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Explainable ML model outperforms benchmark model based on the merit order principle.
SHAP analysis reveals which features affect electricity prices beyond residual load.
Load, wind and solar generation are key features, but dependencies differ slightly.
Model quantifies the impact of fuel prices as well as generation ramps.
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A B S T R A C T

Electricity prices in liberalized markets are determined by the supply and demand for electric power, which are
in turn driven by various external influences that vary strongly in time. In perfect competition, the merit order
principle describes that dispatchable power plants enter the market in the order of their marginal costs to meet
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the residual load, i.e. the difference of load and renewable generation. Various market models are based on
this principle when attempting to predict electricity prices, yet the principle is fraught with assumptions and
simplifications and thus is limited in accurately predicting prices. In this article, we present an explainable
machine learning model for the electricity prices on the German day-ahead market which foregoes of the
aforementioned assumptions of the merit order principle. Our model is designed for an ex-post analysis of prices
and builds on various external features. Using SHapley Additive exPlanation (SHAP) values we disentangle the
role of the different features and quantify their importance from empiric data, and therein circumvent the
limitations inherent to the merit order principle. We show that load, wind and solar generation are the central
external features driving prices, as expected, wherein wind generation affects prices more than solar generation.
Similarly, fuel prices also highly affect prices, and do so in a nontrivial manner. Moreover, large generation
ramps are correlated with high prices due to the limited flexibility of nuclear and lignite plants. Overall, we
offer a model that describes the influence of the main drivers of electricity prices in Germany, taking us a
step beyond the limited merit order principle in explaining the drivers of electricity prices and their relation
to each other.
1. Introduction

The reliable supply of electric power is vital for modern societies [1,
2]. A stable operation of the electric power system requires that power
generation and load are always balanced [3]. Electricity markets are
central to coordinate generation and demand; from long-term future
contract to short-term spot trading. This coordination is becoming
increasingly challenging due to the ongoing energy transition [4,5].
Generation from renewable sources such as wind and solar power is
determined by the weather and thus highly volatile [6], making also
the electricity price highly volatile [7].

European electricity markets were liberalized starting in the 1990s
[8]. Before, generation, transmission, and distribution were typically
integrated in a single company holding a regional monopoly. In lib-
eralized markets, different suppliers compete which should lead to an
improved efficiency and lower costs [8]. Today, several markets exist in
Europe which enable electricity trading on different time horizons [9].
In particular, the day-ahead markets of the European Power Exchange
(EPEX SPOT) cover 13 countries and reached a market volume of
more than 500 TWh in 2019 [9]. Recently, European energy markets
were heavily disturbed by the Russian invasion of Ukraine causing an
intensified research interest (see, e.g. [10,11]).

The functioning and design of electricity markets is a central topic
in energy economics [12,13]. Mechanistic models, such as agent-based
models, start from first principles and derive statements that can be
verified or falsified on data [14,15]. Data-based approaches act com-
plementary, i.e., they start from data and make no assumptions of
underlying mechanisms. General rules that govern the system are in-
ferred, providing valuable inputs to improve mechanistic models. In
recent years, machine learning has become an important method in
electricity market research. The vast majority of studies focuses on the
forecasting of electricity prices [16]. However, modern developments
in interpretable machine learning enable much richer applications.
In particular, they allow for in-depth scientific insights from large
heterogeneous data sets [17].

In this article, we pursue the novel road of offering explanations
for the dependencies and correlations within the energy markets and
forego focusing on forecasting performance. We establish a machine
learning model for the electricity prices on the German day-ahead
spot market. We apply SHapley Additive exPlanations (SHAP) [18] to
explain the model and provide insights into which factors determine
the market price. We use an extended data set to identify driving fac-
tors which are commonly neglected in elementary studies or machine
learning models [16]. The model substantially outperforms the more
commonly employed merit order principle, revealing additional details
into the function of the market. For instance, the model quantifies
the impact of fossil fuel prices and load ramps, as well as nonlinear
interactions of different features, and thus takes us one step further in
2

accurately understanding the drivers of the electricity prices.
The remaining article is structured as follows. In Section 2, we
provide an introduction to the German electricity market, market mod-
els based on the merit order principle and review previous works in
the field. In Section 3, we discuss how we obtained and processed
data, how the machine learning model is trained and interpreted.
We then continue in Section 4 to analyze the results of the machine
learning model, in particular demonstrating how load, wind and solar
generation but also fuel prices critically influences electricity prices. We
close in Section 5 with a discussion.

2. Background and literature

2.1. The German electricity markets

Electricity is traded on many different markets until it is deliv-
ered at a time 𝑡0. Basic trading is done in the forward, day-ahead
and intraday markets, while long-term non-public contracts between
electricity producers and consumers via over-the-counter agreements
are also possible. Here, we give a short overview of the German market
structure focusing on day-ahead markets. Notably, Germany shares its
bidding zone with Luxembourg and also shared it with Austria until 1st
of October 2018. In the following, we will refer to this shared bidding
zone as German markets for the sake of simplicity.

To ensure that power generation matches the load, electricity is
traded until a day before delivery in the day-ahead market or even
minutes before delivery in the intraday market. This makes adaptation
to sudden events like weather changes or unavailability of power
plants possible and therefore reduces the need of expensive control
reserves [19]. Since the intraday markets are smaller in volume and
open after the day-ahead markets are closed, they are mainly driven
by the day-ahead prices and react to short-term system changes like
weather forecast error. This leaves the day-ahead markets as the main
driver for general electricity prices reacting directly to availability of
generation and load capacity.

Day-ahead trading is possible via different exchanges. In Germany
the three operating exchanges are EPEX Spot SE, Nord Pool EMCO AS
and EXAA AG [20]. Trading is possible from 10:00 until 12:00 the day
before delivery at 𝑡0, where all exchanges are coupled with the pan
European Single Day-Ahead Coupling (SDAC) to create one coupled
market clearing prices (MCP) for all bidding zones [21]. The MCP is
calculated using an algorithm called EUPHEMIA, by using the bids and
offers from all exchanges and the network constraints provided by the
responsible TSOs.

In a simple and uncoupled market, electricity producers place their
offer, which is a specific amount of electricity offered for a specific
price for a given time period. Oppositely, electricity consumers place
their bid, representing a specific amount of electricity they want to
consume for a specific price. Once the order book closes, meaning
no bids and offers can be placed anymore, the market clearing price
is determined as the highest offer that finds a matching bid in each

respective time window. The market clearing price is paid by every
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Fig. 1. Explainable Machine Learning for day-ahead electricity prices. (a) Electricity price time series from the German day-ahead EPEX spot market from January 2017 to 2020.
(b) In a single-feature benchmark model based on the merit order principle, prices are a function of the residual load, i.e. the difference of load and non-dispatchable renewable
generation. The colormap shows a 2D histogram of the raw data, the line is a 3rd order polynomial fit. (c) Performance of the benchmark model and a gradient boosted tree
(GBT) model, measured by the mean absolute error (MAE) on the test set. The GBT model outperforms the single-feature benchmark model and reveals more information about

the electricity market.
market participant [7]. Looking at the European markets, the SDAC
enables cross-border trading, where offers and bids can be matched
over different bidding zones, while also respecting network constraints.

Energy in the day-ahead markets is mainly traded for all 24 h of the
next day separately while there exist some smaller trading time frames
and also specific blocks of important hours e.g. which represent base-
and peak-load, depending on the operating exchange.

2.2. The merit order principle and a single-feature price model

Models based on the merit order principle provide a first approxi-
mation for the outcome of the day-ahead electricity market. This class
of models is frequently used to describe the impact of renewable energy
on electricity markets in a mechanistic way [22–24]. We briefly review
this approach, which will later serve as a benchmark model for more
advanced machine learning models.

The electricity demand or load 𝐿 is mostly inelastic in the short
term [25]. Demand side management aims to increase the short-term
flexibility and elasticity of demand, such that it can be adapted to the
availability of renewable power generation. However, the progress of
demand side management in the German market is very limited as
private consumers and small enterprises typically experience no price
signals [26]. Furthermore, day-ahead trading relies only on load fore-
casts, not the actual load. Load forecasts in the ENTSO-E region are cal-
culated on the historic load profile on similar days [27] and generally
assume ‘‘inelasticity of the load to price’’ [28]. Hence, we assume that
𝐿 depends only on the time 𝑡, but not on the price 𝑝 for the time being.

In perfect competition, the demand is satisfied by generating units
according to their marginal costs. All units with marginal costs below
the market price 𝑝 can realize positive contribution margins and are
thus ‘‘on’’, all others are ‘‘off’’. Hence one can obtain an approximate
3

view of the market outcome by sorting all generating units according to
their estimated marginal costs. Renewable power plants, in particular
wind and solar power, have high investment costs but almost vanishing
variable costs. As marginal costs are dependent on the variable costs
only, the marginal costs of these two renewable power sources are
usually neglected. Furthermore, renewable plants are prioritized in
the German market according to national regulations (‘‘Erneuerbare
Energien Gesetz’’). Hence, we can assume that the total renewable gen-
eration 𝐺ren is independent of the market price 𝑝. However, renewable
generation depends on the weather and thus varies strongly with time 𝑡.
If the availability of the dispatchable power plants varies little in time,
we can assume that the generation 𝐺dis depends only on the price 𝑝. In
the German market, nuclear and lignite power plants have the smallest
marginal costs and thus contribute first. Notably, the marginal costs of
individual power plants are not known exactly and must be estimated.

We can now formulate the condition of market equilibrium. Supply
and demand match if

𝐿(𝑡) = 𝐺ren(𝑡) + 𝐺dis(𝑝(𝑡)). (1)

Solving for the price yields

𝑝(𝑡) = 𝐺−1
dis

[

𝐿(𝑡) − 𝐺ren(𝑡)
]

, (2)

where 𝐺−1
dis denotes the inverse function. That is, the market price is a

function of the difference of load and renewable generation, which is
commonly referred to as the residual load.

Fig. 1b shows the price in the German day-ahead market as a
function of the residual load. Data has been collected for 3 years and
is displayed as a 2D histogram. We observe that the assumption (2)
provides a reasonable approximation of the actual market behavior —
the price generally increases with the residual load. We fit a third-
order polynomial to the data, which had the best performance among
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all polynomials up to the ninth order on the test set. The third-order
polynomial fit will serve as a benchmark model in the following. We
find that the data scatters quite strongly around this fit, as various
effects are not taken into account in this approximate treatment.

2.3. Previous work on electricity price prediction and modeling

Understanding and forecasting electricity prices is an important
research question in energy science. Therefore, day-ahead electricity
prices have been studied from many different perspectives using a
variety of methods and models [16,29]. Data based approaches range
from autoregressive models, where predictions of future prices are
computed from the historic time series alone [30,31], to regression
models including many different external features. Which features are
important for electricity price predictions is still a matter of current
research. For instance, the importance of weather forecasts has been
highlighted in [32,33]. Most recently, more complex machine learning
models have been proposed for electricity price forecasting [16], us-
ing many different approaches such as convolutional neural networks
(CNNs) [34] or recurrent neural networks (RNNs) [35,36].

Many machine learning approaches are based on black-box models,
which limits scientific insights [17,37] and may induce security risks
in critical sectors [38,39]. A promising alternative is provided by meth-
ods from eXplainable artificial intelligence (XAI), including inherently
transparent models as well as post-hoc model explanations [40]. The
field of XAI has gained a strong interest in energy systems analysis
in recent years [41], in particular for applications to power system
operation and stability. For instance, XAI was used in transient stability
assessment [42], the identification of risks for frequency stability [43]
or load and renewable generation forecast [44]. Furthermore, XAI has
been used to analyze factors that determine the success of large power
system infrastructure projects [45]. Applications of XAI methods for
electricity markets are still in its infancy. A recent study by Tschora
et al. [46] mainly focused on the identification of relevant features in
forecasting models.

Overall, machine learning methods have been almost exclusively
used for electricity price forecasting, not for explanations. However,
understanding which factors determine electricity prices is an impor-
tant question in energy science, including for instance the impact of
fossil fuel prices [11].

In contrast to data-based methods, model-based approaches try
to predict prices from fundamental economic considerations. There
exist several mechanistic models that have been developed to sim-
ulate electricity markets and explain the emerging electricity prices.
For instance, agent-based models have been developed to simulate
market processes using a variety of external features from many ar-
eas and explain the emerging electricity prices [15,47]. Additionally,
optimization models are routinely used to determine the dispatch and
the market price [3,12]. Since simulation and optimization models
are inherently transparent they provide an explanation of electricity
prices from economic principles. However, they are limited to the
mechanisms and interactions explicitly included by the modeler. XAI
models can complement this approach by identifying key features,
their dependencies and interactions, which in turn could inspire model
extensions.

3. Methods

We develop an explainable machine learning model to understand
German day-ahead electricity prices beyond the merit order effect
introduced in Section 2.2. Our focus lies on predicting electricity prices
given all other feature values at that point in time. That is, we trans-
parently model and analyze the electricity market and the feature-
price-interactions, which would not be fully possible in a forecasting
setting.

For any further technical details about the methods the full project
code is available on GitHub [48]. This includes data preparation,
4

hyperparameter optimization and model explanation. s
3.1. Data

As our prediction target, we use the hourly day-ahead electricity
prices for Germany, which we collect from the ENTSO-E transparency
platform [27]. Since European day-ahead market prices are coupled
via the SDAC explained in Section 2.1, we get only one price for all
exchanges.

It is important to note that Germany shares its bidding zone with
Luxembourg and also shared it with Austria until the 1st of October
2018 [49]. Throughout the article, German electricity prices denote the
rice in the bidding zone of the given time period. Prices before and
fter the change of the bidding zones are joined together to create one
ontinuous time series (see Fig. 1a).

As inputs for our prediction model, we use power system fea-
ures and fuel prices. Power system features are collected from the
NTSO-E transparency platform [27] and fuel prices are collected from
RIVA.DE AG [50]. A full list of the features can be seen in Fig. 2.

Power system features include day-ahead forecasts of load, solar
eneration, wind generation, the day-ahead total generation and im-
orts and exports. The features are aggregated for the four control areas
f 50Hertz Transmission, Amprion, TenneT and TransnetBW. Wind
eneration is aggregated from wind on- and offshore generation. Total
eneration corresponds to the total scheduled generation in the day-
head market. Import and export is aggregated from the cross-border
lows between Germany and the neighboring bidding zones, where a
ositive (negative) value corresponds to more energy imports (exports).
e also supplement the power system features with ramps for each

eature, which are calculated using the formula ramp(𝑡) = 𝑓 (𝑡)−𝑓 (𝑡−1)
here 𝑓 (𝑡) denotes the feature at a point 𝑡 in time.

Fuel prices include oil prices and natural gas prices. Because both
eatures have a daily time resolution we create a linear interpolation to
et an hourly time resolution matching the time sampling of the model.
oal prices vary only very little during the considered time span. We
ote that we exclude CO2 prices, although they affect electricity prices
n the long-term. During the considered time period, CO2 prices have
ncreased almost monotonically allowing the ML model to memorize
he train set leading to immediate overfitting. In particular, we tested
odels including the CO2 price and found a high generalization error.

We use 3 years of data from the years 2017, 2018 and 2019 in order
o get enough data for training and evaluation. Hourly data points with
issing values for any feature are dropped to prevent fitting corrupted
ata.

.2. Model

To model the German electricity price, we use Gradient Boosted
rees (GBTs) on our input data consisting of power system and fuel
rice features. GBTs offer complex non-linear models which we need
n order to get more precise predictions of the electricity price than
he benchmark model based on a common approximation of the merit
rder principle [51]. We use the LightGBM framework for our imple-
entation in order to achieve a fast model training [52].

While single decision or regression trees are interpretable by report-
ng their decision path, ensemble methods, such as GBTs, trade a higher
erformance for a harder-to-interpret model. Still, using methods such
s SHAP enables us to get a detailed explanation of the GBTs which we
xplain in detail in Section 3.3.

For the training process, we split our data into a training (48%),
alidation (32%) and test (20%) set. The reason for the unusual size
f the validation set is that overfitting represents a serious issue for
he given dataset. By doubling the validation set and splitting the set
nto four separate validation sets, we were able to reduce overfitting to
n acceptable level. Additionally, reducing the train set did not cause
ny performance loss. The four validation sets are used for evaluation
f the performance after each training epoch, where the training is

topped if the performance of one of the validation sets is not improving
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Fig. 2. Feature importance in the GBT model for the day-ahead electricity prices. Feature importances are computed from SHapley Additive exPlanations and normalized to one
(see text for details). Features contributing to the residual load are most important as expected, but fuel prices also rank high.
for a predefined number of epochs. Since we focus on explaining our
model instead of forecasting electricity prices as mentioned above, we
shuffle our data before splitting. We use a weekly shuffle, where we
only shuffle the dataset by weeks instead of hours before splitting. This
gives us a more general model because we reduce the amount of similar
data points in the training, validation and test set. We use the 𝐿2 loss
or the training process and the corresponding MAE score for evaluating
he performance of the models.

We use a random search to find the best hyperparameters where we
valuate the performance of the fully trained models on the unseen test
et. We choose the model with best performance on the test set.

For specific analysis tasks, we need to ensure the consistency of our
odels. We achieve this by analyzing the 10 best models of our random

earch for 10 different weekly random splits.

.3. Model explanation

The model is interpreted using SHapley Additive exPlanation (SHAP)
alues after training [18,53]. SHAP values quantify the positive or
egative impact of each feature relative to the overall base value. In
ur case, SHAP values show which features lead to higher or lower
rice predictions. SHAP values are unique among all feature attribution
ethods as they fulfill certain desirable properties for model explana-

ion [53,54]. They provide a mathematically consistent attribution of
prediction to the individual features and thus avoid inconsistencies

resent in other methods.
For example, local accuracy guarantees that SHAP values sum up

o the model prediction, meaning all feature contributions plus a base
alue [54]. Overall for the 𝑛 feature values 𝑥1,… , 𝑥𝑛 the output of the
odel 𝑓 (𝑥1,… , 𝑥𝑛) can be written as

(𝑥1,… , 𝑥𝑛) = 𝜙0 +
𝑛
∑

𝑗=1
𝜙𝑗 (𝑥1,… , 𝑥𝑛),

here 𝜙0 corresponds to the base value of the model predictions and
𝜙𝑗}𝑛𝑗=1 are the SHAP values of the corresponding features.

From the local SHAP values we quantify a global feature importance
y averaging over all SHAP values for each feature and normalizing
hem by the highest value (see Fig. 2). We also use SHAP dependency
lots (see Fig. 3a–c), which give detailed insights into the feature
ontributions and utilize SHAP interaction plots to get insights about
eature interactions inside the model (see Fig. 4 and 5).

Before we proceed, we briefly discuss how SHAP values help to
nterpret complex energy systems. In general, analysis of the raw data
or these complex systems [55] is problematic because features are
5

Table 1
Summary of the performance measures on the merit order based
benchmark and GBT model. The GBT model outperforms the merit order
model for every metric up to a relative increase of 31.1% for the MAE.

MAE SMAPE R2-score

Merit order 8.06 23.25 0.66
GBT 5.53 17.82 0.8

highly correlated and hence many data-analysis tools will yield spuri-
ous results. For example, wind and solar power have opposite seasonal
dependencies, and solar and load have opposite daily dependencies.
Correlations in the raw data may thus be largely due (anti-) correlations
with another feature. This problem is well known in the literature
and different methods were discussed to mitigate the problem, see
e.g. [56]. Using machine learning methods, such as GBTs, coupled with
explainability approaches, such as SHAP, allow us to disentangle these
interactions. In this way, we obtain a mathematically consistent attribu-
tion of the prediction to the individual features [57,58]. Nevertheless,
our analysis is bound to a specific model, which will only reach a finite
accuracy. The remaining effects cannot be explained (yet).

4. Results

4.1. Model performance

The developed machine learning model is capable of predicting day-
ahead electricity prices with an average performance of MAE = 5.54
(Fig. 1c). Roughly speaking, the model explains the price with an error
of 5.54 EUR/MWh on average. The performance is substantially better
than for the benchmark model based on a common approximation of
the merit order principle reaching only MAE = 8.06. Our model out-
performs the benchmark model by 2.52 EUR/MWh in absolute values,
which is a relative increase in performance of 31.3%. We also evaluated
both models with the SMAPE and R2-score for further validation of the
results (Table 1). In summary, all three metrics are within a reasonable
range for predicting electricity prices. Our model outperforms the
benchmark model for all three metrics. We conclude that the machine
learning model captures several market effects which are neglected in
the single-feature benchmark model described in Section 2.2. We will
now discuss these effects in detail, interpreting the machine learning

model with the SHAP framework.
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Fig. 3. Impact of the residual load features in the GBT model. (a)–(c) Dependency plots for the residual load features load, solar generation and wind generation (measured by
mean absolute SHAP values). The light blue line is a linear fit. (d) Slope of the linear fits in the dependency plots. Violin plots shows the results for the ten best models for ten
different data splits. The residual load features have slightly different linear relation to the electricity price, which is not captured by the benchmark model based on the merit
order principle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.2. Features affecting the electricity prices

The developed machine learning model takes into account a variety
of different features beyond the residual load. The SHAP values provide
a consistent measure of the feature importance and thus reveal which
factors have the strongest influences on the prices. Cumulative feature
importance is shown in Fig. 2.

As expected, the main driver of the electricity prices is given by the
residual load. More precisely, the three residual load features (load,
wind and solar generation) are also the most important features in
the machine learning model. The dependency of these features will be
discussed in more detail in Section 4.3.

Fuel prices rank at position 4 and 6, with oil prices being more
important than gas prices. This dependency is not surprising as fuel
prices directly affect the variable costs of the respective power plants.
However, the precise interpretation of this finding is less clear and will
be further discussed in Section 4.6.

Prices are obviously related to cross-border trading. The import-
export balance is the fifth most important feature and will be discussed
in detail in Section 4.4. The total generation and its ramp rank at
position 7 and 8. The generation ramp is particularly interesting as it
reveals the influence of previous time steps, see Section 4.5 for details.

4.3. The role of wind, solar and load

The residual load features, i.e. load, solar generation and wind
generation, are the most important features for the machine learning
model (Fig. 2), in agreement with the benchmark model based on the
merit order principle explained in Section 2.2. We take a more detailed
look at the contribution of the residual load features by analyzing the
corresponding partial dependency plots and interaction plots.

The benchmark model assumes that the price depends only on
the residual load, hence the three features enter in an equal way
up to a sign. Analyzing the respective partial dependency plots in
Fig. 3a–c, we observe a similar dependency as expected, but also some
6

subtle differences. For the detailed analysis of the differences and the
observed scattering, we simplify the comparison of the three features
by multiplying the renewable generations by −1.

The dependency on load, wind and solar generation is approxi-
mately linear (Fig. 3a–c), hence we use a linear fit for a quantitative
analysis. We create linear fits for the partial dependency plots for the 10
best models after random search of 10 different random weekly shuffled
splits. Fig. 3d shows the slope of the linear fits on the dependency plots
for the 100 different models as violin plots. The different models seem
to be consistent with their dependencies since the violin plots show a
clear distribution around the mean value of the slope. Only the violin
plot for solar generation shows some outliers.

The benchmark model based on the merit order principle assumes
an equal contribution of all residual load features, but the machine
learning model reveals some subtle differences. The slopes of the de-
pendency on load and solar are rather similar, with solar being slightly
smaller. In contrast, the slope of the dependency on wind is notably
larger. The smaller influence of solar generation may be due to the fact
that solar generation is more distributed in the German power grid,
with a large fraction installed directly at the consumers. This could
lead to solar generation acting as a negative load in the power grid,
which would naturally cause load and solar generation to have a similar
impact on the electricity price. In contrast, the generation of wind is
more concentrated in the north of Germany, especially in the case of
off-shore wind generation. This could lead to wind generation acting
more like other power plants in the energy system, making the presence
or absence of wind generation more important for the electricity price.

A further reason for the different role of wind and solar may lie
in their respective market rules. While small scale PV installations
typically rely on fixed feed-in tariffs, wind turbines are incentivized to
sell their power according to the wholesale electricity market prices
(‘Direktvermarktung’, see [59]).

The small scattering visible in the dependency plots can be ex-
plained by feature interactions. Neglecting all interactions in the de-

pendency plot in Fig. 4a–c second column, scattering becomes smaller
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Fig. 4. Dependencies and interactions for (a) the load, (b) solar generation, (c) wind generation and (d) cumulative import or export, respectively. The first column shows the full
SHAP dependency plot, the second column the SHAP dependency plot without any interactions. The third to fifth column show the SHAP interactions of three selected features,
where the color indicates the value of the interacting feature. Fuel prices play an important role when interacting with other features in the GBT model. Further details are given
in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and the dependency of the residual load features is even clearer. The
dependency on load and solar generation is approximately linear, while
the dependency on wind shows a clear non-linearity for large in-feeds
above 30 GW. In this case, flexible power plants such as natural gas
or oil plants have already left the market. Then, market equilibrium
requires either an increase in exports, an increase of the load or a
reduction of generation from mostly inflexible power plants such as
lignite or nuclear. It appears plausible that these three mechanisms are
comparatively inelastic such that the price decreases rapidly.

Looking at three of the most important interacting features, we
can attribute most of the scattering present in the normal partial
dependency plots.

Load has its strongest interactions with the renewable generation
wind and solar. Both interactions are similar and enhance the depen-
dency on load. This is reasonable since these features combined serve
as a good approximation for the residual load, which is again already
a good predictor for the electricity price. We can also see a strong
interaction with the gas price, especially for high gas prices and high
load. This is because more gas power plants are active for higher load,
which then leads to higher electricity prices if gas prices are also high.
7

Wind and solar generation have a similar interaction structure, in
particular there is a strong interaction with the load but also with fuel
prices. For the load, interactions are particularly strong for high renew-
able generation. If the load is small, we recover the situation discussed
above for the case of high wind generation, where market equilibrium
requires the adaption of comparatively inelastic participants and thus
entails strong price signals which may even include negative prices.
This effect is largely compensated if the load is also high, leading to a
strong increase of the price.

We also see strong interaction with the fuel prices, both amplifying
the dependency for low wind or solar generation and reducing it for
high wind or solar generation. These interactions originate from the
fact that more fuel-dependent power plants are active if renewable
generation is low and therefore the electricity price is more dependent
on fuel prices in this case.

Summarizing, the residual load features have an overall strong in-
teraction with fuel prices, mostly due to more dispatchable generation
being active for specific values of the residual load features. Fuel prices
not being included in the single-feature benchmark model could explain
its lower performance compared to the GBT model.
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Fig. 5. Effect of generation ramps and limited generation flexibility on electricity prices. The first column shows the full SHAP dependency plot of the total generation ramp, the
second column the SHAP dependency plot without any interactions. Further panels show the SHAP feature interactions for five selected interacting features. The color indicates
the value of the interacting feature. Ramps affect/alter the electricity price prediction by up to 10%, depending on factors as load and renewable generation, but also on fuel
prices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.4. Prices and cross-border trading

Electricity prices and trades are intimately related. In the machine
learning model, the import-export balance ranks at fifth place in terms
of the feature importance (Fig. 2). Different mechanisms can contribute
to this dependency. On the one hand, high prices foster imports from
other countries. On the other hand, imports provide a further source of
electricity and should thus lead to lower prices. These two interactions
can be interpreted as opposite causal relations, where either the price
or the import-export balance is acting as the driver.

However, we stress that a causal interpretation is not that straight-
forward. The prices in different bidding zones and the cross-border
trades are not determined sequentially, but simultaneously via the
EUPHEMIA algorithm [21], see also Section 2.1.

The SHAP dependency plot reveals a negative correlation between
the import balance and the day-ahead price (Fig. 4d). That is, imports
are typically related to lower prices, while exports are related to
higher prices. To understand this correlation, we consider one specific
market situation. Assume that there is a high wind power generation
in Germany. Typically, there are many low price offers in the German
bidding zone, leading to a low market clearing price. However, if there
is a strong demand in a neighboring country, additional offers will be
accepted for exports, leading to an increase of the market clearing price.
Hence, it appears as if the exports drive the market price, but in fact
both are driven by a common cause: the total supply and demand in
the two neighboring countries combined.

The strongest feature interactions are found for wind power gener-
ation and load. The interaction is opposite, which is comprehensible
because the two features enter the residual load with opposite sign.
We find that an increase of the residual load reduces the observed
dependency, while a decrease of the residual load increases it.

Since SHAP values reveal only correlations of features and targets,
it is difficult to reach a comprehensive causal interpretation. Still,
based on our results, we formulate the following hypothesis. A high
demand from a neighboring country generally leads to exports and to
an increase of prices. But if the domestic demand (the residual load)
is also high, there are no cheap offers left in the order book that
8

would allow for exports. Hence, the dependency of exports and prices
diminishes.

Notably, there is large scatter to lower prices in the case of a
vanishing import-export balance. This might be due to a temporary
reduction in the transmission capacity preventing exports, or corrupted
data (see [60] for a discussion of the data quality of the ENTSO-E
transparency platform).

Finally, we also see an interesting interaction of the import-export
balance with gas prices. Lower gas prices tend to reduce the overall con-
tribution of import-export while higher prices amplify this contribution.
This could indicate that at low gas prices, local gas generation reduces
the dependency of a country to exchange power with neighboring
countries and hence the price is influenced less by its imports and
exports. In the opposite case of high gas prices, countries will be more
willing to exchange energy and the effect of cross-border flows on
prices increases.

4.5. Impact of ramps

The machine learning model reveals a weak dependency of the price
and the power generation ramps (Fig. 2). Hence, the market outcome
in a certain hour is affected by previous hours. The partial dependency
plot (Fig. 5 left) indicates a positive correlation between the price and
the total generation ramp. Hence, prices tend to be higher if generation
is ramped up and lower if generation is ramped down.

This finding can be attributed to a limited flexibility of conventional
power plants, in particular nuclear and lignite plants [61]. First, tech-
nical limits exist for the ramping speed and the minimum generation in
partial load. Second, ramping and cycling induce additional costs, for
instance, due to wear and tear of the power plant. Hence, there is an
incentive to limit generation ramps which can affect the bidding on the
market. In case of a decreasing total generation, operators may bid at
a lower price to remain in the market and avoid ramping downwards.
Similarly, in case of an increasing total generation, operators may bid
at a higher price. As a consequence, the price increases with the total
generation ramp.

The role of generation ramps depends on several other factors. The
SHAP dependency plot is strongly scattered which can be attributed to
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Fig. 6. Impact of oil and gas prices on the electricity price predictions. (a)–(b) SHAP dependency plot of the oil price (gas price), where the colored area marks a change for the
dependency in the GBT model. (c) Electricity price time series from the German day-ahead EPEX spot market from January 2017 to 2020. Dark (light) blue areas mark the time
periods with oil (gas) prices above the dependency threshold. We observe a clear change in the dependency on fuel prices in the model, but it cannot be asserted whether this is
a causal relation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the presence of feature interaction. A high value of the load amplifies
the impact of generation ramps. If the load is high, more conventional
generation is needed in general, such that ramping limits and costs are
more important. Vice versa, high values of wind and solar generation
mitigate the impact of generation ramps as less conventional plants
are needed. Furthermore, high oil and gas prices amplify the impact
of generation ramps, too. Oil and gas power plants typically have a
higher flexibility than nuclear or coal power plants. Higher fuel prices
penalize these plants, such that nuclear or coal power plants may have
to contribute more strongly to the ramping process.

4.6. Impact of fuel prices: Correlation or causality?

Looking at the feature importance in Fig. 2 we note that the machine
learning model is critically dependent on fuel prices. The oil price is the
4th most important feature, i.e. the most important feature after the
residual load features, while the gas price is the 6th most important.
We analyze the dependency on oil and gas prices in detail.

The dependency plots for the fuel prices in Fig. 6a–b are strongly
nonlinear, with an almost step-like behavior. The dependency of the
electricity price on the oil price is approximately constant below a
threshold of 69 [USD/bbl]. Above this threshold, the dependency in-
creases until it saturates. While the change in dependency is almost
linear for oil prices, the dependency for gas prices shows a step-like
behavior, with a threshold at 2.75 [USD/mmBTu], albeit with a stronger
cattering. A causal interpretation is comprehensible as an increase in
uel prices leads to an increase in the operational costs of the respective
ower plants and thus to offers at higher prices.

For further analysis, we focus on the time series of the electricity
rice in Fig. 6c, highlighting the time periods with oil and gas prices
bove the dependency threshold respectively. High oil prices seem to be
orrelated with high electricity prices, especially for the maximum of
lectricity prices at the end of 2018. In contrast, in the middle of 2019,
lectricity prices stay low while oil prices are above the threshold. For
9

gas, the dependency is even less clear. Lower prices seem to be a proxy
for low electricity prices in 2019. Meanwhile, high gas prices do not
display a clear correlation with overall electricity prices in the time
series. We further note that a delayed relation could also be possible,
if power plants purchase fuel well before the usage.

In general, it is difficult to pinpoint the relation of fuel prices to
the electricity price beyond statistical correlations. Although we find
a strong change in the dependency on the fuel prices in the machine
learning model, it is still possible that the machine learning model is
using the fuel prices to remember specific time periods where electricity
prices are higher or lower than expected from the other features.
Nevertheless, we find reasonably strong interactions of the residual
load features with fuel prices, as discussed in Section 4.3. This points to
a causal interaction, but a confounding effect is also possible. Overall,
fuel prices are correlated with electricity prices which could be one of
the reasons the machine learning model outperforms the benchmark
model.

5. Discussion and conclusion

Summarizing, we have developed a machine learning model based
on gradient boosted trees and demonstrated how it accurately es-
timates electricity prices, outperforming a single-feature benchmark
model based on a common approximation of the merit order principle.
Using SHAP to interpret our black-box model, we obtained deeper
insights into the characteristics of the day-ahead market. SHAP values
quantify how the price depends on the input features and thus reveals
drivers beyond the benchmark model. Our analysis confirmed that high
load leads to high prices, while large shares of wind or solar generation
reduces prices. Furthermore, the model quantified the role of fuel
prices, imports and exports, as well as load and generation ramps.

We saw that the SHAP analysis of our model is limited when it
comes to a deeper causal interpretation of feature impacts. Never-
theless, the SHAP values provide detailed insights into the working
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of the model by revealing how and which features are mostly used
and by quantifying dependencies and interactions. Only by including
domain knowledge of market mechanisms and power systems we can
hypothesize to causal relations. Estimating causal models directly from
data is in principle possible, e.g. using Causal SHAP [62] or causal
representation learning [63] but requires more explicit assumptions
about the underlying causal structure than we wanted to employ in
this first exploratory study.

Concluding, we have demonstrated the usefulness of XAI models
to analyze electricity price dynamics in the German market. These
insights may contribute to the improvement of mechanistic models
of electricity markets as well as data-driven forecasting models by
identifying the relevant features to be included [64]. For instance, our
results suggest slightly different roles of wind and solar power, while
they enter the residual load equally. Furthermore, the SHAP analysis
quantifies the role of generation ramps, which are subject to strong
feature interactions.

There remain many open questions and starting points for further
research. It would be interesting to investigate how XAI price models
differ between electricity markets in different countries. Similarly, XAI
models may also be used to compare markets at different times to
quantify changes. For instance, the phase-out of nuclear power in
Germany or changes of the regulatory framework should impact the
dependencies of prices and features. Furthermore, XAI methods may
also be used to analyze the impact of exceptional events such as the
energy crisis after the Russian invasion of Ukraine once sufficient data
is available.
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