenes.

ResNet Stages | mPQ mlIoU | t, + std in ms
2,3,4 0.707 0.742 48.6 +0.8
2,3,5 0.706  0.738 47.9+0.8
2,4,5 0.707 0.743 47.0+0.8
3,4,5 0.703  0.742 47.9 +£0.8

In contrast, the chosen fusion architecture significantly impacts the results.
Table 7.26 depicts the outcomes of the strategies proposed in Section 6.1.1. The
pyramid strategy achieves the best results at the cost of a high computational
complexity. The latter is mainly caused by the requirement to deploy two en-
tire pyramid modules in parallel, doubling the fusion branch’s computational
complexity. Additionally, the pyramid fusion itself is more complex than the
iterative fusion. While iterative fusion achieves worse results, it still provides
excellent improvements and has a significantly lower inference time.
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Table 7.26: Results of the different fusion architectures on the validation set of nuScenes.

Fusion Architecture | mPQ mIoU | t,¢ =+ std in ms

iterative 0.707 0.743 47.0+0.8
pyramid light 0.712 0.757 64.3+3.3
pyramid 0719 0754 | 912+3.7

pyramid extended | 0.729 0.768 243.9+3.2

The pyramid fusion is evaluated in three different configurations, starting with
the default and light pyramid strategies, which achieve similar panoptic re-
sults. The light variant replaces the feature refinement modules with a single
convolutional layer, see Section 6.1.1. In contrast, the extended pyramid fu-
sion doubles the projected camera and fusion channel sizes in the second and
third sensor fusion step to maximize the exploited camera information. The
larger channel sizes further increase the mPQ and mIoU, as well as the com-
putational complexity.

One advantage of the proposed architecture is the potential independence
of lidar and camera backbone. Both backbones are pre-trained on their re-
spective data and frozen during fusion training to achieve independence. This
procedure raises the general question of how the training strategy influences
the panoptic results. Table 7.27 shows the results of different strategies for
freezing or further optimizing the individual backbones during fusion train-
ing. If the lidar backbone is further optimized when training the overall fu-
sion approach, SF-RVNet performs worse considering the mIoU. It is likely
harder for the fusion branch to learn a high quality feature fusion of con-
stantly changing backbone features. Combined with the major advantage of
the backbones acting as a fallback for sensor failure, discussed in Section 6.1,
the preferable training strategy keeps both backbones unchanged.

Overall, both sensor fusion strategies provide excellent results, with the itera-
tive strategy being faster and the pyramid strategy providing the best results.
The stages the camera features are chosen from play no significant role. Freez-
ing the backbones during fusion training provides the best results and ensures
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that the fusion approach does not degrade below the lidar baseline, see Ta-
ble 7.24, in case of camera failure. Therefore, the final range fusion network
uses the extended pyramid fusion strategy with camera stages two, four, and
five. However, the iterative strategy is chosen for the deployment in the mul-
timodal multi view architecture. As one of many components, computational
complexity is an important property in this setup.

Table 7.27: Impact of optimizing the backbones during training of the fusion approach. The
experiments were conducted on the validation set of nuScenes.

Optimize
Lidar Backbone Camera Backbone | mPQ mloU
0.707 0.743
v 0.707  0.742
v 0.714 0.718
v v 0.709  0.693

7.4.2 Comparison to State-of-the-Art

In addition to the presented extensive ablation studies, the proposed sensor
fusion approach is further compared to other fusion approaches. As discussed
in Section 2.5, only a few approaches for semantic segmentation have been
proposed, and to the best of the author’s knowledge, no approach tackles the
related task of panoptic segmentation.

Since SemanticKITTI only has front-facing cameras, the evaluation for sen-
sor fusion must be restricted to the overlapping field of view (FoV) of the lidar
and camera, which covers approximately /6 of the overall point cloud. Conse-
quently, the following results are reported on the validation set because the of-
ficial test server supports no restriction to the overlapping FoV. The outcomes
for different methods are depicted in Table 7.28. The first finding is the superi-
ority of SF-RVNet over the single modality range view approaches. This con-
firms the capabilities of the proposed approach to improve semantic segmen-
tation based on sensor fusion. It is worth mentioning that further approaches
with better results than the listed methods exist but do not provide their code,
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preventing the evaluation on the restricted dataset. Another finding is that
simple fusion schemes, such as PointPainting [Vor20] and RGBAL [Elm19],
do not achieve state-of-the-art results. PointPainting has been proposed for
3D object detection and enhances the input point cloud with semantic labels
from camera semantic segmentation. However, it achieves no convincing re-
sults for 3D semantic segmentation. RGBAL projects the camera image into
range view at the input level, which omits a great amount of information
due to the lower range view resolution. In contrast to these methods, and
similar to the proposed approach, LaserNet++ [Mey19a] and PMF [Zhu21c]
deploy a deep fusion of camera and lidar features. LaserNet++ performs a
single scale fusion without reaching state-of-the-art semantic segmentation,
whereas PMF provides competitive results using multi scale fusion. However,
their architecture integrates camera features into their lidar backbone. In case
of camera failure, their lidar backbone cannot be used as a fallback and the
overall network will severely degrade.

Table 7.28: Semantic results of fusion approaches on the validation set of SemanticKITTI re-
stricted to the overlapping FoV of lidar and camera. (1 values taken from [Zhu21c],
I reproduced results based on own implementation.)

Approach Modalities mloU
RangeNet [Mil19] lidar 0.525
SequeezeSegV3 [Xu20] lidar 0.556
SalsaNext [Cor20] lidar 0.614
PointPainting [Vor20] | lidar + camera | 0.545F
RGBAL [Elm19] lidar + camera | 0.562°
LaserNet++ [Mey19a] | lidar + camera | 0.562%
PMF [Zhu21c] lidar + camera | 0.639
SF-RVNet (Ours) lidar + camera | 0.642

The previous findings are confirmed by the results on nuScenes depicted in
Table 7.29, which allows using the entire scan and official validation set. The
validation instead of the test set is chosen because PMF and LIFSeg [Zha21b]
report their results only on the former. With LIFSeg, an additional approach is
evaluated on nuScenes and achieves the best results. However, this is mainly
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caused by their strong voxel-based backbone CylinderNet [Zhu21b]. The fu-
sion strategies of PMF and SF-RVNet achieve larger improvements. When the
presented sensor fusion approach is combined with a stronger backbone, such
as the proposed multi view approach, it considerably outperforms LIFSeg.

Table 7.29: Semantic results of fusion approaches on the validation set of nuScenes with the
achieved improvements over their respective lidar baseline.

Approach Modalities mloU | AmIoU
RangeNet [Mil19] lidar 0.655 -
SalsaNext [Cor20] lidar 0.722 -
PMF [Zhu21c] lidar + camera | 0.769 0.047

LIFSeg [Zha21b] lidar + camera | 0.782 0.039
SF-RVNet (Ours) lidar + camera | 0.768 | 0.064
SF-MVNet (Ours) | lidar + camera | 0.799 0.043

Overall, the proposed sensor fusion architecture achieves state-of-the-art re-
sults on both datasets while having the ability to counteract camera failure
with its lidar backbone. Additionally, the proposed fusion method can be com-
bined with stronger networks, such as MVNet, which is investigated more
closely in the next section.

7.5 Multimodal Multi View Panoptic
Segmentation

The main contributions of this thesis have been evaluated individually so far.
Another important goal of this thesis is the combination of these contributions
into a multimodal multi view approach. Therefore, the next set of experiments
investigates the benefits of combining the multi view, temporal, and multi
sensor frameworks. In the second step, a comprehensive comparison of the
combined frameworks, as the final result of this thesis, to other state-of-the-
art approaches is conducted.
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7.5.1 Multimodal Experiments

The three frameworks presented in this thesis are combined step by step, start-
ing with the multi view and temporal framework. Table 7.30 shows the results
on SemanticKITTI. Adding the temporal memory to the range view branch of
the multi view architecture, as presented in Section 5.3, significantly improves
the mPQ and mIoU while the latter improvement is more pronounced. This
is expected since the temporal range view memory only influences the se-
mantic segmentation and not the center and offset predictions for the cluster-
ing. On the other hand, the temporal bird’s eye view memory improves the
mPQ by a considerably larger margin since it directly influences the cluster-
ing predictions. The best results are achieved when both views are temporally
enhanced, which significantly outperforms the non-temporal multi view ap-
proach. The large improvement of the panoptic segmentation confirms the
value of combining the presented multi view and temporal framework. An-
other experiment, T-MVNet-Lite, deploys only two BBs for temporal fusion
instead of four. This strategy has achieved slightly worse results for the tem-
poral range and bird’s eye view approaches while being faster. It is a more
efficient alternative in terms of runtime, which provides the best mIoU and
still considerably improves the mPQ.

Table 7.30: Evaluation of the combined temporal multi view architecture on the validation set
of SemanticKITTI. Temporal memories are successively added to both views.

Approach RV BEV | mPQ mlIoU | ty;+ stdin ms
MVNet 0.592  0.657 76.0 +1.7
MVNet+T-RV | VvV 0.624  0.699 85.8+1.8
MVNet+T-BEV v 0.649  0.680 92.2+1.7
T-MVNet v Vv 0662 0.702 103.1+1.7
T-MVNet-Lite v v 0.645 0.705 929+1.7

In the next step, the temporal multi view approach is further extended by the
sensor fusion approach, see Section 6.2. However, no further improvements
are achieved on SemanticKITTI. The main reason is the small overlapping FoV
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of lidar and camera, which reduces the point cloud size to approximately /s.
While benefits for the range fusion approach can still be shown, the temporal
training is unsuccessful on the strongly reduced training data. Since nuScenes
provides full camera coverage, a more comprehensive evaluation of all possi-
ble combinations is performed thereon.

NuScenes offers a 360° overlapping camera FoV which allows using the en-
tire lidar scan for sensor fusion approaches. Table 7.31 shows the results for
all possible combinations, starting with the already presented results for the
range view improved with temporal or camera information. Both enhance-
ments achieve similar semantic results, while the sensor fusion improves the
panoptic quality by a larger margin. Moreover, their combination provides a
multimodal single view approach, improving the panoptic segmentation even
further and considerably outperforming the individual enhancements.

Table 7.31: Combination of the contributions of this thesis, which ultimately provides a multi-
modal multi view framework, and their results on the validation set of nuScenes.

Approach MV Temp SF | mPQ mloU | ty,+ stdinms

RVNet 0.614 0704 | 321+23
T-RVNet v 0.669 0.744 | 413+2.1
SF-RVNet v 0707 0743 | 47.0+08
TSF-RVNet v v 0733 0771 | 522121
MVNet v 0651 0.756 | 57.6+1.5
T-MVNet | vV 0.744 0791 | 71.2+3.0
SF-MVNet | v/ v | 0745 0799 | 80.7+18
TSF-MVNet | v/ v v/ | 0784 0828 | 102.8+38

The lower part of Table 7.31 considers the multi view architecture combined
with temporal or sensor fusion, both enhancing the results by a similar and
large margin. Consequently, all combinations of two frameworks significantly
enhance the semantic and panoptic segmentation, underlining the benefits of
the proposed combinations. It is worth mentioning that the range view back-
bone, as part of the range fusion backbone, is no longer frozen but further op-
timized in these combined setups. This change is required to successfully train
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the range fusion backbone as part of the multi view and temporal framework.
The final line of Table 7.31 shows the overall framework of this thesis combin-
ing all three contributions and achieving the best results. It provides signifi-
cantly improved semantic and panoptic segmentation and successfully com-
bines the benefits of the multi view, temporal, and sensor fusion framework.

Next, the individual class results for MVNet, T-MVNet, and TSF-MVNet are
compared, representing the incremental combinations of the three contribu-
tions. The individual class IoUs predominantly benefit from the temporal fu-
sion in the first step and further from combined temporal and sensor fusion
in the second step, which reflects the strongly improved mIoU. Especially
the semantic segmentation results of thing classes depicted in Table 7.32 are
considerably enhanced. But also the already convincing results of MVNet for
stuff classes are further improved by temporal and sensor fusion, shown in
Table 7.33. The findings for the PQ on class level are similar, and all classes
benefit from the temporal fusion. In addition, every class but one addition-
ally benefits from the combined temporal and sensor fusion, explaining the
great improvement of the mPQ. As the combination of all proposed contribu-
tions, TSF-MVNet provides a significantly enhanced panoptic segmentation

for all classes.

Table 7.32: Comparison of the class-wise panoptic results for thing classes on the validation set

of nuScenes.

o 5 2 CHECHEE -SSR =
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[} = 2] — =] [9) o =1 = 151
Approach | = | 8 2 2 8§ ¢ & & E E E|E
MVNet .800 .335 .875 .924 .501 .804 .779 .656 .680 .811|.716
T-MVNet IoU | .823 .440 .945 943 492 .853 .850 .721 .712 .855|.763
TSF-MVNet .840 .631 944 935 .663 .913 .884 .780 .770 .852|.821
MVNet 455 465 .606 .879 .300 .753 .788 .774 .429 .595].604
T-MVNet PQ |.674 .644 .782 911 .469 .849 .857 .831 .611 .737|.737
TSF-MVNet .685 .795 841 916 .670 .894 .865 .856 .634 .795|.795
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Table 7.33: Comparison of the class-wise panoptic results for stuff classes on the validation set

of nuScenes.
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Approach = < o @ s = > g
MVNet 966 .701 .748 .748 .894 .870 | .821
T-MVNet IoU | 969 .745 .761 .760 .907 .886 | .838
TSF-MVNet 969 .745 .756 .767 .913 .891 | .840
MVNet 963 .532 .667 .510 .867 .825 | .727
T-MVNet PQ | .966 .577 .698 .552 .888 .850 | .755
TSF-MVNet 966 .595 .705 .564 .895 .872 | .766

In the next step, several qualitative examples illustrate the benefits but also
different errors of the proposed approaches. The first example is depicted in
Fig. 7.12, where instance and semantic segmentation are shown. Two types of
errors are observable for MVNet. First, it fails to separate all parking cars
into individual instances, tagged with (a) and (b). Since the semantic segmen-
tation is correct for these points, the error has its origin in the center and offset
predictions. The temporal information exploited by T-MVNet resolves these
errors and accurately splits the cars into individual instances. The second er-
ror (c) is the wrong semantic segmentation of the construction vehicle [ on
the right, which is confused with the background classes building M and veg-
etation . Even with temporal information, T-MVNet is unable to separate
it from the background. Consequently, the entire instance is missed. How-
ever, TSF-MVNet succeeds in detecting the construction vehicle based on the
additional camera information. Furthermore, it correctly segments the upper
part of the hydraulic lift, which is unlabeled Bl in the ground truth. This ex-
ample underlines that all contributions are valuable and necessary to reduce
instance and semantic errors and provide high quality panoptic results.
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Figure 7.12: Benefits of combining the individual contributions. Temporal and sensor fusion are

required to resolve instance (a), (b) and semantic errors (c). An overview of the
semantic class colors is depicted in Figs. 7.3 and 7.4.
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Since errors in the panoptic segmentation predominantly originate from se-
mantic errors, the next examples focus thereon. Figure 7.13 illustrates the
semantic benefits of T-MVNet and its temporal fusion, which correctly clas-
sifies the paved center strip Bl In contrast, MVNet assumes a vegetated cen-
ter strip which is considered terrain . While MVNet correctly classifies the
center strip in some preceding and subsequent frames, the temporal fusion
provides a more robust semantic segmentation without these occasional er-
rors. The example in Fig. 7.13 also illustrates the benefits of sensor fusion
for distant objects. The parking pickup, which belongs to the truck class
in nuScenes, has only one row of very few measured lidar points. As a re-
sult, MVNet and T-MVNet fail to predict the correct class and confuse it with
cars [/l In contrast, the additional information of the higher resolution camera
image enables TSF-MVNet to segment the pickup truck successfully, despite
the sparse lidar information.

The next scenario, depicted in Fig. 7.14, shows the value of temporal infor-
mation (a), required to distinguish between buildings M and barriers ll suc-
cessfully. The reason is again the increased temporal robustness, which elim-
inates occasional errors in individual frames. Overall, T-MVNet considerably
reduces the semantic errors in this example. TSF-MVNet further improves
the segmentation and is able to segment the sidewalk [ll more accurately (b).
The camera information helps to distinguish between paved and vegetated
flat ground.

The last example shows a failure case of the overall contribution TSF-MVNet.
In the scene shown in Fig. 7.15, MVNet provides convincing results but misses
the sidewalk between the vegetated terrain . T-MVNet makes similar errors
and lacks in improving the semantic segmentation. Even TSF-MVNet fails
and, in addition, introduces additional errors by confusing the bus M with a
truck . One potential reason is the rainy weather and water on the camera
pane. With the limited dataset size, robustness to different weather conditions
is difficult to achieve. Consequently, different weather conditions might neg-
atively impact the fusion results in some examples, see Fig. 7.15, whereas in
other ones, such as Fig. 7.14, TSF-MVNet provides its full benefits.
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MVNet Ground Truth
Rear Camera

T-MVNet

TSF-MVNet

Semantic Segmentation Semantic Errors

Figure 7.13: Temporal information supports the robust segmentation of the ground classes, and
the high resolution camera image helps with distant points. The semantic errors ll
across all approaches are shown on the right.
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Front Camera

Front Right Camera

Ground Truth

T-MVNet MVNet

TSF-MVNet

Semantic Segmentation Semantic Errors

Figure 7.14: Temporal information supports a more stable differentiation of background classes
(a). Sensor fusion provides a more accurate differentiation of ground classes (b).
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Front Camera
Front Right Camera

T-MVNet MVNet
Ground Truth

TSF-MVNet

Semantic Segmentation Semantic Errors

Figure 7.15: Failure case of the proposed contributions. T-MVNet is not able to improve the seg-
mentation over MVNet, and TSF-MVNet introduces additional errors.
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Overall, the conducted experiments confirm that the main contributions of
this thesis not only provide their benefits individually but that their combina-
tion provides even greater improvements. Several examples illustrate these
benefits. All proposed combinations are capable of simultaneously exploiting
the benefits of the multi view, temporal, or sensor fusion framework, which al-
lows choosing the combination most suitable for a given use case. The overall
combination TSF-MVNet provides excellent results for 3D panoptic segmen-
tation and achieves outstanding absolute improvements of +0.170 and +0.124
over the single view approach RVNet for mPQ and mIoU, respectively.

7.5.2 Comparison to State-of-the-Art

The temporal and sensor fusion approaches have already been compared to
related state-of-the-art approaches. Therefore, the following comprehensive
comparison has a broader scope and considers existing 3D panoptic segmen-
tation methods in general, with a focus on the presented multi view frame-
work and combined frameworks. In the first step, the results on the official
test set of SemanticKITTI are investigated, which has the highest number of
evaluated approaches. Both temporal single view approaches, the multi view
approach, and the temporal multi view approach are considered.

The temporal range and bird’s eye view frameworks have already been com-
pared to existing temporal approaches for various tasks in Section 7.3.3. In
addition, both approaches are more broadly compared to existing panoptic
methods in the following. Both achieve convincing results compared to other
approaches of their respective view, depicted in Table 7.34. T-RVNet accom-
plishes compelling results close to the best range view-based approaches while
having a significantly lower computational complexity. T-BEVNet provides
the best results based on the bird’s eye view. As part of the temporal or mul-
timodal multi view architecture, T-RVNet and T-BEVNet are not designed to
outperform state-of-the-art approaches standalone. However, the temporal
framework can be combined with stronger backbones to achieve this, such as
the proposed multi view network MVNet.
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Table 7.34: Comparison of multiple contributions to the state-of-the-art panoptic segmentation
on the test set of SemanticKITTI. The second best results are highlighted in italic.

View | Approach mPQ mRQ mSQ | mloU | f,;inms

PV Panoster [Gas21] 0.527 0.641 0.807 | 0.599 -
LPSAD [Mil20] 0.380 0.482 0.765 | 0.509 -
PanTrackNet [Hur20] | 0.431 0.539 0.783 | 0.526 -

RV Panoptic4D [Ayg21] 0.503 0.610 0.816 | 0.613 -
CPSeg [Li21] 0.570 0.688 0.822 | 0.627 94
EfficientLPS [Sir22] 0.574 0.687 0.830 | 0.614 217*
T-RVNet (Ours) 0.546 0.665 0.813 | 0.614 66.9

BEV Pan-PolarNet [Zho21] | 0.541 0.650 0.814 | 0.595 57
T-BEVNet (Ours) 0.554 0.662 0.826 | 0.629 53.5

ux | DS-Net [Hon21] 0.559 0.667 0.823 | 0.616 | 294 [Li22a]
GP-S3Net [Raz21a] 0.600 0.721 0.820 | 0.708 | 270 [Li22a]
SMAC-Seg [Li22a] 0.561 0.679 0.820 | 0.633 99
SCAN [Xu22] 0.615 0.721 0.845 | 0.677 ~ 100

MV Pan-PHNet [Li22b] 0.615 0.721 0.848 | 0.660 ~ 81
MVNet (Ours) 0.568 0.678 0.829 | 0.657 76.0
T-MVNet (Ours) 0.617 0.726 0.842 | 0.679 103.1

The multi view network achieves better results than all single view methods,
with a few exceptions. EfficientLPS [Sir22] deploys several extensions and ad-
ditionally uses pseudo labels to improve the panoptic segmentation and com-
pensate for some disadvantages of the range view. Additionally, it relies on
object detection for instance segmentation. As a result, it outperforms the
proposed multi view approach by a small margin for mPQ. However, it does
not achieve the same quality in semantic segmentation, and its computational
complexity is nearly three times higher. With additional extensions [Due22],
the proposed multi view approach achieves a mPQ of 0.588 and outperforms
EfficientLPS also for mPQ. In contrast, the voxel-based GP-S3Net [Raz21a]
and the most recent multi view methods SCAN [Xu22] and Pan-PHNet [Li22b]
provide better results than MVNet.
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Consequently, the three best approaches GP-S3Net, SCAN, and Pan-PHNet
are compared more closely to the temporal multi view network, which outper-
forms all three on panoptic quality. GP-S3Net deploys a complex sparse voxel
backbone and graph neural network with a very high computational complex-
ity. Based on its state-of-the-art semantic backbone AF?-S3Net [Che21d], it
achieves the best semantic segmentation. Nevertheless, its panoptic segmen-
tation is considerably outperformed by T-MVNet, with approximately one-
third of the computational complexity. SCAN combines the stronger but more
expensive sparse voxel view with the point view. This combination achieves
similar results as the proposed T-MVNet, which is based on the range and
bird’s eye view combined with temporal fusion. However, SCAN lacks the
same quality of results on nuScenes, see Table 7.36. Especially its panoptic
segmentation thereon drops by a large margin. Finally, Pan-PHNet combines
voxel and bird’s eye view and proposes an improved clustering for bottom-
up panoptic segmentation. The latter significantly contributes to the accom-
plished panoptic results. These are similar to T-MVNet, which relies on the
established weaker clustering but on stronger features, confirmed by its su-
perior semantic segmentation.

The nuScenes panoptic challenge was released recently, and not all approaches
evaluated on SemanticKITTI have also been evaluated on nuScenes. Its au-
thors combined all submitted semantic segmentation and object detection ap-
proaches resulting in 1,470 possible panoptic segmentation approaches. The
best three are reported as baselines and are shown in rows four to six in Ta-
ble 7.35, outperforming all 2D single view methods by a large margin. While
these are overall strong baselines, they use two independent networks instead
of one native panoptic segmentation network. Only Pan-PHNet and the pro-
posed T-MVNet and TSF-MVNet achieve competitive or better panoptic re-
sults. While TSF-MVNet achieves the best semantic segmentation, Pan-PHNet
provides better panoptic segmentation. Interestingly, its mPQ on the valida-
tion set is considerably lower, see Table 7.36, and is more in line with the find-
ings on SemanticKITTIL Unfortunately, the authors provide no explanation for
the outlier results on the test set. The outcomes of other approaches, including
T-MVNet and TSF-MVNet, differ only slightly across validation and test set.
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Table 7.35: Comparison of the combined contributions to other methods on the test set of
nuScenes. Some approaches have been evaluated on the test set after publication

in [Fon22].
View | Approach mPQ mRQ mSQ | mloU
qy | PanTrackNet [Mil20] 0.516 0.633 0.804 | 0.589
EfficientLPS [Sir22] 0.624 0.741 0.837 | 0.667
BEV | Pan-PolarNet [Zho21] | 0636 0751 0.843 | 0.670
SPVNAS [Tan20] + CP [Yin21] 0.722 0.812 0.885 | 0.769

VX Cylinder3D++[Zhu21b] + CP [Yin21] | 0.765 0.850 0.896 | 0.773
AF?-S3Net [Che21d] + CP [Yin21] 0.768 0.854 0.895 | 0.788

Pan-PHNet [Li22b] 0.801 0.876 0.911 | 0.802
MV | T-MVNet (Ours) 0.747 0.835 0.893 | 0.792
TSF-MVNet (Ours) 0.787 0.875 0.893 | 0.811

Table 7.36: Comparison on the validation set of nuScenes.

View | Approach mPQ mRQ mSQ | mloU
SCAN [Xu22] 0.651 0.753 0.857 | 0.774
Pan-PHNet [Li22b] | 0.747 0.842 0.882 | 0.797
T-MVNet (Ours) 0.744 0.836 0.886 | 0.791
TSF-MVNet (Ours) 0.784 0.878 0.890 | 0.828

MV

Overall, the proposed contributions achieve the best panoptic segmentation
on SemanticKITTI, even without sensor fusion. TSF-MVNet achieves the best
semantic segmentation among the panoptic approaches on nuScenes, the best
panoptic segmentation on the validation, and the second-best on the test set.
Additionally, it outperforms the best combinations of individual semantic seg-
mentation and object detection networks, combined to panoptic approaches.
These findings conclude the excellent results provided by the combined con-
tributions of this thesis.
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8 Discussion and Outlook

The overall contribution of this thesis is the proposed multimodal multi view
approach for panoptic segmentation of 3D point clouds based on deep learn-
ing. It combines the benefits of the three individual contributions, multi view
architecture, temporal fusion, and sensor fusion, which improve the panop-
tic segmentation based on different aspects. Existing approaches only exploit
one of these and cannot simultaneously leverage their potential.

The proposed multi view architecture focuses on the lidar sensor to provide a
superior panoptic segmentation for unstructured 3D point clouds with CNNs.
Features and context are efficiently aggregated in the 2D range and bird’s eye
view, and provided to a point view backbone. The latter combines the multi
view context and maintains a unique feature vector for every 3D point. These
enhanced features are the foundation for improved results over single view
approaches, which suffer from the drawbacks of the individual views.

The presented temporal framework focuses on temporal information in point
cloud sequences instead of considering point clouds individually. It is based
on a recursive temporal fusion of feature maps to exploit temporal dependen-
cies. A temporal memory in range or bird’s eye view aggregates and propa-
gates information through time. In every time step, the temporal memory of
the previous time step is temporally aligned to compensate for ego motion.
Afterwards, it is updated with the information extracted from the latest point
cloud. In the end, the memory contains temporally fused features of the cur-
rent and all previous time steps, which are the basis for improved 3D panoptic
segmentation over single frame approaches.

The introduced multi sensor approach focuses on exploiting the camera as an
additional sensor modality. It fuses feature maps provided by lidar range view
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and camera backbones at multiple scales based on two proposed deep fusion
strategies. The first one iteratively fuses and refines the multi scale feature
maps, whereas the second strategy follows a pyramid-based fusion pattern.
The provided multi sensor feature maps considerably improve 3D panoptic
segmentation over methods solely relying on lidar.

8.1 Discussion

The multi view approach for processing unstructured 3D point clouds with
CNN:ss is the first contribution of this work. Its main novelty is the multi view
architecture with a point view backbone connecting 2D backbones for range
and bird’s eye view and repeatedly aggregating multi view features. Key prop-
erties discussed in the following are the chosen views and the aggregation
architecture of the point view backbone.

The first architectural property to discuss is the choice of range and bird’s eye
view. This combination can be interpreted as a separation of the 3D voxel view
into two orthogonal 2D views. Consequently, their combination preserves a
strong representation of 3D information, despite the underlying 2D projec-
tion. The conducted experiments also confirm this combination as highly ben-
eficial since it outperforms individual range and bird’s eye view baselines by
a large margin, see Table 7.6. In addition, state-of-the-art range or bird’s eye
view approaches are also outperformed [Mil20, Hur20, Ayg21, Zho21]. One
existing approach [Sir22] achieves a better mPQ by 0.006 but a significantly
worse semantic segmentation, and its computational complexity is about three
times higher. Therefore, the chosen combination of range and bird’s eye view
achieves high quality results with low computational complexity and enables
efficient temporal and sensor fusion. On the other hand, choosing these views
is simultaneously a limitation when focusing on the best results. The 3D voxel
view still contains more information than the combined range and bird’s eye
views and additionally contains 3D neighborhoods. In contrast, range and
bird’s eye view provide distinct and orthogonal 2D neighborhoods, both in-
cluding points far apart in 3D. While the combination mitigates this drawback
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to some extent, the voxel view inherently provides the actual 3D neighbor-
hoods. Consequently, the sparse voxel view is the more powerful representa-
tion but has a higher computational complexity. However, most recent multi
view approaches [Ye21b, Xu22, Li22b] gradually decreased its high compu-
tational complexity with the aid of additional views. Therefore, a promising
future strategy to exploit 3D neighborhoods for the presented multi view ap-
proach is the deployment of a sparse 3D backbone instead of the proposed
point view backbone.

The second architectural property to discuss is the novel point view back-
bone which connects the range and bird’s eye view backbone. The repeated
fusion of multi view features at distinct scales provides better results than
different late fusion baselines shown in Table 7.6, existing late fusion panop-
tic methods [Li22a], or existing early [Ali21, Ger21] and late fusion semantic
segmentation approaches [Lio21]. Moreover, the decision against considering
neighborhood relations in 3D point clouds based on expensive kNN-search
is supported by the improved results over [Lio21, Qiu22]. They rely on this
strategy in their final layer and achieve worse results while having a signif-
icantly higher computational complexity. One potential reason is that these
approaches exploit 3D neighborhoods only at one scale in their final layer. As
previously discussed, a more promising strategy to exploit 3D neighborhoods
is the sparse voxel view, enabling multi scale 3D feature aggregation.

The second contribution of this thesis is the proposed temporal approach
for exploiting temporal dependencies to improve 3D panoptic segmentation.
Its main novelty is the recursive 2D feature map fusion composed of tem-
poral alignment and update. The resulting novel and unique property is the
independence of considered past frames and computational complexity. This
property allows the temporal approach to consider past information of a po-
tentially arbitrary number of past frames. Hence, its effectiveness in exploit-
ing temporal information and its computational complexity are discussed in
the following.

The conducted experiments underline the effectiveness of the temporal fu-
sion, which considerably improves semantic and panoptic segmentation com-
pared to single frame baselines, see Tables 7.11 and 7.17. Additionally, existing
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temporal approaches are outperformed across various tasks, such as seman-
tic segmentation [Shi20, Wan22a], panoptic segmentation [Wan22b], dynamic
semantic segmentation [Shi20, Sch22b, Wan22a, Han22, Wan22b], and mov-
ing object segmentation [Shi20, Che21b, Mer22, Sun22]. Only one superior
approach for the latter task exists [Kim22], explicitly designed and optimized
solely for this task. These results underline the value of the generic temporal
approach, which is not optimized for one specific task but aims for general
feature enhancement. It also confirms the value of exploiting a considerable
number of past frames, which is further supported by the dedicated experi-
ments shown in Fig. 7.9. Both properties enable superior results across various
tasks and provide excellent improvements over the respective single frame
baseline. On the other hand, the lack of explicitly considering the movement
of other traffic participants is one of the limitations and offers potential for
future improvements. While Table 7.12 reveals that these classes still signifi-
cantly benefit, it limits the potential in scenarios with dense traffic and high
velocities of traffic participants. Considering their motion based on 3D flow
is a promising future research direction to address this limitation.

The computational complexity of the temporal fusion strongly benefits from
the proposed temporal alignment. It enables the reuse of previously computed
feature maps in range or bird’s eye view and decouples the number of con-
sidered past frames and computational complexity. As a result, the proposed
temporal framework has the lowest complexity among existing approaches
while simultaneously achieving the discussed superior results across various
tasks. Consequently, the decoupling is a precious property.

As a third contribution, the multi sensor approach fuses lidar and camera
feature maps to exploit camera information for panoptic segmentation of 3D
point clouds. Its main novelties are the iterative and pyramid-based fusion
architectures for lidar range view and camera feature maps. The following
discussion reasons the choice of the range view as fusion view and the pro-
posed fusion strategies.

Choosing the range view as fusion view is motivated by the successful com-
bination of RGB and depth information in the image domain [Sil12]. The ex-
cellent improvements over the single sensor range view network verify this

172



8.1 Discussion

choice. Other approaches [Zhu21c, Zha21b] also successfully fuse camera and
lidar information in this view. On the other hand, several methods for 3D ob-
ject detection [Phi20, Liu22] successfully transform and fuse feature maps of
multiple cameras into bird’s eye view. Exploiting this potential for panop-
tic segmentation would be promising future work, especially considering the
multimodal multi view architecture discussed later. Nevertheless, the range
view is a convincing choice, confirmed by the achieved enhancements and the
low computational complexity of the geometric transformation from camera
to lidar range view.

The presented multi scale fusion architectures significantly improve panoptic
segmentation compared to the single scale fusion baseline, see Table 7.23, and
early fusion [EIm19, Vor20] or single scale deep fusion [Mey19a] strategies de-
ployed by existing semantic segmentation approaches. Consequently, multi
scale fusion is important to leverage the full potential of sensor fusion. Em-
ploying these strategies inside an independent fusion branch combined with
the proposed and evaluated training strategy additionally provides robustness
against sensor failure. This crucial property is another advantage over exist-
ing approaches. The superior results of the extended pyramid strategy indi-
cate the full potential of sensor fusion at the cost of an over-proportionate
computational complexity. Hence, it was not employed in the multimodal
multi view architecture due to this limitation. However, these results indicate
additional potential, which requires further research for efficient exploitation.

The presented multimodal multi view architecture is the overall contribu-
tion of this thesis and combines all individual contributions into a unified
architecture. A careful and aligned design of the individual approaches and
contributions is the foundation of their successful combination. The temporal
approach is applicable to 2D lidar views and, thereby, an excellent extension
to the multi view framework with its 2D views and backbones. On the other
hand, the sensor fusion approach seamlessly replaces the lidar range view
backbone. The presented architecture can simultaneously exploit all three in-
dividual contributions, as shown by the experiments in Table 7.31. Further-
more, it outperforms all existing panoptic approaches on SemanticKITTI, and
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all approaches on nuScenes when considering semantic segmentation, see Ta-
bles 7.34 and 7.35. To the best of the author’s knowledge, no approaches exist
that combine these three key technologies for dense prediction tasks, such as
3D panoptic segmentation. The only other methods combining temporal and
sensor fusion, 4D-Net [Pie21] and LIFT [Zen22], tackle the task of 3D object
detection. However, both are single view approaches due to the targeted task
of object detection, where multi view approaches are less beneficial and rather
uncommon. Additional and significant differences are that 4D-Net performs
early fusion for temporal fusion, and LIFT relies on attention for sensor and
temporal fusion.

One additional advantage of the proposed approach is its low computation
complexity. It requires approximately 100 ms to predict a 3D panoptic seg-
mentation for the entire 360° environment with temporal and sensor fusion
of six cameras. This inference time is considered real-time for a common lidar
recording frequency of 10 Hz. Obviously, no server-grade GPU will be avail-
able when deployed in an autonomous vehicle or robot. However, the run-
time was measured in single precision using float32. Switching to half preci-
sion based on float16 halves the inference time without notably affecting the
results. Further significant reduction can be achieved with int8 quantization
and quantization-aware training. While depending on the available hardware,
these optimizations allow embedded real-time deployment.

While the combined architecture provides excellent results with low compu-
tational complexity, it also comes with some challenges and limitations. The
multi view approach with its three views complicates temporal and sensor
fusion since it is challenging to benefit all views. It is convincingly solved
for temporal fusion but requires the memory in both 2D views to cover range
and bird’s eye view feature maps. On the other hand, sensor fusion is only
integrated into the range view branch, which achieves great improvements.
However, it does not affect the instance feature maps of the bird’s eye view
branch and potentially misses exploiting the full capabilities of sensor fusion.
Therefore, fusing the camera and lidar in bird’s eye view, as a replacement
or in addition to the range view fusion, might provide a further enhanced 3D
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panoptic segmentation. At first glance, performing temporal and sensor fu-
sion once in the point view resolves these drawbacks. However, this strategy
would again not improve the bird’s eye view feature maps for the instance
predictions. Furthermore, the temporal experiments with GRUs revealed that
context aggregation after temporal fusion is crucial, which is missing in the
proposed point view backbone. One possibility to address these limitations is
a bidirectional information flow, which propagates not only range and bird’s
eye view features to the point view, but also the fused multi view features
back to the 2D views. As a result, the bird’s eye view and instance feature
maps would benefit from sensor fusion in range view and vice versa.

When considering the overall results achieved by the multimodal multi view
approach, there is still a considerable gap to accomplish a mIoU or mPQ of
1.0, despite exploiting temporal and sensor fusion. Likewise, other state-of-
the-art methods are unable to close this gap. Two underlying reasons can be
identified that considerably impact the panoptic results.

The first reason is the imperfection of the datasets, which suffer from label
errors and considerable class imbalance. Label errors negatively impact the
learning of underlying concepts and lead to errors in the evaluation and met-
rics. Class imbalance complicates the learning of underlying concepts for rare
classes since only a few examples are present in the training set. Furthermore,
vaguely defined semantic classes with high intra-class variance, such as other-
vehicle or other-ground, are very hard to learn. These factors have a larger
impact for large and meaningful test sets with many semantic classes, such
as SemanticKITTI For smaller test sets with fewer semantic classes, such as
nuScenes, higher values for mPQ and mlIoU are achieved. Since these fac-
tors are independent of the chosen approach, they cannot be significantly
mitigated by temporal or sensor fusion.

The second reason is the lidar sensor itself with its varying sparsity. Lidar
point clouds get increasingly sparse with growing distance to the sensor. Con-
sequently, distant points have only a few or no other points in their immedi-
ate neighborhood. However, classifying an individual point without context
is hardly possible. In addition, distant instances of thing classes are often cov-
ered by very few points and must be recognized based on these. Temporal and
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sensor fusion can mitigate these effects to some extent. However, temporal
fusion cannot provide benefits in the distance of the driving direction since
no past measurements exist in this area. While cameras with their high res-
olution are very valuable, their provided information about the environment
also decreases with increasing distance.

Overall, large and diverse datasets containing many instances and points for
all classes and high quality labels are the most promising step towards consid-
erably higher mPQ and mIoU. Furthermore, improved lidar resolution and
approaches can further contribute towards metrics closer to the maximum.

8.2 Outlook

Although the proposed multimodal multi view approach achieves excellent
results, future research has the potential to further enhance the proposed ar-
chitecture and achieved panoptic results. Some of the proposed research di-
rections have already been identified in the previous discussion and comprise
all three contributions as well as the instance clustering:

+ The information flow in the multi view architecture is unidirectional
from the 2D backbones to the point view backbone. A promising future
enhancement is the propagation of the fused multi view features back to
the individual views, similar to [Xu21a]. However, this method consid-
ers different views and provides only semantic segmentation. Exploit-
ing bidirectional information flow for the proposed multi view panoptic
approach has the additional potential to enhance the instance predic-
tions in bird’s eye view based on multi view features.

« The sparse 3D voxel view has been identified as the most powerful in-
dividual view in literature. Replacing the point view backbone with
an efficient sparse voxel view backbone offers the potential of 3D con-
text aggregation, as addition to the deployed 2D aggregation in range
and bird’s eye view. Recent approaches [Ye21b, Ye21a] achieve promis-
ing semantic segmentation based on small backbones to counteract the
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8.2 Outlook

computational complexity drawback of the sparse voxel view. With fu-
ture research to further reduce the complexity, this replacement has the
potential to provide enhanced panoptic segmentation while maintain-
ing a low computational complexity.

The temporal approach can be further enhanced by explicitly consid-
ering the motion of traffic participants. A promising direction is the
prediction of 3D flow for every 3D point. This flow information can
be projected into both 2D views and extend the temporal alignment to
consider the additional flow information. This extension is most bene-
ficial in scenarios with many fast-moving objects. While the velocity-
dependent degradation of the temporal approach is small, further re-
duction is still valuable.

Recently, multi camera fusion in bird’s eye view for 3D object detection
has shown great success. However, it has not yet been investigated for
semantic or panoptic segmentation in a multi view setup. Since the de-
ployed range view fusion is independent of the instance branch, sen-
sor fusion in bird’s eye view has the potential to improve the overall
panoptic segmentation further since it benefits semantic and instance
features.

The clustering of thing points into instances is done greedily in this
thesis and was not the focus of its contributions. However, the cluster-
ing itself has a significant potential to improve the panoptic segmenta-
tion [Li22b]. Nevertheless, existing clustering algorithms rely on sev-
eral thresholds and parameters. Learning these from the underlying
data can potentially enhance the results and omits the necessity to tune
these parameters by hand.

When aiming for an improved panoptic segmentation, it is often a trade-off
between improved results and computational complexity. If a low computa-
tional complexity is important, the research in the mentioned directions can

focus on finding efficient extensions. Otherwise, research can focus on fully

exploiting the respective potential to achieve greater improvements for 3D
panoptic segmentation.
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Advanced Driver Assistance Systems
Atrous Spatial Pyramid Pooling
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