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Kurzfassung 

Bedarfsprognosen sind in der Wirtschaft unerlässlich. Anhand des erwarteten Kundenbedarfs be-

stimmen Firmen beispielsweise welche Produkte sie entwickeln, wie viele Fabriken sie bauen, 

wie viel Personal eingestellt wird oder wie viel Rohmaterial geordert werden muss. Fehleinschät-

zungen bei Bedarfsprognosen können schwerwiegende Auswirkungen haben, zu Fehlentschei-

dungen führen, und im schlimmsten Fall den Bankrott einer Firma herbeiführen. 

Doch in vielen Fällen ist es komplex, den tatsächlichen Bedarf in der Zukunft zu antizipieren. Die 

Einflussfaktoren können vielfältig sein, beispielsweise makroökonomische Entwicklung, das 

Verhalten von Wettbewerbern oder technologische Entwicklungen. Selbst wenn alle Einflussfak-

toren bekannt sind, sind die Zusammenhänge und Wechselwirkungen häufig nur schwer zu quan-

tifizieren. 

Diese Dissertation trägt dazu bei, die Genauigkeit von Bedarfsprognosen zu verbessern. 

Im ersten Teil der Arbeit wird im Rahmen einer überfassenden Übersicht über das gesamte Spekt-

rum der Anwendungsfelder von Bedarfsprognosen ein neuartiger Ansatz eingeführt, wie Studien 

zu Bedarfsprognosen systematisch verglichen werden können und am Beispiel von 116 aktuellen 

Studien angewandt. Die Vergleichbarkeit von Studien zu verbessern ist ein wesentlicher Beitrag 

zur aktuellen Forschung. Denn anders als bspw. in der Medizinforschung, gibt es für Bedarfs-

prognosen keine wesentlichen vergleichenden quantitativen Meta-Studien. Der Grund dafür ist, 

dass empirische Studien für Bedarfsprognosen keine vereinheitlichte Beschreibung nutzen, um 

ihre Daten, Verfahren und Ergebnisse zu beschreiben. Wenn Studien hingegen durch systemati-

sche Beschreibung direkt miteinander verglichen werden können, ermöglicht das anderen For-

schern besser zu analysieren, wie sich Variationen in Ansätzen auf die Prognosegüte auswirken 

– ohne die aufwändige Notwendigkeit, empirische Experimente erneut durchzuführen, die bereits 

in Studien beschrieben wurden. Diese Arbeit führt erstmals eine solche Systematik zur Beschrei-

bung ein. 

Der weitere Teil dieser Arbeit behandelt Prognoseverfahren für intermittierende Zeitreihen, also 

Zeitreihen mit wesentlichem Anteil von Bedarfen gleich Null. Diese Art der Zeitreihen erfüllen 

die Anforderungen an Stetigkeit der meisten Prognoseverfahren nicht, weshalb gängige Verfah-

ren häufig ungenügende Prognosegüte erreichen. Gleichwohl ist die Relevanz intermittierender 

Zeitreihen hoch – insbesondere Ersatzteile weisen dieses Bedarfsmuster typischerweise auf. Zu-

nächst zeigt diese Arbeit in drei Studien auf, dass auch die getesteten Stand-der-Technik Machine 

Learning Ansätze bei einigen bekannten Datensätzen keine generelle Verbesserung herbeiführen. 

Als wesentlichen Beitrag zur Forschung zeigt diese Arbeit im Weiteren ein neuartiges Verfahren 

auf: Der Similarity-based Time Series Forecasting (STSF) Ansatz nutzt ein Aggregation-Disag-

gregationsverfahren basierend auf einer selbst erzeugten Hierarchie statistischer Eigenschaften 

der Zeitreihen. In Zusammenhang mit dem STSF Ansatz können alle verfügbaren Prognosealgo-

rithmen eingesetzt werden – durch die Aggregation wird die Stetigkeitsbedingung erfüllt. In Ex-

perimenten an insgesamt sieben öffentlich bekannten Datensätzen und einem proprietären Daten-

satz zeigt die Arbeit auf, dass die Prognosegüte (gemessen anhand des Root Mean Square Error 
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RMSE) statistisch signifikant um 1-5% im Schnitt gegenüber dem gleichen Verfahren ohne Ein-

satz von STSF verbessert werden kann. Somit führt das Verfahren eine wesentliche Verbesserung 

der Prognosegüte herbei. 

Zusammengefasst trägt diese Dissertation zum aktuellen Stand der Forschung durch die zuvor 

genannten Verfahren wesentlich bei. Das vorgeschlagene Verfahren zur Standardisierung empi-

rischer Studien beschleunigt den Fortschritt der Forschung, da sie vergleichende Studien ermög-

licht. Und mit dem STSF Verfahren steht ein Ansatz bereit, der zuverlässig die Prognosegüte 

verbessert, und dabei flexibel mit verschiedenen Arten von Prognosealgorithmen einsetzbar ist. 

Nach dem Erkenntnisstand der umfassenden Literaturrecherche sind keine vergleichbaren An-

sätze bislang beschrieben worden. 
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Abstract  

Demand forecasting is essential in business. Based on expected customer demand, companies 

determine, for example, which products to develop, how many factories to build, how much staff 

to hire or how much raw material to order. High forecasting errors in demand forecasts can have 

serious consequences, lead to wrong decisions and, in the worst case, cause the bankruptcy of a 

company. 

But in many cases, it is complex to anticipate the actual demand in the future. The influencing 

factors can be manifold, e.g., macroeconomic development, the behavior of competitors, techno-

logical developments, etc. And even if all influencing factors are known, the interrelationships 

and interactions are often difficult to quantify. 

This dissertation contributes to improving the accuracy of demand forecasts. 

In the first part of the thesis, as part of a comprehensive overview of the entire spectrum of appli-

cation fields of demand forecasts, a novel approach is introduced on how to systematically com-

pare studies on demand forecasts and applied to the example of 116 recent studies. Improving the 

comparability of studies is a major contribution to current research. Unlike, for example, in med-

ical research, there are no significant comparative quantitative meta-studies for demand forecasts. 

This is because empirical studies in demand forecasting do not use a standardized way to describe 

their data, procedures, and results. If, on the other hand, studies can be directly compared to each 

other through systematic description, this will allow other researchers to better analyze how var-

iations in approaches affect forecast performance-without the burdensome need to re-run empiri-

cal experiments that have already been described in studies. This work is the first to introduce 

such a systematic approach to description. 

The remaining part of this work deals with forecasting methods for intermittent time series, i.e., 

time series with a substantial share of demands equal to zero. This type of time series does not 

meet the requirements for continuity of most forecasting methods, which is why common methods 

often achieve insufficient forecasting quality. Nevertheless, the relevance of intermittent time se-

ries is high–especially spare parts typically exhibit this demand pattern. First, this thesis shows in 

three studies that even the tested state of the art machine learning approaches do not bring about 

a general improvement for some known data sets. As a major contribution to research, this work 

further demonstrates a novel method: The Similarity-based Time Series Forecasting (STSF) ap-

proach uses an aggregation-disaggregation procedure based on a self-generated hierarchy of sta-

tistical properties of the time series. In connection with the STSF approach, all available forecast-

ing algorithms can be used–due to the aggregation, the continuity condition is fulfilled. In 

experiments on a total of seven publicly known datasets and one proprietary dataset, the work 

shows the forecast quality (measured by the root mean square error RMSE) can be statistically 

significantly improved by 1-5% on average compared to the same procedure without the use of 

STSF. Thus, the method leads to a significant improvement of the forecast quality. 
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In summary, this dissertation contributes significantly to the current state of research through the 

previously mentioned approaches. The proposed procedure for standardizing empirical studies 

accelerates the progress of research by enabling comparative studies. And the STSF framework 

provides an approach that reliably improves forecasting quality, while being flexible to use with 

different types of forecasting algorithms. 
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1 Introduction 

Being able to estimate future requirements for raw materials, goods or services in advance is of 

great relevance in all parts of society, regardless of whether they are commercial enterprises, the 

public sector or other organizations. The clearer the assessment of the actors is about the type and 

amount of future demands, the more effectively available resources (raw materials, machines, 

working time, etc.) can be used to meet the demands. According to a report by Grand View Re-

search, companies worldwide spent US$ 3.9 billion on demand planning software solutions alone 

in 2022 (Grand View Research 2022). 

Demand forecasting models should help to estimate future demands more accurately. In this con-

text, the scientific community has developed corresponding demand forecasting models that map 

the influences on demands, can be adjusted on the basis of historical data and, as a result, calculate 

forecast values for the expected demands.  

However, the factors influencing demand are as diverse as the applications of demand forecasts. 

Complex relationships between influencing factors, unknown influences and random variables 

make accurate forecasting difficult and, in the worst case, lead to significant deviations from ac-

tual demand. Two examples from the field of electricity demand forecasting show how different 

the requirements can be in just one application area. In the long-term range (1-5 years, e.g., for 

planning new power plant construction), forecast models can be based on macroeconomic varia-

bles in particular. In contrast, for short-term forecasts (1 minute to a few hours), macroeconomic 

variables have no relevant influence on power consumption. Here, daily conditions (e.g. weather) 

are much more relevant. Based on the different influencing factors alone, it is clear that the re-

quirements and the choice of approaches used differ fundamentally. 

For this reason, scientists have continuously developed the models over the past decades and 

adapted new methods, for example from the field of machine learning. In particular, they have 

developed highly specialized methods for particular applications, producing an enormous variety 

of approaches. At the same time, there is no uniformly accepted and applied standard to describe 

scientific work on the application of prediction methods, making comparability difficult in many 

cases. While there are some reviews within the specialized application areas, there are no com-

parative works that systematically map the topic area of demand forecasting as a whole and com-

pare the methods used. Research thus misses the opportunity to specifically compare results and 

adopt procedures from other sub-disciplines. 

The first part of this dissertation starts exactly at this point. The thesis not only gives a clear 

overview of the state of the art: most relevant application areas of demand forecasting in the 

scientific literature as well as the methods used and current issues in research. More important, 

the work presents an approach for researchers to systematically describe their approaches in order 

to be able to consistently compare them with other methods. 

Within the broad spectrum of demand forecasting, one class presents a particular challenge: In-

termittent time series. These are patterns of demand where demand equals zero in many time 
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periods. Probably the most frequently cited example of intermittent time series is the spare parts 

business. Here, a particular part is often not in demand for days, weeks or even months. Never-

theless, the business is very relevant for companies because of the high margins. According to a 

survey by Jefferies & Company, sales of spare parts in the automotive industry alone amounted 

to over 400 billion US dollars in 2021 (Jefferies & Company 2022). However, the intermittent 

characteristic contradicts the common assumptions of forecasting models, which assume a steady 

demand pattern. Therefore, methods that usually deliver good results for continuous distributions 

deliver unexpectedly low forecast quality for intermittent time series and are therefore often un-

suitable. 

To improve prediction results for intermittent time series, some studies use hierarchies that exist 

between predicted objects. For example, a well-known study here is the work of Petropoulos and 

Kourentzes, which uses hierarchies in Royal Air Force spare parts for forecasting (Petropoulos 

and Kourentzes 2015). The use of relationships among predicted objects seems to be intuitive. 

But for one thing, such hierarchies are regularly unavailable in practice (because they simply have 

not been created due to the amount of work required for often tens of thousands of parts). Nor are 

the hierarchies tested for true correlation of demand patterns–rather, they are mostly hierarchies 

of similar usage or similar visual characteristics. Thus, an important open question is whether 

hierarchies can be formed that can be specifically based on the intermittent demand patterns, and 

whether this can be used to create improved demand forecasts. 

The second part of this thesis takes up both: the use of statistically meaningful similarity relation-

ships to form a hierarchy, and the use of aggregation to ensure the continuity conditions of com-

mon forecasting methods. The Similarity-based Time Series Forecasting (STSF) framework de-

veloped from this work shows an improvement in forecast quality of up to 50% on 8 sample data 

sets in the empirical studies conducted. 

1.1 Research questions 

The focus of this dissertation is to improve the forecasting quality of demand forecasts in general. 

For this purpose, the thesis starts at two points. First, it aims not only to provide a comprehensive 

overview of the current state of research, but moreover to contribute to improving the compara-

bility of demand forecasting studies. Second, it aims to improve the forecasting quality of demand 

forecasts, especially for data sets with intermittent time series that are particularly difficult to 

predict. From these overarching goals, the following research questions are derived to provide a 

structure for this work. 
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RQ I. What is the current state of demand forecasting in research, what are open issues 

discussed in literature and how far has adoption of the current state of the art 

proceeded in companies? 

RQ II. How can demand forecasting studies be structured to increase the comparability 

between studies? 

RQ III. What is the forecasting performance of machine learning methods compared to 

classical approaches for intermittent time series and how can approaches be se-

lected depending on the time series characteristics? 

RQ IV. How can intermittent and hierarchical demand forecasting be improved? 

The research questions represent the basic structure for the following chapters (see Figure 1). 

 

Figure 1: Structure of the chapters of this document 

1.2 Structure and contents of this thesis 

In the introduction of this dissertation, it was already stated that demand forecasts are of great 

relevance for demand planning, especially for companies. However, in 2019, only about 10% of 

companies reported using machine learning or other advanced techniques for demand forecasting, 

despite their widespread use in academia. Thus, a significant gap exists between the state of re-

search and its use in practice. In order to accelerate the adoption of advanced methods in practice, 

it is necessary to understand what the prerequisites and success factors are for their use in com-

panies. 

Chapter 2 (On the Industry Need for Machine Learning and Demand Forecasting), presents the 

results of the survey of 18 companies. The chapter contributes to the state of the research by 

providing a system of success factors for the successful implementation of procedures derived 
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from the survey. It also deduces which success factors depend on the size of the company and 

which depend on the maturity level of the company with regard to technology use. In addition, 

the study contributes to research and application by providing definitive approaches and measures 

to close the gap between research and application by type (size) of company. 

Chapter 3 (How the Demand Forecasting Literature and Applications can Benefit from Better 

Comparability) presents a comprehensive overview of the state of the art across all application 

areas in the field of demand forecasting, comprising 116 studies. Despite the fact, that there is 

currently no comprehensive and comparative overview of the research area at the current state of 

knowledge, the chapter contributes to research in particular through a novel approach. This ap-

proach describes how demand forecasting studies can be described in a structured way so that 

they can be systematically compared with other studies–and thus addresses research question RQ 

II. 

Chapter 4 (Developing an Understanding of External Factors Influencing Demand Forecasting 

Models using a Case Example) introduces the use of machine learning for practical applications. 

Using the sales forecast of a medium-sized company as an example, the influence of external 

factors on the forecast of extreme events (COVID19 crisis) is shown in particular. 

Chapter 5 (How Time Series Characteristics Affect the Forecast Quality in State-of-the-Art Al-

gorithms for Intermittent Demands) addresses research question RQ III. from the introduction. 

Based on three studies, this chapter compares machine learning and classical approaches for fore-

casting intermittent demands. Through the comparison, the chapter expands the understanding of 

research on the relationship between time series characteristics and forecasting techniques. The 

first study systematically compares state of the art approaches. The second study derives charac-

teristics of data sets that can be used to recommend the choice of forecasting method. The third 

study demonstrates a novel approach for combining Coston's method and deep learning algo-

rithms. 

Chapter 6 (A New Approach in Hierarchical Demand Forecasting) introduces the new STSF 

(Similarity-based Time Series Forecasting) framework. It contributes to the state of the art by 

showing how hierarchies between time series can be used in conjunction with an aggregation-

disaggregation procedure to improve forecasting results, and thus also provides part of the answer 

to research question RQ IV. The chapter introduces the approach and demonstrates the improve-

ment empirically using two data sets. 

Chapter 7 (Generalization of the Approach’s results) extends the empirical basis of the novel 

approach proposed in Chapter 6. In addition to the two data sets studied in Chapter 6, six more 

data sets are incorporated to the study. The study contributes to the research by putting the insights 

from Chapter 6 on a broad empirical basis and provides an improved design for the main pipeline 

approach, reducing the complexity and computation efforts. The chapter represents the second 

part of the answer to research question RQ IV. 
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2 On the Industry Need for 
Machine Learning and Demand 
Forecasting 

[This chapter consists of a study published in 2020: Bauer, Markus; van Dinther, Clemens; Kiefer, 

Daniel (2020): Machine learning in SME: an empirical study on enablers and success factors. In 

Association for Information Systems (Ed.): AMCIS 2020 proceedings: Association for Infor-

mation Systems, pp. 1–10. – further referred to as Bauer et al. 2020] 

Machine Learning in SME: An 
Empirical Study on Enablers and 
Success Factors 

Machine learning (ML) techniques are rapidly evolving, both in academia and practice. However, 

enterprises show different maturity levels in successfully implementing ML techniques. Thus, we 

review the state of adoption of ML in enterprises. We find that ML technologies are being in-

creasingly adopted in enterprises, but that small and medium-size enterprises (SME) are strug-

gling with the introduction in comparison to larger enterprises. In order to identify enablers and 

success factors we conduct a qualitative empirical study with 18 companies in different industries. 

The results show that especially SME fail to apply ML technologies due to insufficient ML 

knowhow. However, partners and appropriate tools can compensate this lack of resources. We 

discuss approaches to bridge the gap for SME. 

2.1 Introduction 

Since the first appearance of Machine Learning (ML) in the 1950s, the field of ML has rapidly 

evolved: Numerous applications have been studied in research and practice, frameworks have 

been developed and implemented as well as fast hardware for computation is available and af-

fordable (OECD 2015). Therefore, the adoption of ML applications in enterprises has signifi-

cantly increased. Whereas in the year 2015, only 10% of companies reported the utilization of 

ML in every-day operations, recent studies find about one third of the companies relying on ML 

(Howard and Rowsell-Jones 2019). 

However, studies also report a significant difference regarding the size of the companies. A study 

from 2019 indicates that companies with less than 500 employees are four times less likely to 
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have ML applied than companies with more employees (Spiceworks 2020). This finding is in line 

with more general studies on the flexibility of SME to adopt new technologies compared to larger 

companies: Larger companies overall have a higher adoption rate of information and communi-

cation technologies (ICT) than SME (OECD 2004). 

We want to find out where these differences derive from and pose the following research ques-

tions: 

RQ1:  What is the gap of the adoption of ML in small- and medium-sized enterprises (SME) 

compared to the state-of-the-art and best practice? 

RQ2: What are challenges in the process of implementation of ML specific to SME and what 

success factors enable companies to mitigate these challenges? What conditions facili-

tate the utilization of ML in SME? 

Our approach is a synthesis of a meta-analysis of literature and surveys in combination with a 

qualitative empirical approach, conducted in 2020 with a focus on businesses in the industries of 

manufacturing and production, retailing and logistics. We subsume all ML applications for inter-

nal processes and products. 

2.2 Adoption of ML in Research and Enterprises  

For this study, we follow the definition of Mitchell for ML: “A computer program is set to learn 

from an experience E with respect to some task T and some performance measure P if its perfor-

mance on T as measured by P improves with experience E.” (Mitchell 1997). We are aware that 

practitioners oftentimes also use the term artificial intelligence (AI) interchangeably, even though 

the terms are not identical. 

Various studies on case specific applications of ML for business use cases have been published 

in academic literature. In this context we only provide an overview of sample applications to 

demonstrate the fact that the theoretical foundation for most ML applications in enterprises is 

available. For each application, we conducted a systematic literature review following Webster 

and Watson and Levy and Ellis and each chose one article with highest citation count (Levy and 

Ellis 2006; Webster and Watson 2002 – see Table 1). 

We conclude that there is a high number of articles that provide both a theoretical foundation for 

ML technologies as well as application use cases as basic requirement of RQ1. Most relevant use 

cases for business applications are intensely studied and practical solutions were demonstrated by 

academia. 
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Finding I: Research provides a strong foundation of ML basic techniques but also of ML 
applications for business applications. ML technologies are ripe for implementation in 
enterprises. 

Forecasting  Classification  Optimization  NLP & IR 

6,500 papers*  8,200 papers*  7,500 papers*  7,700 papers* 

• Supply Chain (Car-

bonneau et al. 2008) 

• Fashion (Ren et al. 

2017) 

• Spare parts (Hua 

and Zhang 2006) 

• Smart grids (Mural-

itharan et al. 2018) 

• … 

 • Predictive mainte-

nance (Susto et al. 

2015) 

• Credit risk assess-

ment (Twala 2010) 

• Intrusion detection 

(Tsai et al. 2009) 

• Recommender sys-

tems (Zhang et al. 

2019) 

• … 

 • Robotics (Levine et 

al. 2016) 

• Advertising (Jin et 

al. 2018) 

• Plant control (Lazic 

et al. 2018) 

• Job scheduling (Pri-

ore et al. 2006) 

• Chemistry R&D 

(Zhou et al. 2019) 

• … 

 • Chat bots (Xu et al. 

2017) 

• Warehouse inven-

tory control (Xu et 

al. 2018) 

• Legal document 

analysis (Ashley 

and Walker 2013) 

• … 

Table 1: Exemplary excerpts of research in ML applications for specific business use cases (Natural language pro-

cessing: NLP, Image recognition: IR). The number of papers* is calculated by the number of peer-reviewed articles 

that apply to the query terms of the header, “ML”/”AI” and “enterprise application” in the semantic scholar database. 

In a next step, we studied the current state of actual adoption of ML technologies in companies. 

For this purpose, we reviewed studies of the recent years that provide an overview of the imple-

mentation of ML technologies (opposed to Table , where we show the existence of a theoretical 

background). Our literature review shows that no considerable peer-review literature is available 

that answers the question to what extent these ML technologies are actually employed in compa-

nies. This emphasizes the need for further research in this field. 

In order to also incorporate grey literature studies, we imposed the following restrictions on our 

search in order to filter considerable quality studies only: A. The study was conducted from 2018 

to January 2020, B. The data foundation is documented: Number of respondents by company size, 

industry and ML implementation maturity level, C. The study is published by a renowned organ-

ization or company. 

We will first summarize the findings of studies that incorporate both SMEs and larger companies 

(Set I). In the second part of this section, we narrow down the focus on studies that differentiate 

between companies of different sizes (Set II). 

Set I comprises ten studies with an average number of respondents of 2,600 each (minimum 200; 

maximum 11,400) mostly from the Americas, Europe and Asia. The studies do not differentiate 

between company size. 

About 20% of the companies interviewed in Set I confirm that they use an ML technology imple-

mentation in their planning, control or operational processes. The overall maturity level of ML 

technology implementations is low – about 25% are in early stages and are either gathering first 

experiences in ML technologies or are about to implement technologies. On average, the studies 

indicate that about 30% of the companies that have not yet implemented ML technologies are 

intending to do so soon. The remaining companies do not have specific plans yet to implement 

ML technologies or are investigating potential use cases. This intention is confirmed by the 
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finding that about 30% of annual IT budgets were dedicated to the implementation of use cases 

where ML technologies were supposed to be deployed.  

The studies of Set I also examine major challenges for companies when investigating potential 

use cases for machine learning and during implementation. The most frequent challenges are: 

1. the lack of sufficient employees with ML/AI know how (by far most frequently), 

2. limited budget and other (non-ML) projects competing for funds, 

3. difficulties to identify positive business cases, 

4. too little acceptance for ML on a managerial level. 

(Chui and Malhotra 2018; Lorica and Paco 2019, 2018; Loucks et al. 2018; Ransbotham et al. 

2017; Ransbotham et al. 2018; Stancombe et al. 2017; Howard and Rowsell-Jones 2019; Teradata 

2017; Algorithmia 2018) 

We conclude that the overall prevalence of ML technologies is still medium, however great in-

terest in the technologies exists and applications are being evaluated by companies. Companies 

with a higher ML maturity level apply more advanced ML techniques than others – as assumed 

in RQ1. 

Finding II: ML technologies are already established in business applications and inter-
est in the technologies is high. Yet, the prevalence of the technologies is medium and the 
technologies applied are mostly of medium complexity also – however some companies 
already employ very advanced techniques. 

Set II, in contrast to Set I, comprises seven studies with an average number of respondents of 900 

each (minimum 190; maximum 3,100), in part with a focus on North America and Europe. Using 

Set II, we highlight the differences of the studies’ insights with respect to company size. 

Compared to Set I, where about 20% of companies interviewed currently employ ML technolo-

gies and 25% are in the process of evaluation or implementation, Set II reveals a more differenti-

ated picture. The studies in Set II confirm the data from Set I for companies with 500 or more 

employees. However, companies with 500 employees maximum exhibit significantly lower ma-

turity: Only 8% of the companies have already deployed ML technologies and only 20% are 

evaluating ML technologies for business applications. However, other studies that also incorpo-

rate businesses that sell ML technologies as distinct products (ML consultancy, tools, …). Here, 

small companies and especially start-ups demonstrate their competencies and exhibit a ML ma-

turity level equal to larger companies. Therefore, we consider companies that do not primarily 

apply ML to optimize internal processes or to enhance traditional products as a different company 

type of “tech start-ups”. 

The studies in Set II also report different challenges for companies concerning the implementation 

of ML technologies: 

1. too little acceptance for ML amongst users and operatives, 

2. data privacy concerns (e.g. violation of GDPR regulations), 

3. the lack of sufficient employees with ML/AI know how, 

4. too little acceptance for ML on a managerial level. 

(Spiceworks 2020; Böttcher et al. 2018; Abel-Koch et al. 2019; Reder 2018, 2019; Algorithmia 

2018, 2019) 
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We conclude that, referring to RQ1, the prevalence of ML technology applications in SME is 

significantly lower than in the overall industry. Moreover, SME state elementary different chal-

lenges than larger companies: They struggle more with entry-barriers whereas larger companies 

typically rather have difficulties to scale their ambitions to apply ML-technologies to the re-

sources available. 

Finding III: Small and medium businesses are significantly less likely to have ML tech-
nologies deployed yet. Their present challenges differ from larger businesses and reflect 
their lower ML maturity: little acceptance for ML both amongst users and operatives as 
well as managers and limited ML know how. 

2.3 Survey Methodology and Insights 

For our own survey, we interviewed 18 CXOs and Managing Directors of small, medium and 

large-sized companies. The interview involved (i) a self-assessment of the maturity level of the 

state of implementation of ML in the company (see Figure 2) and (ii) the respondents’ assessment 

of challenges and success factors encountered in previous ML implementation projects and antic-

ipated for future ML implementation projects (see Figure 3). 

Figure 4 and Figure 5 give an overview of the interviewees of the survey. Interviewees are em-

ployed at companies of all sizes like tech-startups (less than 35 employees), small businesses (less 

than 500 employees), medium businesses (less than 1,000 employees) and large business (10,000 

to 30,000 employees). The number of interviewees is relatively evenly distributed over all com-

pany sizes (see Figure 4). From the companies interviewed, 39% have reached a maturity level 

where ML is actually implemented in day-to-day operations or their products (levels 5 and 6). 

39% of the companies do not use ML technologies yet but employ heuristics or statistical analysis 

to leverage internal processes or enhance their products (levels 3 and 4). The remaining 22% state 

that neither ML technologies nor heuristics or statistical analysis are employed at their company 

(levels 1 and 2). However, all companies report that they are actively evaluating use cases for ML 

applications at the moment of the survey (see Figure 5). 
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Figure 2: Six levels of ML implementation maturity for the respondents' self-assess-

ment 

Figure 3: Five exemplary 

project phases during ML 

implementation 

  

Figure 4: Respondents by company size Figure 5: Respondents by ML-maturity level 

Following the approach of Mayring, we conducted a qualitative analysis of the interviewees’ re-

plies to our survey. The answers were categorized and correlated to the company’s characteristics: 

such as company size, ownership structure of the company and ML maturity level. In addition, 

we clustered the replies by their relationship to company size and maturity by qualitative assess-

ment (Mayring 2000). 

From the analysis, we summarize the following main statements: 

A. There is a clear dependency between the ML maturity level and the company size. SME are 

much less matured than large business. The only exception to this finding are the tech start-

ups that are extremely small but see ML technologies as their main product – they are the 

most ML mature companies of the survey. 

B. Small businesses (SB) are currently still struggling to identify use cases for ML applications 

(process stage 1) 

o ML know how: SB possess too little knowledge and experience to assess ML suitable use 

cases. 

o Personnel capacities: Too few personnel capacities to systematically advance use cases 

from the use case identification to a first proof of concept. SB strongly rely on the personal 

initiative of single employees to investigate ML use cases. 

o Data availability: SB report to lack the quantity of records required to train ML algo-

rithms. 

o Acceptance of ML technologies: Limited knowledge of ML results in concerns about ML 

technologies amongst operatives and management. However, SB can benefit from flat 

hierarchy and from a determined management that encourages employees to advance in 

ML technologies. 

o Interdisciplinarity: ML initiatives lay in the hands of individual persons in the company 

which combine data science, domain and IT expertise in one person with no interfaces. 
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o External partners: Dissent amongst SB whether to consult external partners to advance 

in ML applications. However, those open to external partners, all prefer software provid-

ers that specialized in domain specific solutions. 

C. Medium businesses (MB) have typically passed the use case definition phase. 

o ML know how: MB asses their ML know how to be sufficient for the definition of ML 

use cases. However, MB are not able to independently implement the technology with 

internal knowledge. 

o Personnel capacities: Rely on personal initiative of employees to advance ML use cases. 

Regard use cases as pilots to prove the worthiness of technology and are hesitant to ded-

icate resources to it. 

o Data availability: Have accrued sufficient data records but typically not in a standardized 

form – they are not used to data driven approaches in their usual operations. 

o Acceptance of ML technologies: Successful, where ML strategy is installed by their man-

agement. The management identifies ML as an important impact to their business. The 

concerns towards ML are more distinguished than in small businesses: Lacking “explain-

ability” and transparency of ML algorithms as well as the thread of the substitution of 

labor by algorithms are the main concerns of operatives. However, there is also a positive 

perspective that ML can help to focus on more valuable work by having simple and re-

petitive tasks executed by ML algorithms. 

o Interdisciplinarity: MB face the problem of interdisciplinarity more than SB. Data sci-

ence, domain knowledge and IT are represented by separate persons and departments. 

However, in contrast to LB, interdisciplinary collaboration is less supported by frame-

works and standardized processes and rely more on the individual experience and ability 

for collaboration. 

o External partners: Open to external cooperation. Research projects with universities and 

business schools preferred as aim to build up ML know how in the course of the cooper-

ation. 

D. Large businesses (LB) have experience in the field of ML applications and implemented use 

cases. 

o ML know how: LB have specialized data science departments that are able to implement 

ML technologies fully internally. 

o Personnel capacities: Due to the AI strategies employed, resources are actively dedicated 

to the identification and implementation of ML technologies. However, LB find it chal-

lenging to employ enough data science experts to realize the identified use cases. They 

exhibit that the demand for data science experts exceeds the market supply of free experts 

at this point of time. 

o Data availability: LB systematically gather and record business data and have identified 

data as important advantage. 

o Acceptance of ML technologies: LB consistently state that they consider ML applications 

as a vital part of their business strategy. ML is widely accepted due to positive experience 

in practice. 

o Interdisciplinarity: Strong division of labor and specialization complicates the interdisci-

plinary cooperation within LB. LB face the challenge that the specialists “do not speak 

the same language”. However, LB also report that the outcome of ML implementation 

projects heavily depends on a successful exchange between data science, process owners 

and IT department. 

o External partners: External partners do not play a significant role to LB as they already 

possess the necessary ML know how. Moreover, third party tools are often restricted by 

governance policies and difficult to integrate into existing systems. 

E. Tech start-ups (TS) exhibit the highest maturity levels of all companies of the survey and a 

high specialization on distinct industries. 
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o ML know how: TS excel in ML technologies and apply advanced techniques. 

o Personnel capacities: TS consider ML know how as a primary asset. Therefore, they con-

centrate to establish attractive work environment for ML experts. 

o Data availability: With specialization, TS develop interfaces optimized for their custom-

ers industry and requirements, such that the available data can be efficiently used. 

o Acceptance of ML technologies: TS mainly generate acceptance by show casing success-

ful implementations from previous projects. 

o Interdisciplinarity: Experts in small teams combine ML, domain and IT know how. 

o External partners: External partners do not play a relevant role. 

In general, the survey results are in line with the findings from the previous section: First, ML is 

already established in enterprises, however only to a medium degree of prevalence and maturity 

(see Finding II). Second, SME lag behind larger enterprises with respect of prevalence and ma-

turity of the application of ML and exhibit challenges that are specific to SME (see Finding III). 

In addition, we summarize the following main challenges and success factors as addressed in RQ2 

for small and medium businesses: 

Finding IV: Company size and ML maturity are strongly dependent: Larger businesses 
are more mature than smaller businesses. 

Finding V: Primary challenges to small businesses are basic understanding of ML capa-
bilities for use case definition and the availability of data. Primary success factors are flat 
hierarchies and a determined management which supports and encourages committed 
employees as well as external partners with the appropriate domain knowledge. 

Finding VI: Primary challenges to medium businesses are ML implementation know 
how and the increasing issues of interdisciplinary collaboration. Primary success factors 
are an external research cooperation and a pronounced ML strategy by the management 
that provides the necessary support for committed and volunteering employees. 

Finding IV raises the question whether the relationship between maturity and company size is 

causally determined – which we address in the following section. 

2.4 Size and Maturity Related Challenges and 
Success Factors 

In the previous section, we observed the correlation between company size and ML maturity (see 

Finding IV). One could therefore conclude that there is one path of development that all compa-

nies follow – and larger companies might have just already progressed further than smaller com-

panies. However, this would be a misconception, as we will show based on the survey. According 

to the respondents’ replies, challenges are allocated to their relationship to company size and 

maturity (see Table 2). 
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 Maturity related Size related 

C
h

al
le

n
g

es
 • Data availability and quality (-) 

• Lack of ML know how (-) 

• Insufficient ML results (-) 

• Governance policies (+) 

• Acceptance of ML (-) 

• Lack of personnel capacities (-) 

• Dedicated ML experts (-) 

• Insufficient input data (-) 

• Division of labor and specialization (+) 

• Computation power in-house (-) 

S
u

cc
es

s 

fa
ct

o
rs

 

• Existing ML know how (+) 

• Standardized data interfaces (+) 

• External partners (-) 

• Small steps and early success stories (-) 

• Existing business intelligence / data sci-

ence team (+) 

• Commitment of individual employees (-) 

• Good interdisciplinary collaboration (+) 

• Fast decision-making (+) 

Table 2: Overview of maturity and size related challenges and success factors. (+/-) denotes a positive or negative 

correlation: Importance increases / decreases with increasing maturity or size respectively. 

Table 2 shows several relevant challenges that are mainly correlated to company size and cannot 

or only marginally be compensated by increasing ML experience from ML maturity. Especially 

determining is the issue of sufficiently trained personnel: SB typically do not have the economies 

of scale to afford to employ data scientists dedicated to the implementation of ML technologies. 

Therefore, they cannot go beyond the first stages of the process of ML implementation (cf. Find-

ing V and Finding VI) accounting to RQ2. 

Finding VII: Challenges can be company size related and not or only marginally influ-
enced by ML maturity. Such challenges prevent companies of different size from under-
going the same maturity development process. Therefore, SME should use different ap-
proaches in ML projects.  

 

 

Figure 6: Company size related challenges lead to differences in ML implementation competences. 

2.5 Approaches to Close the Gap for SME 

From Finding VII we conclude that SME can benefit from specific approaches in ML projects. 

As shown before, challenges for SB start already during the use case definition phase and maintain 

during all phases that require deeper ML know how. MB typically have more ML know how, but 

still face challenges during proof of concept, testing and implementation (see Finding VI). In the 

following, we use the previous findings to briefly discuss general measures that facilitate the 
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access of SME to ML technologies. We then discuss a particular framework for demand forecast-

ing in SME. 

2.5.1 General measures to facilitate ML in SME 

In the following, we will address facilitating conditions as mentioned in RQ2. According to Fin-

ding V and Finding VI, especially SB but also MB face their initial challenge during the use case 

definition phase: Assessment of the applicability of ML in particular use cases. Interviewees re-

port three ways to pass this hurdle: The exchange with other companies that already passed this 

step, support by consultancies or software service providers as well as research cooperations. The 

interviewees agree that a crucial factor is the domain or industry specific knowledge combined 

with ML experience. We conclude that SB can benefit most if suitable products are available that 

match their use case requirements. In this case, the product can fulfill their needs without the need 

to deeply understand ML technologies. MB can benefit most if they cooperate in a research pro-

ject with an external partner with the appropriate ML know how. This way, the partner can elab-

orate a use case specific solution and the company can build up ML know how internally during 

the project. Both approaches also mitigate the challenge of interdisciplinary collaboration be-

tween data science, which arises already in MB. 

Finding VIII: Small and medium businesses can mitigate the lack of ML know how in 
ML use case definition and implementation through external partners. The survey results 
suggest software providers with market-ready products for small and research coopera-
tions for medium businesses. 

Based on this finding, we encourage universities and research faculties to enter cooperation with 

MB to develop further ML applications together. We also suggest that politics and governments 

should support the funding of such research cooperations. 

In Finding V and Finding VI we also showed that success in ML implementation projects strongly 

depends on the personal initiative and interest of employees as well as short decision-making 

processes. We propose that the companies’ management should actively encourage employees by 

creating favorable conditions: Allow for advanced training of employees, establishment of ML 

labs with the necessary hardware equipment and interdisciplinary workshops for interested em-

ployees for use case definition. 

Finding IX: Personal initiative of employees is found to be crucial for the success of ML 
projects in SME and should be fostered by the management of companies by favorable 
conditions. Trainings, equipment, interdisciplinary work and short decision-making pro-
cesses are proposed. 

2.5.2 A suitable framework as entry point to ML applications 

The measures described above address the challenges of SME on an entrepreneur and govern-

mental level. In addition to this, we also consider the contribution of research and the IS commu-

nity to the issue. The survey shows that SME require ML technologies of a confined complexity 

that can be implemented with the limited experience and knowledge of SMEs. ML frameworks 

with auto-hyperparameter tuning (AutoML) exist from various research projects (e.g. Auto-

WEKA, Thornton et al. 2013; Auto-sklearn, Feurer et al. 2019; TPOT, Olson and Moore 2019; 
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Auto-keras, Jin et al. 2019) and vendors (e.g. AzureML, Uber Ludwig; Google Cloud AutoML). 

The specific advantages and disadvantages have been investigated in several studies and compe-

titions, showing that AutoML frameworks can achieve good results compared to instance specific 

implementations and are significantly easier to manage (He et al. 2019; Truong et al. 2019; Guyon 

et al. 2019). 

Finding X: AutoML frameworks encapsulate and automate major parts of the ML im-
plementation and optimization process. Companies can use these frameworks to speed up 
ML projects, if they possess limited ML implementation know how and if their problem 
instance can be solved using generic optimization strategies. 

Apart from these general auto-tuning frameworks, our literature research shows that no relevant 

studies exist that systematically address the issues and requirements of SME in the application of 

ML technologies. In this context, the survey shows two areas where SME could benefit most from 

research: Comprehendible use cases and suitable ML applications and SME specific frameworks 

that can be applied with limited ML know how. 

2.6 Conclusion and Outlook 

In this work, we raised two questions: 1. What is the gap of SME in ML adoption compared to 

the state of the art and 2. what challenges and success factors are typical for SME in the ML 

adoption process. We find that research provides a strong theoretical foundation, but practice is 

yet in the process of the adoption of ML technologies and that SME significantly stay behind 

larger companies. We observe that larger companies are generally more mature in the adoption 

of ML, and that size-specific factors prevent SME from taking the same path of ML knowledge 

development as larger businesses. 

We also identified the major challenges of SME in the adoption of ML: Insufficient ML know 

how in SME for the identification of use cases and implementations, poor data quality in small 

businesses and obstacles in interdisciplinary work in medium businesses. We find that external 

cooperations were observed as major success factors to overcome the challenges, as well as per-

sonal initiative of employees. We propose three concrete measures to facilitate ML in SME. 

This study reflects the current situation of companies interviewed in our survey. The situation 

may change in the next years. However, while large businesses are systematically progressing in 

ML applications, SME risk to fall behind. Research can contribute to further facilitate the access 

of SME to ML technologies by appropriate frameworks that reduce the need for technical 

knowledge and that are adopted to the requirements of SME. As shown in this study, the preva-

lence of such frameworks is too low, yet. 

Also, we are aware that the survey was conducted over a relatively small set of companies. There-

fore, we can only deduct qualitative statements. However, the findings are in line with surveys 

that involve a higher number of respondents and logically sound. A larger survey could show the 

statistical significance of the statements. 
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3 How the Demand Forecasting 
Literature and Applications can 
Benefit from Better 
Comparability 

[This chapter corresponds to an article submitted to the International Journal of Information 

Technology & Decision Making (IJITDM). It is currently in second revision status in the ac-

ceptance process at IJITDM: Bauer, Markus; van Dinther, Clemens (2023): Quantitative Methods 

in Demand Forecasting: A Survey of the State-of-the-Art. – further referred to as Bauer and van 

Dinther 2023] 

Quantitative Methods in Demand 
Forecasting: A Survey of the State-of-
the-Art 

Demand forecasting is an essential element of business planning and management, and an accu-

rate estimate of future demand helps companies improve their resource allocation. In recent years, 

researchers have developed and evaluated numerous quantitative models. The advent and devel-

opment of machine learning methods have driven innovation in demand forecasting. However, as 

the number of studies increases, it becomes increasingly difficult to provide an overview of the 

state of the art and recent developments in demand forecasting. This paper helps to provide an 

overview of the broad research field of demand forecasting. Based on 116 recent studies, this 

article structures application fields and a general process for demand forecasting. Systematically, 

this article compares methods and procedures used and identifies open questions in research. As 

the most significant contribution, this article also presents a novel systematic for describing em-

pirical studies in a standardized way to establish comparability to other studies. This improved 

comparability promotes future meta-studies: without the effort of tedious empirical experiments, 

approaches of different studies can thus be compared quantitatively. 

3.1 Introduction and Problem Description 

Demand forecasting has a long tradition in academic research. In 1922, Prescott already described 

how to predict the development of the demand for automobiles, railroad services, and tobacco in 
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a comparative quantitative study (Prescott 1922). Since then, the need for precise forecasting of 

demand has rapidly increased throughout all industries. 

Academia has identified this need and produced thousands of studies in which researchers have 

developed specialized approaches for numerous distinct use cases. The research was fueled by 

advancements in data processing techniques and forecasting algorithms from the full range of 

academia and further boosted by the advent of machine learning in the 2000s. 

While this evolution provides valuable contributions to the research community and practitioners, 

it makes it difficult for both novice and experienced researchers to keep track of the body of 

knowledge and recent developments.  

Moreover, no unified and fully comprehensive descriptive approach to empirical studies for de-

mand forecasting has yet evolved. Authors focus on the major innovations of their approaches, 

but for the most part do not describe the full process, data used, and results in a way that allows 

other researchers to fully compare the approaches with other studies. In this context, however, a 

high degree of comparability helps ensure that comparative studies can build on existing ones 

without having to replicate the empirical experiments themselves. The reduced effort and in-

creased speed provided by such quantitative comparative ones could accelerate progress in re-

search. 

To address these challenges, we derive the following research questions to structure the research: 

RQ 1. What are the main applications of demand forecasting in the research and how do 

they contribute to the development of the discipline? 

RQ 2. How can the process of demand forecasting in the literature be abstracted and struc-

tured to yield a general framework for the comparison of different approaches? 

RQ 3. What are the current state-of-the-art methods per process step in the different de-

mand forecasting disciplines? 

RQ 4. Where are the gaps between the state-of-the-art methods applied when comparing 

the demand forecasting disciplines? 

 

This study contributes to the discussion in the demand forecasting community following the prin-

ciples of Webster and Watson for systematic literature reviewing (Webster and Watson 2002) 

whereby the survey: 

• structures the available research, making it easier for both newcomers and senior schol-

ars to review the body of knowledge and classify methods and studies. 

• summarizes the state-of-the-art methods and approaches of demand forecasting as well 

as related disciplines of forecasting and clusters them into concepts. 

• highlights the gaps between the state-of-the-art in the application of demand forecasting 

and other forecasting disciplines and summarizes as well as highlights open questions 

for future research. 

• develops and introduces a systematic by which future studies can describe data, objec-

tives, methods and procedures used, and results in a standardized manner–to increase 

comparability to other studies. 

The remainder of this paper is structured as follows. In Section 3.2, we introduce the applied 

research methodology. Section 3.3 introduces the fundamentals of demand forecasting and pro-

vides an initial overview of the literature of demand forecasting and key surveys. In Sections 3.5-
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3.8, the study systematically reviews the different approaches per step in the process of demand 

forecasting, comparing different demand forecasting disciplines. In Section 3.9 we summarize 

and discuss open issues identified in the field of demand forecasting before we conclude our find-

ings in Section 3.10. The appendix in Section 3.11 provides a comprehensive overview of all 

reviewed studies. 

3.2 Research Methodology 

This section describes our approach to structuring the literature on demand forecasting for this 

article whereby Figure 7 provides a schematic visualization of the process. 

Initially, we defined our research questions as outlined in Section 3.1 (Step I in Figure 7). 

Throughout the survey, we employed a comprehensive database of studies that relate to the field 

of demand forecasting. The initial database was set up using the Microsoft Academic search en-

gine. After the discontinuation of the service in December 2021, we consolidated the existing 

database with additional query results from the search engines Semantic Scholar and CrossRef, 

while taking care to omit any duplicates. We applied the same query term “demand AND fore-

casting” to all search engines. To export the search engine results into the database, we used the 

tool Publish or Perish (Harzing 2007). 

To narrow down the scope, we only considered studies with more than five citations on average 

per year and studies that were published in the period from 2018 to 2022. This initial database of 

studies included 1,199 studies (Step II in Figure 7). We deliberately deviated from the suggestion 

of Levy and Ellis to concentrate on ranked Information Systems (IS) journal and conference pa-

pers only, as we find numerous studies to be relevant that were published in other journals (Levy 

and Ellis 2006). Instead, we prioritized and classified the studies in the database as explained in 

more detail later on. 

After the setup of the comprehensive database, we screened all studies by title and abstract for 

their actual relevance and excluded non-relevant articles. We consider a study to be relevant when 

(1) its focus is to (2) apply quantitative methods to predict (3) measurable demands of (4) products 

or services based (5) directly or indirectly on customer behavior for (6) future (i.e., unknown and 

uncertain) time periods and (7) evaluates the deviation of the prediction from the realized value. 

We also classified the articles as surveys (if their main purpose was the comparison of other stud-

ies) or actual studies that proposed novel approaches. In addition, we classified each study ac-

cording to its field of application (Step III in Figure 7). After all the studies were classified, we 

consolidated the field of applications into five main domains of applications, which will be intro-

duced in Section 3.3.2 (Step IV in Figure 7). 

Based on the existing surveys of demand forecasting that were identified, we followed the road 

map of Webster and Watson and evaluated the surveys to identify the main contributions and 

recently identified open issues (Webster and Watson 2002) whereby Table 3 summarizes the ex-

isting surveys. 
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Following the recommendations of Webster and Watson, we applied a backward and forward 

search approach using the citations from the existing literature reviews to add relevant studies to 

the database. Again, the selection of relevant studies was based on the same criteria as described 

above. After the forward and backward search, the database comprised 116 studies in total (Step 

V in Figure 7). 

To further structure the survey, we analyzed the process of demand forecasting as described by 

the studies. As only some studies explicitly describe the process, we also examined forecasting 

processes in other fields of research and synthesized a general abstract process as described in 

Section 3.4 (Steps VI and VII in Figure 7). 

We subsequently reviewed all studies in the database in detail and classified the approaches that 

were applied in each process step (Step VIII in Figure 7). To compare the observed approaches 

to the respective state-of-the-art in other fields of research, we also reviewed surveys in other 

forecasting disciplines (Step IX in Figure 7). 

Table 17 in Section 3.11 „Appendix” provides the comprehensive list of reviewed studies. It 

shows the details of each study by process step, namely the target variable and inputs, prepro-

cessing and feature engineering, forecasting algorithms and hyper-parameter optimization meth-

ods, and evaluation metrics and cross-validation schemes—all organized by the field of applica-

tion. 

 

 

Figure 7: Literature research methodology scheme. 
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3.3 First Steps Toward Understanding the Demand 
Forecasting Literature and Research 

Section 3.3 introduces the basic concepts of demand forecasting and elementary mathematical 

notations after which the survey develops the structure as a framework for the remainder of the 

article in Sections 3.3.2 and 3.4. 

3.3.1 Defining the Scope 

In this review, we concentrate on quantitative demand forecasting whereby demand forecasting 

is defined as a process of predicting future and yet unknown demands. We consider all kinds of 

demands: customer demands in business to customer, supply demands in business to business, 

demands for services (e.g., telecommunication), or demands for capacities (e.g., production or 

health care). In all of these cases, there can be a target variable 𝑦𝑡 = 𝑓(𝑋𝑡, 𝑌𝑡−1, Ε𝑡) defined for 

each time step 𝑡 ∈ {0,1, … , 𝑇} that is determined by past and actual values of external factors 𝑋𝑡 =

{𝑥0, 𝑥1, … , 𝑥𝑡} (𝑥𝑡 may be a scalar or vector), a certain stochastic influence Ε𝑡 = {𝜖0, 𝜖1, … , 𝜖𝑡} and 

potentially also historical values of the target variable 𝑌𝑡−1 = {𝑦0, 𝑦1, … , 𝑦𝑡−1}. The values of 𝑥𝑡 

and 𝜖𝑡 can also potentially depend on their past values and additional stochastic processes. In the 

demand forecasting process, the goal is to determine the relevant external influences 𝑋, to find a 

model for the stochastic process Ε, and approximate the function 𝑓(𝑋, 𝑌, Ε) from the known his-

tory, so that future values of the target variable 𝑌𝐹 = {𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2, … } can be estimated 𝑌̂𝐹 =

{𝑦̂𝑡, 𝑦̂𝑡+1, 𝑦̂𝑡+2, … }. Most forecasting approaches reduce the complexity by omitting parts of the 

time series history or the entire history. Depending on the use case, this can also be in line with 

the nature of 𝑓(. ). 

Generally, we observe two kinds of forecasts in the reviewed literature:  

• Point forecasts predict one discrete value in each forecast (for each target variable, time step, and 

object). 

• Probability forecasts predict a confidence interval in which the future value of the target variable is 

assumed at a certain probability. 

The advantage of probability forecasts over point forecasts is that the width of the confidence 

interval can indicate the certainty of the assumed forecast. In practice, decisions taken based on 

forecasts can strongly depend on the predicted certainty and while most reviewed studies address 

point forecasts, we emphasize the application of probability forecast approaches throughout the 

survey. 

 

Given the structure of the problem of demand forecasting, the two major approaches to demand 

forecasting that we observe in practice become evident(Ivanov et al. 2021): 

• Time series forecasting assumes that the most relevant information about future demands 

𝑌𝐹 is already contained in past demands 𝑌𝑡−1. Hereby, the target variable history simul-

taneously serves as input for the demand forecast. This is also intuitive, as demands can 
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either have a constant trend over time in the long run or exhibit a seasonality influence. 

For example, in German grocery retailing, the first and the last day of a work week have 

higher sales than the other days because the customers anticipate that the shops will be 

closed on the weekend. 

• Causal approaches emphasize the correlation of the target variable 𝑦𝑡 with the external 

factors 𝑋𝑡. As is common in demand forecasting, we interchangeably call these external 

factors “features” (practitioners’ term), “additional inputs” (general term), or “exogenous 

variables” (econometric term). Econometric models make use of exogenous variables 

such as overall economic growth, employment rates, or exchange rates. However, other 

external factors such as the weather, and social or other aspects can also influence demand 

behavior. 

In practice, we usually observe mixed models which incorporate both the target variable history 

and exogenous variables. 

The forecasting model plays a significant role in demand forecasting and two types of models can 

be differentiated by the underlying model assumptions: 

• Classical approaches assume an underlying a-priori model. Dependencies between vari-

ables or time periods that are not considered by the model therefore cannot be mapped by 

the model. Additionally, the model design determines all mathematical functions consid-

ered by the model in advance. For example, a linear model can only represent linear and 

not non-linear functions. 

• Machine learning (ML) approaches in contrast do not assume an a-priori model. An early 

definition of ML by Mitchell is: “A computer program [that] is said to learn from expe-

rience 𝐸 with respect to some class of tasks 𝑇 and performance measure 𝑃 if its perfor-

mance at tasks in 𝑇, as measured by 𝑃, improves with experience 𝐸” (Mitchell 1997). 

The general advantages of artificial neural networks (ANN) as a special type of ML re-

ported by Zhang et al. can be summarized by: (1) The ability to deduct insights through 

a data-driven approach rather than theoretical assumptions in an a priori model; (2) The 

ability to generalize these insights gathered from the data; (3) The ability to approximate 

data and continuous or non-continuous relations, as well as linear and non-linear relations 

(Zhang et al. 1998). Cybenko showed that ANN can represent arbitrary mathematical 

functions (Cybenko 1989) whereas Leshno et al. indicated that this not only holds true 

for sigmoid activation functions but for all non-polynomial activation functions with a 

single hidden layer and a finite number of nodes (Leshno et al. 1993). 

3.3.2 A First Overview of the Literature on Demand Forecasting 

To our knowledge, no survey comparable to the current work has been published that systemati-

cally reviews and compares demand forecasting overarching the fields of applications in each step 

of the process from the definition of goals to the systematized evaluation and validation of results. 

Instead, all surveys we reviewed concentrate on a particular aspect of demand forecasting re-

search, which is typically defined by the application. In this section, we introduce five areas of 

applications that are most common in the demand forecasting literature and subsequently present 

recent and influential surveys for each area of application. 
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Demand forecasting for electricity demand (EC) accounts for most studies. The number of studies 

increased with the boom of renewable energy sources (RES) after the year 2000, because of a 

paradigm shift in electricity grids. Decentralized energy production through rooftop photovoltaics 

on people’s houses poses new challenges to energy providers as imbalanced electricity grids lead 

to failures of the grid. Therefore, supply and demand must be carefully predicted and balanced. 

The topic of travel & transportation (TR) falls under the research area with the second-largest 

number of articles in our literature review. This field exhibits a strong seasonality, wherefore time 

series models are frequently applied in this domain. The third category of use cases is logistics & 

inventory (LI), where especially intermittent and lumpy demands are forecasted. Another fre-

quently addressed industry is that of water & energy (WE) demand. Due to their relatively low 

frequency of appearance in the studies that were reviewed, several industries, such as telecom-

munication, cloud computing, health, food, education, estates, construction, fashion, and a few 

others are subsumed under the term “others”. Table 3 summarizes the main fields of application. 

 

 Industry Recent and influential literature reviews 

EC Electricity 
(Aslam et al. 2021; Ahmad et al. 2020; Raza and Khosravi 

2015) 

TR Travel & transportation 
(Ghalehkhondabi et al. 2019; Sison et al. 2021; Song et al. 

2019) 

WE Water & energy (excl. EC) 
(Ghalehkhondabi et al. 2017a; Ghalehkhondabi et al. 2017b; 

Suganthi and Samuel 2012) 

LI Logistics & inventory 
(Mediavilla et al. 2022; Pinçe et al. 2021; Seyedan and Mafak-

heri 2020) 

OT 

Other (health, telecom, food, finance, 

farming, construction & estate, edu-

cation) 

(Zhu et al. 2019; Masdari and Khoshnevis 2020; Meade and 

Islam 2015) 

Table 3: Main fields of application with important reviews. 

The forecasting competitions span the different applications of demand forecasting. Here, fore-

casting approaches competed for the highest forecasting performance on predefined data sets. 

Both Fildes and Ord and Hyndman summarized the most remarkable competitions (Hyndman 

2020; Fildes and Ord 2007). Among these are the Makridakis “M Competitions” (1.: 1982 (Ma-

kridakis et al. 1982); 2.: 1993 (Makridakis et al. 1993); 3.: 2000 (Makridakis and Hibon 2000); 

4.: 2020 (Makridakis et al. 2020); 5.: 2021 (Makridakis et al. 2022)) and the NN3 spin-off (Crone 

et al. 2011), the Global Energy Forecasting Competitions (1.: 2012 (Hong et al. 2014); 2.: 2014 

(Hong et al. 2016); 3.: 2017 (Hong et al. 2019)) and several smaller competitions on the online 

platform Kaggle (e.g., tourism forecasting (Athanasopoulos et al. 2011)). In this context, it is 

important to note that the competition format poses an exception within demand forecasting, as it 

ensures a high level of comparability between the results since the competitions provide the same 

basic conditions (i.e., same input data) to all contestants and also standardize the evaluation cri-

teria. In this article, we will show how these preconditions result in highly comparable study 

results. 

 

Table 4 presents a summary of the information provided by the most recent and influential surveys 

for each field of application according to the field of application and subdisciplines, periods re-

viewed, the structure of the reviews, methods reviewed, and open issues raised. We chose the 
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three most highly cited surveys in the period from 2018 to 2022. In some cases, we decided to 

consider additional surveys that did not apply to this scope if we found that they provide an espe-

cially helpful overview of the topics or a significant subdiscipline. 

 



3.3 First Steps Toward Understanding the Demand Forecasting Literature and Research 

49 

Survey Survey focus Main statements 

Electricity 

Aslam et al., 2021 
(Aslam et al. 2021) 

Subdisciplines: Solar and wind energy production, 
electricity consumption 

Methods: Deep learning 

Time period under review: 2015-2020 

Content: Comparison of approaches by data sets, 

forecasting algorithm, results, and metrics 

Reviewed: Organized by subdiscipline, 11 general 
surveys, 18 wind energy studies, 13 solar irradiance 

studies, 12 electricity consumption studies com-

pared by MAE, MAPE and RMSE 
Open issues: Availability and processing cost of 

big data required for deep learning model training, 

forecasting of new energy sources 

Ahmad et al., 2020 

(Ahmad et al. 2020) 

Subdisciplines: Solar and wind energy production, 

electricity consumption, short, medium, and long 
term 

Methods: Machine learning, neural networks, and 

ensemble approaches 

Time period under review: 2009-2019 

Content: Comparison of approaches by forecasting 

algorithm, results, and metrics 

Reviewed: Organized by subdiscipline, 50 short 

term solar irradiance studies, 51 short term wind en-
ergy studies, 5 geothermal studies, 20 short term, 15 

medium term and 10 long term electricity consump-

tion studies 
Open issues: Consideration of regional influences 

and particularities in short term forecasting, medium 

and long term forecasts need to incorporate future 
climate changes, consideration of temporal and spa-

tial differences 

Raza and Khosravi, 

2015 (Raza and 

Khosravi 2015) 

Subdisciplines: Electricity consumption, short, me-

dium, and long term 

Methods: Statistical and neural network approaches 

Time period under review: up to 2014 

Content: Comparison of approaches by forecasting 

algorithm, results, and metrics 

Reviewed: Organized by subdiscipline, 7 smart grid 

studies, 32 highlight studies of neural networks and 

comparison approaches 
Open issues: Consideration of meteorological fac-

tors, hybridization of approaches, incorporation of 

price influences, smart grid and smart buildings in-
corporation into model, active demand management 

instead of mere forecasting 

Travel & transportation 

Sison et al., 2021 
(Sison et al. 2021) 

Subdisciplines: Travel demand (airline and hotel) 
Methods: Machine learning 

Time period under review: 2000-2020 

Content: Overview of terms and qualitative com-
parison of methods 

Reviewed: Organized by process step and ap-
proach: Target variables, 5 studies preprocessing, 13 

studies ARIMA, 10 studies linear regression, 3 

econometric models, 9 backpropagation ANN, 9 
SVM, 8 hybrid models, model evaluation (no refer-

ences) 

Open issues: Intensified application of ML algo-
rithms for non-linear data relationships, incorpora-

tion of cost-efficiency, computing time as well as 

consistency over different forecasting horizons in 
addition to forecasting accuracy, development of 

hybrid approaches incorporating decomposition 

techniques, adoption of techniques from other fields 
of research as cold start forecasting or microlevel 

forecasting, securing data privacy, adoption of fed-

erated learning. 

Ghalehkhondabi et al., 

2019 (Ghalehkhondabi 
et al. 2019) 

Subdisciplines: Tourism and transportation de-

mand 
Methods: Statistical and machine learning 

Time period under review: 2005-2018 

Content: Qualitative comparison of studies by 
method applied 

Reviewed: Organized by approach, 18 statistical 

time series studies (ARIMA; regression), 12 ML 
studies 

Open issues: Development of hybrid methods, de-

termination of qualitative variables impact on fore-
cast accuracy, incorporation of multi-level seasonal-

ity and extreme events, data quality assurance 

methods 

Song et al., 2019 (Song 

et al. 2019) 

Subdisciplines: Tourism demand 

Methods: Statistical, econometric, judgmental and 
machine learning 

Time period under review: 1968-2018 

Content: Qualitative and quantitative comparison 
of studies by method applied 

Reviewed: Organized by approach, 211 studies, 

best performing algorithms: 72 statistical time se-
ries, 82 econometric model, 6 judgmental, 33 artifi-

cial intelligence, 18 hybrid approach 

Open issues: Development of ML approaches to 
exploit big data, hybridization of time series and 

ML approaches, especially forecasting combination 

weighting schemes, consideration of complex inputs 
and dependencies as cross-border employment, cul-

tural differences, globalization, etc., on micro-level,  
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Song and Li, 2008 
(Song and Li 2008) 

Subdisciplines: Tourism demand 
Methods: Statistical, econometric and machine 

learning 

Time period under review: 2000-2007 

Content: Qualitative and quantitative comparison 

of studies by method applied 

Reviewed: Organized by approach, 121 studies, 
best performing algorithms: 52 statistical time se-

ries, 40 econometric model, 17 artificial intelli-

gence, 1 hybrid approach, 11 other (mainly panel 
analysis) 

Open issues: More advanced incorporation of sea-

sonality, research on benefits of disaggregation ap-
proaches, analysis of the impact of crisis on de-

mand. 

Water & energy 

Ghalehkhondabi et al., 

2017a (Ghalehkhondabi 
et al. 2017a) 

Subdisciplines: Energy demand: Electricity, gas, 

heat and building energy 
Methods: Statistical and machine learning 

Time period under review: 2005-2015 

Content: Qualitative and quantitative comparison 
of studies by method applied 

Reviewed: Organized by approach, tabular compar-

ison of studies: 7 ANNs, 5 fuzzy logic, 5 time series 
approaches, 5 grey prediction, 5 moving average, 5 

regression, 5 support vector machines, 3 genetic al-

gorithms, 9 econometric and system dynamics 
Open issues: Intensification of peak energy demand 

forecast research, consideration of saturation factors 

that come into play when energy demand stops ris-
ing in the future, incorporation of weather/climate 

influences other than temperature, improvement of 

hybrid forecasting approaches, improvement of er-
ror metrics, difficulties of neural network ap-

proaches: overfitting, overall implementation com-

plexity, amount of data required for training. 

Ghalehkhondabi et al., 

2017b 
(Ghalehkhondabi et al. 

2017b) 

Subdisciplines: Water demand 

Methods: Soft computing, i.e. machine learing, not 
statistical methods 

Time period under review: 2005-2015 

Content: Qualitative comparison of studies by 
method applied 

Reviewed: Organized by approach: 25 ANN stud-

ies, 9 fuzzy logic studies, 9 support vector machine 
studies, 10 metaheuristic or hybrid approach studies, 

4 system dynamics studies. 

Open issues: Research on more sophisticated neural 
network approaches (e.g., recurrent networks), 

adoption of unsupervised learning methods, re-

search of further state-of-the-art metaheuristics (ant 
colony simulation, simulated annealing, etc.) and 

ensemble approaches, study of input factor effec-

tiveness, development of strategies for non-station-

ary time series neural network approaches. 

Suganthi and Samuel, 
2012 (Suganthi and 

Samuel 2012) 

Subdisciplines: Energy demand 
Methods: Statistical, econometric and machine 

learning 

Time period under review: up to 2011 

Content: Qualitative comparison of studies by 

method applied 

Reviewed: Organized by approach: 23 time series 
studies, 20 regression studies, 51 econometric stud-

ies, 10 decomposition model studies, 46 unit root 

test and cointegration model studies, 9 ARIMA 
studies, 81 ANN studies, 12 grey prediction studies, 

7 input-output studies, 22 fuzzy or genetic algorithm 

studies, 4 support vector machine studies, 8 optimi-
zation heuristics studies, 41 buttom-up model stud-

ies. 

Open issues: Application of the available methods 
in practical applications and derivation of policies 

for energy demand planners and politicians, adop-

tion of the state-of-the-art methods by researchers. 

Logistics & inventory 

Mediavilla et al., 2022 

(Mediavilla et al. 2022) 

Subdisciplines: Supply chain demand 

Methods: Statistical and machine learning 

Time period under review: 2017-2021 

Content: Qualitative comparison of studies by 

method applied 

Reviewed: 33 studies, classified by: industry and 

position in supply chain, empirical data set, algo-

rithms applied, metric used and implementation 

tool. 

Open issues: Combining demand forecasts along 

the supply chain to prevent bull-whip effect while 
most recent literature concentrates on the retailer 

(last step in supply chain), trend towards complex 

ML methods observed in recent years, intensifica-
tion of integration of additional external inputs and 

integration of feature engineering methods in pipe-

lines. 

(Pinçe et al. 2021) Subdisciplines: Spare parts demand 

Methods: Statistical, contextual and machine lear-
ing 

Time period under review: up to 2020 

Content: Qualitative and quantitative comparison 
of studies by method applied 

Reviewed: 56 studies, organized by forecasting ap-

proach, additional overview of performance meas-
ure metrics. 
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Open issues: Unification of performance measures 
as well as more detailed descriptions of the used 

data sets for better comparability of approaches – 

ideally resulting in a standardized study reporting 
scheme, intensification of application of inventory 

performance measures over forecast accuracy 

measures to improve practical relevance, intensifi-
cation of development of big data capable ap-

proaches to exploit for example installed base infor-

mation, development of judgmental approaches to 
better incorporate human knowledge, development 

of supply chain overarching forecasting methods 

and collaboration approaches, improvement of de-
mand classification (e.g. anomalies through mainte-

nance works) and preprocessing of such anomalies 

(Aamer et al. 2020) Subdisciplines: Supply chain demand 

Methods: Machine learning 

Time period under review: 2010-2019 

Content: Qualitative and quantitative comparison 

of studies by method applied 

Reviewed: 79 studies, organized by approach: neu-

ral networks and variants 61%, SVM 27%, Decision 

trees and boosted/bagged variants 7%, other 5% 
Open issues: Intensification of research in fields 

which have yet not received sufficient attention with 

respect to supply aspects: agriculture, healthcare 
and transportation of goods, integration of demand 

forecasting in collaborative supply chain planning 

processes. 

(Seyedan and Mafak-

heri 2020) 

Subdisciplines: Supply chain demand 

Methods: Machine learning 
Time period under review: 2005-2019 

Content: Qualitative and quantitative comparison 

of studies by method applied 

Reviewed: 49 studies, organized by approach and 

application: ANN, Clustering, k-nearest neighbors, 
regression, SVM, statistical time series forecasting 

Open issues: Combination of supply chain demand 

forecasting with integrated cost optimization ap-
proaches, inclusion of reverse and closed loop logis-

tics in research. 

Other 

(Zhu et al. 2019) Subdisciplines: Healthcare and emergency demand 

Methods: Statistical and machine learning 
Time period under review: 1980-2018 

Content: Qualitative comparison of studies by 

method applied 

Reviewed: 1,230 studies in keyword search, of 

which 32 described in detail, organized by approach 
Open issues: Intensification of research and stand-

ardization of accepted forecasting models, adoption 

of methods to exploit big data considering the real-
life limitation of data availability and data privacy 

restrictions, diversification of target variables and 

performance metrics 

(Masdari and Khoshne-

vis 2020) 

Subdisciplines: Cloud computing demand 

Methods: Statistical and machine learning 
Time period under review: Up to 2020 

Content: Qualitative and quantitative comparison 

of studies by method applied 

Reviewed: 54 studies, organized by approach and 

classified by data set, implementation, evaluation 
metrics and predicted factors 

Open issues: Deeper research of application of ML 

approaches, improvement of schemes to adopt to 
real life situations, improved discipline metrics, 

coverage of longer horizons with seasonal varia-

tions, improvement of resource allocation algo-
rithms, integration of intrusion detection, develop-

ment of lightweight models (e.g., for IoT or mobile 

devices), autoscaling schemes for DDoS detection 
and prevention. 

(Meade and Islam 
2015) 

Subdisciplines: Telecommunication demand 
Methods: Statistical and machine learning 

Time period under review: up to 2014 

Content: Qualitative and quantitative comparison 
of studies by topic 

Reviewed: Organized by topics: 13 single country 
ICT diffusion model studies, 12 multi country ICT 

diffusion model studies, 21 call center time series 

model studies, 7 univariate telecommunications 
time series studies, 9 internet usage and provision 

model studies, 14 internet technologies studies. 

Open issues: Low level of innovation in single 
country diffusion modelling compared to multi 

country studies, intensification of comparing studies 

in technology choice models, availability of ade-
quate data for research. 

Table 4: Overview of the reviewed surveys in different applications of demand forecasting. 
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3.4 The Process of Demand Forecasting 

In the first step, we review the process of demand forecasting to provide a framework for the 

approaches that we discuss in detail in the subsequent sections. The details of the literature re-

search process are provided in Section 3.3.2 from which it becomes apparent that only a few 

studies explicitly formulate the process of demand forecasting, and most papers focus on specific 

aspects of the process to contribute to their field of research. This section gives an overview of 

the process inferred from three types of studies: A. studies that mention the process as part of 

their approach to a certain use case or methodology, B. surveys of forecasting techniques, and C. 

studies on AutoML. 

Type A studies implicitly use models of the demand forecasting process. For example, Raza and 

Khosravi (Raza and Khosravi 2015), Herrera et al. (Herrera et al. 2010), and Hua (Hua 1996) 

describe slightly different versions of a five-step approach: 1. selection of inputs, 2. different 

techniques of preprocessing, 3. model setup and training, 4. post-processing of the results, and 5. 

evaluation and interpretation of the results. Other recent studies apply comparable approaches, 

for example, Abbasimehr et al., Xie et al., and several others (Xie et al. 2021; Cheng et al. 2017; 

Ryu et al. 2017; Cai et al. 2021; Abbasimehr et al. 2020; Iftikhar and Khan 2020; Bandara et al. 

2019; Fu et al. 2018; Tsao et al. 2022; Venkatesh et al. 2014; Bega et al. 2019; Kulshrestha et al. 

2020; Li et al. 2020a; Raza et al. 2022; Sison et al. 2021). 

Studies by de Gooijer and Hyndman (de Gooijer and Hyndman 2006) and Montgomery et al. 

(Montgomery et al. 2008) describe the process of demand forecasting from a general perspective 

as part of their surveys on the history of demand forecasting (Type B). AutoML studies (Type C) 

provide examples of the demand forecasting process. AutoML is a discipline in ML that studies 

concepts to automate the entire ML process, especially concerning the tuning of model parame-

ters. This discipline is predestined as the automation of the process requires researchers to thor-

oughly describe and understand the process. We find numerous appropriate examples that de-

scribe quantitative forecasting processes: Feurer et al. (Feurer et al. 2015), Hall et al. (Hall et al. 

2009), He et al. (He et al. 2019), Molino et al. (Molino et al. 2019), Truong et al. (Truong et al. 

2019), Yan (Yan 2012), Yao et al. (Yao et al. 2018b) whereby all these examples are in line with 

the findings from the field of demand forecasting. 

For the remainder of the review on the state-of-the-art, we adopt the forecasting process ap-

proaches from the literature and conclude a unified process (see Figure 8). It considers forecasting 

goal definition and input selection in the first step, various preprocessing techniques in the second 

step, feature engineering as a separate third step (as proposed in the AutoML context), and model 

design, hyper-parameter optimization, and model evaluation in the fourth step. 
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Figure 8: A schematic process of demand forecsting 

• Section 3.5 provides an overview of characteristic target variables in the different indus-

tries that apply demand forecasting, as well as additional external inputs. 

• Section 3.6 provides an overview of data preprocessing techniques applied in demand 

forecasting and a broader view of general techniques from other domains. 

• Section 3.7 summarizes the feature engineering techniques used to select and generate 

optimal feature sets from demand forecasting and other domains. 

• Section 3.8 surveys the vast number of available and applied forecasting models and tech-

niques to evaluate model predictions. 

 

As some of the techniques described in this review are also applied in other ML disciplines and 

not only in demand forecasting, a brief introduction to these techniques is provided for those who 

are new to the field of demand forecasting. More importantly, the survey focuses on the particu-

larities of the applications of the techniques specific to demand forecasting. 

The following sections provide brief summaries and conclusions of the respective sections and 

we pick up and unify the section-wise conclusions in Section 3.9 (Summary of the Findings and 

Open Issues) to draw a comprehensive conclusion. 

3.5 The Starting Point of Demand Forecasting: 
Forecasting Goal Definition 

The standard approach in the literature is to start the demand forecasting process with the defini-

tion of the target variable, and appropriate inputs for the model and the target variable are worth 

examining more closely in all studies. Thus, in this section, we investigate target variable defini-

tion and review how different industries define their target variables and what additional inputs 

are typically used. Table 5 provides a comprehensive overview of these points, while Table 17 

provides the target variables and additional inputs of each reviewed study. 

The target variable is the first – and one of the most determining factors – that studies define in 

the first step. Song and Li published a comprehensive study showing the multitude of target var-

iables in travel demand forecasting (Song and Li 2008). However, even though it has a strong 

impact on the entire demand forecasting process, this step is often underestimated. For example, 
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we consider a researcher who estimates the water demand of a municipality. The target variable 

has numerous manifestations including, among others, a time component (e.g., daily, weekly, 

monthly, yearly demand), a spatial component (e.g., per household, per area, per city), a metric 

component (e.g., liters per capita, liters absolute), a social component (e.g., per income group, per 

age), and a point, distribution, or profile forecast (e.g., mean, median, peak, actual distribution). 

Even though the task to define a target variable seems straightforward at first, we can tell from 

this example that it influences all subsequent steps. For example, the yearly water demand is likely 

to correlate with economic indicators, whereas the daily demand will not necessarily do so. The 

daily water demand exhibits strong intra-day patterns and fluctuations – in contrast to the annual 

demand. Therefore, we would need to choose a model that can represent intra-day patterns and 

fluctuations – other than a model appropriate for annual demand. 

The field of electricity demand forecasting is one of the most mature fields and hence, studies 

relating to it exhibit very differentiated target variables including different time horizons (from 

very short to long term), single value predictions or load profiles, or price forecasting. Due to 

their use case similarity, water and energy exhibit similar target variables as electricity. In contrast 

to these deeply evolved target variables, travel demand forecasting addresses the broad aspects of 

use cases by a variety of target variables. While transportation and hospitality providers require 

traveler numbers as planning input, businesses are more interested in travelers’ expenditures on 

goods and services. 

Looking at the example of logistics & inventory demand forecasting, we can show how the target 

variable is not only decisive from a business standpoint but also has important implications for 

the mathematical characteristics of the demand forecasting process. For example, spare part de-

mands for inventory planning exhibit particularly intermittent demands where demand events are 

followed by periods with zero demands. Such demand behavior is opposed to the usual assump-

tions in time series forecasting, where the basic assumption is that while demand may be fluctu-

ating, it however is mostly greater than zero. As we will see in the following sections, this affects 

all further steps and results in unusual models that are applied in spare parts demand forecasting 

– compared to other disciplines. 

We first examine the additional inputs through the product (i.e., goods) demand forecasting in 

which products exhibit pronounced lifecycles. Companies develop new products, set up produc-

tion and logistics capacities, introduce the product to the market, and then typically observe in-

creasing sales, a plateau of sales, and subsequently a constant decrease. Before the market launch, 

no historical sales data is available to determine the mechanisms of the demand behavior for a 

given product. This is opposed to other industries that are characterized by long or infinite product 

lifespans. The fashion industry illustrates the challenges of the issue of product life cycles as the 

demand for a new collection is difficult to predict before its launch because no historical data is 

available. Since companies decide on all relevant details (such as the number of produced items) 

before the launch, the industry mainly applies two techniques: preview sales (Mostard et al. 2011) 

and demand forecasting based on product features (Ferreira et al. 2016). Preview sales are used 

to evaluate the customers’ reactions based on a small and representative sample of customers. 

Product feature-based forecasting relies on reducing the product demands to the products’ features 

and the re-composition of the expected demand for new products based on their feature combina-

tion. 
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Further examples show the relevance of additional model inputs to enhance demand forecasting. 

Spare parts demand forecasting is improved through the knowledge of the use of the products that 

require spare parts (known as Active Installed Base, AIB) (Kim et al. 2017). Point of sale (POS) 

data can improve supply chain forecasting by two means. First, if the POS information is available 

to upstream players in the supply chain, the information can travel the supply chain faster. Second, 

direct correlations between customer characteristics and product demand behavior can be rec-

orded and deducted (Williams and Waller 2010). 

Apart from these problem-instance specific model inputs, we find that the obvious indicators are 

applied as often as expected and, among others, the date information such as day-of-week and 

day-of-month enable models to identify seasonality while public holidays and public events help 

to explain deviations from regular patterns. Even though weather and climate information is au-

tomatically incorporated into the models in many articles, the correlation between weather and 

demand is particularly strong in electricity and energy demand. Economic indicators, such as 

gross domestic product (GDP) or purchasing power influence purchasing behavior and therefore 

also correlate with the demand for electricity, energy, travel, and leisure. 

Despite the large number of studies that incorporate additional variables into their models, it is 

debatable under which conditions they can actually improve forecasting. In their tourism fore-

casting competition, Athanasopoulos et al. (Athanasopoulos et al. 2011) conclude that pure time 

series models achieve the same and better results than models that include additional econometric 

inputs. However, the majority of studies include exogenous variables and exhibit an improved 

forecasting quality. 
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Industry Target variable Additional inputs 

Electricity Very short (Shang 2013), short (Ryu et al. 2017; 

Taylor 2010), medium (Chang et al. 2011) and 

long term (Hyndman and Fan 2010) forecast; one 

load forecast (most common) or load profile 

forecast (Amini et al. 2016) or price forecast 

(Chan et al. 2012) 

Target variable history, date information (day-

of-week, public holidays, …), climate and/or 

weather, economic inputs   

Travel & 

transport 

Travel: Tourist arrivals, expenditures (by prod-

uct category), tourism employment (Song et al. 

2010) 

Transportation: Passenger rides (Ke et al. 2017) 

Target variable history (Du Preez and Witt 

2003), economic inputs, e.g. income and ex-

change rate (Song et al. 2003) 

Water & 

energy 

(excl. elec-

tricity) 

Short (day, peak), medium, long: demand and 

revenue (Billings and Jones 2008) 

Target variable history (Herrera et al. 2010), cli-

mate and/or weather (Izadyar et al. 2015; Ada-

mowski et al. 2012), economic inputs (e.g. pur-

chasing power) (Nasr et al. 2002), demographics, 

date information (Rockaway et al. 2011; Donkor 

et al. 2014) 

Logistics & 

inventory 

Materials demand (production inputs (Toktay 

and Wein 2001) and spare parts (Willemain et al. 

2004)), logistics capacities (Carbonneau et al. 

2008) 

(active) installed base (Kim et al. 2017), point of 

sale data (Williams and Waller 2010), economic 

inputs (Hou and Zhang 2005) 

Other Fashion: Products/product groups, product life 

cycle (by regions) (Mostard et al. 2011; Nenni et 

al. 2013) 

Health: Professional labor capacities (Landry et 

al. 2016; Maier and Afentakis 2013), materials & 

drugs demand (Drackley et al. 2012) 

Finance: Cash demand (Venkatesh et al. 2014), 

inflation (Dreger and Wolters 2014) 

Fashion: Preview sales (Mostard et al. 2011), 

product features (Ferreira et al. 2016), events 

(Ferreira et al. 2016) 

Health: Demographics (Drackley et al. 2012), 

economic indicators (Maier and Afentakis 2013), 

social media (Kim et al. 2015) 

Finance: Target variable history, date infor-

mation (Venkatesh et al. 2014), economic indi-

cators (Dreger and Wolters 2014) 

Table 5: Industries and their typical forecasting target variables and model inputs. The citations highlight examples of 

the application of the named variable. 

Even though the literature regularly considers historical sales data as a proxy for historical de-

mand, it should be noted that these two factors are not equivalent and historical sales frequently 

do not reflect lost sales, i.e., those demands that could not be fulfilled due to insufficient stock, 

production, service capacities, or similar aspects. In some cases, companies keep records of indi-

cators for lost sales, e.g., order book backlog and lost tender processes or rejected orders. In these 

cases, the real demand can be deduced (Gilliland and others 2010). 

A detailed description of the characteristics of the data used for empirical research is important 

for other researchers to compare their results to existing studies. Throughout our review, we ob-

served that only a few studies describe the statistical properties of their data set in such detail that 
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a direct comparison is possible. Some studies, however, use publicly available data (such as com-

petition data) to make their data source transparent. 

3.6 Setting the Foundations: Preprocessing of Data 

This section provides an overview of the techniques that researchers and practitioners usually 

apply for demand forecasting. Most studies mention the use of the following techniques although 

they do not focus on their optimization but rather apply them as a prerequisite for subsequent 

steps. 

To a certain degree, the overall data obtained in business environments regularly contains faulty 

data which researchers and practitioners need to remove from their data source before building 

and training forecasting models. This process is usually called data cleaning. Part of this step is 

to impute missing values (missing value treatment), which is not the focus of this article. Further-

more, anomaly or outlier detection helps to identify faulty data. Apart from the manual inspection 

of the data and basic plausibility rules (e.g. (García Valverde et al.)), studies apply outlier detec-

tion approaches to detect anomalies that are possibly invalid data points. Shang and Vilar, et al. 

apply functional principal component analysis (FPCA) (Shang 2013; Vilar et al. 2016). Del Real 

et al. apply outlier detection in electricity demand forecasting similar to approaches proposed in 

other studies (Del Real et al. 2020; Pérez-Chacón et al. 2020; Shakarami et al. 2021). General 

concepts for outlier detection are inter alia: least absolute shrinkage and selection operator 

(LASSO) outlier detection (Au et al. 2010), symbolic aggregate approximation (SAX) (Lin et al. 

2005), Isolation Forests (Liu et al. 2008), or Local Outlier Factors (Breunig et al. 2000). Some 

forecasting models require outlier removal due to their sensitivity to outliers, e.g. as shown by 

Tsay for ARMA models (Tsay 2000). However, it should be noted that outliers are not always 

data errors but can also be valid observations, for example, caused by unusual events. However, 

they do present indications that require further investigation. 

Some models such as the ARMA and GARCH models incorporate stationarity assumptions (see 

Section 3.8.1). Stationarity tests are applied to test input data to comply with the stationarity 

assumptions. Demand forecasting studies regularly use unit root tests such as the Dickey-Fuller, 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS), or Hylleberg, Engle, Granger and Yoo (HEGY) 

Tests (for example (Claveria et al. 2015; Taylor 2010)). Song and Li provide an overview of 

stationarity tests and remark that they are only applicable in the case of deterministic seasonality 

(Song and Li 2008). If stationarity is not given for the input data, differentiation is applied to 

provide a stationary input to the model. 

In the context of data preprocessing, techniques to deal with small data sets or imbalanced data 

sets should also be mentioned. Data augmentation techniques help to artificially enlarge small 

data sets and Herrera et al. propose sliding time windows and Monte Carlo simulations to present 

different windows of the same time series to the forecasting models (Herrera et al. 2010). Addi-

tional approaches such as time window warping (DTW) (Rashid and Louis 2019) or dynamic time 

warping barycenter averaging (DBA) (Forestier et al. 2017) have been proposed in forecasting 

research but not notably adopted in demand forecasting. Although DTW can also be considered 

a feature extraction technique, it is widely described as an augmentation technique in time series 
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forecasting. Liu et al. describe and compare general time series augmentation techniques that 

provide noise injection to existing time series (Liu et al. 2020a), and Shakarami et al. apply noise 

injection in a demand forecasting study (Shakarami et al. 2021). In their comprehensive overview 

of general time series augmentation methods, Wen et al. also describe advanced augmentation 

techniques such as the use of generative adversarial networks (GAN) (Wen et al. 2021b) although 

we do not find examples of this technique being applied in demand forecasting. In contrast to data 

augmentation techniques, sampling (or bootstrapping) approaches take samples from the input 

data (randomly or systematically, with or without replacement). This can be helpful when classes 

of time series are underrepresented in the data set. General research in this field proposes ap-

proaches such as adaptive synthetic sampling (ADASYN) (He et al. 2008) and synthetic minority 

oversampling technique (SMOTE) (Chawla et al. 2002), inter alia to balance data sets. Hyndman 

and Fan recommend bootstrapping in electricity demand forecasting, where they also exploit the 

opportunity to make density instead of point predictions (Hyndman and Fan 2010). 

Especially when demands are intermittent (i.e., time series frequently containing zero demands), 

studies apply aggregation-disaggregation or bottom-up/top-down approaches. These ap-

proaches aggregate time series along a dimension (e.g., time, product features, or others), or pre-

dict the smoothed aggregated time series and then break down the aggregated forecast back to the 

actual target variable. We find examples in demand forecasting by Nikolopoulos et al. (spare 

parts, product feature aggregation) (Nikolopoulos et al. 2011), Rostami-Tabar et al. (spare parts, 

temporal aggregation) (Rostami-Tabar et al. 2013), Carson et al. (travel demand, spatial aggrega-

tion) (Carson et al. 2011), and Hyndman et al. (tourism demand, multilevel hierarchical) (Hynd-

man et al. 2011). 
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Observed methods applied in reviewed studies Additional state-of-the-art methods in other fields of 

forecasting 

Data cleaning 

• Missing data interpolation (Chen et al. 2017; Ban-

dara et al. 2019; Wang et al. 2020; Ryu et al. 2017; 

Shakarami et al. 2021; Liu et al. 2020b; Kurek et 

al. 2021; Romano and Kapelan 2014; Del Real et 

al. 2020; Xenochristou and Kapelan 2020) 

• Outlier removal (Pérez-Chacón et al. 2020; 

Shakarami et al. 2021; Xenochristou and Kapelan 

2020) 

Stationarity tests 

• (Augmented) Dickey-Fuller test (ADF)(Jiang et al. 

2017; Claveria et al. 2015; Dreger and Wolters 

2014; Huang et al. 2021; Dittmer et al. 2021; 

Kulshrestha et al. 2020; Yao and Cao 2020; Vol-

chek et al. 2019) 

• Kwiatkowski–Phillips–Schmidt–Shin Test 

(KPSS)(Kulshrestha et al. 2020; Volchek et al. 

2019; Claveria et al. 2015) 

• Phillips-Perron (PP)(Volchek et al. 2019) 

Trend removal (Williams and Short 2020; Felice et al. 

2015; Volchek et al. 2019) 

Data augmentation 

• Noise injection (Shakarami et al. 2021) 

• Dynamic Time Warping (Zhu et al. 2021; Zhang et 

al. 2020; Yao et al. 2018a) 

Box Cox transformation (Kim and Kim 2021) 

Data cleaning 

• Outlier removal (least absolute shrinkage and se-

lection operator (LASSO) outlier detection (Au et 

al. 2010), symbolic aggregate approximation SAX 

(Lin et al. 2005), Isolation Forests (Liu et al. 2008) 

or Local Outlier Factor (Breunig et al. 2000)) 

Data augmentation: basic approaches (cropping, flipping, 

jittering time) (Wen et al. 2021b), dynamic time window 

warping (DTW) (Rashid and Louis 2019) or dynamic bar-

ycenter averaging (DBA) (Forestier et al. 2017), other ad-

vanced approaches (decomposition, statistical and ML 

generative as generative adversarial networks (GAN)) 

(Wen et al. 2021b) 

Sampling: adaptive synthetic sampling (ADASYN)(He et 

al. 2008), synthetic minority oversampling technique 

(SMOTE)(Chawla et al. 2002), etc. 

Table 6: Comparison of the reviewed methods in the data preprocessing and state-of-the-art methods in other fields of 

forecasting. 

Table 6 summarizes and compares the methods observed in demand forecasting studies and fur-

ther state-of-the-art preprocessing methods. In contrast to the subsequent tables, we do not differ-

entiate between the fields of applications in this table, as documented preprocessing methods are 

rare throughout all fields of applications. 

Summarizing this section, we can state that demand forecasting applies several data preprocessing 

methods and studies are especially rigorous in applying stationarity tests and detrending when the 

forecasting algorithm used requires this as a precondition. Lacking data and outlier treatment are 

rarely described and, if they are, they are hardly ever covered in detail. In addition, we suggest 

that the rich range of data augmentation techniques could be adopted more in demand forecasting 

studies to enlarge the available data sets. Section 3.9.2 shows that the availability of data is often 

an issue in demand forecasting literature. 
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3.7 Enriching the Model Input: Feature Engineering 

In Section 3.3.1, we introduced the external variable 𝑋𝑡 = {𝑥0, 𝑥1, … , 𝑥𝑡} as a feature (if 𝑥 is a 

scalar) or a set of features, if 𝑥 is a vector. We can also consider the historical values of the target 

variable 𝑌𝑡−1 = {𝑦0, 𝑦1, … , 𝑦𝑡−1} as a feature. In many cases in forecasting, we obtain these vari-

ables from practical applications in which they are determined by the data that can be recorded 

and not necessarily what is required for the model design. Therefore, researchers have studied 

ways to create the most suitable model inputs from the raw data obtained. 

In the following sections, we review the methods to build novel features from existing features 

(feature construction and extraction), select an optimal subset of features (feature selection), and 

prepare features for the forecasting models that we introduce in Section 3.8. 

Section 3.7.4 summarizes and collectively discusses Sections 3.7.1 to 3.7.3. 

3.7.1 Feature construction and extraction 

This section addresses two conceptual approaches: feature construction and feature extraction. As 

the literature is not always consistent in using these terms, we chose to follow the definition by 

Motoda and Liu (Motoda and Liu 2002). 

• Feature construction (FC): FC constructs new features by applying mathematical functions 

to one or more of the available features, thereby generating new and additional features 

from existing ones (feature generation). 

• Feature extraction (FE): In contrast to FC, FE aims at reducing the number of features by 

transforming the features into a new feature space – yet at the same time without a sig-

nificant loss of information (dimensionality reduction). 

There are evident examples of why constructing new features is beneficial. For example, the body 

mass index (BMI) is a feature constructed from the features “body length” and “body weight”. 

However, the BMI might be much more strongly correlated to the prevalence of diseases than 

body length or body weight by themselves. From this example, we see that there is a large number 

of re-combination possibilities even when we only consider basic mathematical operations 

whereby the following state-of-the-art feature construction algorithms from ML (see Sondhi 

(Sondhi 2009)) and time series forecasting are considered: 

• Non-time series-specific FC: Interaction terms (e.g., summation, multiplication, polynomi-

als (Sutton and Matheus 1991) of features), Cartesian product (Pazzani 1998), M-of-N 

(Pazzani 1998), logical conjunctions (Boolean features), decision tree approaches 

(FRINGE (Pagallo 1989), FICUS (Markovitch and Rosenstein 2002)), and genetic pro-

gramming (Krawiec 2002). 

• Time series-specific FC: Functions based on the date and time of the observation (e.g., day-

of-week, month, public holidays), time-lagged features (e.g., observation of last season, 

last year, rolling window), and time series statistics (e.g., mean, variation, trend) (Christ 

et al. 2016; Fulcher et al. 2013) 
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Reviewing the approaches, the countless possibilities for how to generate features become evi-

dent, and, therefore, the literature proposes frameworks such as FINGE, FICUS, and others, which 

utilize heuristics to limit the number of newly generated features. Section 3.7.2 shows how rele-

vant features can be selected for model input. 

Both Fulcher et al. and Christ et al. propose frameworks that calculate thousands of characteristics 

(especially statistics) of the time series and use these as new features (Fulcher et al. 2013; Christ 

et al. 2016). This detailed characterization is similar to some approaches that we find among the 

feature extraction techniques. Here, the literature proposes transformations of time series into 

other representations, for example using Fourier transformation, wavelet transformation, or rep-

resentation of time series through statistical time series models. Optimally, feature extraction ap-

proaches such as Fourier transformation describe a time series without a loss of information. At 

the same time, the information in the transformed feature space is considerably condensed. 

• Non-time series-specific FE: Principal components analysis (PCA) (Pearson 1901), inde-

pendent component analysis (ICA) (Jutten and Herault 1991), linear discriminant analysis 

(LDA) (Cohen 2013), locally linear embedding (LLE) (Roweis and Saul 2000), t-distrib-

uted stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton 2008), autoen-

coders (AE) (Masci et al. 2011), pre-trained ANN (Setiono and Liu 1998) and more, see 

Lee and Verleysen (Lee and Verleysen 2007). 

• Time series-specific FE: Empirical mode decomposition (EMD) (Huang et al. 1998), Fou-

rier and wavelet transformation (Wu et al. 2000), time series forests (Deng et al. 2013), 

generic time series calculation from various statistics, for example, tsfresh, TSFEL, Fea-

tuRe, and others (Christ et al. 2018; Barandas et al. 2020; Hyndman et al. 2015; Tavenard 

et al. 2020). 

Overall, demand forecasting studies do not frequently apply feature construction and feature ex-

traction methods in a systematic way and most of the reviewed studies did not emphasize FC and 

FE techniques. However, all studies implicitly optimized their model input for good forecasting 

results.  

We observe that electricity demand forecasting most extensively employs FC/FE. Here, transfor-

mation approaches (Fourier and wavelet transformation) are most common, especially in the field 

of water & energy demand forecasting. Travel & transportation demand forecasting mostly ap-

plies techniques that can be interpreted from an econometrical perspective or that relate to trend 

and seasonal decomposition. PCA and EMD are techniques that we occasionally observe in all 

disciplines and Table 7 provides an overview of the methods applied in the fields of demand 

forecasting.  

Wavelet transformation techniques in conjunction with ANN are intensely studied. In fact, they 

are used as a stand-alone forecasting approach, which is why we review them more closely in 

Section 3.8.1. 



How the Demand Forecasting Literature and Applications can Benefit from Better Comparability 

62 

Feature construction and extraction methods in the demand forecasting literature 

Electricity Principal Component Analysis (PCA) (Wang et al. 2020), Fourier Transformation (Li et 

al. 2020b), Wavelet Transformation (Ofori-Ntow Jnr et al. 2021), Empirical Mode De-

composition (EMD) (Hwangbo et al. 2019; AL-Musaylh et al. 2018b; Qiu et al. 2017), 

Piecewise/Symbolic Aggregate Approximation (PAA, SAX)(Williams and Short 2020), 

Convolutional ANN (Williams and Short 2020), Mixed-Data Sampling (MIDAS) (Choi et 

al. 2020), Taylor Approximation (Khan and Jayaweera 2020) 

Travel & transporta-

tion 

Empirical Mode Decomposition (EMD) (Li and Law 2020; Jiang et al. 2014), STL ap-

proach (Seasonal and Trend Decomposition using Loess) (Zhang et al. 2021), Generalized 

Dynamic Factor Model (GDFM) (Wen et al. 2021a), Seasonal trend decomposition (Zhang 

et al. 2020), Hodrick-Prescott (HP) filter (Yao and Cao 2020) 

Water & energy  

(excl. electricity) 

Wavelet Transformation (Rezaali et al. 2021; Panapakidis and Dagoumas 2017; Ada-

mowski et al. 2012), Singular Spectrum Analysis (SSA)(Zubaidi et al. 2020), Variational 

Mode Decomposition (VMD) (Sun and Zhao 2020), statistics applied to variables (Kurek 

et al. 2021) 

Inventory & logistics Statistics of target variable (Zhu et al. 2021; Li and Lim 2018; Huber and Stuckenschmidt 

2020), Principal Component Analysis (PCA) (Huang et al. 2021), Dynamic Time Warping 

(DTW) (Zhu et al. 2021), Latent Dirichlet Allocation (Iftikhar and Khan 2020), Dynamic 

Wavelet Transformation (DWT) (Jaipuria and Mahapatra 2014), Neural network trained 

to extract features (Cai et al. 2021) 

Other demand fore-

casting 

Multiplicative time series representation (Venkatesh et al. 2014), Fractional Factorial De-

sign(Maeng et al. 2020), Autoencoder (Bega et al. 2019) 

Other general meth-

ods 

Time series forests, generic time series extraction approaches 

Table 7: Comparison of the applied feature construction and extraction methods by field of application and gaps to 

general methods applied in other forecasting disciplines. 

3.7.2 Feature selection 

Section 3.5 observes the variety of model input variables. In addition, the feature construction 

techniques in Section 3.7.1 make it clear that the number of features can grow significantly. How-

ever, when we expose a model to too many input variables, it is likely that it will largely fit the 

noise of the variables without learning the relevant dependencies in the data (Li et al. 2017). 

Therefore, studies aim to determine which features best determine the model – assuming that an 

optimal subset of features exists amongst all features that were defined in the previous process 

steps. The level of complexity of the search is high and Guyon and Elisseeff and Piramuthu show 

that an optimal subset of features is not necessarily the combination of the best individual features 

as the features frequently complement each other and simple filter approaches typically fail to 

reveal the complementary dependencies of features (Guyon and Elisseeff 2003; Piramuthu 2004). 
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In this context, the literature uses the terms feature selection (FS) or feature evaluation and we 

review three principal categories of FS algorithms: 

• Filter: These approaches determine whether a feature is a model input candidate based on 

the statistical characteristics of the feature itself or statistical characteristics of the feature 

and the target variables—independently of the forecasting model. For example, variable 

ranking through correlation (Hall 1999) or mutual information criteria (Battiti 1994; 

Koller and Sahami 1996); stepwise multiple regression (Piramuthu 2004); (partial) auto-

correlation function, stepwise regression, and spectral analysis for an autoregressive time 

lag selection (Crone and Kourentzes 2010). 

• Wrapper: A search approach is built around a forecasting model that systematically ex-

plores the forecasting performance of different feature subsets. The forecasting model 

functions as a black- or gray box. This includes, among others, general search space op-

timization algorithms (e.g., branch and bound search (Narendra and Fukunaga 1977), ge-

netic algorithms (Yang and Honavar 1998) or particle swarm optimization (Sheikhan and 

Mohammadi 2013)); FOCUS, ID3, MIN-FEATURES (Almuallim and Dietterich 1991); 

sequential forward selection (SFS), or sequential backward elimination (SBE) (Devijver 

and Kittler 1982; Koller and Sahami 1996). 

• Embedding: Some forecasting models already incorporate feature selection approaches as 

part of the forecasting algorithm, including regularization (e.g., LASSO (Tibshirani 

1996), RIDGE (Marquardt and Snee 1975)), deep feature selection, and decision tree fea-

ture importance (Breiman 2001). 

When applying feature selection techniques, one should be aware that different approaches are 

used depending on the type of input and target variable (categorical, ordinal, numerical, …). Stud-

ies in demand forecasting typically deal with time series and regression tasks and, therefore, this 

section does not include approaches such as the ANOVA and 𝜒2-tests which are categorical tests. 

Several well-written reviews of general ML FS approaches provide deeper insights into the topic 

of feature selection (Li et al. 2017; Piramuthu 2004; Guyon and Elisseeff 2003; Blum and Langley 

1997; Chandrashekar and Sahin 2014). These studies discuss the advantages and disadvantages 

of the FS algorithms, for example, Saeys et al. filter all approaches that are least computationally 

expensive. However, they often make strong assumptions about the data or the forecasting algo-

rithm and are less general. Using wrapper approaches, one can apply a variety of general search 

algorithms. However, as the search space can be large, the computational times are typically very 

high. While embedded approaches can be a good balance as they fit well with the forecasting 

algorithm, not all forecasting algorithms come with embedded FS approaches (Saeys et al. 2007). 

In their FS review, Guyon and Elisseeff provide a very comprehensive guideline to select the 

appropriate features in a step-by-step fashion. This first involves using domain knowledge to de-

termine influences that are known to be relevant, then feature construction and feature extraction 

techniques (e.g., to make feature interactions available to the model), assessment of the variable 

characteristics in a filter approach (e.g., variable ranking), using a simple wrapper or embedding 

method (computationally not expensive), using a more expensive wrapper or embedding method, 

and, finally, applying a subsampling (e.g., bootstrapping) approach (Guyon and Elisseeff 2003). 
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A detailed look at the demand forecasting applications of FS shows that most studies apply a 

mixture of domain knowledge feature selection and implicitly used filter approaches. The work 

of Hyndman and Fan and Adamowski and Karapatakin provide good examples of how domain 

knowledge and basic statistical tests can lead to a reasonable feature set (Hyndman and Fan 2010; 

Adamowski and Karapataki 2010). Huang et al., Liu et al., and Law et al. recommend using cor-

relation and mutual information-based filter approaches in demand forecasting studies (Huang et 

al. 2021; Liu et al. 2020b; Law et al. 2019). 

The utilization of optimization approaches such as FS wrappers is also common and many authors 

apply general optimization techniques that will also be reviewed in Section 3.8.2 (Hyper-param-

eter optimization). For instance, Sheikhan and Mohammadi apply particle swarm optimization in 

electricity demand forecasting (Sheikhan and Mohammadi 2013). We also observe some exam-

ples of genetic algorithms for feature selection in demand forecasting, for example in the work of 

Jiang et al. and Bouktif et al. (Bouktif et al. 2018; Jiang et al. 2017). 

Ke et al. apply a random forest approach for feature selection even though they use a neural net-

work approach as the actual forecasting model. Using the structure of fitted forests of decision 

trees is a popular approach, known as feature importance (Ke et al. 2017). Further examples are 

derived from the work of Bouktif et al., Zheng et al., and Rezaali et al. (Zheng et al. 2017; Bouktif 

et al. 2018; Rezaali et al. 2021).  

In general applications, studies apply neural networks for feature selection. Li et al. propose a 

deep feature selection network that applies a regularization term to the connections between the 

input layer and the first hidden layer (i.e., an embedded approach) (Li et al. 2015). Kabir et al. 

use a neural network as a learning algorithm in a wrapper approach (Kabir et al. 2010) whereas 

Cheng et al. apply a random forest in a wrapper approach. However, to our knowledge, no such 

approaches were proposed in demand forecasting.  

Table 8 summarizes the methods applied in the reviewed studies and compares them to the general 

FS approaches described above. 

 



3.7 Enriching the Model Input: Feature Engineering 

65 

Feature selection methods in the demand forecasting literature 

Electricity Wrapper approach combined with main or separate forecasting algorithm (Ahmad and 

Chen 2018; van der Meer et al. 2018; Chen et al. 2017; Cheng et al. 2017), (partial) auto-

correlation function (PACF) as filter for time lagged target variable (Williams and Short 

2020; AL-Musaylh et al. 2018a; AL-Musaylh et al. 2018b; Qiu et al. 2017; Ren et al. 2016) 

Travel & transporta-

tion 

Wrapper approach combined with main or separate forecasting algorithm (Xie et al. 2021; 

Zhang et al. 2020; Law et al. 2019), embedded approach as part of main forecasting algo-

rithm (Zhang et al. 2021), Pearson correlation filter approach (Liu et al. 2020b), random 

forest feature importance filter approach (Ke et al. 2017) 

Water & energy  

(excl. electricity) 

Random forest feature importance filter approach (Rezaali et al. 2021), wrapper approach 

combined with main or separate forecasting algorithm (Guo et al. 2018), (partial) autocor-

relation function (PACF) as filter for time lagged target variable (Guo et al. 2018) 

Inventory & logistics Pearson correlation filter approach (Huang et al. 2021), wrapper approach combined with 

separate forecasting algorithm (Feizabadi 2022) 

Other demand fore-

casting 

Random forest feature importance filter approach (Tsao et al. 2022), wrapper approach 

combined with main or separate forecasting algorithm (Jiang et al. 2017; Kim et al. 2015), 

autoencoder approach (functions as feature extraction and selection method) (Bega et al. 

2019) 

Other general meth-

ods 

Filter: stepwise multiple regression (Piramuthu 2004); spectral analysis for autoregressive 

time lag selection (Crone and Kourentzes 2010) 

Wrapper: general search space optimization algorithms (branch and bound search (Naren-

dra and Fukunaga 1977)); FOCUS, ID3, MIN-FEATURES (Almuallim and Dietterich 

1991); sequential forward selection (SFS) or sequential backward elimination (SBE) 

(Devijver and Kittler 1982; Koller and Sahami 1996) 

Embedding: Regularization (e.g. LASSO (Tibshirani 1996), RIDGE (Marquardt and Snee 

1975)), deep feature selection) 

Table 8: Summary of the applied feature selection methods by field of application and gaps to general methods ap-

plied in other forecasting disciplines. 

3.7.3 Feature scaling 

Forecasting algorithms require inputs that are in a certain domain. For example, Shanker et al. 

showed that neural networks converge faster when input scaling is applied (Shanker et al. 1996). 

We find multiple examples in demand forecasting literature where feature scaling is applied, for 

example in Li et al. or Salinas et al. (Salinas et al. 2019; Li et al. 2020b). Although various studies 

sometimes also refer to feature scaling as standardization and normalization, these terms have 

different meanings in statistics. 
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In this review, we do not address feature scaling in detail, as we do not find particularities in 

demand forecasting literature feature scaling. However, it should be noted that this approach ex-

ists and is also required in demand forecasting (Han et al. 2012). 

All fields of applications apply scaling methods in some form and most frequently observe min-

max standardization for nominal and one-hot encoding for categorical variables in the studies 

while mean normalization is less common and log normalization is especially prevalent in travel 

& transportation studies. The type of scaling is mainly determined by the type of data and the 

mathematical requirements of the forecasting algorithm. However, we note that almost 80% of 

the reviewed studies do not state whether scaling was applied, which makes it difficult for other 

researchers to reproduce the authors’ approaches. 

Table 9 provides an overview of the methods applied in the reviewed studies. 

Feature scaling methods in the demand forecasting literature 

Electricity Min-max standardization (Li et al. 2020b; AL-Musaylh et al. 2018b; AL-Musaylh et al. 

2018a; Williams and Short 2020; Wang et al. 2020; Tan et al. 2020; Pérez-Chacón et al. 

2020; Bendaoud et al. 2021; Son and Kim 2020; Qiu et al. 2014; Ryu et al. 2017), one-

hot encoding (Tan et al. 2020) 

Travel & transporta-

tion 

Min-max standardization (Yao et al. 2018a; Ke et al. 2017), one-hot encoding (Liu et al. 

2020b), log-normalization (Wen et al. 2021a; Assaf et al. 2019; Volchek et al. 2019) 

Water & energy  

(excl. electricity) 

Not specified in detail in the studies 

Inventory & logistics Min-max standardization (Cai et al. 2021; Huang et al. 2021; Abbasimehr et al. 2020; 

Huber and Stuckenschmidt 2020; Güven and Şimşir 2020), log-normalization (Huber 

and Stuckenschmidt 2020), mean standardization (Bandara et al. 2019; Huber and Stuck-

enschmidt 2020) 

Other demand fore-

casting 

Min-max standardization (Murray 2020), one-hot encoding (Shakarami et al. 2021) 

Table 9: Comparison of the applied feature scaling methods by field of application and gaps to general methods ap-

plied in other forecasting disciplines. 

3.7.4 Summarizing the application of feature engineering 

We largely draw the same conclusions concerning the use of feature construction, extraction, 

selection, and scaling. Overall, studies in demand forecasting apply many state-of-the-art methods 

to optimize the input for their forecasting models while the fields of applications favor some 

methods that especially suit their applications (e.g., transformations for electricity forecasting). 

However, we observe that most studies do not systematically apply feature engineering methods 

and many studies rather base their model input on expert skill or trial-and-error. While this is 
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certainly a viable way to produce performant forecasting models, it makes it challenging to de-

termine the impact on the forecasting accuracy of the features and methods that are applied. 

3.8 The Core of Demand Forecasting: Model Design 

Most studies consider model design as the major issue in demand forecasting. This section re-

views the key topics around the forecasting model, including the selection of appropriate candi-

date models (Section 3.8.1), the optimization of the models (Section 3.8.2), and the evaluation of 

the forecasting results (Section 3.8.3). We assume a basic understanding of the following fore-

casting models and refer to the original articles and more technical reviews for detailed studies. 

We conclude Section 3.8 with guidelines on how to select an appropriate model from the multi-

tude of available models (Section 3.8.4). 

3.8.1 Forecasting models 

This section contains a brief introduction to the historical development of forecasting algorithms 

whereby it becomes evident that paradigms have shifted from a-priori models that make strong 

assumptions about the data generating processes towards data-driven approaches. The latter de-

duces the data generating process from the data itself. We then provide an overview of the partic-

ularities of the industries involved and subsequently present the latest state-of-the-art forecasting 

models. 

Historically, the first applications of the least squares method for linear regression date back cen-

turies as these were already described and applied by Legendre and Gauss in the early 19th cen-

tury (Legendre 1805; Gauss 1823). In the 1950s, in the face of increasing globalization, the com-

plexity of markets and products rose as goods were increasingly exported globally and the variety 

of goods dramatically increased. In addition, supplier-driven markets turned into customer-driven 

markets. All of these aspects resulted in the requirement for companies to predict demands in 

more detail. Smoothing models were already applied in 1957 when Brown predicted the demand 

for gasoline for the automotive market of the USA (Brown 1957). More complex models that 

incorporate seasonality, trends, or auto regression followed in subsequent decades including, 

among others, ARMA and ARCH and their derivatives (Box and Jenkins 1979; Engle 1982; 

Bollerslev 1986). Exponential smoothing was also improved and adjusted to the needs of demand 

forecasting, as shown in Holt-Winters and Croston’s method (Holt 2004; Croston 1972; Lapide 

2009). ML methods have also emerged during the last third of the 20th century and although the 

preliminary foundations for ANN were already laid by Turing in 1948 (Turing 1948) their prac-

tical applications were only available in the late 1960s (Ivakhnenko and Lapa 1966). Due to tech-

nical and methodical imperfections, the approaches remained relatively unnoticed until ap-

proaches to mitigate, among others, the vanishing and exploding gradient problems were found 

by the end of the 2000s (Schmidhuber 2015). Until that time, other ML technologies received 

more attention, such as support vector machines (SVM) (Cortes and Vapnik 1995), and decision 

trees and their improved variants such as random forests (Ho 1995) and gradient boosted trees 

(Friedman 2001). Since the 2010s, ANN use has drastically increased (Torres et al. 2021; Hynd-

man 2020). 
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Naive 0% 14% 0% 24% 0% 0% 0% 18% 0% 0% 0% 13% 

Regression 3% 34% 0% 35% 15% 38% 0% 18% 0% 71% 3% 35% 

Smoothing 0% 9% 0% 6% 0% 0% 6% 29% 0% 14% 1% 11% 

Holt-Winter 0% 6% 0% 0% 0% 0% 0% 12% 0% 14% 0% 6% 

ETS 0% 0% 0% 12% 0% 0% 0% 24% 0% 0% 0% 7% 

Croston 0% 0% 0% 0% 0% 0% 0% 29% 0% 0% 0% 6% 

SBA 0% 0% 0% 0% 0% 0% 0% 29% 0% 0% 0% 6% 

TSB 0% 0% 0% 0% 0% 0% 6% 24% 0% 0% 1% 4% 

AR  0% 0% 0% 12% 0% 8% 0% 0% 0% 14% 0% 4% 

ARIMA 9% 43% 12% 82% 0% 23% 0% 35% 0% 71% 6% 48% 

ARCH 0% 17% 0% 24% 0% 31% 0% 18% 0% 14% 0% 20% 

Other statistical 6% 6% 6% 6% 0% 0% 0% 0% 14% 14% 4% 4% 

Grey model 0% 0% 0% 6% 8% 15% 0% 24% 0% 0% 1% 8% 

k-nearest neighbor 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 0% 1% 

SVM 23% 43% 12% 53% 15% 23% 0% 18% 0% 0% 13% 34% 

Random forest 3% 11% 0% 12% 0% 23% 6% 6% 0% 14% 2% 12% 

XGBoost 0% 3% 0% 18% 0% 0% 0% 0% 0% 0% 0% 4% 

GBRT 0% 0% 0% 6% 0% 0% 6% 6% 14% 14% 2% 3% 

ANN 23% 66% 35% 82% 31% 77% 41% 53% 71% 71% 34% 67% 

RNN 0% 3% 0% 12% 0% 0% 12% 18% 0% 0% 2% 7% 

LSTM 20% 23% 18% 18% 8% 8% 24% 29% 0% 0% 17% 19% 

GRU 0% 3% 0% 0% 8% 8% 0% 0% 0% 0% 1% 2% 

CNN 0% 6% 6% 12% 0% 0% 0% 0% 0% 0% 1% 4% 

ELM 3% 3% 0% 6% 15% 23% 0% 0% 0% 0% 3% 6% 

DBN 6% 9% 0% 6% 0% 0% 0% 0% 0% 0% 2% 4% 

GAN 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 

Ensemble 0% 11% 12% 12% 0% 8% 0% 12% 0% 14% 2% 11% 

Table 10: Overview of the proposed main algorithm in the reviewed literature. The values denote the percentage of 

studies from one field of application (column) that apply the algorithm (row). The left cell entry a) shows the value 

for the main proposed algorithm, while the right cell entry b) indicates when the study applies the algorithm as a 

benchmark. 

Table 10 shows which forecasting algorithms studies recommend as the main approach (left en-

try) and which algorithms they implement and compare overall (right entry) in the different fields 

of application. Overall, we observe that in the reviewed literature, the studies predominantly use 

statistical models as benchmark algorithms whereby the ML algorithms SVM and ANN (espe-

cially LSTM) make up most of the proposed algorithms. 

We also observe that not all industries have adopted the forecasting models to the same degree 

and that the use of models is industry specific. 

Smoothing models (e.g., Holt-Winter’s and Croston’s method) are frequently used in logistics & 

inventory demand forecasting only which is due to the demand characteristics in inventory fore-

casting as intermittent demands with significant periods of zero demand characterize the demand 

in inventory forecasting. Croston especially developed his method for intermittent demand. 
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Instead of predicting values for all time periods (with a high probability for zero and only a few 

observations greater than zero), Croston’s method uses exponential smoothing to forecast inter-

demand intervals and a separate smoothing approach for the demand value in time intervals with 

a demand greater than zero. In (Teunter et al. 2011), Teunter et al. could show that Croston’s 

method is fundamentally biased and proposed an adapted approach (Teunter et al. 2011). Even 

though the approach is successfully tested in another article by Teunter and Duncan (Teunter and 

Duncan 2009), other approaches achieve good results in forecasting intermittent demands. For 

example, in 24 real-world use cases Gutierrez et al. demonstrate that their ANN approach is su-

perior to Croston’s method (Gutierrez et al. 2008). 

Surprisingly, studies in travel & transportation apply ARIMA and other autoregressive models 

relatively frequently in addition to regression models with econometric variables (Song and Li 

2008; Goh and Law 2011). In a recent review of travel demand forecasting, Song et al. assume 

that time series methods with exogenous (econometric) inputs are preferred by researchers be-

cause of the conclusions that can be drawn from the models, namely how external factors influ-

ence demand (Song et al. 2019). 

Despite the perception derived from popular science and the media, ML approaches are not new 

in demand forecasting, and generally, we observe that the overall number of mentions of ANN in 

demand forecasting has drastically increased since the 2000s. For example, Cubero already de-

scribes the application of a feedforward neural network in the context of a water demand forecast 

in 1991 (Cubero 1991). However, the example also illustrates the progress of ANN. The study 

concludes that the neural network forecast just reached a par with the compared Box-Jenkins 

model forecast. Later studies report further progress and improvements. For example, Law 

demonstrates an ANN that outperforms classical approaches in travel demand forecasting by 

(Law 2000) using the backpropagation technique for network training (Law 2000). Al-Saba and 

El-Amin come to the same conclusion concerning electricity demand forecasting in (Al-Saba and 

El-Amin 1999) (Al-Saba and El-Amin 1999). Recent studies apply more advanced evolutions of 

ANN (see Table 11 for exemplary applications in demand forecasting): 

• Long short-term memory (LSTM) ANNs are a type of recurrent neural networks (RNN). 

RNN generally apply recurrent connections to maintain a temporal state in the network 

and hence they are suitable for time series forecasting. Early examples of RNN in the 

1980s were Elman networks (Elman 1990) and Hopfield networks (Little 1996; Hopfield 

1982). LSTM are specialized RNN, with nodes that can control their internal memory 

through a system of so-called gates, and were first proposed by Hochreiter and Schmid-

huber in 1997 (Hochreiter and Schmidhuber 1997). Gated recurrent unit networks (GRU) 

operate on a similar principle, albeit with an alternative approach (2014 (Cho et al. 2014)). 

• Convolutional layer neural networks (CNN) are neural networks that apply convolution 

operations to calculate a feature map from the inputs. They are widely used for image 

processing and for time series forecasting. CNN were first proposed by Lecun and Bengio 

in 1995 (Lecun and Bengio 1995). 

• Wavelet neural networks (WNN) use a wavelet transformation before the time series signal 

is fed into the neural network which technically could also be described as a type of pre-

processing. WNN were first proposed by Zhang and Benveniste in 1992 (Zhang and Ben-

veniste 1992). 
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• Random vector functional link (RVFL) and extreme learning machines (ELM) are similar 

approaches that apply single hidden layer ANNs. In contrast to other ANN approaches, 

these have randomized and fixed weights for the connections of input layers to hidden 

layers. As an advantage, the authors state that both RVFL and ELM do not require train-

ing as the non-fixed weights can be determined analytically instead, which requires less 

computational effort. There is a controversial discussion amongst researchers on whether 

ELM are a special form of RVFL or a separate type. While the authors who first described 

ELM see their approach as unique (Huang 2015), other researchers consider it as a type 

of RVFL (e.g. (Lipo P. Wang and Chunru R. Wan)). RVFL were first proposed by 

Schmidt et al. in 1992 (Schmidt et al. 1992) and Pao et al. in 1994 (Pao et al. 1994), and 

ELM by Huang et al. in 2006 (Huang et al. 2006). 

• Deep learning approaches do not constitute a single type of network but subsume ensem-

bles of different networks, typically with a large number of hidden layers. CNN and RNN 

can also be deep learning networks. The term deep learning was first used by Dechter in 

1986 (Dechter 1986). 

• Deep belief networks (DBN) are special deep neural networks that can be used for super-

vised and unsupervised learning. In the reviewed literature, they typically consist of re-

stricted Boltzmann machines (RBM). 

However, Darbellay and Slama also provide an apt example that ANN are not always the best 

solution. In their use case of electricity demand forecasting, they point out that the underlying 

data is predominantly linear, wherefore neural networks cannot be significantly more accurate 

than classical methods (Darbellay and Slama 2000). This finding is confirmed in a review of 

studies by Zhang et al. which summarizes scenarios in which ANN do not exhibit advantages 

over classical statistics despite their potentials: (1.) linear problems with limited complexity; (2.) 

limited amount of training data; (3.) comparably high computational effort; and (4.) complex 

problems that require complex networks which are difficult to tune and prevent overfitting (Zhang 

et al. 1998). 

The large number of studies that apply linear regression, auto regression models, and ANN could 

lead to the false perception that these models are superior to the other approaches. However, rel-

evant examples also show that other ML approaches such as SVM and random forests can out-

perform the popular approaches. Herrera et al. demonstrate a use case to predict water demand 

whereby they compare ANN (plain feed-forward), smoothing, SVM, random forests, and a naïve 

approach. They conclude that SVM, random forests, and smoothing are equally good approaches 

for their use case and are significantly better than ANN and the naïve approach. Chen and Wang 

come to a similar conclusion in their study in (Chen and Wang 2007). In a tourism demand fore-

casting use case, they compare ARIMA, SVM, and ANN (feed-forward). The authors tune the 

SVM parameters using a genetic algorithm (GA) and they also conclude that it is not the ANN 

model but the SVM that exhibits the best results (Chen and Wang 2007). However, we note that 

the ANN models in the two studies both only possess one layer with less than ten nodes, and more 

complex ANN models, as applied in more recent studies (e.g., Ke et al. (Ke et al. 2017)) might 

potentially provide better results. 
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Linear regression 

 Basic literature: derivatives e.g. Ordinary Least Squares (OLS); Partial Least Squares (PLS); Spectral 

decomposition; Fuzzy regression (Heshmaty and Kandel 1985) 

No. of parameters: Mostly non-parametric (OLS/PLS) 

Auto regression 
 

Basic literature: ARMA (Box and Jenkins 1979), ARCH (Engle 1982), derivatives e.g. ARIMA (Box 

and Jenkins 1979); SARIMA; ARMAX; VARMA; GARCH (Bollerslev 1986) 

No. of parameters: ARIMA: p +q; SARIMA: +season; ARMAX: +exog; ARCH: q; GARCH: p+q 

Smoothing 

 Basic literature: examples e.g. Holt Winter’s (Holt 2004; Winters 1960); Croston’s (Croston 1972); TSB 

(Teunter et al. 2011) 

No. of parameters: Holt Winter’s: 3 (𝜶, 𝜷, 𝜸) + 1 (cycle length); Croston’s: 2 (smoothing parameters of 

demand size and inter-demand interval/demand probability) 

Grey model  

 Basic literature: Deng (Deng 1989) 

No. of parameters: 2 (a,b) 

Support vector machines (SVM)  

 Basic literature: Cortes and Vapnik (Cortes and Vapnik 1995) 

No. of parameters: Hyper-parameters: 2 (regularization, choice of kernel function) + x (kernel function 

parameters) 

Decision trees 

 Basic literature: derivatives e.g. Random forest (Ho 1995); Gradient boosted random trees (GBRT) 

(Friedman 2001) 

No. of parameters: Hyper-parameters: Typically ten or more, depending on implementation 

ANN 

 Basic literature: derivatives e.g. Multi-layer perceptron (MLP); Convolutional neural networks (CNN) 

(Lecun and Bengio 1995); Long-short term memory (LSTM) (Hochreiter and Schmidhuber 1997) and 

gated recurrent units (GRU) (Cho et al. 2014); Wavelet networks (WNN) (Zhang and Benveniste 1992); 

Randomized vector functional link (RFVL) (Lipo P. Wang and Chunru R. Wan; Schmidt et al. 1992) and 

extreme learning machines (ELM) (Huang 2015); Deep Learning (Dechter 1986) 

No. of parameters: Hyper-parameters: High number in topology choice (# layers, # nodes, node type) as 

well as optimizer-parameters and more 

Table 11: Hierarchical overview of the forecasting models with the foundational studies of the technique. 

We also highlight the study by Burger et al. that applies the unusual method of symbolic regres-

sion in combination with a genetic algorithm (Burger et al. 2001). 

Studies show that combinations of models improve forecasting quality over the results of single 

models 13,215 and the literature sometimes interchangeably refers to such models as composite, 

hybrid, ensemble, or combined models. In a tourism demand forecasting use case, Oh and Mo-

rzuch use four different approaches and average the forecasts. They find that the averaged result 

is always better than the least accurate model and sometimes even better than the best (Oh and 

Morzuch 2005). Tiwari and Adamowski train separate WNN on randomly sampled subsets of the 

data and use the combined forecasting results of the separate WNN to forecast water demand 

(Tiwari and Adamowski 2013). Hyndman and Fan combine two models, whereby the first fore-

casts annual data and the second half-hour data (Hyndman and Fan 2010). We find several further 
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studies that combine models to ensembles using multiple datasets for comparison, for example, 

Qiu et al. and Qiu et al. (Qiu et al. 2017; Qiu et al. 2014). 

We observe that many studies compare their elaborate and complex proposed forecasting algo-

rithm to simple versions of state-of-the-art approaches. As Table 10 shows, most studies compare 

their proposed algorithms to naïve approaches, simple linear regression, or basic autoregressive 

or ARIMA approaches. However, few studies compare their results to other recent elaborate ap-

proaches (e.g., the latest deep ANN, gradient boosting machine, or LSTM paired with elaborate 

feature engineering methods). We refer to this point in Section 3.9.1. 

3.8.2 Hyper-parameter optimization 

In this section, we review optimization algorithms that are either used for forecasting model hy-

per-parameter optimization (HPO) in particular, optimization of all parameters within the demand 

forecasting process, or any subset of these parameters. 

To use concise terminology, we differentiate between the terms parameters and hyper-parame-

ters. During model fitting, one adjusts model parameters to fit the model to a certain problem or 

data set, for example smoothing coefficients in exponential smoothing or seasonality coefficients 

in ARMA models. In the context of classical statistical models, the literature uses the term pa-

rameter estimation for the process of fitting the model parameters to the data set, whereas in ML, 

researchers rather use the terms model training or model fitting. In the context of ANN, this es-

pecially comprises the process of adjusting the weights of neural connections. In contrast, hyper-

parameters are external model parameters used for the configuration of the model and not esti-

mated by the data set, i.e., a regularization hyper-parameter. 

Table 11 shows the number of parameters and hyper-parameters for each forecasting model. We 

observe that complex approaches such as ANN exhibit a large number of hyper-parameters, for 

example, compared to SVM. Furthermore, ANN are especially sensitive to slight changes in their 

parameterization and they react almost capriciously. Furthermore, while the research yielded sys-

tematic analytical approaches to estimate the parameters of classical statistical models such as 

ARIMA/ARCH, Holt Winter’s, and Croston’s (plus their derivatives), there is little knowledge 

about the complex relationships between the forecasting performance and hyper-parameters of 

ML algorithms – most prominently relating to ANN. 

Before taking a closer look at HPO approaches, we highlight the difference between ML HPO 

and ANN HPO in particular. All ML models exhibit a set of hyper-parameters that we can use to 

finetune the model and the training process. With ANN, we must also consider the network to-

pology itself as a major hyper-parameter. This includes the entire structure of the neural network 

including which type of neuron to use (e.g., regular perceptrons, LSTM, GRU, CNN, etc.), which 

activation function per node, which connections, how many layers with how many neurons, and 

several other aspects. The literature also calls this approach a neuronal architecture search (NAS) 

while the general search for the best hyper-parameters is called HPO. 

As described in Section 3.7, studies apply optimization algorithms to both HPO and feature engi-

neering. For example, Escalante et al. apply particle swarm optimization (PSO) to the problems 
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of feature selection, feature extraction, feature scaling, and forecasting model optimization (Es-

calante et al. 2009). El-Telbany and El-Karmi apply PSO but not on hyper-parameters but to 

update weights and biases in ANN (El-Telbany and El-Karmi 2008). 

In the literature, optimization algorithms exhibit two components, namely the exploration of pa-

rameter space yet unknown to the algorithm and exploitation of what was already found to be a 

good (yet potentially not optimal) area in the parameter space. Good algorithms find an optimal 

balance between the two: exploitation to quickly dive into minima in the search space, and explo-

ration to ensure not getting lost in local minima too early. 

Most studies apply explorative techniques such as grid search and random search. In grid search, 

discrete values are defined for each parameter to be tested and during the optimization, each pa-

rameter value combination is tested, which defines a grid in the parameter space. Random search 

is the randomized version of grid search whereby any value from the parameter domain can be 

chosen and not only the predefined steps of the grid. Bergstra and Bengio point out that random 

search is generally more efficient than grid search (Bergstra and Bengio 2012) although evidently, 

neither of these approaches takes the structure of the problem into account which makes them 

easy to implement even though they have no capability for systematic exploitation. More ad-

vanced approaches adopt biology-inspired methods. PSO uses a model of swarm animals (e.g., 

birds) and their behavior, while evolutionary algorithms make use of basic evolutionary concepts 

such as survival of the fittest, reproduction, and mutation. Many studies apply PSO and evolu-

tionary algorithms and report that they offer a good balance between exploitation and exploration 

and several studies report the successful implementation of the two approaches. 

The comparison of the state-of-the-art in demand forecasting HPO with AutoML shows that de-

mand forecasting studies apply comparably few of the available HPO techniques. Four remarka-

ble streams in the HPO literature are Bayesian optimization, simultaneous optimistic optimization 

(SOO), reinforcement learning (RL), and gradient descent. The recent development in AutoML 

shows that model-based optimization approaches (e.g., Bayesian optimization and SOO) can op-

timize very complex hyper-parameter spaces. 

• Bayesian optimization is a popular approach in HPO. It assumes a Gaussian process surro-

gate model of the relationship between parameter space and model performance whereby 

each tested and evaluated parameter combination adds a known point to the Gaussian 

process model. Iteratively, one can then determine parameter combinations that are likely 

to exhibit good model performance. In this way, Bayesian optimization exploits known 

parameter combinations very efficiently. A few examples of the application of Bayesian 

optimization can be found in the demand forecasting literature, e.g. Candelieri et al. (Can-

delieri et al. 2019). 

• Simultaneous optimistic optimization is a tree-based branch-and-bound approach proposed 

by Munos in (Munos 2011). 

• Reinforcement neural networks inductively search the parameter space for optimal param-

eter combinations. The general concept of a reinforcement neural network is that the net-

work takes situation-based actions and receives rewards or penalties depending on the 

reaction of the environment. The network thereby approximates the relationship between 



How the Demand Forecasting Literature and Applications can Benefit from Better Comparability 

74 

the parameters and rewarding function. The same principle can be applied in HPO, where 

the network learns the relationship between hyper-parameters and forecasting results. 

Table 12 structures the proposed and applied HPO approaches in the reviewed demand forecast-

ing studies and provides the theoretical basis for the approaches. The comprehensive overview of 

the reviewed studies in Table 17: Comprehensive overview of all studies reviewed in this survey. 

shows the HPO approach applied to each study in the review. 

Class Approach Theoretical background Reviewed studies 

Explorative Grid search Bergstra et al. (Bergstra et al. 

2012; Bergstra and Bengio 2012) 

(Wang et al. 2020), (Pérez-Chacón 

et al. 2020), (Qiu et al. 2014), 

(Zhang et al. 2021), (Zhang et al. 

2020), (Liu et al. 2020b), 

(Xenochristou and Kapelan 2020), 

(Cheng et al. 2017), (Yue et al. 

2010) 

 Random search Bergstra et al. (Bergstra et al. 

2012; Bergstra and Bengio 2012) 

(Zhu et al. 2021), (Abbasimehr et 

al. 2020), (Babai et al. 2020), 

(Huang 2016) 

Heuristic 

search 

Evolutionary algo-

rithm 

Castillo et al. (Castillo et al. 

2000) 

(Panapakidis and Dagoumas 2017), 

(Romano and Kapelan 2014), 

(Chen and Wang 2007) 

 Particle swarm opti-

mization  

Escalante et al. (Escalante et al. 

2009) 

(Ofori-Ntow Jnr et al. 2021), (Guo 

et al. 2020), (AL-Musaylh et al. 

2018b), (Huang 2016), (Jiang et al. 

2014), (Jiang et al. 2014),  

 Greedy search Huang et al. (Huang et al. 2018) (Powers et al. 2005) (feature selec-

tion) 

Model based 

optimization 

Bayesian optimiza-

tion and sequential 

model-based optimi-

zation 

Snoek et al. (Snoek et al. 2012), 

Shahriari et al. (Shahriari et al. 

2016) 

(Candelieri et al. 2019), (Bandara 

et al. 2019) 

 Simultaneous Opti-

mistic optimization 

Munos (Munos 2011), Valko et 

al. (Valko et al. 2013) 

No demand forecasting example 

Reinforce-

ment learning 

  No demand forecasting example 

Gradient de-

scent 

  (Jiang et al. 2017), (Kulshrestha et 

al. 2020), (Bedi and Toshniwal 

2019), (Ryu et al. 2017) 

Table 12: HPO approaches for ML forecasting models. 

Summarizing the literature, we observe that most studies do not explicitly address HPO and some 

state that the hyper-parameter setup resulted from a trial-and-error or expert knowledge process. 
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When HPO is described, grid search is the most common approach. Particle swarm optimization 

constitutes the most common advanced approach that we observe in the reviewed studies. Inter-

estingly, we note that an emphasis on HPO is observed in other disciplines of forecasting and 

highlight that demand forecasting could benefit from adopting these approaches. Moreover, de-

scribing the process that led to a successful model design and hyper-parameter setup is not only 

relevant for evaluating the results but also for learning how to perform efficient HPO. 

3.8.3 Evaluation 

When we evaluate and compare forecasting models, we must address two issues. First, we need 

to define a metric that measures the performance of the forecast. Second, we must determine what 

data to evaluate and how. We will show that especially the second question is more complex in 

demand forecasting than one might expect. 

The field of demand forecasting uses metrics that are based on the forecasting error 𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡. 

Absolute metrics, such as the mean absolute error (MAE) measures use the mean operation to 

calculate an average error across all observations and forecasts. In principle, all error metrics are 

defined for the arithmetic mean, median, or geometric mean. With the rooted mean squared error 

(RMSE), one can punish extreme error values more than small errors when compared to metrics 

that apply absolute error measures. Again, most errors can be defined analogously with absolute 

or squared errors and absolute error metrics such as MAE and RMSE can best be used in a sce-

nario with only one time series and different forecasting models that are compared, whereby the 

model with the lowest error score indicates the highest performance. These absolute metrics are 

easy to interpret from an academic as well as from a business standpoint. 

Relative metrics relate the error to another value while percentage errors relate the error to the 

observation values. Other than absolute errors, percentage errors are consistent for different data 

sets, as shown by Chatfield after the first M competition (Chatfield 1988). However, for a long 

time, absolute measures were preferred by researchers and practitioners, as shown by Armstrong 

and Collopy (Armstrong and Collopy 1992). For example, the mean absolute percentage error 

(MAPE) is a common percentage error that is straightforward in its interpretation, as also demon-

strated by Boylan and Syntetos (Boylan and Syntetos 2006). However, researchers still disagree 

about the symmetry of MAPE (e.g., Hyndman and Koehler (Hyndman and Koehler 2006)). Fur-

thermore, MAPE is not suitable when the values of the observation are zero (due to undefined 

division by zero) and different versions of a symmetric MAPE (sMAPE) were developed to over-

come these issues as shown in (Armstrong 1985; Makridakis 1993; Chen and Yang 2004). As 

pointed out by Hyndman and Koehler, these metrics also exhibit drawbacks in certain situations, 

which motivated the authors to propose the use of a mean absolute scaled error (MASE) (Hynd-

man and Koehler 2006) which is suitable for zero value observations (also near zero values), 

albeit with the disadvantage that the metric is difficult to interpret from a business standpoint. 

Here, the weighted absolute percentage error (WAPE, also called MAD/mean ratio in the litera-

ture) is recommended as a more straightforward metric to interpret (Kolassa and Schütz 2007). 

Other metrics compare the forecasting error to the forecasting error of another forecasting model, 

i.e. a baseline model. An example is the mean relative absolute error (MRAE), which is the MAE 

of a forecast model result divided by the baseline model MAE. The percentage better (PB) metric 
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calculates the number of times that one forecasting model exhibits lower errors than another 

model. Relative measures help to compare different forecasting models using varied data sets 

based on a common baseline. The well-known coefficient of determination (R²) follows the same 

principle by comparing the (squared) forecasting error with the variance of the data set (i.e., taking 

the mean observation value as a baseline) (Adamowski et al. 2012). 

It is evident that no metric is the best metric in every situation and most forecasting competitions, 

e.g., the M-competitions, prefer straightforward metrics such as MAE, MAPE, or PB (Makridakis 

et al. 1982; Makridakis et al. 1993; Makridakis et al. 2020; Makridakis and Hibon 2000). Hynd-

man and Koehler recommend MAE for the interpretability of single time series data sets and 

alternately propose MAPE for non-intermittent contexts and MASE for intermittent demands 

(Hyndman and Koehler 2006). In (Armstrong and Collopy 1992), Armstrong and Collopy evalu-

ated RMSE, PB, MAPE, MdAPE, GMRAE, and MdRAE in five categories and also conclude 

that no metric is superior in all situations. However, they prefer RMSE, MAPE, and GMRAE for 

model calibration due to their high sensitivity and MdRAE and MdAPE for model selection due 

to their reliability (Armstrong and Collopy 1992). 

In order to correctly apply evaluation metrics to obtain reliable results, studies also consider how 

to integrate the metric into the whole model design process, whereby the following questions 

depict the typical conceptual challenges of model evaluation: 

• Should in- or out-of-sample data be used for evaluation? 

• Can all data points be used for evaluation? 

• How can data be split into different sets for testing and how can they be cross-validated? 

• What happens when hyperparameter tuning comes into play? 

We differentiate between in- and out-of-sample and the data that we use to fit the forecasting 

model is in-sample data, whereas other data that is not used for model fitting is out-of-sample 

data. When using out-of-sample data to evaluate the model performance, one can determine how 

the model generalizes the correlations learned based on the in-sample data. From the evaluation 

of the M competitions, Makridakis and Winkler conclude that there is a strong discrepancy be-

tween the performance of models for in-sample or out-of-sample data (Makridakis and Winkler 

1989). This deliberate split between in- and out-of-sample data is also called the train- and test-

split. 

As previously highlighted, demand forecasting is analogous to time series prediction in most 

cases. This means that observations are not independent of each other and, on the contrary, many 

models explicitly assume autoregressive dependencies between observations (e.g., ARMA). The 

literature proposes three approaches to account for dependent observations. Several authors rec-

ommend h-blocked validation to exclude two symmetric intervals of ℎ observations from the 

training set around one observation used as a test set. They assume that outside this interval, the 

dependence is negligible (Hart and Wehrly 1986; C.-K. Chu and Marron 1991; Burman and Nolan 

1992; Burman et al. 1994). Analogously, hv-blocked validation is defined by two symmetric in-

tervals of ℎ observations excluded from training sets around an interval of 𝑣 test observations 

(Racine 2000). McQuarrie and Tsai recommend identifying and excluding all observations that 

statistically depend on test observations from the training set (McQuarrie and Tsai 1998). One 
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drawback of the highlighted approaches is that the time series is interrupted by the omitted obser-

vations which can prevent models from being fitted properly. 

The approaches above show how to determine dependent observations between the training and 

test sets while the literature also provides ways to choose representative test sets to evaluate 

models. 

• Static hold out: Devroye and Wagner propose to define a portion of the data as a test set 

throughout the entire process (Devroye and Wagner 1979) although the validation results 

strongly depend on this data set. 

• Time series leave-one-out: One (or a 𝑝) observation is selected as a test set and while pre-

vious observations are used as training data, observations later in time are not considered 

at all. Hereby, the approach accounts for the fact that future observations are not available 

in time series forecasting and each observation is iteratively used once as a test observa-

tion (if sufficient training observations are available). This approach is analogous to the 

leave-one-out (LOO) or leave-p-out (LPO) approaches in non-time series forecasting 

(Shao 1993; Lachenbruch and Mickey 1968; Geisser 1975) whereby two determinants 

for variations exist: (1.) whether to always start training from the first observation (fixed 

origin (Hyndman and Athanasopoulos 2014)) or to use a window of the same length prior 

to the test observation (rolling window (Tashman 2000)) and (2.) whether to fit the model 

in each iteration (recalibration policy) or not (update policy) (Tashman 2000). In a com-

prehensive comparative study, Tashman shows the best results for the rolling window 

recalibration approach. 

• k-fold: Each observation is allocated to one of 𝑘 groups, either block-wise or randomly, 

and each group is used as a test set in one iteration, and as training in all remaining itera-

tions. Even though there is a dispute over whether it is viable to validate a time series in 

a non-consecutive order, several studies show that there is no empirical proof that this 

approach is biased (Bergmeir and Benítez 2012; Bergmeir et al. 2018). 

Cases that involve HPO are more complex and for these, the literature also recommends the use 

of independent data sets for model fitting (training set), HPO validation (development set, short 

dev set, or validation set), and model selection (test set). Here, the state-of-the-art approach is 

nested cross-validation and one can use all of the above-mentioned approaches in nested cross-

validation. In an outer loop, model selection is applied with a train-test-split while in the inner 

loop, a train-dev-split is used. However, it is evident that the computational effort is increased by 

a magnitude. We find examples of this approach in demand forecasting, e.g. in Adamowski and 

Karapataki (Adamowski and Karapataki 2010). 

Table 13, Table 14, and Table 15 represent how frequently evaluation metrics, cross-validation 

schemes, and significance tests have been applied in the reviewed studies. 

From Table 13, we observe that, overall, MAE, RMSE, and especially MAPE are very common 

metrics applied in the studies. The numbers include variants of the metrics, e.g., we subsume 

normalized RMSE under RMSE whereby the R2 metric is employed relatively infrequently. More 

recent developments such as MASE and RMSSE are also rarely applied, even in studies from the 

last three years. 
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The most frequently used evaluation metrics in the reviewed studies 

Percentage values indicate how many studies of the field of application used the metric. Several studies use multiple 

metrics. Not all observed metrics are listed in this table. Refer to Table 17 for a detailed overview of all methods 

used per study. 
 

MAE MAPE MASE RMSE R2 

Electricity 39% 83% 5% 63% 15% 

Travel & trans-

portation 

45% 90% 0% 80% 20% 

Water & energy 40% 47% 0% 47% 27% 

Logistics & in-

ventory 

35% 55% 25% 35% 5% 

Other 40% 30% 0% 30% 10% 

Table 13: Evaluation metrics applied in the reviewed studies. 

With respect to cross-validation (see Table 14), the basic train-test split is dominant in the re-

viewed studies. In travel & transportation demand forecasting, we more frequently observe roll-

ing window time series validation approaches, while this approach is rather uncommon in other 

fields of application. Overall, considering that proper cross-validation is eminent to ensure repre-

sentative results and prevent data leakage from training to testing, it is surprising that little em-

phasis is placed on the description of the validation scheme. Moreover, we observe that especially 

in studies where hyperparameter-optimization is applied (i.e., especially ML studies), the valida-

tion set is often either rather superficially described or not at all. 

Application of cross-validation schemes in the reviewed studies 

Percentage values indicate how many studies of the field of application used the scheme. Several studies use multiple 

schemes. Refer to Table 17 for a detailed overview of all methods used per study. 
 

train-test split train-test split + 

validation split 

rolling window k-fold any kind of 

cross-validation 

Electricity 75% 20% 7% 12% 95% 

Travel & trans-

portation 

60% 10% 35% 5% 100% 

Water & energy 85% 27% 7% 7% 87% 

Logistics & in-

ventory 

65% 10% 5% 10% 95% 

Other 59% 10% 0% 0% 80% 

Table 14: Cross-validation schemes applied in the reviewed studies. 

In addition to evaluation metrics and cross-validation, significance tests are another element in 

the repertoire of demand forecasting evaluation. Significance tests can be applied in demand fore-

casting to underline the fact that the samples that are taken and the number of randomized exper-

iments in empirical studies to compare two or more approaches are sufficiently large to consider 

them as not being the result of lucky sampling. The comparative study by Koning et al. system-

atically shows how statistical testing is applied to compare the contestants of the M3 forecasting 

competition. The authors especially observe that multiple comparisons must be corrected for al-

pha inflation (Koning et al. 2005). 
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In 2007 and 2008, the demand forecasting community argued whether such significance tests are 

suitable for application in empirical studies. Some influential researchers highlighted the difficul-

ties with significance testing in the case studies as the tests are frequently not applied correctly or 

misinterpreted, thereby providing a false sense of security. This is illustrated in, among others, 

the studies by Armstrong, Goodwin, or Kostenko and Hyndman (Armstrong 2007; Kostenko and 

Hyndman 2008; Goodwin 2007). 

We observe that only some of the reviewed studies apply significance tests at all (see Table 15), 

which may be a reaction to the abovementioned disagreements in the field. The Diebold-Mariano 

test is the only test that is occasionally applied while the Friedman test, t-test, and Kolmogorov–

Smirnov tests are rarely found in the reviewed studies. Furthermore, correction for alpha-inflation 

in multiple hypothesis testing is seen even more rarely. 

Application of statistical result significance tests in the reviewed studies 

Percentage values indicate how many studies of the field of application used the test. Some studies use multiple 

tests. Refer to Table 17 for a detailed overview of all methods used per study. 
 

Diebold-Mariano 

test 

Friedman test t-test Kolmogorov–

Smirnov test 

All studies 20% 7% 2% 2% 

Table 15: Significance tests applied in the reviewed studies. 

3.8.4 How to choose an appropriate model 

Throughout this section, it becomes evident that various models can be applied and that the liter-

ature cannot provide a recipe for the best procedure. However, we find general principles that 

help researchers to identify appropriate approaches. 

Section 3.8.1 shows the vast number of models that studies apply in demand forecasting. This 

broad choice may seem overwhelming when taking the first steps in this area of research. As a 

general guideline, studies name Occam’s razor as a parsimony principle to follow. In brief, when 

we have the choice between two models that yield the same results, it is reasonable to choose the 

less complex model and hence it is advisable to first apply models of low complexity. The number 

of hyper-parameters is an indicator of the model complexity although it is not the only one. This 

idea is also reflected by the evaluation metrics, for example, AIC punishes models by the number 

of parameters (Blumer et al. 1987). 

Researchers should also consider previous studies in their area of research. As shown in Section 

3.8.1, some forecasting models are especially well-suited for specific problem classes, for exam-

ple, Croston’s method for intermittent demands. In their study, Petropoulos et al. demonstrate 

how seven characteristics of a time series affect forecasting accuracy in demand forecasting and 

which models are suitable depending on the characteristics (Petropoulos et al. 2014). 

Furthermore, it is a common standard in demand forecasting to develop, implement, and then 

thoroughly compare different models. In this step, it is important to use a bias-free validation 

method to compare the forecasting results as shown in Section 3.8.3. 
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3.9 Summary of the Findings and Open Issues 

This section provides an overview of the recent open issues in the demand forecasting literature 

and we thus first summarize the findings and open issues identified in the previous sections before 

comparing the findings to those highlighted in the reviewed studies and especially in existing 

surveys on demand forecasting (Section 3.3.2 and Table 4). 

3.9.1 Summary of open issues from the previous sections 

We summarized and compared the target variables and additional inputs used in the studies in 

Section 3.5. We observe that the fields of applications usually apply comparable inputs to reach 

one forecasting goal and propose that studies should aim to collect and assess all additional inputs 

available and describe why some have been sorted out in the process (see next paragraph). As 

pointed out in Section 3.5, studies should also describe their data set’s properties in detail to allow 

other researchers to compare their results. 

Section 3.7.4 concludes the findings from feature engineering and scaling in which we highlighted 

that although we can find most state-of-the-art methods in demand forecasting studies, most stud-

ies do not systematically apply the available feature engineering methods and describe why they 

rule out some of them and use others. 

In Section 3.8.1, we summarized the forecasting algorithms used in the fields of application in 

demand forecasting. We can conclude that the studies generally use a broad range of algorithms 

and follow the principles of scientific work by comparing their proposed approaches to state-of-

the-art methods. However, as highlighted in this section, most studies rather compare their pro-

posed method to basic variants of the state-of-the-art approaches than to other elaborate methods 

described in recent studies on similar topics. 

In addition, we observe that studies mainly review related work in their field of application instead 

of reviewing cross-application. 

In Section 3.8.2, we observe that most studies do not describe the application of systematic meth-

ods for HPO or apply trial-and-error to optimize their hyper parameters. As indicated in this sec-

tion, it would be helpful for the research community to know what steps led to a successful HPO. 

In addition, we recommend the use of HPO methods, for example, the PSO or other related meth-

ods described in this Section 3.8.2 to improve the approaches’ results. 

Section 3.8.3 shows that the reviewed studies mostly apply an appropriate set of basic evaluation 

metrics (MAE, MAPE, RMSE) while overall, scaled metrics are less common. We observed that 

the studies typically use variations of the basic evaluation metrics. In this context, we highlight 

two issues that can arise. Firstly, studies need to be clear on how they apply cross-validation, 

especially when using algorithms that require HPO, and secondly, studies should report their 

evaluation results using different metrics, so that the results are easily comparable, and the reader 

can observe influences and biases of specific metrics. 
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Taken together, all the points that are addressed make it challenging to systematically compare 

studies with their data sets, approaches, and results on a quantitative basis, and perhaps for this 

reason, we do not find meta-analysis comparing studies on a large scale – except for the forecast-

ing competitions introduced in Section 3.3.2. These competitions ensure the same parameters for 

all contestants: identical data set, availability of additional inputs, and results based on the same 

evaluation metrics and cross-validation standards. 

 

The existing surveys that we outline in the next section confirm several of the findings of this 

section.  

3.9.2 Open issues identified in the demand forecasting literature 

This section summarizes the open issues from existing surveys in demand forecasting from Table 

4. We compare the findings between the fields of applications in Table 16. 

The major open issues identified by the existing surveys in the context of data availability not 

only involve the availability of data as such but also the incorporation and the necessary methods 

to deal with big data. Song et al. recommend exploiting consumer behavior data on a micro-level 

to increase the forecasting quality in travel & transportation studies. Other than the aggregate 

econometric models used, micro-level models can derive more detailed consumer behavior in-

sights (Song et al. 2019). Aslam et al. and Meade and Islam highlight the availability of quality 

big data sources for research as an open issue in demand forecasting (Meade and Islam 2015; 

Aslam et al. 2021).  

All surveys suggest that the researchers should incorporate more detailed input data in their ap-

proaches whereby the data specified depends on the application, for example, Ahmad et al. and 

Raza and Khosravi recommend advanced meteorological and climatical features for electricity 

demand forecasting (Raza and Khosravi 2015; Ahmad et al. 2020) and Ghalehkhondabi et al. for 

energy demand forecasting (Ghalehkhondabi et al. 2017a); Ghalehkhondabi et al. and Song and 

Li propose multi-level seasonality (Song and Li 2008; Ghalehkhondabi et al. 2019); and Pinçe et 

al. prefer anomalies detection and model incorporation in supply chain forecasting (Pinçe et al. 

2021). 

Pinçe et al. also indicate that demand forecasting research can benefit from a better description of 

the input data used (Pinçe et al. 2021) while Mediavilla et al. recommend the systematic use of 

feature engineering techniques (Mediavilla et al. 2022). Our findings from Section 3.9.1 support 

both of their arguments. 

With regard to the improvement of the main forecasting algorithms, many surveys advocate 

the hybridization of existing approaches as a promising direction for future research (Raza and 

Khosravi 2015; Sison et al. 2021; Ghalehkhondabi et al. 2019; Song et al. 2019; Ghalehkhondabi 

et al. 2017a; Ghalehkhondabi et al. 2017b). The surveys also suggest increasing research in ANN 

(including all variants) and to master the complexity of ANN models (Ghalehkhondabi et al. 

2017a; Ghalehkhondabi et al. 2017b; Mediavilla et al. 2022) and ML approaches in general 

(Masdari and Khoshnevis 2020). Consistent with our findings from Section 3.9.1, Zhu et al. 
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observe that an increased standardization of algorithms and their description in studies can im-

prove the generation of insights by promoting the comparability of studies (Zhu et al. 2019). 

In the area of evaluation of results, we observe two major findings in the surveys. Sison et al., 

Ghalehkhondabi et al., Pinçe et al., and Seyedan and Mafakheri identify the need to introduce 

evaluation metrics that place a greater emphasis on the practical impact of forecasting errors, e.g., 

cost impacts (Seyedan and Mafakheri 2020; Ghalehkhondabi et al. 2017b; Sison et al. 2021; Pinçe 

et al. 2021). The surveys also emphasize that standardized error measures can help to compare 

results between studies (Pinçe et al. 2021; Masdari and Khoshnevis 2020), which aligns with our 

findings in Section 3.9.1. 

Finally, the surveys agree on identifying the restrictions imposed by data privacy amongst the 

trends for future research in demand forecasting (Sison et al. 2021; Zhu et al. 2019) and in fed-

erated learning (Masdari and Khoshnevis 2020; Sison et al. 2021). 

Electricity Travel & transpor-

tation 

Water & energy Logistics & inven-

tory 

Other 

Data availability 

General availability 

of big data for re-

search (Aslam et al. 

2021) 

Development and ap-

plication of data qual-

ity assurance meth-

ods (Ghalehkhondabi 

et al. 2019), use and 

availability of big 

data on micro-level 

(Song et al. 2019) 

 Incorporation of big 

data information (in-

stalled base, expert 

knowledge) (Pinçe et 

al. 2021) and agricul-

ture and transporta-

tion (Aamer et al. 

2020) 

General data availa-

bility for research 

(Meade and Islam 

2015) 

Additional inputs 

Short term: regional 

influences; mid-/long 

term climate 

change(Ahmad et al. 

2020) and meteoro-

logical factors (Raza 

and Khosravi 2015), 

smart grid and smart 

building inputs (Raza 

and Khosravi 2015) 

Incorporation of 

qualitative inputs 

(Ghalehkhondabi et 

al. 2019); multi-level 

seasonality 

(Ghalehkhondabi et 

al. 2019; Song and Li 

2008); extreme 

events 

(Ghalehkhondabi et 

al. 2019; Song and Li 

2008), consumer be-

havior on micro-level 

(Song et al. 2019) 

Saturation factors 

(Ghalehkhondabi et 

al. 2017a), advanced 

climate influences 

(Ghalehkhondabi et 

al. 2017a) 

Additional inputs 

(Mediavilla et al. 

2022), systematical 

feature engineering 

(Mediavilla et al. 

2022), comparable 

description of input 

data (Pinçe et al. 

2021), identification 

and processing of 

anomalies (Pinçe et 

al. 2021) 

Incorporation of big 

data (Zhu et al. 

2019), long horizon 

seasonal variations 

(Masdari and Khosh-

nevis 2020) 

Forecasting improvement 

Hybridization of al-

gorithms (Raza and 

Khosravi 2015) 

ML development 

(Sison et al. 2021); 

hybridization of algo-

rithms (Sison et al. 

2021; 

Ghalehkhondabi et al. 

2019; Song et al. 

Hybridization of al-

gorithms 

(Ghalehkhondabi et 

al. 2017a; 

Ghalehkhondabi et al. 

2017b), mastery of 

ANN 

Incorporation of 

whole supply chain 

into forecasting (Me-

diavilla et al. 2022; 

Pinçe et al. 2021; 

Seyedan and Mafak-

heri 2020; Aamer et 

Standardization and 

comparability of 

forecasting models 

(Zhu et al. 2019), im-

provement of ML 

models (Masdari and 

Khoshnevis 2020), 
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2019); adoption of 

techniques from other 

forecasting disci-

plines (Sison et al. 

2021), impact of ag-

gregation-disaggrega-

tion(Song and Li 

2008; Song et al. 

2019) 

(Ghalehkhondabi et 

al. 2017a), develop-

ment of more perfor-

mant ANN 

(Ghalehkhondabi et 

al. 2017b), unsuper-

vised learning 

(Ghalehkhondabi et 

al. 2017b), adoption 

of methods from 

other disciplines 

(Ghalehkhondabi et 

al. 2017b; Suganthi 

and Samuel 2012) 

al. 2020), mastery of 

complex ANN (Me-

diavilla et al. 2022) 

light weight models 

(e.g., for IoT) 

(Masdari and Khosh-

nevis 2020) 

Evaluation 

 Incorporation of cost 

impact (Sison et al. 

2021) 

Improved error met-

rics (Ghalehkhondabi 

et al. 2017a), system-

atic measuring of in-

put factor effective-

ness 

(Ghalehkhondabi et 

al. 2017b) 

Unification of evalu-

ation metrics (Pinçe 

et al. 2021), inven-

tory cost and perfor-

mance measure 

(Pinçe et al. 2021; 

Seyedan and Mafak-

heri 2020) 

Diversification of tar-

get variables and 

metrics (Zhu et al. 

2019), improved 

comparability 

(Meade and Islam 

2015) 

Recommendations for actions and guidelines derived from forecast data 

Deduction of active 

demand management 

(Raza and Khosravi 

2015) 

 Development of prac-

tical policies for plan-

ners and politicians 

(Suganthi and Sam-

uel 2012) 

 Improvement of re-

source allocation 

based on forecast 

(Masdari and Khosh-

nevis 2020) 

Trends 

New energy sources 

forecasting(Aslam et 

al. 2021) 

Data privacy; feder-

ated learning (Sison 

et al. 2021) 

Peak energy demand 

(Ghalehkhondabi et 

al. 2017a) 

 Data privacy (Zhu et 

al. 2019) 

Table 16: Summary of the open issues from the existing demand forecasting surveys. 

3.9.3 Critical discussion 

The overview of the literature on demand forecasting exhibits a very heterogeneous picture as 

when comparing industries and applications, some are shown to be deeply evolved, while others 

are only superficially studied and each industry applies characteristic approaches which are often 

not observed in other industries. For example, in electricity demand forecasting, ANN are pre-

dominantly used (Hernandez et al. 2014) while, in contrast, travel demand forecasting studies 

mainly apply classical time series and econometric models (Song et al. 2019). However, when 

comparing studies from the same industry, the forecasting approaches are often very similar and 

almost uniformly apply similar techniques. This also coincides with the authors of the studies in 

question, who typically dedicate their research to certain topics where they advance knowledge 

and research intensively and deeply whereby entirely novel approaches are rare. This provides an 
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impetus for future cross-disciplinary studies that assess the transfer of forecasting approaches 

from one industry to another. As indicated in the previous sections, the underlying theoretical 

research from other disciplines such as inter alia time series forecasting and AutoML uses ap-

proaches that demand forecasting studies have not yet utilized even though they provide potential 

solutions to issues in demand forecasting that have proven useful in other general contexts. 

From our findings in Section 3.9.1 and other authors’ statements summarized in Section 3.9.2, we 

conclude that research in demand forecasting can benefit from a systematic framework that 

makes it possible to transparently compare future studies in each process step from input data to 

final results without restricting scientific research. In this context, we especially emphasize the 

significance of a) a detailed description of the data set, b) a detailed description of all data pro-

cessing, feature engineering, etc., steps, and c) a detailed evaluation of results with common and 

application-relevant evaluation measures. Even the deliberate omission of methods in b) can help 

other researchers to understand why some methods were not relevant when the rationale is ade-

quately explained. Systematically probing the state-of-the-art methods for each step will make it 

easier for both readers and authors to track which methods were chosen and which have been 

rejected. 

We contribute to this development with the generalized process structure introduced in Section 

3.4. At best, the demand forecasting research community should be able to conduct meta-study-

like comparisons, as Koning et al. did for the M3 competition (Koning et al. 2005) – even when 

the studies were not conducted in the same context (e.g., a competition). 

3.10 Conclusion and Contribution 

In this study, we provide a universal framework for the classification of studies and a comprehen-

sive overview of the state-of-the-art in demand forecasting. To our knowledge, no recent survey 

provides a comparable overview of demand forecasting. In this study, we applied a systematic 

literature review approach by using four research questions and a reproducible reviewing process. 

In detail, this study’s framework structures the literature by (1) the fields of applications in de-

mand forecasting (see RQ1, Section 3.3.2) and (2) the generalized process of demand forecasting 

(see RQ2, Section 3.4). 

Based on this framework, this study systematically reviews 116 studies from five major fields of 

application throughout the process of demand forecasting. Hereby, this study describes the state-

of-the-art methods in detail, compares the fields of application, and demonstrates exemplary al-

ternative approaches from other forecasting disciplines (see RQ3, Sections 3.5 to 3.8). 

Moreover, this survey systematically identifies the open issues through the individual process 

steps and application comparison, compares the open issues raised by other existing surveys from 

the applications of demand forecasting, and finally provides an outline of open issues and future 

developments in demand forecasting (see RQ4, Section 3.9). 

Thereby, this survey contributes to the research in demand forecasting. Firstly, it provides a com-

prehensive and intuitive overview of the current state for researchers who are new to this 
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discipline. Secondly, this paper introduces a structure to compare and classify studies. Thirdly, 

the survey presents and compares the recent state-of-the-art in demand forecasting and it high-

lights and summarizes open issues while providing an outlook for future research directions. 
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3.11 Appendix 

# Reference Target variable and 

additional inputs 

Preprocessing Forecasting algorithm Evaluation 

Electricity 

1 (Velasquez et 

al. 2022) 

Target variable: En-

ergy demand (120-

month ahead) per re-

gion 

Additional input: Re-

gion, date & time 

 

Preprocessing: (Par-

tial) autocorrelation 

analysis (P)ACF for 

seasonality detection 

Algorithms: Regres-

sion, Exponential 

Smoothing, ARIMA* 

HPO: not required 

Metric: ME, MAE, 

MSE, MPE, MAPE 

Cross validation: 

train-test split (com-

pared vs. baseline 

forecast of official 

authority instead ac-

tual values) 

2 (Alasali et al. 

2021) 

Target variable: Elec-

tricity demand (24-

half hours ahead, 7-

days ahead, 12-

months ahead) 

Additional input: 

Temperature, average 

last seasons target 

variable, last time pe-

riod value, holiday 

and weekend 

Preprocessing: Par-

tial Autocorrelation 

Analysis (PACF) for 

time lagged variable 

determination 

Algorithms: Naive 

seasonal, ARIMAX, 

ANN, stochasti ARI-

MAX* 

HPO: Not specified 

Metric: MAPE 

Cross validation: 

train-test split 

3 (Ofori-Ntow 

Jnr et al. 

2021) 

Target variable: Elec-

tricity demand 

(hourly) 

Feature extraction: 

Discrete Wavelet 

Transformation 

(DWT) 

Algorithms: Extreme 

Learning Machine, 

Radial Basis Function 

and Backpropagation 

ANN* 

HPO: Particle Swarm 

Optimization (PSO), 

Self-adapting Differ-

ential Evolution 

Metric: MAPE, 

MAE, RMSE 

Cross validation: 

train-test split 

4 (Mansoor et 

al. 2021) 

Target variable: Short 

term electricity de-

mand (24-hours 

ahead) 

Additional input: 

Date & time (incl. 

holidays, weekends), 

weather (temperature, 

humidity, irradiance) 

Preprocessing: k-

means clustering by 

hourly load profile 

patterns 

Algorithms: ANN, 

Echo State Network 

(ESN)* 

HPO: trial-and-error 

Metric: MAPE, 

weighted MAE, en-

velope-weighted 

MAE, RMSE, nor-

malized RMSE 

Cross validation: 

train-test split 

5 (Liu and Lin 

2021) 

Target variable: Elec-

tricity demand () 

Additional input: 

COVID19 (no. of 

tests, lockdown 

events), weather (tem-

perature, wind speed), 

renewable energy 

production 

No particular prepro-

cessing specified 

Algorithms: bidirec-

tional LSTM* 

HPO: Trial-and-error, 

grid search 

Metric: MSE, Mean 

Squared Logarith-

mic Error (MSLE), 

RMSE 

Cross validation: 

train-test split 
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6 (Kim and 

Kim 2021) 

Target variable. Elec-

tric vehicle electricity 

demand (hourly, 

daily) 

Additional input: 

Date & time (incl. 

weekend & holiday), 

weather (tempera-

ture), region and 

charging station 

Preprocessing: Box-

Cox Transformation 

Algorithms: Trigono-

metric Exponential 

Smoothing (TBATS), 

ARIMA, ANN, 

LSTM* 

Metric: MAPE, 

MSE 

Cross validation: 

train-test split 

7 (Dittmer et al. 

2021) 

Target variable: Short 

term electricity de-

mand (48-hours 

ahead) 

Additional input: 

None specified 

Preprocessing: Aug-

mented Dickey-

Fuller (ADF) for sta-

tionarity test 

Algorithms: Seasonal 

naive, ARIMA, Trig-

onometric seasonality 

Box-Cox transfor-

mation ARMA errors 

Trend and Seasonal 

(TBATS) 

Metric: MAPE, 

RMSE 

Cross validation: 

Not specified in de-

tail 

8 (Bendaoud et 

al. 2021) 

Target variable: Short 

term electricity de-

mand (24-hours 

ahead) 

Additional input: 

Weather (tempera-

ture), date & time 

(month, day of week) 

Scaling: Min-max 

standardization 

Algorithms: ANN, 

Generative Adversar-

ial Networks (GAN)* 

- Conditional, Deep 

Convolutional, Was-

serstein 

Metric: MAPE, 

RMSE 

Cross validation: 

train-test split + val-

idation split 

9 (Tan et al. 

2020) 

Target variable: Ul-

tra-short sliding block 

(15min) electricity 

demand (1-5-minutes 

ahead and 1-24-hours 

ahead) 

Additional input: 

Date & time (hour, 

month, day of week) 

Preprocessing: Auto-

correlation function 

(ACF) and Related 

Factor Analysis 

Scaling: Min-max 

standardization (nu-

merical values), one-

hot encoding (cate-

gorical values) 

Algorithm: SVR, Re-

stricted Boltzmann 

Machine (RBM), 

LSTM, Random For-

est, XGBoost, LSTM 

with data bootstrap-

ping, random subset 

sampling and boost-

ing* 

HPO: Not specified 

Metric: MAPE, 

MAE normalize-

dRMSE, Peak Ab-

solute Percentage 

Error (PAPE) 

Cross validation: 

train-test split 

10 (Wang et al. 

2020) 

Target variable: Short 

term household elec-

tricity demand re-

sponse to Load Ag-

gregator incentive 

programs 

Additional input: 

Weather (high-low 

temperature), date & 

time (season, day of 

week, weekend, 

time), monetary re-

ward, baseline energy 

demand 

Missing data treat-

ment: Deletion of 

data point 

Feature extraction: 

Principal Component 

Analysis (PCA) 

Scaling: Min-max 

standardization 

Algorithms: ANN, 

CNN, SVM* 

HPO: Grid search 

Metric: MAE, APE, 

MAPE, RMSE 

Cross validation: 

train-test split 

11 (Li et al. 

2020b) 

Target variable: Elec-

tricity demand (fore-

cast horizon unclear) 

Additional input: not 

specified 

Feature extraction: 

Adaptive Fourier 

Decomposition 

(AFD), Fast Fourier 

Transformation 

Algorithms: Naive, 

ARMA, 

SVM+SCA*, ANN, 

ELM 

HPO: Sine Cosine 

Metric: Standard 

Deviation Error 

(SDE), sMAPE, 

MASE 
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(FFT) 

Scaling: Min-max 

standardization 

Optimization Algo-

rithm (SCA) 

Cross validation: 

train-test split 

12 (Williams and 

Short 2020) 

Target variable: Short 

term (half-hourly) 

electricity demand 

(four-hours ahead) 

Feature selection: 

Partial Autocorrela-

tion Function 

(PACF) for identifi-

cation of periodicity 

Preprocessing: Re-

moval of trend 

through ordinary 

least square regres-

sion, smoothing of 

time series with sim-

ple averaging 

Scaling: Min-max 

standardization 

Feature extraction: 

Piecewise Aggrega-

tion Approximation 

(PAA) using mean 

aggregation and 

Symbolic Aggregate 

Approximation 

(SAX) based on cu-

bic interpolation 

Algorithms: Seasonal 

Naive, Holt-Winter 

Exponential Smooth-

ing (ES) 

Metric: MAE, 

MAPE, RMSE, R2 

Cross validation: 

train-test split 

13 (Pérez-

Chacón et al. 

2020) 

Target variable: Short 

term (hourly) electric-

ity demand (one-hour 

ahead) 

Additional input: 

Date & time (year, 

month, day of 

month&week, time, 

holiday) 

Preprocessing: out-

lier removal 

Scaling: Min-max 

standardization 

Clustering of similar 

patterns with k-

means++ algorithm 

for labeling (no ag-

gregation) 

Algorithms: ARIMA, 

ANN, CART deci-

sion tree, Gradient 

Boosted Machine, 

Pattern Sequence 

based Forecasting 

(PSF - sampling from 

similar historic se-

quences), big data 

bigPSF* 

HPO: Grid search 

Metric: MAE, 

MAPE, RMSE 

Cross validation: 

train-test split + val-

idation split 

14 (Son and Kim 

2020) 

Target variable: 

Monthly electricity 

demand (24-months 

ahead) 

Additional input: So-

cial (electricity price, 

consumer price in-

dex), weather (wind 

speed, temperatures, 

solar radiation, day-

light time, cooling de-

grees, vapor pressure) 

Scaling: Min-max 

standardization 

Algorithms: SVR, 

ANN, ARIMA, linear 

regression,  LSTM* 

Metric: MAE, 

RMSE, MAPE, 

Mean Bias Error 

MBE, Unpaired 

Peak Accuracy 

UPA 

Cross validation: 

train-test split + val-

idation split 

15 (Chapagain et 

al. 2020) 

Target variable: Short 

term half-hourly elec-

tricity demand (half-

hour ahead) 

Additional input: 

Weather 

Not specified in de-

tail 

Algorithms: Ordinary 

and General Least 

Square (OLS, GLS), 

ANN, deepANN 

HPO: trial-and-error 

Metric: MAE, 

MAPE 

Cross validation: 

train-test set 
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(temperature), 

date&time (work day 

vs weekend) 

16 (Choi et al. 

2020) 

Target variable: Elec-

tricity demand (3-

days ahead) 

Feature extraction: 

Exploitation of 

Mixed-Data Sam-

pling (MIDAS) 

weight assignment to 

data points 

Algorithms: MIDAS, 

LSTM, MIDAS-

LSTM* 

HPO: trial-and-error 

Metric: MAPE, 

RMSE, R2 

Cross validation: 

train-test split 

Significance test: 

Friedman test 

17 (Del Real et 

al. 2020) 

Target variable: Elec-

tricity demand 

Additional input: 

Weather (forecasted 

temperature), 

date&time (week of 

year, hour, day, holi-

day) 

Preprocessing: Elim-

inate outliers and 

null values 

Feature extraction: 

CNN for feature ex-

traction as part of 

forecasting algo-

rithm 

Algorithms: ARIMA, 

ANN, CNN+ANN* 

HPO: trial-and-error 

Cross validation: 

train-test split + val-

idation split 

18 (Yukseltan et 

al. 2020) 

Target variable: 

Hourly electricity de-

mand (one-day, one-

week, one-year 

ahead) 

Not specified in de-

tail 

Algorithms: Fourier 

Series Expansion* 

Metric: MAPE, 

RMSPE 

19 (Khan and 

Jayaweera 

2020) 

Target variable: Half-

hourly electricity de-

mand (one-week 

ahead) 

Additional input: 

Only time lagged tar-

get variable 

Feature extraction: 

Clustering of load 

profiles using euclid-

ean distance and k-

means clustering for 

separate algorithm 

training per cluster 

on cluster averages 

linearized using Tay-

lor series representa-

tion 

Algorithms: Multiple 

linear regression, 

ANN 

HPO: not specified 

Metric: MAPE 

Cross validation: 

train-test split 

20 (Taieb et al. 

2021) 

Target variable: Half-

hourly electricity de-

mand (one-day ahead) 

Additional input: Ge-

ographical hierarchy 

Not specified in de-

tail 

Algorithms: Kernel 

Density Estimation 

(KDE), MinT hierar-

chical forecasting 

Metric: Continuous 

Ranked Probability 

Score (CRPS), 

RMSE 

Cross validation: 

train-test split + val-

idation split 

Significance test: 

two-sample Kolmo-

gorov–Smirnov 

(KS) test 

21 (Bedi and 

Toshniwal 

2019) 

Target variable: Short 

term verage and peak 

load demand 

Additional inputs: 

Date & time 

Data cleaning and 

transformation (not 

specified in detail) 

and framework spe-

cific clustering 

Algorithms: SVM, 

ANN, RNN, LSTM* 

HPO: Stochastic Gra-

dient Descend 

Metric: R2, RMSE, 

MAPE 

Cross validation: 

time series valida-

tion 

22 (Jahangir et 

al. 2019) 

Target variable: Elec-

tricity demand for 

electric vehicles 

Not specified in de-

tail 

Algorithms: Recur-

rent ANN, rough 

ANN* 

HPO: trial-and-error 

Metric: MAE, 

MAPE, RMSE, R2 

Cross validation: 

train-test split + val-

idation split 
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23 (Johannesen 

et al. 2019) 

Target variable: Short 

term (half-hour) elec-

tricity demand (30-

min to 24-hours 

ahead) 

Additional input: 

Date&time (hour, day 

of week, month, sea-

son), weather (humid-

ity, wet/dry-bulb tem-

perature, dew-point), 

time lagged target 

variable 

Not specified in de-

tail 

Algorithms: Random 

Forest, k-Nearest 

Neighbor, linear re-

gression 

HPO: None, i.e., de-

fault package values 

Metric: MAPE 

Cross validation: k-

fold cross validation 

24 (Hwangbo et 

al. 2019) 

Target variable: 

Hourly electricity de-

mand and supply (6-

hours ahead) 

Feature extraction: 

Empirical Mode De-

composition (EMD) 

Algorithms: season-

alARIMA, LSTM, 

GRU LSTM, deep 

ANN* 

HPO: trial-and-error 

Metric: RMSE, 

MASE 

Cross validation: 

Rolling window 

time series valida-

tion and train-test 

split 

25 (Salinas et al. 

2019) 

Target variable: Five 

different data sets 

from electricity de-

mand, automotive 

parts demands, car 

traffic 

Additional input: De-

pending on data set, 

not specified in detail 

Feature scaling: Log 

normalization 

Algorithms: Croston, 

ETS, Snyder, ISSM, 

RNN, autoregressive 

RNN DeepAR* 

HPO: Grid search 

Metric: RMSE, 

Normalized Differ-

ence (ND) 

Cross validation: 

Rolling window 

time series valida-

tion 

26 (Ahmad and 

Chen 2018) 

Target variable: Load 

demand of heat 

pumps 7 day ahead 

Additional input: 

Temperatures, wind 

speed & direction, 

date & time 

Correlation analysis 

for input factor se-

lection, no further 

data preprocessing 

specified 

Algorithms: Linear 

regression, random 

trees (boosted, 

bagged)*, ANN 

HPO: not specified in 

detail 

Metric: RMSE, 

MSE, MAE, R2, 

CV, MAPE 

Cross validation: 

train-test split 

27 (AL-Musaylh 

et al. 2018a) 

Target variable: Short 

term electricity de-

mand (0.5-24-hours 

ahead) 

Additional input: 

Time lagged target 

variable 

Feature extraction: 

Partial Autocorrela-

tion Function 

(PACF) for time 

lagged target varia-

ble 

Scaling: Min-max 

standardization 

Algorithms: Multi-

variate Regression 

Spline (MARS)*, 

SVM*, ARIMA 

Metric: RMSE, R, 

MAE, normalize-

dRMSE, normal-

izedMAE, Will-

motts Index (WI), 

Nash–Sutcliffe co-

efficients 

Cross validation: 

train-test split 

Significance test: t-

test  

28 (Bouktif et al. 

2018) 

Target variable: Elec-

tricity demand (two-

weeks to four-months 

ahead) 

Additional input: 

Weather (temperature, 

humidity, wind speed) 

Preprocessing: 

Cleansing and struc-

ture change, not fur-

ther specified 

Feature scaling: 

Min-max standardi-

zation 

Algorithms: Linear 

regression, ridge re-

gression, k-nearest 

neighbor, Random 

Forest, Gradient 

Boosted Trees, MLP 

Metric: MAE, 

RMSE, Coefficient 

of Variation (CV) 

Cross validation: 

Rolling window 

time series valida-

tion 
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Feature selection: 

Genetic Algorithm 

(GA) to determine 

optimal time lag of 

variables, recursive 

feature elimination, 

extra tree regression 

ANN, LSTM ANN* 

HPO: Grid search 

29 (Xie et al. 

2018) 

Target variable: Elec-

tricity demand (24h-

hours, one-week, one-

month, one-year) 

Additional input: 

Weather (relative hu-

midity) 

Not specified in de-

tail 

Algorithms: Linear 

regression model 

with different levels 

of relative humidity 

variables as addi-

tional input, SVR, 

ANN 

Metric: MAPE 

Cross validation: k-

fold, rolling win-

dow time series val-

idation 

30 (AL-Musaylh 

et al. 2018b) 

Target variable: Elec-

tricity demand (one-

day, one-week, one-

month ahead) 

Additional input: 

Date & time 

Feature extraction: 

Empirical Mode De-

composition (EMD), 

Partial Autocorrela-

tion Function 

(PACF) 

Scaling: Min-max 

standardization 

Algorithms: SVR, 

Multivariate Adaptive 

Regression Spline 

(MARS),-M5 model 

tree 

HPO: Particle Swarm 

Optimization (PSO) 

Metric: RMSE, 

MAE, relative 

RMSE, MAPE, 

Willmott’s Index 

(WI), Legates-

McCabe Index 

(ELM), Nash–Sut-

cliffe coefficients 

Cross validation: 

train-test split + val-

idation split 

31 (van der Meer 

et al. 2018) 

Target variable: Elec-

tricity demand and 

generation 

Feature selection: 

Wrapper approach 

within the forecast-

ing approach, includ-

ing cross validation 

Algorithms: ARIMA, 

Gaussian Process 

(GP)* 

Metric: MAE, 

MAPE, RMSE, nor-

malized RMSE, 

Prediction Interval 

Coverage Probabil-

ity (PICP), Predic-

tion Interval Nor-

malized Average 

Width (PINAW), 

normalized Con-

tinous Ranked Prob-

ability Score 

(CRPS) 

Cross validation: 

train-test split + val-

idation split in com-

bination with k-fold 

cross validation for 

time series 

32 (Chen et al. 

2017) 

Target variable: Short 

term (2 hours ahead) 

electricity demand in 

office buildings 

Additional inputs: 

Weather (dry bulb 

temperature), date & 

time, office working 

hours 

Missing data interpo-

lation 

Feature selection by 

SVR-wrapper 

Algorithms: Variants 

of averaging, regres-

sion, SVR* 

HPO: not specified in 

detail 

Metric: AE, ME, 

MAE 

Cross validation: 

train-test split 
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33 (Cheng et al. 

2017) 

Target variable: Short 

term (30 min) house-

hold electricity de-

mand 

Additional inputs: 

Date & time, weather 

(temperature, wind 

speed and bearing, 

dew point, humidity, 

precipitation, air pres-

sure) 

Feature selection 

with wrapper (Ran-

dom Forest Recur-

sive Filter Elimina-

tion, including 

assessment of 

weights to the fea-

tures 

Algorithms: SVR, 

Gradient Boosting 

Trees, LSTM* 

HPO: Grid search 

Metric: MSE*, 

MAPE 

Cross validation: 

train-test split 

34 (Qiu et al. 

2017) 

Target variable: Short 

term electricity de-

mand (half-hour and 

one-day ahead) 

Additional input: 

Date & time 

Pre-analysis: Auto-

correlation (ACF) to 

identify lag variables 

Feature extraction: 

Empirical Mode De-

composition (EMD) 

Algorithms: SVR, 

ANN, DBN (Deep 

Belief Network), En-

semble DNB, EMD-

SVR, EMD-ANN, 

EMD Random Forest, 

EMD-DBN* 

Metric: RMSE, 

MAPE 

Cross validation: 

train-test split as 

well as k-fold 

35 (Ryu et al. 

2017) 

Target variable: Short 

term electricity load 

profile (24 hours 

ahead) 

Additional input: 

Date & time (season, 

day of week), weather 

(temperature, humid-

ity, solar radiation, 

cloud, wind speed), 

customer information 

(province, industry 

category) 

Scaling: Min-max 

standardization 

Missing data intra-

ploation (average) 

Algorithms: shallow 

ANN, Holt-Winters, 

Deep Belief Network 

(DBN) with Re-

stricted Boltzmann 

Machines (RBM) or 

ReLU perceptrons* 

HPO: Stochastic gra-

dient descend, not 

specified in detail 

Metric: MAPE; 

RRMSE (relative 

RMSE, ie. percent-

age error) 

Cross validation: 

train-test split 

36 (Zheng et al. 

2017) 

Target variable: Elec-

tricity demand (one-

day ahead) 

Additional input: 

Weather (temperature, 

humidity, precipita-

tion, wind speed), 

date & time (day of 

week, special day in-

dicator) 

Feature extraction: 

Empirical mode de-

composition (EMD), 

similar day selection 

(SD) based on gradi-

ent boosted k-means 

algorithm 

Algorithms: ARIMA, 

Back Propagation 

ANN, SVR, LSTM 

ANN* 

HPO: not specified 

Metric: MAPE 

Cross validation: 

train-test split + val-

idation split 

37 (Amini et al. 

2016) 

Target variable: Elec-

tricity demand for 

electric cars (one-day 

ahead) 

Additional input: Ve-

hicle battery capacity, 

charging speed, mar-

ket share, range (each 

per vehicle class), ex-

pected departure time 

Not specified Algorithms: 

ARIMA* 

Metric: MAE, 

MAPE, MSE 

Cross validation: 

not specified 

38 (Hassan et al. 

2016) 

Target variable: Elec-

tricity demand (24-

hour ahead) 

Feature selection: 

Autoregression 

Algorithms: ANN, 

Adaptive Neuro 

Furzzy Inference 

Metric: MAPE, 

RMSE 
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Additional input: 

Time lagged target 

variable 

analysis for time 

lagged target varia-

ble 

System (ANFIS), 

Hoybrid of Fuzzy 

Logic Inference Sys-

tem + Extreme Learn-

ing Machine* 

Cross validation: 

train-test split 

39 (Huang 2016) Target variable: Elec-

tricity demand (an-

nual) 

Additional input: not 

specified 

No further prepro-

cessing specified 

Algorithms: Naive, 

ARIMA, Hybrid of 

SVR different HPO* 

HPO: Particle Swarm 

Optimization (PSO)*, 

Genetic Algorithm 

Metric: MAPE 

Cross validation: 

rolling time series 

validation + sepa-

rate test set 

40 (Keitsch and 

Bruckner 

2016) 

Target variable: Short 

term electricity de-

mand (one-hour and 

one-day ahead) 

Additional input: 

Weather (temperature, 

radiation, precipita-

tion, clouds, wind 

speed), economic pro-

duction index, date & 

time 

No further prepro-

cessing specified 

Algorithms: Ensem-

ble of base forecast 

algorithms (linear re-

gression, TypeDay, 

ANN, SVR*) and 

fuzzy logic composi-

tion to consolidate 

model results for dif-

ferent seasons 

HPO: not specified in 

detail 

Metric: MAPE, nor-

malized RMSE 

Cross validation: 

train-test split 

41 (Ren et al. 

2016) 

Target variable: Short 

term electricity de-

mand (one-day ahead) 

Additional input: 

Time lagged target 

variable only 

Feature selection: 

Partial Autocorrela-

tion (PACF) for time 

lagged variables 

Algorithms: Persis-

tence, sARIMA, 

ANN, Random For-

est, Single Hidden 

Layer Random 

Weights ANN* 

Metric: normalized 

RMSE 

Cross validation: 

rolling window time 

series validation 

42 (Felice et al. 

2015) 

Target variable: Elec-

tricity demand (one-

/two-months ahead) 

Additional input: Cli-

mate forecast (tem-

perature), region 

Preprocessing: Trend 

removal by second-

order regression 

model 

Algorithms: linear re-

gression, SVR 

HPO: not specified 

Metric: R2, MAPE, 

MSE variants (Brier 

Skill Score, Relia-

bility, Resolution) 

Cross validation: 

leave-one-out (i.e. 

k-fold) 

43 (Qiu et al. 

2014) 

Target variable: Elec-

tricity demand (one-

hour ahead) 

Scaling: Min-max 

standardization 

Algorithms: Ensem-

ble of Deep Belief 

Network (DBN) + 

SVR* 

HPO: Grid search 

Metric: RMSE, 

MAPE 

Cross validation: 

train-test split 

44 (Shang 2013) Target variable: Ul-

tra-short time electric-

ity demand (half-

hours ahead) 

Additional input: De-

liberately none, as ex-

planatory variables 

are expected to be not 

available in ultra-

short term forecasting 

Preprocessing: Out-

lier treatment (Func-

tional Principal 

Component Analysis 

FPCA) 

Feature extraction: 

FPCA 

Algorithms: Point 

forecasts: Random 

Walk, Mean Predic-

tor, ARIMA, 

SARIMA, ANN, Pe-

nalized Linear Re-

gression (PLS)*; Pre-

diction intervals: 

Bootstrapping* 

HPO: trial-and-error, 

grid search 

Metric: MAPE 

Cross validation: 

train-test split + val-

idation split 

45 (Sheikhan 

and Moham-

madi 2013) 

Target variable: Elec-

tricity demand (24-

hour ahead) 

Feature selection: 

Genetic Algorithm 

Algorithms: Mulit-

Layer Perceptron 

ANN (MLP) 

Metric: MAPE 

Cross validation: 

train-test split 
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Additional input: 

Date & time (season, 

week, day of week, 

weekend indicator) 

(GA), Ant Colony 

Optimization (ACO) 

HPO: Particle Swarm 

Optimization (PSO) 

46 (Hyndman 

and Fan 

2010) 

Target variable: Daily 

electricity peak de-

mand (one-day ahead 

over one year with 

simulated weather 

data) 

Additional input: 

Date&time (day of 

week, season, holi-

day), weather (tem-

perature, wind speed, 

luminosity) 

Not specified in de-

tail 

Algorithms: non-lin-

ear regression model* 

Metric: normalized 

RMSE, MAPE 

Cross evaluation: 

train-test split 

Travel & transportation 

47 (Xie et al. 

2021) 

Target variable: 

Cruise ship travel de-

mand 

Additional input: 

Search query volume 

(cruise industry re-

lated search terms), 

economic indices 

(Purchasing Manager 

Index, Consumer 

Confidence Index, ex-

change rates) 

Feature selection: 

Gravitational Search 

Algorithm (GSA) 

(wrapper approach 

of main forecasting 

algorithm) 

Lag determination: 

Pearson correlation 

Algorithms: ARIMA, 

ANN, Radial Basis 

Function Networks 

(RBF), SVR* 

HPO: trial-and-error, 

grid search 

Metric: MSE, 

MAPE, RMSE, 

Willmott's Index of 

Agreement (WIA) 

Cross validation: k-

fold for parameter 

optimization, train-

test split for time se-

ries testing 

48 (Kulshrestha 

et al. 2020) 

Target variable: Quar-

ter yearly tourist arri-

vals to Singapore 

Additional input: 

Date & time (quarter 

year), tourist depar-

ture country GDP per 

capita, relative price 

index 

Stationarity test: 

Augmented Dickey-

Fuller test (ADF), 

Kwiatkowski-Phil-

lips-Schmidt-Shin 

test (KPSS) 

Algorithms: LSTM, 

SVR, Radial Basis 

ANN, Autoregressive 

Distributed Lag 

Model (ADLM), 

Bayesian Bidirec-

tional LSTM 

(BBiLSTM)* 

HPO: Bayesian Opti-

mization 

Metric: RMSE, 

MAE, MAPE, rati-

oRMSE 

Cross validation: 

train-test split 

49 (Li et al. 

2020a) 

Target variable: 

Weekly tourism de-

mand (by tourist arri-

vals) to Mount 

Siguniang CN (1-12-

weeks ahead) 

Additional input: 

Keyword volume on 

search engines (se-

lected keywords), 

online platform cus-

tomer review (numer-

ical rating and review 

volume) 

No preprocessing or 

feature engineering 

specified in detail 

Algorithms: Seasonal 

Naive, ETS, ARIMA, 

ARIMAX, SVM, 

Random Forest 

HPO: Not specified 

Metric: MAE, 

RMSE, MAPE, DM 

test 

Cross validation: 

rolling window time 

series validation 

Significance test: 

Diebold-Mariano 
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50 (Zhang et al. 

2021) 

Target variable: 

Monthly Hong Kong 

tourism demand 

(tourist arrivals) (1-6 

months ahead) 

Additional input: 

Search engine key-

word volume 

Feature extraction: 

STL approach (Sea-

sonal and Trend De-

composition using 

Loess) 

Feature selection: 

Attention layer as 

part of ANN fore-

casting algorithm for 

features and time 

lagged target varia-

ble 

Algorithms: SVR, 

Gradient Boosted Re-

gression Tree 

(GBRT), Deep ANN* 

HPO: Grid search 

Metric: RMSE, 

MAE, MAPE 

Cross validation: 

Rolling window 

time series valida-

tion 

Significance test: 

Diebold-Mariano 

test 

51 (Wen et al. 

2021a) 

Target variable: 

Monthly Hong Kong 

tourism demand 

(tourist arrivals) (one-

month ahead) 

Additional input: 

Search engine key-

word volume 

Preprocessing: Log 

transformation 

Feature extraction: 

Generalized Dy-

namic Factor Model 

(GDFM) 

Algorithms: Seasonal 

Naive, ETS, 

SARIMA, SARI-

MAX, Mixed Data 

Sampling (MIDAS), 

MIDAS-AR, 

MIDAS-SARIMA* 

Metric: MAE, MSE, 

RMSPE, Theil’s U 

statistic 

Cross validation: 

Rolling window 

time series valida-

tion 

Significance test: 

Diebold-Mariano 

test 

52 (Zhang et al. 

2020) 

Target variable: 

Monthly tourist arri-

vals (one-month 

ahead) 

Additional input: Re-

gion, search engine 

keyword volume 

(Google Trend) 

Feature extraction: 

Seasonal trend de-

composition, Dy-

namic Time Warping 

(DTW) in combina-

tion with clustering 

Feature selection: 

Time lagged target 

variable selection 

through attention 

layer as part of fore-

casting deep network 

Algorithms: Multi-

variate Exponential 

Smoothing (MES), 

ARIMA, SVR, 

XGBTR), Deep 

Learning ANN, 

Group Pooling deep 

ANN (GP-DLM)* 

HPO: Grid search 

Metric: RMSE, 

MAPE 

Cross validation: 

Rolling window 

time series valida-

tion ("walk-forward 

validation") 

53 (Liu et al. 

2020b) 

Target variable: Taxi 

demand 

Additional input: 

Waether (air quality, 

air gas composition, 

wind speed, tempera-

ture, humidity, pre-

cipitation) 

Missing value treat-

ment: Deletion of 

data point 

Feature selection: 

Filter approach using 

pariwise Pearson 

correlation 

Scaling: one-hot en-

coding of week num-

ber 

Algorithms: Random 

Forest, Ridge Regres-

sion, Combination 

Forecast* 

HPO: Grid search 

Metric: R2, MSE, 

MAE 

Cross validation: 

train-test split 

54 (Yao and Cao 

2020) 

Target variable: Tour-

ist arrivals (one-

month ahead) 

Additional input: Re-

gion 

Feature extraction: 

Decomposition of 

trend, seasonality 

through Hodrick-

Prescott (HP) filter 

Stationarity test: 

Augmented Dickey-

Fuller (ADF) test 

Algorithms: 

SARIMA, Neural 

network enhanced 

hidden Markov 

Structural Time Se-

ries Model (NehM-

STSM) - trend mod-

elling with ANN, sea-

sonality modeling 

with Markov 

Metric: MAPE, 

RMSE 

Cross validation: 

Rolling window 

time series valida-

tion and train-test 

split 
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process* 

HPO: Not specified 

55 (Huang and 

Hao 2021) 

Target variable: 

Monthly tourist arri-

val (one-month 

ahead) 

Additional input: 

Search engine key-

word volume (Google 

Trend and Baidu) 

Feature selection: 

trial-and-error 

Algorithms: Random 

Walk, ARIMAX, 

SVR, ANN, ensem-

ble of bagged Deep 

Belief Network 

(DBN) as weak learn-

ers and SVR as en-

semble learner* 

HPO: trial-and-error 

Metric: normalized 

RMSE, MAPE 

Cross validation: 

train-test split 

Significance test: 

Kolmogorov-

Smirnov Predictive 

Accuracy (KSPA) 

56 (Li and Law 

2020) 

Target variable: 

Monthly zourist arri-

vals (one-month 

ahead) 

Additional input: 

Search engine key-

word volume (Google 

Trends) 

Feature extraction: 

Ensemble Empirical 

Mode Decomposi-

tion (EEMD) 

Algorithm: linear re-

gression, Autoregres-

sive Model with Ex-

planatory variables 

(ARX) 

Metric: MAPE, Im-

provement Ratio 

(IR) 

Cross validation: 

Rolling window 

time series valida-

tion 

57 (Geng et al. 

2019) 

Target variable: Ride 

hail demand 

Additional input: 

Date & time, geospa-

tial network, points-

of-interest 

Data cleaning and 

preprocessing not 

specified 

Framework specific 

graph representation 

generation 

Algorithm: Regres-

sion, Autoregressive 

model, Gradient 

boosted trees, ANN 

(Convolutional- 

Graph Network)* 

HPO: not described 

in detail 

Metric: RMSE, 

MAPE 

Cross validation: 

train-test split 

58 (Ke et al. 

2019) 

Target variable: Ride 

hail demand 

Additional input: 

Date & time, geospa-

tial network, de-

mand/supply, traffic, 

weather 

Feature extraction of 

additional inputs, no 

further data prepro-

cessing specified 

Algorithms: Regres-

sion, ANN, Gradient 

boosted trees, hexag-

onal-CNN* 

HPO: not specified in 

detail 

Metric: R2, RMSE; 

MAE, MAPE 

Cross validation: 

train-test split 

59 (Assaf et al. 

2019) 

Target variable: 

Travel demand (tour-

ist arrivals) (1-4 quar-

ter-years ahead) 

Additional input: Re-

gion, relative con-

sumer price index, ex-

change rate, GDP 

Preprocessing: Log-

transformation 

Algorithms: ARMA, 

VAR, BVAR, 

GVAR, Bayesian 

Global Vector Auto-

regressive Model 

(BGVAR)* 

Metric: RMSE, 

MAE, MAPE 

Cross validation: 

Not specified 

Significance test: 

Diebold-Mariano 

(DM) test 

60 (Law et al. 

2019) 

Target variable: 

Monthly, travel de-

mand (tourist arrivals) 

(one-month ahead) 

Additional input: 

Search engine key-

word volume (Google 

Trends, Baidu) 

Feature selection: 

Filter approach using 

Pearson correlation 

and Maximal Infor-

mation Coefficient 

(MIC), as well as At-

tention layers as part 

of the forecasting al-

gorithm 

Algorithms: seasonal 

Naive, ARIMAX, 

ARIMA, SVR, ANN, 

deepANN 

HPO: Not specified 

Metric: RMSE, 

MAE, MAPE 

Cross validation: 

Rolling time series 

cross validation 

61 (Xu et al. 

2018) 

Target variable: Bike 

sharing demand per 

area, next time step of 

Technical descrip-

tion of raw data pro-

cessing, no further 

Algorithms: Simple, 

average, ARIMA, 

XGBoost, SVM, 

Metric: MAPE 

Cross validation: 

train-test split 
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10-30 minutes 

Additional input: 

weather (temperature, 

dew point, wind, 

clouds, rain), air qual-

ity, adjacent area de-

mands, points-of-in-

terest 

preprocessing meth-

ods specified 

ANN, RNN, LSTM-

ANN* 

HPO: Not specified 

62 (Yao et al. 

2018a) 

Target variable: Taxi 

demand 

Additional input: Lo-

cation 

Scaling: Min-max 

standardization 

Feature selection: 

CNN (spatial fea-

tures), LSTM (tem-

poral features), 

graph of Dynamic 

Time Warping 

(DTW) time series 

similarity  

Algorithms: Histori-

cal Average (HA), 

ARIMA, linear re-

gression, MLP ANN, 

XGBoost, STResNet, 

Deep Multi-View 

Spatial-Temporal 

Network (DMVST-

Net)* 

HPO: Not specified 

Metric: MAPE, 

RMSE 

Cross validation: 

train-test split + val-

idation split 

63 (Volchek et 

al. 2019) 

Target variable: Tour-

ist arrivals (1-6-

months ahead) 

Additional inputs: 

Search engine key-

word volume (Google 

Trend) 

Preprocessig: First 

order differencing to 

achieve stationarity, 

logarithm 

Stationarity test: 

Augmented Dickey-

Fuller (ADF), Phil-

lips-Perron (PP), 

Kwiatkowski-Phil-

lips-Schmidt- 

Shin (KPSS) tests, 

Canova-Hansen 

(CH) seasonality test 

Algorithms: (sea-

sonal) Naive, ARMA, 

ANN, ARMAX/ARI-

MAX-MIDAS 

Metric: RMSE, 

MAPE 

Cross validation: 

Rolling window 

time series valida-

tion 

64 (Ke et al. 

2017) 

Target variable: On-

demand ride hailing 

demand per area 

Additional input: 

Date & time (includ-

ing peak / non-peak 

indicator, weekends) 

travel time speed, 

weather (temperature, 

humidity, wind speed, 

visibility) 

Feature selection: 

Random Forest fea-

ture importance (fil-

ter approach) 

Feature scaling: 

Min-max standardi-

zation 

Algorithms: simple 

average, ARIMA, 

ANN, LSTM, CNN, 

XGBoost, Convolu-

tional LSTM ANN 

(FCL-Net)* 

Metric: RMSE*, 

R2, MAE, MAPE 

Cross validation: 

train-test split 

65 (Claveria et 

al. 2015) 

Target variable: Tour-

ism 

Stationary test: Aug-

mented Dickey-

Fuller test, Kwiat-

kowski–Phillips–

Schmidt–Shin 

(KPSS) test 

Algorithms: Multi 

Layer Perceptron 

(MLP) ANN*, Radial 

Basis Function (RBF) 

ANN*, Elman RNN 

Metric: MAPE, 

RMSE 

Cross validation: 

train-test split + val-

idation split 

66 (Jiang et al. 

2014) 

Target variable: Train 

transportation passen-

ger demand (one-day 

ahead) 

Additional input: 

Preprocessing: 

Detrended Fluctua-

tion Analysis (DFA) 

Feature extraction: 

Empirical Mode De-

composition (EMD) 

Algorithms: ARIMA, 

SVM, Grey 

SVM*+EMD 

HPO: Particle Swarm 

Optimization (PSO) 

Metric: MAPE, R2, 

RMSE 

Cross validation: 

train-test split 
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Date & time (national 

holiday) 

67 (Carson et al. 

2011) 

Target variable: Air 

travel demand 

Additional input: 

Geo-economic factors 

(unemployment rate, 

population growth, 

kerosine and crude oil 

prices), date & time 

(month of year) 

Preprocessing: Logit 

transformation and 

first order differenti-

ation of variables 

Algorithms: Linear 

regression economet-

ric model on different 

aggregation levels 

Metric: MAE, 

RMSE 

Cross validation: 

Rolling window 

time series valida-

tion 

68 (Hyndman et 

al. 2011) 

Target variable: 

Travel demand (tour-

ist arrivals, one to 

eight-steps ahead) 

Additional input: Pur-

pose of travel, area, 

capital city 

No preprocessing 

steps stated 

Algorithms: Recon-

ciled top-down / bot-

tom-up ARIMA* 

Metric: MAPE 

Cross validation: 

Rolling window 

time series valida-

tion 

Significance tests: 

Pairwise t-tests 

Water & energy 

69 (Raza et al. 

2022) 

Target variable: Total 

domestic long term 

(annual) energy de-

mand 

Additional input: 

Population (total & 

growth rate), GDP 

(total & growth rate 

in different top level 

industries) 

Only data gathering, 

no preprocessing 

specified 

Algorithms: Sce-

nario-based econo-

metric regression 

No error measure-

ment applied 

70 (Kurek et al. 

2021) 

Target variable: Heat-

ing distribution de-

mand (72-hours 

ahead) 

Additional input: 

Date & time, region, 

weather (temperature, 

wind speed & direc-

tion, humidity, solar 

radiation, clouds),  

Missing data interpo-

lation: averag-

ing/zero 

Feature construction: 

Time lagged rolling 

window means for 

weather data varia-

bles, squares and 

roots of variables 

Rule-set based data 

validation 

Algorithms: Linear 

regression, ridge re-

gression, Autoregres-

sion with exogenous 

variables (ARX), 

Fuzzy model, par-

tially linear model, 

ANN 

HPO: trial-and-error 

Metric: MAPE, R2, 

MAE 

Cross validation: 

train-test split 

71 (Rezaali et al. 

2021) 

Target variable: Short 

term water demand 

(1-24-hours ahead) 

Additional input: 

Weather (temperature, 

wind speed, clouds), 

date & time (holiday 

indicator) 

Time lagged varia-

bles: Partial Auto-

correlation Function 

(PACF) 

Feature selection: 

Random Forest fea-

ture importance 

measure 

Feature extraction: 

Discrete wavelet 

transformation 

Algorithms: ANN, 

SVM, Regularized 

Extreme Learning 

Machine (RELM), 

Random Forest 

HPO: trial-and-error 

Metric: RMSE for 

point forecast; Pre-

diction Interval 

Coverage Probabil-

ity (PICP), Predic-

tion Interval Aver-

age Width (PIAW), 

Average Coverage 

Error (ACE) for 

probability interval 

forecasting 

Cross validation: 

train-test split 
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72 (Zubaidi et al. 

2020) 

Target variable: 

Monthly water de-

mand  

Feature extraction: 

Singular Spectrum 

Analysis (SSA) 

Algorithms: Auto-

regressive model 

(AR)* 

HPO: Grid search 

Metric: R, MAE, 

MSE, Fitness 

Cross validation: 

train-test split 

73 (Guo et al. 

2020) 

Target variable: An-

nual water demand of 

agriculture, industry 

and residents (one-

year ahead) 

Additional input:  

Not specified in de-

tail 

Algorithms: Linear 

model with linear, ex-

ponential and loga-

rithmic coefficients 

HPO: Whale Optimi-

zation Algorithm 

(WOA), improved 

WOA with social 

learning strategy 

Metric: Relative Er-

ror (RE), Mean RE 

Cross validation: 

train-test split 

74 (Sun and 

Zhao 2020) 

Target variable: Short 

term wind power gen-

eration (15-60-min 

ahead) 

Additional input: not 

specified in detail 

Feature extraction: 

Variational Mode 

Decomposition 

(VMD) 

Algorithms: ANN, 

LSTM, Elman, Con-

volutional LSTM* 

HPO: authors' exper-

tise / trial-and-error 

Metric: RMSE, 

MRE, MAE, MSE 

Cross validation: 

train-test split + val-

idation split 

75 (Xenochris-

tou and Kape-

lan 2020) 

Target variable: Wa-

ter demand 

Additional input: 

Date&time (season, 

day of week), location 

(post code), weather 

(sunshine hours, tem-

perature, humidity, 

day with no rain) 

Preprocessing: Re-

moval of errors, null 

values, outliers 

Algorithms: ANN, 

Generalized Linear 

Model, Random For-

est, Gradient Boost-

ing Machine, deep 

ANN 

HPO: grid search and 

random search 

Metric: R2, MSE, 

MAPE 

Cross validation: 

train-test split + k-

fold cross validation 

for HPO 

76 (Candelieri et 

al. 2019) 

Target variable: 

Hourly water demand 

Additional inputs: 

Date & time 

Clustering by cosine 

similarity 

Algorithms: SVM 

HPO: Parallel Global 

Optimization 

Metric: MAPE 

77 (Wang et al. 

2018) 

Target variable: Long 

term energy demand 

Additional input: 

None, only univariate 

time series 

Not specified in de-

tail 

Algorithms: Grey 

GM(1,1), ARIMA, 

Rolling Metabolic 

Grey Model (MGM), 

Adaptive Network-

based Fuzzy Infer-

ence System (ANFIS) 

Metric: MSE, 

MAPE, Mean 

Square Percent Er-

ror (MSPE) 

Cross validation: 

train-test split and 

rolling window time 

series validation 

78 (Guo et al. 

2018) 

Target variable: Short 

term water demand 

(15-min, 24-hours 

ahead) 

Additional input: 

None, only time 

lagged univariate tar-

get variable 

Feature selection: 

Grid search time 

lagged target varia-

ble in validation data 

set, (Partial) Auto-

correlation Function 

(P/ACF) 

Algorithms: ARIMA, 

ANN, Gated Recur-

rent Unit GRU ANN* 

HPO: trial-and-error, 

grid search 

Metric: MAE, 

MAPE, RMSE, 

Nash-Sutcliffe 

model efficiency 

(NSE) 

Cross validation: 

train-test split + val-

idation split 

79 (Panapakidis 

and Dagou-

mas 2017) 

Target variable: Gas 

demand (1 day ahead) 

Additional input: Re-

gion, date & time, 

weather (temperature) 

Pre-analysis: Corre-

lation analysis of tar-

get variables from 

different regions as 

well as autoregres-

sion 

Algorithms: Hybrid 

of Adaptive Feuro-

Fuzzy Inference Sys-

tem (ANFIS) and 

ANN* 

HPO: Genetic 

Metric: AE, MAE, 

MAPE, RMSE, 

MARNE (Mean 

Absolute Range 

Normalized Error) 
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Feature extraction: 

Wavelet transfor-

mation (continuous 

and discrete) 

Algorithm (for AN-

FIS), Levenmerg-

Marquardt (ANN) 

Cross validation: 

train-test split 

80 (Izadyar et al. 

2015) 

Target variable: Natu-

ral gas heating de-

mand (one-month 

ahead) 

Additional input: 

Date & time (month 

number) weather 

(outdoor temperature) 

No further prepro-

cessing specified 

Algorithms: Extreme 

Learning Machine 

(ELM)*, ANN, Ge-

netic Programming 

HPO: not specified 

Metric: RMSE, R2, 

Person correlation 

coefficient 

Cross validation: 

train-test split 

81 (Romano and 

Kapelan 

2014) 

Target variable: Wa-

ter demand (24-hour 

ahead) 

Additional input: 

Date & time (time of 

day, day of week) 

Preprocessing: Miss-

ing data interpolation 

(average) 

Algorithms: ANN* 

HPO: Evolutionary 

Algorithm 

Metric: MAPE, 

MSE, Nash-

Slutcliffe Index 

Cross validation: 

train-test split + val-

idation split 

82 (Adamowski 

et al. 2012) 

Target variable: Daily 

water demand (one-

day ahead) 

Additional input: 

Weather (precipita-

tion, max. tempera-

ture,  

Feature extraction: 

Discrete Wavelet 

Transformation 

(DWT) 

Algorithms: linear re-

gression, non-linear 

regression, ARIMA, 

ANN, wavelet ANN 

HPO: trial-and-error 

Metric: R2, Nash-

Sutcliffe efficiency 

coefficient, RMSE, 

relative RMSE 

Cross validation: 

train-test split + val-

idation split 

83 (Adamowski 

and 

Karapataki 

2010) 

Target variable: Wa-

ter demand (one-week 

ahead) 

Additional input: 

Weather (maximum 

temperature, rainfall) 

No preprocessing 

steps stated 

Algorithms: Multiple 

linear regression, 

ANN (Levenberg-

Marquardt*, resilient 

back-propagation, 

Powell-Beale) 

HPO: trial-and-error 

Metric: R2, RMSE, 

MAE 

Cross validation: 

train-test split + val-

idation split 

84 (Herrera et al. 

2010) 

Target variable: Wa-

ter demand (1-24 

hours ahead) 

Additional input: 

Weather (temperature, 

wind speed, precipita-

tion, pressure), time 

lagged target variable 

Not specified in de-

tail 

Algorithms: Projec-

tion Pursuit Regres-

sion (PPR) splines, 

Multivariate Adaptive 

Regression Splines 

(MARS), SVR, Ran-

dom Forests, ANN 

HPO: Grid search 

Metric: RMSE, 

MAE, Nash–Sut-

cliffe efficiency co-

efficient,  

Cross validation: 

train-test split with 

Monte Carlo simu-

lation 

Logistics & inventory 

85 (Cai et al. 

2021) 

Target variable: Sales 

volume of skin care 

goods 

Additional input: Or-

der data features, sen-

timent analysis, face 

value calculation 

Time series feature 

construction:  

Scaling: Min-max 

standardization and 

(numerical data) 

one-hot encoding 

(categorical data) 

Sentiment analysis: 

Word segmentation 

and mapping; neural 

network trained to 

predict star ratings 

from word maps 

Algorithms: ARIMA, 

MLP-LSTM, bidirec-

tional LSTM* 

Metric: MSE, 

RMSE, MAE, 

MAPE 

Cross validation: 

train-test split for 

time series, else k-

fold 
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Face value calcula-

tion: Image recogni-

tion using VGG16 

Convolutional NN to 

label skin health type 

86 (Huang et al. 

2021) 

Target variable: Last 

mile delivery demand 

Additional input: 

Economic indicators 

(GDP, incomer per 

capita, logistics em-

ployment, expendi-

tures, traffic mileage, 

e-commerce reve-

nues, etc.) 

Scaling: Min-max 

standardization 

Feature selection: 

Correlation of input 

to target variable 

(filter approach) 

Feature extraction: 

Principal Component 

Analysis (PCA) 

Stationarity test of 

forecasting errors: 

Augmented Dickey-

Fuller (ADF) 

Algorithms: Factor 

Analysis, Grey Model 

GM(1,1), ANN* 

HPO: Not specified 

in detail 

Metric: MAE, 

RMSE, MAPE 

Cross validation: 

train 

87 (Chandriah 

and Nara-

ganahalli 

2021) 

Target variable: Spare 

parts demand 

Additional input: 

Date & time (year, 

month), car brand, 

share of cars sold 

No preprocessing 

specified in detail 

Algorithms: SES, 

TSB, SBA, Croston, 

LSTM with modified 

ADAM optimizer* 

Metric: ME, MSE 

Cross validation: 

train-test split 

88 (Zhu et al. 

2021) 

Target variable: Phar-

maceuticals demand 

Additional input: 

Drug classification, 

inventory at point of 

care, supply chain 

structure 

Feature construction: 

Median demand and 

demand volatility 

clustered, time 

lagged target varia-

ble through exten-

sive cross validation 

Feature extraction: 

Dynamic time warp-

ing (DTW) 

Algorithms: Moving 

Average (MA), linear 

regression, Exponen-

tial Smoothing (ES), 

Exponential State 

Space Model (ETS), 

SVR, Random Forest, 

ANN, RNN* 

HPO: Grid search and 

cross validation 

Metric: MAPE, nor-

malized MSE, nor-

malized MAE, Bias 

Cross validation: 

Rolling window 

time series cross 

validation 

89 (Abbasimehr 

et al. 2020) 

Target variable: Fur-

niture demand (one-

month ahead) 

Preparation: Predict-

ability tests (Aug-

mented Dickey-

Fuller, Maximal 

Lyapunov Exponent, 

Empirical Mode De-

composition) 

Scaling: Min-max 

standardization 

Algorithms: ARIMA, 

ETS, ANN, K-nearest 

Neighbors (KNN), 

RNN, SVM, LSTM* 

HPO: Grid search 

Metric: RMSE, 

sMAPE 

Cross validation: 

train-test split 

Significance test: 

Friedman test, 

Hochberg's post hoc 

test 

90 (Huber and 

Stuck-

enschmidt 

2020) 

Target variable: Bak-

ery retail goods de-

mand (one-day ahead) 

Additional input: 

Date & time (holiday, 

days before / after 

holiday, day of year, 

month, etc.), location 

(city, nearby other 

stores, etc.), store and 

Feature construction: 

statistics of target 

variable (seasonal 

median, absolute/rel-

ative change) 

Scaling: Log-nor-

malization, mean-

normalization 

Algorithms: Seasonal 

naive, ETS, linear re-

gression, LASSO re-

gression, ANN, 

LSTM, Gradient 

Boosted Regression 

Trees (GBRT)* 

HPO: trial-and-error 

with stratified cross 

validation 

Metric: sMAPE, 

RMSE, relative 

MAE, MASE 

Cross validation: 

train-test split + val-

idation 
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product class, time 

lagged target variable 

91 (Güven and 

Şimşir 2020) 

Target variable: Fash-

ion retail sales () 

Additional input: 

Product color*, 

weather (unclear), 

customer gender, date 

& time (special days - 

unclear), economic 

factors (un-employ-

ment rate, interest, 

consumer price in-

dex), etc. 

Scaling: Min-max 

standardization 

Algorithms: ANN*, 

SVM 

HPO: trial-and-error 

Metric: RMSE 

Cross validation: 

Not specified 

92 (Iftikhar and 

Khan 2020) 

Target variable: Fash-

ion goods ("shorts") 

demand (one-day 

ahead) 

Additional input: So-

cial media sentiment 

(from Twitter and Fa-

cebook) 

Preprocessing: Rule-

set based filtering 

(more than 3 words, 

user < 2,000 posts, 

etc.) 

Pre-analysis:n-gram 

word frequency anal-

ysis 

Feature extraction: 

Latent Dirichlet Al-

location for topic 

identification, Naive 

Bayes and SVM for 

sentiment analysis 

Algorithms: Bass 

Emotion Model 

(BEM)* 

Metric: Accuracy 

(unclear) 

Cross validation: 

Not specified 

93 (Feizabadi 

2022) 

Target variable: Steel 

products demand (1-3 

months ahead) 

Additional input: 

Macroeconomic vari-

ables (exports, foreign 

reserves, imports, in-

dustrial production, 

exchange rate, stock 

market indices) 

Feature selection: 

Wrapper approach 

using stepwise im-

provement of linear 

regression model 

Algorithms: Holt-

Winters Exponential 

Smoothing, ARI-

MAX, ANN*  

HPO: trial-and-error 

Metric: Accuracy 

defined as 1-MAPE 

Cross validation: 

train-test split + val-

idation split 

94 (Hu 2020) Target variable: An-

nual industrial raw 

material (magnesium) 

demand (one-year 

ahead) 

Additional input: 

None specified 

Not specified in de-

tail 

Algorithms: ANN, 

ARIMA, Fuzzy Time 

Series Analysis 

(FTS), Grey Model, 

grey residual modifi-

cation model ANN 

GRA-NNGM 

HPO: trail-and-error 

Metric: Average 

Percentage Error 

(APE), MAPE 

Cross validation: 

train-test split 

95 (Khan et al. 

2020) 

Target variable: Sales 

Additional input: 

Date&time (week, 

year, holidays, sales 

promotions), product 

inventory 

Not specified in de-

tail 

Algorithms: Amazon 

Deep AR 

HPO: Not specified 

Metric: Accuracy 

(unclear) 

Cross validation: 

train-test split 

96 (Babai et al. 

2020) 

Target variable: Inter-

mittent spare part 

Not specified in de-

tail 

Algorithms: Single 

Exponential 

Metric: scale-free 

ME and MSE, 
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demand (one-month 

ahead 

Smoothing (SES), 

Croston, SBA, Wil-

lemain's bootstrap-

ping, Zhou and 

Viswanathan’s boot-

strapping, SBA in-

spired ANN with 

Bayesian regulariza-

tion* 

HPO: Grid search 

MASE 

Cross validation: 

train-test split + val-

idation split 

97 (Bandara et 

al. 2019) 

Additional input: 

Date & time (incl. 

holiday, weekend, 

season, day of week), 

product information 

(type, category) 

Missing value treat-

ment: Heuristic iden-

tification of false 

zero demands and 

imputation by last 

observation value 

Scaling: Mean stand-

ardization for numer-

ical values, one-hot 

encoding for cate-

gorical values 

Clustering of prod-

ucts by product de-

mand characteristics 

and k-means cluster-

ing algorithm 

Algorithms: Naive 

Seasonal, Exponen-

tial Weighted Moving 

Average (WEMA), 

Exponential Smooth-

ing (ETS), ARIMA, 

Facebook Prophet, 

LSTM* 

HPO: Bayesian 

Global Optimization 

Metric: modified-

MAPE 

Cross validation: 

train-test split 

98 (Fu et al. 

2018) 

Target variable: 1 

week ahead semi-con-

ductor demand 

Additional input: 

Date & time, product 

demand properties 

(recency, frequency, 

quantity, coefficient 

of variation) 

Preprocessing steps 

not specified 

Algorithms: Moving 

average, Croston, 

TSB, SBA, RNN, hy-

brid of SBA+RNN* 

HPO: not specified in 

detail 

Metric: RMSE, 

MAE, MASE 

Cross validation: 

train-validate-test 

split 

99 (Li and Lim 

2018) 

Target variable: Fash-

ion product demand 1 

day ahead 

Additional input: 

Product-store combi-

nation, date, public 

holidays 

Feature extraction: 

Statistics over time 

series (length, non-

zero demand share, 

average demand in-

terval) 

No further prepro-

cessing specified 

Algorithms: Croston, 

TSB, SBA, SES, 

MAPA; ADIDA, 

moving average, Hy-

brid of Holt-Winters 

+ simple exponential 

smoothing + greedy 

aggregation heuris-

tic* 

HPO: not required 

Metric: MASE, 

RMASE, MAPE, 

MdAPE, MAE 

Cross validation: 

train-test split 

100 (Kim et al. 

2017) 

Target variable: Spare 

part demand (after 

end of production) 

Additional input: av-

erage product life-

time, sales of product 

in initial and mature 

phases, warranty pe-

riod, spare part cost 

No additional pre-

processing specified 

Algorithms: Expo-

nential Weighed 

Moving Average, 4 

variants of Installed 

Base (log linear auto-

regressive model)* 

Metric: MAPE, 

RMSE 

Cross validation: 

train-test split 
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101 (Ferreira et al. 

2016) 

Target variable: Prod-

uct demand in fashion 

with no product sales 

history 

Additional input: 

Product information 

(price, hierarchy of 

categories, brand, 

size, color, manufac-

turer suggested price) 

sales events, discount, 

competing products 

and their price 

No further prepro-

cessing specified 

Algorithms: linear re-

gression, PCA, Re-

gression Trees (bag-

ging)* 

HPO: not specified 

Metric: MAE, 

MdAE, MAPE, R2 

Cross validation: 

train-test split and 

k-fold (k=5) 

102 (Jaipuria and 

Mahapatra 

2014) 

Target variable: Prod-

uct demand in differ-

ent supply chain case 

studies (one-month 

ahead) 

Additional input: 

Date & time 

Feature extraction: 

Dynamic Wavelet 

Transformation 

(DWT) 

Feature construction: 

(Partial) autocorrela-

tion (PACF) for time 

lagged target varia-

ble 

Algorithms: ARIMA, 

ANN+DWT* 

HPO: not specified 

Metric: MSE 

Cross validation: 

train-test split 

103 (Zied Babai 

et al. 2014) 

Target variable: Spare 

part demand (one-pe-

riod ahead) 

Additional input: 

None 

Not specified Algorithms: Croston, 

Syntetos-Boylan 

(SBA), Teunter-Syn-

tetos-Boylan (TSB)*, 

Single Exponential 

Smooting (SES), Na-

ive, Zero Forecast 

Metric: ME, MSE, 

MASE 

Cross validation: 

Not specified 

104 (Rostami-Ta-

bar et al. 

2013) 

Target variable: Inter-

mittent spare part de-

mand (one-step 

ahead) 

Feature extraction: 

Temporal aggrega-

tion 

Algorithms: AR, MA, 

ARMA, Single Expo-

nential Smoothing 

(SES)* 

Metric: MSE 

Cross validation: 

train-test split 

105 (Nikolopou-

los et al. 

2011) 

Target variable: Inter-

mittent spare part de-

mand (month-, quar-

ter- and one-lead time 

ahead) 

Additional input: 

Lead time 

Feature extraction: 

Temporal aggrega-

tion, aggregate-dis-

aggregate intermit-

tent demand 

approach (ADIDA) 

Alorithms: Naive, 

SBA (with and with-

out ADIDA*) 

Metric: Bias, 

MASE, MSE, rela-

tiveMSE 

Cross validation: 

train-test split + val-

idation split 

106 (Gutierrez et 

al. 2008) 

Target variable: Elec-

tronics demand 

Additional input: Not 

specified in detail 

No preprocessing 

steps stated 

Algorithms: Croston, 

SBA, SES, ANN* 

HPO: no optimization 

/ trial-and-error 

Metric: MAPE, rel-

ative geometric 

RMSE, Percentage 

Best (PB) 

Cross validation: 

train-test split 

Other 

107 (Shakarami et 

al. 2021) 

Target variable: Mo-

bile edge computing 

capacity (delay, en-

ergy consumption, 

uplink) 

Preprocessing: Noise 

injection, missing 

value interpolation, 

outlier detection 

Scaling: Encoding 

and scaling, not 

specified in detail 

Algorithms: multiple 

linear regression, 

Hidden Markov 

Model, deepANN 

HPO: Not specified 

in detail (trial-and-er-

ror) 

Metric: MSE 

Cross validation: 

train-test split 
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108 (Etemadi et 

al. 2020) 

Target variable: 

Cloud computing 

workload 

Not specified in de-

tail 

Algorithms: linear re-

gression, Autoregres-

sive (AR), Moving 

Average (MA), 

ARMA, ARIMA, 

ANN 

Metric: RMSE, 

MAE, MAPE, R2 

Cross validation: 

train-test split + val-

idation split 

109 (Tsao et al. 

2022) 

Target variable: Sales 

volume of servers 

(computing) 

Additional input: 

Google Trend search 

results, date & time 

Preprocessing: Auto-

correlation analysis 

(ACF) 

Feature selection: 

Gini impurity index 

(aka feature im-

portance, filter ap-

proach) 

Algorithms: Holt-

Winters Exponential 

Smoothing, ARIMA 

as baseline models, 

"Intelligent Forecast-

ing Approach" as hy-

brid of Random For-

est, Gradient Boosted 

Regression Trees 

(GBRT) to classify 

time series based on 

external features into 

three characterizing 

classes (peak, valley, 

normal) and regres-

sion to determine ac-

tual forecast values 

per class* 

HPO: trial-and-error 

and grid search 

Metric: MSE, MAE, 

RMSPE 

Cross validation: 

train-test split 

110 (Dreger and 

Wolters 

2014) 

Target variable: 

Money demand 

Additional inputs: In-

flation rate, nominal 

interest rate, GDP 

(nominal, real), nomi-

nal house price indi-

cator 

Stationarity test: 

Unit root test 

Algorithms: VAR, 

econometric model 

Metric: MAE, 

RMSE 

Cross validation:  

111 (Venkatesh et 

al. 2014) 

Target variable: ATM 

cash demand (one-

week ahead) 

Additional input: 

Date & time (day of 

week, seasonality) 

Feature extraction: 

Representation time 

series by multiplica-

tive time series rep-

resentation 

Clustering: Sequence 

Alignment Method 

(SAM) and Taylor-

Butina clustering 

Algorithms: ARIMA, 

ANN, Radial Basis 

Function (RBF) or 

Generalized Regres-

sion ANN*, Wavelet 

ANN, Group Method 

of Data Handling 

(GMDH) 

HPO: not specified 

Metric: sMAPE 

Cross validation: 

train-test set 

112 (Murray 

2020) 

Target variable: Hos-

pital bed, Intensive 

Care Unit (ICU) and 

ventilator day demand 

(120-days ahead) 

Additional input: Re-

gion, COVID meas-

ure events (school 

closure, business clo-

sure, stay-at-home re-

strictions, travel 

Scaling: Min-max 

standardization 

Algorithms: Statisti-

cal Gaussian Error 

Function 

No out-of-sample 

error was calculated 



How the Demand Forecasting Literature and Applications can Benefit from Better Comparability 

106 

restrictions), patient 

age group 

113 (Jiang et al. 

2017) 

Target variable: num-

ber of patients, num-

ber orders per 3 dif-

ferent hospital 

resources (28 days 

ahead) 

Additional input: 

Date & time, weather 

(temperature, dew 

point, humidity, air 

pressure, wind speed 

and bearing, precipi-

tation, cloud, snow) 

Stationarity test 

(augmented Dickey-

Fuller, partial auto-

correlation 

ACF/PACF) 

Feature construction: 

mean, max, min and 

change rate of fea-

tures 

Feature selection: 

Genetic Algorithm 

wrapper approach  

Algorithms: GA, 

PCA, linear regres-

sion, ARIMAX, MLP 

ANN* 

HPO: Stochastic Gra-

dient Descend 

Metric: RMSE 

Cross validation: 

train-test split 

114 (Kim et al. 

2015) 

Target variable: Drug 

demand (one-month 

ahead) 

Additional input: So-

cial media (), wireless 

sensor data (fine dust 

concentration) 

Feature extraction: 

topic modeling and 

trend analysis from 

text documents using 

Latent Dirichlet Al-

location (LDA) 

Feature selection: 

Multicollinearity 

analysis (filter ap-

proach) 

Algorithms: VARX* Metric: not clearly 

specified, presuma-

bly MAPE 

Cross validation: 

train-test split 

115 (Maeng et al. 

2020) 

Target variable: 5G 

mobile data broad-

band demand 

Additional input: 

Customer information 

(gender, age, monthly 

household income), 

service level (data 

transmission rate, data 

offer, Internet of 

Things offer, addi-

tional charge) 

Feature extraction: 

Fractional Factorial 

Design 

Algorithm: Discrete 

choice model multi-

nomial logit function 

No ex-post valida-

tion 

116 (Bega et al. 

2019) 

Target variable: Tele-

communication de-

mand (5G data vol-

ume) (5-min ahead) 

Additional input: Lo-

cation (spatial net-

work) 

Feature selection: 

CNN-encoder 

+ANN-decoder as 

part of the main fore-

casting algorithm 

Algorithms: Special-

ized mobile telecom-

munication algo-

rithms (Infocom17, 

MobiHoC18), Deep-

Cog* 

HPO: Not specified 

(trial-and-error) 

Metric: MAE, MSE, 

actual costs incurred 

by over-&under-

provisioning (also 

employed as ANN 

loss-function) 

Cross validation: 

train-test split 

      

Table 17: Comprehensive overview of all studies reviewed in this survey. 
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4 Developing an Understanding of 
External Factors Influencing 
Demand Forecasting Models using 
a Case Example 

[This chapter consists of a study published in 2021: Bauer, Markus; Kiefer, Daniel; Grimm, Florian 

(2021): Sales Forecasting Under Economic Crisis: A Case Study of the Impact of the COVID19 Crisis 

to the Predictability of Sales of a Medium-Sized Enterprise. In Alfred Zimmermann, Robert J. Howlett, 

Lakhmi C. Jain, Rainer Schmidt (Eds.): Human Centred Intelligent Systems, vol. 244. Singapore: 

Springer Singapore (Smart Innovation, Systems and Technologies), pp. 163–172. – further referred to 

as Bauer et al. 2021] 

Sales Forecasting under Economic 
Crisis: A Case study of the Impact of the 
COVID19 Crisis to the predictability of 
Sales of a Medium-Sized Enterprise 

This article describes a case study of sales forecasting with machine learning. Based on the example of 

a medium-sized enterprise in the field of B2B retailing, the study examines how the effect of global 

events on the enterprise’s sales can be modelled. We conclude that global events show substantial effects 

on the enterprise’s revenues, that economic indicators are suitable to improve sales forecasts and how 

they should be applied. 

4.1 Introduction 

The task of forecasting sales is a central element of strategic planning in enterprises. Accurate sales 

forecasts predict future sales potentials to a high degree of certainty for a future period of weeks and 

months. These forecasts enable all departments to efficiently allocate resources and capacities to opti-

mally fulfil their customers’ demands. Therefore, enterprises put considerable effort into improving their 

sales forecasting methods as a competitive advantage over other market participants. 

In the light of the recent global COVID19 crisis, it becomes evident that rare and exceptional events can 

have severe impact on enterprises – irrespective of the fact whether they do business internationally or 

not. Estimations of the WorldBank predict a loss of global Gross Domestic Product (GDP) of 5.2% for 

the year 2020 and long term effects for all nations (Global Economic Prospects, June 2020 2020). 
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In this article, we describe the case study of an enterprise and improvements of their sales forecast. 

While the general target of our research began with the goal to predict sales three month ahead, we focus 

on the impact of global events on sales forecasting in this study. This article is a descriptive case study 

on the particular impact of the COVID19 crisis on the enterprise’s sales volumes. Furthermore, we in-

troduce a forecasting model for the monthly sales and exploratively show how economic indicators 

improve the sales forecast and under which circumstances. 

We define the following research questions: 

RQ1: Was the enterprise’s sales affected by the global economic effects of the COVID19 crisis? 

RQ2: What is the impact on accuracy of economic business indicators and stock market indices on 

the enterprise’s sales forecast? 

RQ3: What constraints or organizational frameworks are necessary to apply better forecasting? 

4.2 The State-of-the-Art in Sales Forecasting 

In this study, we consider quantitative sales forecasting models that predict future sales. 

Literature of sales forecasting focuses on two main aspects of research: The choice of input variables 

and the choice of forecasting algorithms. Both dimensions are widely studied. As input variables, studies 

take variables such as weather, promotions, competitors’ behavior, product lifecycle, pricing, or macro-

economic data – highly depending on the particular use case and industry. For example, Sagaert et al. 

employ more than 60,000 macroeconomic indicators in an approach to forecast sales of tires in the EU 

and the US. 

Forecasting algorithms employed range from statistical models like multiple linear regression, ARIMA, 

GARCH or Bayesian approaches to machine learning approaches like Support Vector Machines (SVM), 

Decision Trees or Artificial Neural Networks (ANN) inter alia (Liu et al. 2013; Tsoumakas 2019; 

Pavlyshenko 2019). 

In recent time, forecasting competitions have gained increasing popularity in the community of fore-

casting researchers and practitioners. Based on comparable data sets and evaluation principles, the ap-

plied models are easy to compare. Competitions like the Makridakis’ M1 to M5 competition and several 

competitions on Kaggle have therefore boosted the advancement of forecasting models for academic 

and practical use cases (Hyndman 2020). Analysis of the latest competitions show, that boosted decision 

tree ensembles provided amongst the best solutions of the competitions. XGBoost (Chen and Guestrin 

2016) and LightGBM (Ke et al. 2017) are on the top scores of most competition leaderboards (Bojer 

and Meldgaard 2020). 

Research also addresses sales forecasting under extreme events. One should note that this article does 

not consider prediction techniques of extreme events (cf. (Makridakis and Bakas 2016)). Instead, ex-

treme events are taken as external shocks. Once they occur, the forecasting models’ reaction on these 

shocks is observed. 

In more general terms, we found articles that study resilience of systems under extreme events and ways 

to forecast the impact of the events on the system. Wang et al. review articles that focus on the forecast 

of the resilience of power grids to natural desasters. They conclude that the accuracy of such forecasts 

is low or that the forecasting models are highly instance-specific (Wang et al. 2016). Rajesh applies 

secondary data of enterprises to predict indicators of resilience of supply chains to extreme events in a 

case study – using a grey model (Rajesh 2016). 



4.3 Characterization of the Case study 

133 

Specifically, in the context of sales forecasting, we find studies that address the impact of global events 

on sales. Bonham et al. study the impact of the 9/11 event on tourism on Hawaii using vector error 

correction models (Bonham et al. 2006). They conclude that they observe a positive effect on domestic 

visitors in the following months after the event and a negative on foreign visitors. Peels et al. propose a 

system dynamic model to forecast sales of a Dutch chemicals enterprise in response to the financial 

crisis after 2008 (Peels et al. 2009). Wang et al. apply an adaptive neuro fuzzy inference system to 

improve sales forecasts in the automotive industry and the impact of the financial crisis (Wang et al. 

2011). 

Only few studies research how the recent COVID19 pandemic crisis affects sales forecasting. Yang et 

al. forecast differences in restaurant demand by daily cases of COVID19 infections as result of a panel 

data model (Yang et al. 2020). Shen et al. show that especially companies in already difficult economic 

situations suffer from a decrease in sales (Shen et al. 2020). 

To our best knowledge, no study so far combines analysis of the financial crisis and COVID19 pandemic 

crisis in a sales forecasting use case. 

Even though various studies and techniques exist to facilitate sales forecasting, the actual degree of 

application of the techniques is low. Recent studies show that sales forecasting in companies lacks be-

hind the possibilities that are provided by research (Lawrence et al. 2000). Furthermore, literature also 

shows that companies, especially small- and medium-sized enterprises (SME) are hesitant to implement 

state-of-the-art machine learning models (Bauer et al. 2020). 

4.3 Characterization of the Case study 

 

Figure 9: Box-Whisker plot of the monthly sales of the top 30 sales categories (out of 71, by total sales volume), normalized 

by average monthly sales per sales category. Sales are heterogenous amongst sales categories. 

For this article, we study the monthly sales of a German enterprise. The enterprise is a medium-sized 

dealer of industrial parts in the field of business-to-business (B2B) with annual revenues of approxi-

mately 100 million €. The enterprise mainly serves the German market for supplies of industrial C-parts. 

To comply with confidentiality restrictions of the enterprise, all sales values in the figures below are 

normalized. 

The enterprise divides their customers into 71 sales categories depending on the customer’s field of 

business. We conducted forecasts of monthly sales per sales category for three-months-ahead each 

month for the enterprise’s sales department. 
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Figure 9 depicts the historic distribution of sales per month and per sales category for the top 30 sales 

categories (normalized values). We observe a high variance in the monthly sales. Total average normal-

ized sales volume per month and sales category accounts to 1 and the average variance accounts to 2.14. 

The enterprise provided detailed sales data per month and sales category for a period from January 2008 

to October 2020. Figure 10 depicts the development of annual sales for all sales categories of this period. 

 

Figure 10: Total annual revenues of the enterprise, normalized to the year 2008 (100 = revenue of the year 2008). * Year 

2020 includes months up until October. 

4.4 Modelling the Impact of Global Events 

To study the research questions as introduced in section 4.1, we apply a model with two indicators for 

the economic situation: the OECD Business Confidence Indicator (BCI) and stock market values of 

major market indices (Leading indicators 2017). The indicators exist for different countries. 

In the period between 2008 and 2020, two major global events with high impact on economies took 

place, the global financial crisis in the years 2009 and 2010 (also named subprime mortgage crisis) and 

the global COVID19 pandemic crisis in the year 2020. 

The events took place at different time for different regions; therefore, we consider the indicators BCI 

and stock market indices for the two major global economies (China and USA) as well as for the target 

market of the enterprise (Germany). The OECD BCI exists for each of these countries and additionally 

for the OECD countries in total. To represent the stock markets, we took the greatest stock market index 

per country: SSE Shanghai Composite for China, Dow Jones Industrial Average for the US and DAX 

for Germany (see Figure 11 and Figure 12). 

The economic indicators clearly indicate the global events named above by extreme decreases in the 

years 2009, 2010 and 2020. 
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Figure 11: Business Confidence Indicators provided by OECD for PR of China (CHN), Germany (DEU), OECD countries 

and the United States of America (USA), normalized to January 2008 (100 = index value of January 2008) (Leading indica-

tors 2017) 

 

Figure 12: Monthly opening prices of global stock market indices DAX (DAX performance-index ^GDAXI), SSE (SSE 

Composite Index 000001.SS), DJI (Dow Jones Industrial Average ^DJI), normalized to January 2008 (100 = value of January 

2008). 

When we compare the enterprise’s annual sales (see Figure 10) with the indicators (see Figure 11 and 

Figure 12), we observe periods of lower sales in the years 2009 and 2010 as well as 2020 which coincide 

with the global events. 

The coefficient of correlation also suggests correlations between the indicators and the sales data – even 

though the Pearson correlation coefficients are not exceptionally high (see Table 18). 

Indicator OECD Business Confidence Indicator Stock market indices 

 CHN DEU OECD USA DAX SSE DJI 

Coefficient of 

correlation 

(Pearson) 

-0.28 0.60 0.58 0.38 0.47 0.18 0.42 

Table 18: Overview of the correlation coefficients of the economic indicators and the total monthly sales volumes. See Figure 

11 and Figure 12 for abbreviations. 

The judgement of the sales managers of the enterprise also suggests that the economic recessions during 

the two global events affected a decrease of the enterprise’s sales in the periods. 
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Conclusion 1: The studied enterprise’s sales volumes are affected by global events, namely the financial 

crisis and the COVID19 pandemic crisis – see RQ1. 

In the following, we describe the forecasting model used in this case study. The input to the model 

consists of: 

• the monthly revenues per sales category 

• the values of the economic indicators (BCI and stock market indices) 

• the month and year 

• an ID of the sales category. 

As forecasting algorithm, we applied a Histogram-based Gradient Boosting Regression Tree (HGBRT) 

from scikit-learn, which is an implementation of the LightGBM algorithm (Pedregosa et al. 2011; Ke et 

al. 2017) due to high performance in comparable cases in literature (see section 4.2). The prediction 

results were cross-validated by kfold cross-validation (Bergmeir et al. 2018). The model’s output is a 

prediction for the sales volume of each sales category for the month “three-month ahead”. 

To compare the impact of the economic indicator input, we created an experiment design as shown in 

Table 19. Experiments Exp01 and Exp02 do not contain economic indicators. Exp03 and Exp04 contain 

OECD BCI values, Exp05 and Exp06 contain stock market indices. Exp07 and Exp08 combine all indi-

cators. The experiment design so far contributes to the research questions RQ1 and RQ2. 

We also study whether economic indicators themselves enable the model to forecast the impact of global 

events or if such events must have taken place during the training phase for the algorithm to correctly 

learn the relationship between sales and economic indicators. Therefore, we train the models in experi-

ments Exp02, Exp04, Exp06 and Exp08 without the period from the years 2008 to 2011 – the period of 

the global financial crisis. This part of the experiment design contributes to RQ3. 

When the models were trained and evaluated, we observed a substantial influence of randomness in the 

models. The implementation of the HGBRT algorithm takes a random state as input which makes ran-

domness reproducible. To decrease the effect of randomness of the algorithm, each experiment was 

conducted with the same 1,000 different random states. The model was trained and evaluated with the 

entire dataset for each random state. 

 

Experiment Exp01 Exp02 Exp03 Exp04 Exp05 Exp06 Exp07 Exp08 

Training pe-

riod 

2008-

2019 

2011-

2019 

2008-

2019 

2011-

2019 

2008-

2019 

2011-

2019 

2008-

2019 

2011-

2019 

OECD BCI No No Yes Yes No No Yes Yes 

Stock market 

indices 
No No No No Yes Yes Yes Yes 

Random states 1,000 

Table 19: The experiment design combines different training periods (from 2008 or from 2011), and different economic indi-

cators (OECD BCI – see Figure 11, stock markets indices – see Figure 12). 

4.5 Discussion of Results 

We evaluated all predictions for the year 2020 (each month from January to October) using the MAD-by-mean-

ratio as evaluation score, which is the ratio of the mean absolute deviation between prediction and actual target 

variable value (MAD) divided by the mean value of the target variable (Kolassa and Schütz 2007). For each ex-

periment and random state, we calculated the value of the MAD-by-mean-ratio. The distribution of these values is 

shown in Figure 13. 
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Based on the results, we observe that the distributions of the experiment results are relatively homogenous. The 

results per experiment are approximatively distributed normally around their mean value according to the Kolmo-

gorov–Smirnov test with comparable variance. Therefore, we consider the mean values for comparison in the 

following. 

The mutual paired samples t-test for means as well as an ANOVA test of the experiments suggests at 

high levels of significance that mean values of the experiments are unlikely to be equal (𝛼 ≪ 0.05). 

Therefore, we can assume that the mean values of the distributions differ significantly. 

First, we compare the evaluation results of the experiments Exp01, Exp03, Exp05 and Exp07. They vary 

in the inclusion of the economic indicators but are all trained on the full period from 2008 to 2019 and 

are therefore suitable to give answers to the research questions RQ1 and RQ2. Exp03 includes the OECD 

BCI indicators and exhibits an evaluation score that is an improvement of 3.3% compared to Exp01, 

which includes no economic indicators. Exp05 includes the stock market indicators and exhibits an im-

provement of 0.9% compared to Exp01. Exp07, which includes all indicators, exhibits an improvement 

of 4.4% over Exp01. 

 

Mean value of MAD-by-mean-ratios per experiment 

18.61% 19.05% 17.99% 18.36% 18.43% 19.20% 17.79% 18.36% 

Figure 13: Overview of the MAD-by-mean-ratio for the sales prediction of the year 2020 (each month from January to Octo-

ber) per experiment based on 1,000 random samples. 

From these results, we conclude that the inclusion of the economic indicators helps the model to predict 

the sales values during the COVID19 crisis compared to the model that does not include any indicators. 

The contribution of the OECD BCI indicator is higher than of the stock market indices. However, the 

indicators combined result in even better model predictions than models with only one of the indicators. 

Conclusion 2: Economic indicators as additional input for the forecasting model improve the accuracy 

of the prediction by 3.3% to 4.4% – see RQ2. 

Second, we compare pairs of models that vary only in the training period, i.e., Exp01 with Exp02, Exp03 

with Exp04 and so on. We find that the results’ evaluation scores of experiments with training periods 

that include the period of the financial crisis (2008 to 2011) are better than of the experiments that leave 

this period out. This holds true for each pair of experiments. 

The pair of experiments Exp01 and Exp02 does not include any economic indicators. The difference in 

the evaluation scores accounts to 2.3%. This difference cannot be justified by any learning of the model 

related to the economic indicator. The difference of the evaluation scores of Exp03 and Exp04 accounts 

to 2.0%– therefore we conclude that the effect probably is also not justified by economic indicator re-

lated reasons. 
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However, the pairs Exp05 / 06 as well as Exp07 / 08 exhibit higher differences (4.0% and 3.1%). This 

indicates that the model attributes a higher weight to the input of the economic indicators when a past 

global event can be linked to an actual reaction of the sales volumes of the enterprise. 

Conclusion 3: The results indicate that the models that are trained on past global events in combination 

with explanatory economic indicators reflect better results in predicting future global 

events that are also indicated by economic indicators – see RQ3. 

4.6 Conclusion and Outlook 

In this study, we raised three research questions RQ1 to RQ3 that were studied based on the case study 

of one enterprise. We described how the global financial crisis and the COVID19 pandemic crisis – 

affected the sales volumes of the enterprise of this case study (RQ1). Furthermore, in this study we 

describe that models trained with two specific economic indicators that reflect the general economic 

consequences of the global events, improve the forecasting accuracy of the enterprise’s sales during 

these events (RQ2). Finally, we find that the models trained with past events of the investigated global 

crisis affecting the enterprise can, in some cases, enable the models to correlate economic indicators and 

their effects on the enterprise more precisely (RQ3). 

This article shows a case study where economic indicators are effectively applied to improve sales fore-

casts of enterprises dependent of global events. While it is reasonable to assume that the effects shown 

in this study can also be observed in similar cases of sales forecasting, we are aware that this study only 

exhibits one specific case study and therefore the study cannot yield general statements for every situa-

tion. This fact will be motivation for further comparative studies with more enterprises. 

Furthermore, this study does not mean that the models are able to forecast future global events before 

they take place. Instead, this study shows how economic indicators help to predict how the enterprise’s 

sales are affected by global events. 

As an outlook, we can expect that global events will continuously occur in the future. Therefore, it is 

reasonable to evaluate the application of economic indicators in similar enterprises’ sales forecasts. The 

study shows that the indicators enhance forecasting accuracy. However, enterprises will rely on high 

quality and up to date indicators that are suitable for prediction. Future research should therefore con-

centrate on fast-reacting and conclusive indicators for global events. 
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5 How Time Series Characteristics 
Affect the Forecast Quality in State-
of-the-Art Algorithms for 
Intermittent Demands 
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Intermittent and Lumpy Time Series: Comparing Statistical, Machine Learning and Deep Learning 

Methods. In : Hawaii International Conference on System Sciences 2021. Honolulu, HI: University of 

Hawai'i at Manoa, Hamilton Library, p. 1425. – further referred to as Kiefer et al. 2021b 

Kiefer, Daniel; Bauer, Markus; Grimm, Florian (2021a): Univariate Time Series Forecasting: Machine 
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Grimm, Florian; Kiefer, Daniel; Bauer, Markus (2021): Univariate Time Series Forecasting by Investi-

gating Intermittence and Demand Individually. In Alfred Zimmermann, Robert J. Howlett, Lakhmi C. 

Jain, Rainer Schmidt (Eds.): Human Centred Intelligent Systems, vol. 244. Singapore: Springer Singa-

pore (Smart Innovation, Systems and Technologies), pp. 143–151. – further referred to as Grimm et al. 

2021] 

The three studies summarized in this chapter primarily address research question RQ III of this disser-

tation: ”What is the forecasting performance of machine learning methods com-pared to classical ap-

proaches for intermittent time series and how can ap-proaches be selected depending on the time series 

characteristics?”, In particular, the first study (Kiefer et al. 2021b) addresses the comparison of classical 

and machine learning methods for forecasting intermittent time series. The second study (Kiefer et al. 

2021a) focuses on investigating the interrelationships of time series properties and the choice of fore-

casting method. The third study (Grimm et al. 2021) analyzes the hybridization of Croston's method 

with machine learning algorithms. 

5.1 Comparing the performance of state-of-the-art 
algorithms on intermittent and non-intermittent 
demand time series 

In Kiefer et al. 2021b, we studied the practical application of demand forecasting algorithms application-

oriented demand time series. Our literature research yielded a gap in research to determine what algo-

rithms performs best under which circumstances, especially when the goal is to predict data sets con-

taining intermittent time series. We therefore systematically benchmarked the state-of-the-art algorithms 

based on a publicly available data set and compared the forecasting performances. 
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In the study, we raised the following two research questions: 

RQ1: Do modern advanced deep learning methods achieve considerably better forecasts than classic, 

established statistical methods and machine learning methods in forecasting demand for inter-

mittent and lumpy time series? 

RQ2: Under which time series characteristics, in particular the degree of intermittent behavior and 

lumpiness of the time series, do deep learning methods achieve superior results and vice versa? 

5.1.1 Related work 

The literature research was conducted following the principles of Webster and Watson and Levy and 

Ellis (Webster and Watson 2002; Levy and Ellis 2006). 

The basic foundational research reviewed for this study constitutes the state-of-the-art algorithms ap-

plied in this study. First, we review classical approaches for intermittent time series forecasting, like 

basic ARIMA and Croston’s approach (Croston 1972) and its advancements like SBA and TSB (Synte-

tos and Boylan 2001) as well as general time series forecasting algorithms like Holt-Winter’s). Second, 

we studied general machine learning algorithms (SVR, Random Forest and boosted tree approaches) 

and deep learning algorithms (multi layer perceptron MLP, LSTM). In addition, we find algorithms 

further adapted to intermittent demand forecasting, like the approach of Kourentzes or Willemain et al. 

(Kourentzes 2013; Willemain et al. 1994). 

5.1.2 Approach 

We propose a systematic empiric approach to compare the state-of-the-art forecasting algorithms on a 

data set. 

As data set, we chose the M5 competition data set. It contains over 100,000 time series with 1,941 time 

steps each, representing Walmart product sales (Makridakis et al. 2022). The time series were classified 

as smooth, erratic, intermittent and lumpy, as defined by Williams (Williams 1984). For the experiments, 

we randomly chose 30 time series from each class, totaling 120 time series per experiment. Only the 

univariate time series were considered for training and testing of the algorithms, i.e., no additional inputs 

except for the past values of the target variable were provided. 

We applied a rolling window cross validation scheme as proposed by Bergmeir et al., with a forecasting 

horizon of 28 days ahead. As evaluation metrics, we applied the mean absolute scaled (MASE) metric 

as proposed by Hyndman and Koehler and used as standard metric in the M5 competition (Hyndman 

and Koehler 2006; Makridakis et al. 2022). In addition, we applied the stock-keeping-oriented prediction 

error costs (SPEC) metric, as proposed by Martin et al., which accounts for both the costs of over-stocks 

as well as under-stocks caused by forecasting errors (Martin et al. 2020). 

In the study, we applied three classical statistical algorithms (Croston’s method, Holt-Winter triple ex-

ponential smoothing, ARIMA with autotuned parameters), three machine learning algorithms (Random 

Forest, XGBoost, SVR with autotuned parameters) and three deep learning algorithms (MLP, LSTM 

with two different topologies). 

Details concerning the chosen parameters for the setup of the algorithms, evaluation metrics and cross 

validation are given in the published study (Kiefer et al. 2021b). 
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5.1.3 Results and conclusions 

The results of the experiments are shown in the table below, where Table 20 summarizes the results of 

all time series and the following tables show the results for smooth (Table 21), intermittent (Table 22), 

erratic (Table 23) and lumpy (Table 24) time series. 

Table 20: Forecasting evaluation results 

All time series 

 Ø SPEC  Ø MASE  Rank 

Statistic      

   Croston 4.75 (0%) 2.15 (0%) 1 
   Holt-Winter 7.41 (56%) 1.08 (50%) 4 

   Auto-ARIMA 6.93 (46%) 1.04 (52%) 3 

Machine Learning      
   Random Forest 8.19 (73%) 1.14 (47%) 5 

   XGBoost 12.01 (153%) 1.13 (48%) 9 

   Auto-SVR 9.98 (110%) 1.10 (49%) 7 
Deep Learning      

   MLP 10.15 (114%) 1.66 (23%) 8 

   LSTM 5.96 (26%) 0.98 (54%) 2 
   LSTM-2 8.57 (81%) 1.04 (52%) 6 

 

Throughout all classes, the best ranked algorithm by SPEC metric (i.e., lowest SPEC values) is the 

Croston algorithm. Second in rank is the LSTM neural network algorithm–except for intermittent time 

series, where the ARIMA algorithm is in second rank. The Holt-Winter algorithm typically ranks third 

or fourth, except for lumpy time series. 

We observe a different picture when the forecasting accuracy is evaluated under the MASE metric. Here, 

the LSTM algorithms performs best overall (i.e., lowest MASE values) and especially for smooth, er-

ratic and intermittent time series. Only for lumpy time series, the ARIMA algorithm yields the best rank. 

Evaluated under the MASE criterion, Croston’s algorithm yields the last rank in overall an in all classes. 

In addition, we observe that only LSTM achieves MASE scores below 1.0, i.e., yields a lower forecast-

ing error than the naïve forecast used by the MASE metric as baseline algorithm. All other algorithms 

yield scores considerably higher than 1.0. 
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Table 21: Forecasting evaluation results 

Smooth time series 

Table 22: Forecasting evaluation results 

Intermittent time series 

 Ø SPEC  Ø MASE  Rank 

Statistic      
   Croston 2.02 (0%) 1.85 (0%) 1 

   Holt-Winter 3.45 (71%) 1.06 (43%) 3 

   Auto-ARIMA 3.76 (86%) 1.03 (44%) 4 
Machine Learning      

   Random Forest 4.29 (112%) 1.04 (44%) 7 

   XGBoost 5.25 (160%) 1.16 (37%) 9 
   Auto-SVR 4.05 (100%) 1.00 (46%) 6 

Deep Learning      

   MLP 4.31 (113%) 1.54 (17%) 8 
   LSTM 2.24 (11%) 0.96 (48%) 2 

   LSTM-2 3.99 (97%) 1.03 (44%) 5 
 

 Ø SPEC  Ø MASE  Rank 

Statistic      
   Croston 10.42 (0%) 1.59 (0%) 1 

   Holt-Winter 13.45 (29%) 1.16 (27%) 4 

   Auto-ARIMA 12.32 (18%) 1.12 (29%) 2 
Machine Learning      

   Random Forest 17.35 (67%) 1.27 (20%) 6 

   XGBoost 23.21 (123%) 1.20 (24%) 9 
   Auto-SVR 20.11 (93%) 1.09 (32%) 7 

Deep Learning      

   MLP 20.97 (101%) 1.49 (6%) 8 
   LSTM 12.38 (19%) 1.14 (28%) 3 

   LSTM-2 16.82 (61%) 1.07 (33%) 5 
 

Table 23: Forecasting evaluation results 

Erratic time series 

Table 24: Forecasting evaluation results 

Lumpy time series 

 Ø SPEC  Ø MASE  Rank 

Statistic      

   Croston 5.04 (0%) 2.18 (0%) 1 

   Holt-Winter 9.90 (96%) 1.07 (51%) 5 
   Auto-ARIMA 9.15 (81%) 1.04 (52%) 4 

Machine Learning      

   Random Forest 8.65 (72%) 1.15 (47%) 3 
   XGBoost 15.05 (198%) 1.10 (49%) 9 

   Auto-SVR 12.35 (145%) 1.06 (52%) 8 

Deep Learning      
   MLP 11.45 (127%) 1.68 (23%) 7 

   LSTM 7.29 (45%) 0.97 (56%) 2 

   LSTM-2 11.12 (121%) 1.04 (52%) 6 
 

 Ø SPEC  Ø MASE  Rank 

Statistic      

   Croston 1.51 (0%) 3.00 (0%) 1 

   Holt-Winter 2.83 (88%) 1.03 (66%) 6 
   Auto-ARIMA 2.49 (66%) 0.97 (68%) 5 

Machine Learning      

   Random Forest 2.46 (64%) 1.11 (63%) 4 
   XGBoost 4.54 (202%) 1.05 (65%) 9 

   Auto-SVR 3.40 (126%) 1.27 (58%) 7 

Deep Learning      
   MLP 3.87 (157%) 1.91 (36%) 8 

   LSTM 2.02 (34%) 1.00 (67%) 2 

   LSTM-2 2.35 (56%) 1.02 (66%) 3 
 

 

In the study, we draw the following conclusions: 

Machine and deep learning yield good results, however, not always better than classical algorithms (re-

ferring to research question 1.). 

Under the SPEC metric, the classical algorithms Croston and ARIMA dominated the other algorithms–

also deep learning algorithms–in all classes. Under the MASE metric, the LSTM algorithm scores best 

overall and in the classes, except for lumpy time series. It is also the only algorithm that performs better 

than the naïve baseline algorithm (referring to research question 2.). 

In addition, we point out the opposing results depending on the metric applied. The best algorithm under 

SPEC yields the worst rank under MASE. This underlines that the choice of metric must be taken care-

fully, depending on the interpretation of the metric and the intended use case. 

This study contributes to the research by systematically comparing state-of-the-art forecasting algo-

rithms to a publicly available data set and by the close examination of the differences of the forecasting 

performances for time series with different time series characteristics. We could show under which cir-

cumstances classical out-perform machine and deep learning algorithms and which algorithms did not 

play a distinctive role in the experiments. 
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5.2 Predicting the performance of algorithms based on 
time series specific characteristics 

The study Kiefer et al. 2021a is based on the insights from Kiefer et al. 2021b. In the previous work, we 

studied the different forecasting performances of algorithms for the classes of smooth, erratic, intermit-

tent and lumpy time series. In this thereupon based study, we further examine how forecasting algo-

rithms can be optimally chosen based on univariate time series characteristics. 

RQ1: Can a machine learning model predict the best suitable algorithm for univariate time series 

forecasting based on time series characteristics? 

RQ2: Could dependencies of demand patterns and model forecast skill be identified? 

RQ3: Can such a classification algorithm be used advantageously in the business context? 

5.2.1 Related work 

As the previous study, this study relates to the basic literature on classical forecasting approaches as 

ARIMA or Holt-Winters, and machine learning approaches (including deep learning approaches) as 

SVR or LSTM networks. 

This study also relates to the literature studying evaluation metrics, while this study primarily relies on 

the MAE evaluation metric. 

Notable specific literature relevant to this study represent the Croston approach for intermittent time 

series (Croston 1972), the work on classification of intermittent time series by Syntetos et al. (Syntetos 

et al. 2005), and the study comparing different intermittent time series forecasting approaches by Kou-

rentzes (Kourentzes 2013). As before mentioned, this study is based on Kiefer et al. 2021b. 

5.2.2 Suggested experimental design 

The approach is based on the previous study in Kiefer et al.: The time series of a data set is classified 

into the classes smooth, erratic, intermittent and lumpy. The classification is done based on the metrics 

average demand interval (ADI) and squared coefficient of variation (CV2) as proposed by Williams and 

Syntetos et al. (Williams 1984; Syntetos et al. 2005). 

In this study, a proprietary data set from a retailer for industrial business-to-business goods is used, 

comprising 200,000 time series of daily sales with up to 3,960 time steps per time series. For the exper-

iments, 16,035 time series are randomly chosen. Apart from the historic values of the target variable, 

the ADI and CV2 and the classification, no additional inputs were used to train the forecasting algo-

rithms. 

For cross validation, we applied rolling window validation as proposed by Bergmeir et al. (Bergmeir et 

al. 2018). The mean average error (MAE) was used as evaluation metric for forecasting accuracy. 

First, for demand forecasting, we implemented classical algorithms (Holt-Winters, linear regression), 

machine learning algorithms (XGBoost, random forest, SVR) and deep learning algorithms (LSTM, 

CNN-LSTM, CONV-LSTM). Details on the topology and parametrization can be found in Kiefer et al. 

2021a. 
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After generating forecasts with the before mentioned algorithms, the results were evaluated with the 

MAE metric and the best performing (i.e., lowest MAE score) algorithm chosen per time series. 

Subsequently in a second step, classifier algorithms were trained to predict the best performing forecast-

ing algorithm. To cross validate the classification prediction, a k-fold scheme with 5 folds was applied. 

The following algorithms from the Scikit-learn Python library were benchmarked for classification: 

BoostClassifier, SupportVectorClassification, RandomForestClassifier, AdaBoostClassifier, Gaussi-

anNB, MLPClassifier, KNeighborsClassifier and GradienBoostingClassifier (Pedregosa et al. 2011). 

We applied the synthetic minority oversampling technique (SMOTE) to deal with the unbalanced dis-

tribution of time series in the classes. 

5.2.3 Results and conclusion 

 

Figure 14: Best MAE score rank of the forecasting algorithms–overall and per class 

 

Figure 15: Histogram of the MAE score distribution for all classes 
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First, we summarize the results of the sales forecasts. Here we first observe the number of times that an 

algorithm achieves the best (i.e., lowest) MAE score for a time series (“best MAE score rank”, see 

Figure 14). By far best ranking algorithm in this metric is the LSTM algorithm. The XGB and SVR rank 

second and third, however, the number of time series these algorithms achieve the best MAE score is 

about one seventh compared to the LSTM algorithm. For erratic time series, SVM, LSTM and Holt-

Winters perform comparable forecasting accuracies based on the best MAE score ranking. In addition, 

we observe the distribution of MAE metric values over all time series (as opposed to the rank of the 

algorithm, see Figure 15). Here, the Holt-Winters and Croston algorithms perform bad (i.e., high) MAE 

values overall. CNN-LSTM, CONV-LSTM and the random forest algorithms perform lowest distribu-

tion and therefore perform best. Surprisingly, despite performing best in the beforementioned ranking 

score, the plain LSTM exhibits relatively bad MAE distribution values. 

 ROC-AUC Accuracy Precision Recall F1 

Mean value 

over all folds 
0.89 0.76 0.76 0.76 0.76 

Table 25: Classification accuracy results of the best classifier 

Second, we examine the classification accuracy scores of classifier algorithms (Table 25). The evalua-

tion metrics employed are ROC-AUC, accuracy, precision, recall and F1 metric. We concentrated on 

the ROC-AUC metric primarily. The best classifier algorithm from the tested was the Gradient Boosting 

Classifier. The mean ROC-AUC value is 0.89–which generally indicates a high classification accuracy. 

 

Figure 16: Feature importance scores of the classifier algorithm 

To study which of the features provided to the algorithm are most important to predict the best forecast-

ing algorithm, we applied the feature importance score approach (Figure 16). It showed that the quantity 

of time periods in the time series (i.e., time series length) was the feature with highest importance to the 

classifier. Second important feature is the ADI. The further relevant features, yet with lower importance 

scores are the quantity of zero and non-zero demand periods, CV2 and median, mean and standard de-

viation of the demand size. 

We conclude in this study, referring to the initial research questions of the study: 

The classifier algorithm predicted the best forecasting algorithm with a high ROC-AUC score of 89%. 

We therefore conclude for RQ1, that it is possible for a machine learning classifier to predict the best 

forecasting algorithm with high accuracy based on the time series characteristics of the time series. 

For RQ2, we observe that the time series characteristics features identified in the feature importance 

analysis were used by the classifier algorithm to predict the best forecasting algorithm. We can therefore 
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conclude that time series characteristics are a decisive criterion for which forecasting algorithm yields 

the best forecast accuracy. 

Regarding RQ3, we conclude that the insights from the study can be used to efficiently chose the optimal 

forecasting algorithm, reducing computational efforts. 

The study contributes to the current research by first showing that time series characteristics can be 

exploited to choose optimal forecasting algorithms. Second, we empirically showed what characteristics 

can be used, how to exploit them, and third showed what features were important in the given use case. 
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5.3 Improving the performance of intermittent time 
series forecasting by combining Croston’s approach 
with machine learning techniques 

In Grimm et al. 2021, we studied how Croston’s approach can be leveraged by applying modern machine 

learning algorithms. 

In general, Croston's approach is based on the consideration of forecasting the interval between demands 

and the level of demands separately for intermittent time series. At the time Croston's approach was 

published, machine learning methods were not yet in use, so Croston used exponential smoothing as a 

forecasting method for demand intervals and levels. So instead of exponential smoothing using modern 

machine learning approaches is an approach worth exploring today. 

5.3.1 Related work 

Croston proposed a two-step approach to forecast intermittent demand time series: First, forecasting of 

the intervals between non-zero demands and second forecasting the demand size (i.e., quantity of the 

demand) for the predicted non-zero demand period. In the study, Croston proposed exponential smooth-

ing, for both the demand intervals and demand size (Croston 1972). Syntetos and Boylan, and Teunter 

et al. revised the approach to fix a systematical bias in Croston’s approach and to account for obsoles-

cence of items (Syntetos and Boylan 2001; Teunter et al. 2011). 

Kourentzes proposes to improve Croston’s approach by applying neural networks for forecasting of the 

demand intervals and demand size, thereby combining Croston’s approach and machine learning. They 

conclude that their approach cannot achieve higher forecasting accuracy than classical approaches. 

However, they conclude that based on measuring service levels at increasing stocks, their approach 

performs better (Kourentzes 2013).  

Turkmen et al. further develop Kourentzes’ approach. Instead of training two separate models for de-

mand interval and demand size prediction, they propose to use only one neural network which simulta-

neously predicts both variables and learns from all time series (Turkmen et al. 2019). 

5.3.2 Approach 

We base our study on the M5 data set, from which we selected randomly 150 time series, equally drawn 

from the categories food, household and hobby (Makridakis et al. 2022). 

To prepare the data, we constructed an inter-demand interval and a non-zero demand size vector for 

each time series. For training and cross validation, the rolling window approach was chosen. 

We use two separate models, of which each is trained on one of the before mentioned vectors and then 

predicted a value for a one-step ahead forecast. In a first experiment, we used pair of LSTM networks 

(SplitLSTM). In the second experiment, we used a pair of LGBM models (SplitLGBM). 

As baseline algorithms, we used the Croston algorithm, and LSTM and LGMB algorithms which were 

directly applied to the time series (not the two vectors). The detailed topology and parametrization can 

be found in Grimm et al. 2021. 
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For evaluation of the forecasting accuracy, we applied the SPEC (Martin et al. 2020) and RMSSE met-

rics (Hyndman and Koehler 2006) as well as R2, MSE, MAE, normalized RMSE and MASE. 

5.3.3 Results and conclusion 

Model MSE MAE R2 MASE SPEC nRMSE RMSSE 

CROSTON 7.18 1.04 -0.14 0.95 16.88 1.87 0.86 

LSTM 13.41 1.26 -0.39 1.06 31.35 1.98 0.89 

LGBM 5.80 1.08 -0.49 1.07 17.36 2.13 0.97 

SplitLSTM 14.31 1.28 -1.03 1.04 27.73 2.52 1.12 

SplitLGBM 14.80 1.24 -0.99 0.99 39.29 2.46 1.12 

Table 26: Comparison of the prediction evaluations by metric and approach. SPEC parameters 𝜶𝟏 = 𝜶𝟐 = 𝟎. 𝟓. Lower val-

ues are better for all metrics. 

Table 26 shows the forecasting performances of the experiments. We observe that the Croston algorithm 

shows best evaluation results for all metrics–except for MSE, where the baseline LGBM algorithm 

yields a better MSE value than all other algorithms. The SplitLSTM and SplitLGBM approaches do not 

yield better results but considerably higher error rates. 

Model 𝛼1 = 0.25, 𝛼2 = 0.75 𝛼1 = 0.5, 𝛼2 = 0.5 𝛼1 = 0.75, 𝛼2 = 0.25 

CROSTON 18.83 16.88 14.92 

LSTM 44.09 31.35 18.62 

LGBM 20.06 17.36 14.67 

SplitLSTM 17.56 27.73 37.89 

SplitLGBM 22.17 39.29 56.41 

Table 27: Evaluation results for the SPEC metric with different values for the parameters 𝜶𝟏 (opportunity costs) and 𝜶𝟐 

(stock keeping costs). 

The results in Table 27 show how different values for the 𝛼 parameters of the SPEC metric influence 

the results. While shifting the parameter towards 𝛼1 (note that 𝛼1 + 𝛼2 =
!

1), giving opportunity costs 

for out-of-stock events more importance, the LGBM algorithm improves compared to Croston’s algo-

rithm and the split algorithms evaluation results worsen. However, shifting the balance more to 𝛼2 em-

phasizing the impact of stock keeping costs. In this case, the split algorithms perform better compared 

to the other parameter settings. SplitLSTM in this case even becomes the algorithm with the lowest (i.e., 

best SPEC) value. 

Further examination led to the understanding that the split algorithms systematically understated de-

mand, while the other algorithms rather overstated demand. 

We therefore conclude the following insights in this study: Applying deep learning algorithms to im-

prove Croston’s approach does not naturally improve the forecasting results, as we see from the results 

in Table 26. However, we conclude that it can be beneficial under certain circumstances, as shown in 

Table 27, where we weighed stock keeping costs higher than out-of-stock opportunity costs. This result 

is structurally comparable to the findings of Kourentzes; however, they find that their approach shows 

advantages when out-of-stock costs are emphasized. 
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5.4 Conclusion of this chapter 

The results of the first study (Kiefer et al. 2021b) of this chapter have shown that the tested machine 

learning algorithms are not necessarily better than the specialized classical algorithms. In fact, the 

Croston approach showed the best results in most experiments and among the datasets used. Machine 

Learning approaches do not prove to be superior in the experiments performed. The study contributes 

to the state of the art by systematically comparing these state of the art algorithms on known and public 

datasets. 

The study also shows that the choice of evaluation metric is critical in determining which method is 

determined to be the best. 

The second study (Kiefer et al. 2021a) showed that a classification algorithm can be used to predict the 

optimal forecasting method from a selection of methods with high accuracy, based on the time series 

properties of the forecasted objects. Thus, the study shows that the investigated time series properties 

are clearly related to the choice of the forecasting method and that this relationship can be quantified. 

The third study (Grimm et al. 2021) confirms the results of the previous two in two aspects. First, the 

hybridized Croston and machine learning method does not outperform the classical method in the ex-

periments performed–just as in the two previous studies other machine learning approaches did not show 

any systematic advantage. Second, in the third study, as in the other two, it is shown that the choice of 

the evaluation metric influences which algorithm can be considered the best. 

Thus, with respect to the entire dissertation and RQ III. of the dissertation, the conclusion from this 

chapter is that the applied state of the art machine learning algorithms by no means generally lead to 

better results than the classical approaches–related to the conducted experiments and underlying data 

sets. 
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6 A New Approach in Hierarchical 
Demand Forecasting 

[This chapter corresponds to an article submitted to the Journal of Forecasting (JoF). It is currently in 

second revision status in the acceptance process at JoF: Bauer, Markus; van Dinther, Clemens; Kiefer, 

Daniel; Grimm, Florian (2023): Forecasting Intermittent Demand with no given External Hierarchy: An 

Aggregation-Disaggregation Approach based on Clustering of Time Series Characteristics Similarity. – 

further referred to as Bauer et al. 2023] 

Forecasting Intermittent Demand with 
no given external Hierarchy: An 
Aggregation-Disaggregation Approach 
based on Clustering of Time Series 
Characteristics Similarity 

Forecasting intermittent demand time series with periods of zero demands is notoriously difficult. While 

research shows that forecasting of such time series can be improved by aggregation-disaggregation in 

cases where a hierarchy between the time series can be exploited (such as an article hierarchy in product 

demand forecasting), there are practical scenarios where no hierarchy is available. In this empirical 

study, we introduce an approach to improve intermittent demand forecasting by aggregation-disaggre-

gation of time series based only on time series characteristics similarities: similarity-based time series 

forecasting (STSF). The results show a significant improvement of forecasting quality in the context of 

the publicly available M5 and Kaggle store sales forecasting competition data set. Additionally, the time 

series that benefit from the approach can be accurately predicted by their specific characteristics. 

6.1 Introduction and Problem Definition 

Time series (TS) are sequences of observations of variables with a temporal discrete order. They are 

observed in many disciplines of academia (natural sciences, economics, engineering, and many more) 

as well as in practice (society, business, and more). To all these disciplines, forecasting future, yet un-

known values of such variables is a goal of academic research. 

In this study, we focus on the case of intermittent time series (iTS). iTS are characterized by considerable 

sequences of observations of the variable that equal zero. Throughout this article, we employ the exam-

ple of spare part demand forecasting – relevant for example in inventory planning. Spare parts are often 

required only occasionally, in periods without any demand. Research has identified forecasting of iTS 

as difficult because traditional forecasting algorithms apply assumptions that conflict with zero demand 

periods. 
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Research has evolved various approaches to forecast intermittent time series (see Section 6.2). Common 

approaches work by aggregating time series of objects that are known to correlate. For example, in the 

automobile spare parts industry, car bumper demands for the same type of car but of different colors are 

likely to correlate. Most known approaches require an external structure or hierarchy of the objects, such 

as a spare parts family categorization. However, in many cases no hierarchies exist, or they are not 

available for forecasting. 

In this study, we propose a new approach for forecasting of iTS by aggregation-disaggregation with no 

additional object hierarchy but the information that we can extract from the time series themselves. We 

call this approach similarity-based time series forecasting (STSF). We use the following research ques-

tions to structure the study and the empirical experiment design: 

RQ1. Can an aggregation-disaggregation approach based on similar TS characteristics improve 

forecasting accuracy? If yes, by how much? 

RQ2. Can special types of TS be identified that benefit most from the approach? By which char-

acteristics are they best defined and how much is the improvement for these TS? 

RQ3. Can these TS be identified in advance and does the approach yield similar accuracy results 

when only these TS are used? 

RQ4. What other parameters of the proposed STSF approach influence the approach and how? 

6.2 The State-of-the-Art in Intermittent Demand 
Forecasting 

This section provides a brief overview of the current state-of-the-art of classical approaches for inter-

mittent time series forecasting, aggregation approaches, and introduces the basics of intermittent time 

series categorization and clustering. 

We introduce the following notation. We assume time series as sequences of observations of a variable 

𝑥𝑡,𝑖 with time steps 𝑡 ∈ 𝑇 = {0,1, … , 𝑡𝑚𝑎𝑥} and objects (e.g., products) 𝑖 ∈ 𝐼 = {0,1, … }. All given ob-

servations of this variable 𝑥𝑡,𝑖 are 𝑋. The goal is to find an approximation 𝑥𝑡+1,𝑖 for 𝑥𝑡+1,𝑖 defined by 

the unknown function 𝑥𝑡+1,𝑖 = 𝑓(𝑋, Φ) + 𝜖𝑡+1,𝑖. We define Φ as a set of observations of stochastic 

influences 𝜖𝑡,𝑖. The function 𝑓(. ) may depend on interdependencies of 𝑥 and Φ. The stochastic random 

variable 𝜖𝑡+1,𝑖 may depend on 𝑋 and Φ. 

As there exist a multitude of approaches to time series and demand forecasting, we will not discuss the 

general landscape of algorithms in detail. The most relevant approaches shall only be mentioned here, 

by no means exhaustive, i.e., classical approaches (ARMA, ARCH, Holt-Winter’s) and machine learn-

ing (support vector machines, decision trees, artificial neural networks). An overview of time series 

forecasting can be found in Boylan and Syntetos' extensive overview (Boylan and Syntetos 2021). 

In the further course of the article, we will use the M5 forecasting competition data set as well as the 

Kaggle store sales data set for our empirical study. They are recent, publicly available data sets designed 

to be a challenging data set for forecasting of demand time series that also includes a considerable degree 

of intermittent time series (see also Section 6.3.1). Studies based on the competing approaches show a 

superiority of decision tree based algorithms, especially the Light Gradient Boosted Machine (LGBM) 

as an advancement of the Gradient Boosting Decision Trees (GBDT) (Ke et al. 2017; Makridakis et al. 

2022). 

6.2.1 Intermittent time series categorization approaches 

While the term intermittence is generally applied to time series with considerable sequences of zero 

values (e.g., demands), there is no generally accepted definition of a metric that quantifies the degree of 

intermittence or yields a categorization of intermittent and non-intermittent time series. Williams intro-

duces the definition of intermittence by 1/𝐿𝜆, where 𝐿 denotes the mean lead time (time between two 
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demands greater zero) and 𝜆 denotes the mean number of demands per time interval, assuming a Poisson 

arrival process of demands. Large values for 1/𝐿𝜆 are interpreted as high intermittence (also referred to 

as sporadicity). Furthermore, Williams defines the term “lumpiness” as 𝐶2/𝐿𝜆, where 𝐶2 is the coeffi-

cient of variation of the demand height, demand frequency, and inter-demand intervals. The study pro-

vides a categorization of products into four categories ( by the values of 1/𝐿𝜆 and 𝐶2/𝐿𝜆 (Williams 

1984). 

Based on the study of Williams, Eaves describes an improved approach using the transaction variability, 

demand size variability and lead time variability instead of transaction variability only (c.f. above) 

(Eaves 2002). Syntetos et al. further refined this approach and utilize the average inter-demand interval 

𝑝 and the coefficient of variation of demand (c.f. Williams) 𝐶𝑉2 as metrics for iTS categorization (Syn-

tetos et al. 2005). 

We introduce the categorization approaches not primarily to classify TS along hard boundaries. Instead, 

we will adopt the metrics by Syntetos et al. as a form of clustering representation. We introduce TS 

clustering and representations in Section 6.2.4. 

6.2.2 An overview of classical models for intermittent demand 
forecasting 

Croston constitutes a major stream of research in iTS forecasting, especially in the context of spare parts. 

The first approach is based on exponential smoothing of two aspects of the time series parallel: (1) the 

interval length of zero demands and (2) the demand size in periods of demand greater zero (Croston 

1972). Willemain et al. show on two sample data sets that Croston’s approach overperforms single ex-

ponential smoothing (Willemain et al. 1994). Syntetos and Boylan find that Croston’s approach is sys-

tematically biased. Therefore, they propose an adjustment to Croston’s approach that unbiases the results 

through a correction factor (SBA algorithm). In a subsequent study, Teunter et al. propose to further 

refine the approach. They propose to predict the probability of a non-zero demand instead of inter-

demand interval length. By this improvement, their so-called TSB approach can also be updated in pe-

riods of zero-demands – in contrast to Croston’s approach that only updates inter-demand intervals when 

demands are observed. Both studies show that the SBA approach (respectively TSB) achieve better 

results in the studies’ simulation experiments, compared with Croston’s approach, standard simple mov-

ing average and single exponential smoothing (Syntetos and Boylan 2005; Teunter et al. 2011). Babai 

et al. refined the SBA approach especially for cases of sudden obsolescence (Babai et al. 2019). Doszyń 

proposes the SESAP (simple exponential smoothing for analogous sub-periods) approach for seasonal 

products. They find that a combination of TSB for general iTS and SESAP for seasonal iTS performs 

best. They also conclude that Croston’s approach and SBA are outperformed by single exponential 

smoothing – in contrast to the previously mentioned studies (Doszyń 2019). 

Willemain et al. propose a bootstrapping approach, in contrast to the approaches derived from Croston’s. 

In their approach, they sample datapoints from the given data set distribution to forecast future demands. 

They find their approach outperforms Croston’s approach in their study (Willemain et al. 2004). Synte-

tos et al. compare parametric approaches (including SBA) with bootstrapping and conclude that the 

bootstrapping approach yields better forecasting results in some situations; however, they find the ap-

proach more complex than SBA (Syntetos et al. 2015). 

Gutierrez et al. propose the application of artificial neural networks (ANN) for iTS forecasting with 

good results (Gutierrez et al. 2008). Kourentzes proposes an approach based on Croston’s basic ap-

proach; however, they apply ANN instead of exponential smoothing for forecasting (Kourentzes 2013). 

Fu et al. propose a hybrid approach of SBA and ANN based on the TS characteristics. Babai et al. 

compare Single Exponential Smoothing (SES), Croston’s approach, SBA, Willemain’s bootstrapping 

and Gutierrez et al. SBA inspired ANN approach in a case study on spare part demand forecasting. They 
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report the best performance by Gutierrez et al. approach with additional Bayesian regularization (Babai 

et al. 2020). Kiefer et al. study Croston’s approach in comparison with standard machine learning ap-

proaches. Based on their experimental design in forecasting sales of a retailer, they conclude that ma-

chine learning models (LSTM long short-term memory ANN, SVR support vector machines, XGBoost, 

and random forest) perform better than Croston’s approach. They apply the mean average error as eval-

uation metric. They acknowledge that the machine learning approaches are also better than Croston’s 

approach for intermittent TS (Kiefer et al. 2021). 

Summarizing, we observe an evolution of algorithms based on Croston’s approach (SBA, TSB and fur-

ther). Their successors address and improve specific issues. Due to the specialization of the successors 

and different data sets applied, no study concludes that one approach is superior to all others in every 

situation. Hence, we conclude in this section that specialized algorithms exist to forecast intermittent TS 

which perform better than general forecasting algorithms – when the scope is on iTS. 

6.2.3 Aggregation approaches for intermittent time series forecasting 

To further improve forecasting of iTS, academia has studied the application of aggregation approaches. 

The literature describes two basic types of approaches that apply aggregation to improve iTS forecast-

ing: (1) hierarchical aggregation of time series along a given hierarchy, also regularly referred to as top-

down bottom-up (TD/BU) approach or hierarchical forecasting (HF); and, (2) temporal aggregation 

(TA) of periods of time of individual time series. To differentiate HF and TA, HF is also referred to as 

contemporaneous aggregation. 

Top-down (TD) approaches aim at condensing the sparse information contained in iTS by aggregation 

of objects (e.g., products) along the hierarchy while keeping the granularity of time periods unchanged. 

TD then forecasts the aggregated time series and subsequently disaggregates the prediction down to the 

original level in the hierarchy. The opposite approach is bottom-up (BU) forecasting. The approach is 

motivated by the intuition that through the aggregation, intermittence is reduced, and thus, satisfying the 

assumptions of most common forecasting algorithms, makes these algorithms more suitable. 

Several recent studies apply TD/BU approaches for iTS forecasting. Viswanathan et al. apply TD fore-

casting for highly variable iTS and BU based on Croston’s approach for less variable iTS to improve 

overall forecasting accuracy (Viswanathan et al. 2007). In another study, Li and Lim propose a middle 

out approach which combines TD and BU (Li and Lim 2018). Abolghasemi et al. compare classical and 

machine learning approaches in iTS TD/BU scenarios. They conclude that the decision tree based algo-

rithm XGboost (Chen and Guestrin 2016) overperforms other approaches in their study (Abolghasemi 

et al. 2019). In all studies, the authors show benefits of TD/BU approaches when there is an applicable 

object hierarchy for aggregation. 

Temporal aggregation approaches follow a similar intuition as TD/BU. However, aggregation is per-

formed on a per time series level along the timeline, i.e., aggregating buckets of time of each TS.  

Nikolopoulos et al. provide a framework for TA with the aggregate-disaggregate intermittent demand 

approach (ADIDA). In their empirical study they show improvements in forecast applying TA and they 

assume the existence of an optimal aggregation level (Nikolopoulos et al. 2011). Rostami-Tabar et al. 

provide theoretical analytical foundation to the assumption that TA can lead to improved forecasting 

results when exponential smoothing is used as forecasting algorithm (Rostami-Tabar et al. 2013). The 

ADIDA approach is refined by the multiple aggregation prediction algorithm (MAPA), where forecasts 

on multiple aggregation levels are combined into one forecast (Kourentzes et al. 2014). 
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A comparative study between TD/BU and temporal aggregation was conducted by Lütkepohl, but with 

a limited scope on the VARMA forecasting model, a special type of ARMA (Lütkepohl 2010). 

In this section, we conclude that aggregation is an appropriate way to improve forecasting of iTS in 

addition to the specialized forecasting algorithms in Section 6.2.2. Moreover, TD/BU and TA make it 

possible to apply forecasting algorithms that are not particularly specialized to iTS forecasting. Thus, a 

broader choice of forecasting algorithms becomes available to iTS forecasting. 

6.2.4 Basics in the state-of-the-art in time series clustering 

At this point, we provide an overview of TS clustering. One of our assumptions, as introduced in Section 

6.1, is that we apply hierarchical forecasting in the absence of an externally given hierarchy. In the 

further course of this study, we will apply TS clustering as a substitute for this external hierarchy by 

clustering TS based only on their respective characteristics. 

Research has evolved a broad variety of general clustering algorithms. In this study, we will not review 

basic clustering algorithms, but refer the reader to common surveys. We point out the k-means algo-

rithm, which is a frequently used partitioning algorithm (Saxena et al. 2017). 

More relevant to this study are time series specific clustering approaches. Generally, TS clustering fol-

lows the following steps: (1) creating a representation for the TS, (2) calculating a distance (or similarity) 

measure between the TS representations, (3) clustering the TS, and (4) subsequently evaluating the clus-

ter quality (potentially followed by a reiteration of the process). Aghabozorgi et al. describe the broad 

variety of approaches in each step and their combination. (Aghabozorgi et al. 2015). 

For this study, we concentrate on time series representation approaches. Several studies propose frame-

works and packages to extract numerous features from time series. Fulcher and Jones have proposed a 

framework called hctsa of feature extraction algorithms for time series representation, stating more than 

8,000 algorithms (Fulcher et al. 2013; Fulcher and Jones 2014, 2017). Hyndman et al. provide the tsfea-

ture package for R that implements several TS feature extraction approaches described in a previous 

study in 2015 (Hyndman et al. 2015; Hyndman et al. 2022). Christ et al. describe a similar framework, 

called TSFRESH, incorporating time series feature extraction methods as well as an algorithm to select 

the most relevant of the features by hypothesis testing. (Christ et al. 2018). However, none of the before 

mentioned frameworks is specialized on iTS feature extraction. Common approaches like Fourier trans-

formation, wavelet transformation, or dynamic time warping (amongst others) are not found to be espe-

cially suitable for iTS representation. 

Montero-Manso et al. describe the FFORMA approach that builds upon the tsfeature package. They 

apply a meta-learner to infer from TS characteristics which forecasting algorithms are best suited for 

forecasting of these TS. The meta-learner is used to apply weights to the forecasts of different forecast-

ing algorithms to calculate an ensemble prediction (Montero-Manso et al. 2020). A comparable ap-

proach is applied in this study, also referred to as meta-learner. 

From this section we conclude that TS can be clustered based on their characteristics when an appropri-

ate representation is used. Analogously to the representation approaches in the form of feature extraction 

described above, we will use the metrics by Syntetos et al. (see Section 6.2.1) as representation. In 

addition, we propose our own representation metric in Section 6.3.2. In our terminology, the represen-

tation will be a concrete metric that represents the TS characteristics. 
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6.2.5 Aggregation approaches for iTS incorporating clustering 

In the previous sections, we summarized classical approaches to iTS forecasting and the basics of ag-

gregation approaches and TS clustering. As the STSF approach that we propose combines aggregate 

forecasting with TS clustering, we reviewed literature that also addresses this combination. Table 28 

provides an overview of the reviewed studies and a comparison to our STSF approach. We differentiate 

the studies by the following three criteria: (1) focus on intermittent TS, (2) clustering only based on time 

series characteristics (without additional external hierarchy), and (3) a processing sequence of cluster-

ing, aggregation, forecasting on aggregate level, and subsequent disaggregation back to the original level 

of aggregation. 
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Study (1) Focus on iTS (2) clustering based on 

TS characteristics 

(3) comparable pro-

cessing sequence (see 

text below) 

Zotteri et al. 2005 no, TS in general no yes 

Dantas and Cyrino 

Oliveira 2018 

no, TS in general yes no (clustering after fore-

casting) 

Pang et al. 2018 no, TS in general yes yes 

Laurinec et al. 2019 no, TS in general yes yes, however considera-

bly different techniques 

Proposed STSF ap-

proach 

yes yes yes 

Table 28: Comparison of iTS clustering-aggregation studies with the proposed STSF approach 

Zotteri et al. propose an approach in a forecasting scenario of sales and products. Their study applies a 

clustering algorithm to cluster stores with similar penetration rates (i.e., conversion rates) to then aggre-

gate sales of these clusters. This study is characterized by clustering before aggregation and forecasting 

and by an additional external characterization criterion (store sales) – unlike STSF (see Table 28 (1) and 

(2)). The study compares this approach to TD and BU and concludes that best results are achieved for 

TD forecasting and clustering forecasting (Zotteri et al. 2005). In a study by Dantas and Cyrino Oliveira, 

the authors suggest an approach where exponential smoothing forecasting results on bottom levels are 

aggregated through bagging and clustering (partition around medoids). In contrast to the STSF, the clus-

tering is applied after forecasting and based on variance of the forecasts, see Table 28 (3) (Dantas and 

Cyrino Oliveira 2018). A study by Pang et al. applies a TD/BU approach for electricity forecasting, 

where clustering of time series is performed depending on time series correlations. They do not focus 

on iTS, therefore they differ from STSF in point (1) (Pang et al. 2018). Laurinec et al. present an ap-

proach similar to our study where they improve forecasting by cluster time series by their linear regres-

sion coefficients, yielding a result that resembles a spectrogram of the TS. However, their approach does 

not focus on intermittent time series, hence they apply regression coefficients as representation and an 

ensemble bootstrapping forecasting algorithm (see Table 28 (3)). As opposed to our study, they conclude 

that their approach overperforms the state-of-the-art approach only for non-intermittent TS (Laurinec 

and Lucká 2018; Laurinec et al. 2019). 

Our study differentiates from the previously mentioned literature in at least one point (see Table 28). To 

our best knowledge, no literature exists that applies a comparable approach to this study. 

6.3 Methodology and Approach 

The following Section describes the proposed approach and the experiment design that we apply to 

demonstrate empirically the performance of the approach. Figure 17 demonstrates the two-stage design: 

(1) a basic pipeline acts as foundation that can be repeatedly executed with different experiment settings 

to be compared to a baseline approach. On a (2) superior level, the experiment level, different experi-

ment settings are systematically tested and compared. Each experiment is always executed on the basic 

pipeline level with different random seeds for randomization. A meta-learner classifier is applied on 

experiment level, based on the experiment results, to generate an “all-stars” forecast out of the best 

predictions per TS. 
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Figure 17: Overview of the experiment and basic pipeline design. 

6.3.1 The studied data sets 

In this study, we apply the proposed approach to two data sets. Both are publicly available for reproduc-

ibility. 

The M5 data set was published in 2020 on Kaggle for download and contains Walmart sales 1. It consists 

of 30,490 time series on the lowest level of aggregation and 1,941 time steps per time series (Makridakis 

and Spiliotis 2021).  

The Kaggle store sales competitions is another time series forecasting competition, published in 2021. 

It consists of 1.782 time series in total, representing sales of different goods at retailing stores as well 2. 

Table 29 shows an overview of the data sets’ time series categorization by Syntetos et al. We observe 

that the majority of time series in the M5 data set is intermittent or lumpy (91%) as well as a considerable 

share of intermittent or lumpy time series in the Kaggle store sales data set (23%). 

TS category p CV2 No. of time series per category and data set 

   M5 data set Kaggle store sales 

Smooth ≤ 1.32 ≤ 0.49 1,908 TS (6%) 945 TS (53%) 

Erratic ≤ 1.32 > 0.49 868 TS (3%) 427 TS (24%) 

Intermittent > 1.32 ≤ 0.49 22,150 TS (73%) 226 TS (13%) 

Lumpy > 1.32 > 0.49 5,564 TS (18%) 184 (10%) 

Table 29: Categorization of TS following the scheme of Syntetos-Boylan in the two studied data sets with number of time 

series in each category (absolute and percentage of total).  

This study does not aim to develop a competitive forecast particularly for the two competitions. Instead, 

the data sets are chosen, because they are available to the public, they are extensively researched and 

provide a broad range of time series characteristics. Hence, the results of our study can be compared and 

more importantly can be reproduced by any interested researcher. 

 
1 Source: https://www.kaggle.com/competitions/m5-forecasting-accuracy 
2 Source: https://www.kaggle.com/competitions/store-sales-time-series-forecasting 
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However, many input information that are contained in the data sets are deliberately not considered in 

this study, e.g., the supplementary sales prices and calendar information (events, holidays, day of week, 

month, etc.). To comply with the initial premise of the study (i.e., “no external hierarchy is known to 

support the prediction”), we also omitted store and product category information. What remains are 

exclusively univariate time series. 

6.3.2 Machine learning pipeline 

The basic pipeline consists of six steps: B1 to B6. 

In the first step (B1), a random sample is selected from the data set. The sample size depends on the 

experiment settings, as well as the random seed used for the random sampling. 

In a second step (B2), the pipeline calculates representations for each TS. In addition to the representa-

tion criteria proposed by Syntetos et al., we propose a second representation metric that we found to 

perform comparably well: PD-statistics. It consists of two components: periodicity 𝑃 and non-zero de-

mand 𝐷. For each component (per TS), we calculate the three statistics: arithmetic mean (_mean), stand-

ard deviation (_stdev), and the slope of the ordinary least squares regression (_trend), see Table 30 for 

details. 

For a better understanding of the PD-statistics, we introduce the following notation to amend to the 

notations in Section 6.2. Let 𝐷𝑖 be the sequence of non-zero observations of 𝑥𝑡,𝑖 of an object 𝑖 for the D-

statistic. Let further be 𝑃𝑖 be a sequence of the number of non-zero observations of 𝑥𝑡,𝑖 in rolling win-

dows 𝑤𝑘,𝑖 of the observations 𝑥𝑡,𝑖 of the length ℎ of an object 𝑖. 

P-statistic: Periodicity D-statistics: Non-zero demands 

Number of periods with non-zero demands within a rolling time 

frame of ℎ consecutive time steps  
Values of demands in periods with non-zero demand 

Be 𝑤𝑘,𝑖 = 𝑛(𝑥𝑡,𝑖 > 0 𝑡 ∈ {𝑘, 𝑘 + 1, … , 𝑘 + ℎ − 1} with 𝑘 ∈
{0,1, … , 𝑡𝑚𝑎𝑥 − ℎ + 1} rolling windows where 𝑛(𝑥𝑡,𝑖) denotes the 

number of observations of 𝑥𝑡,𝑖 that fulfil the condition (i.e. 

cardinality). 

Be 𝑃𝑖 = {𝑤𝑘,𝑖 , 𝑘 ∈ {0,1, … , 𝑡𝑚𝑎𝑥 − ℎ + 1}} the sequence of rolling 

windows 𝑤𝑘,𝑖 of the number of non-zero observations of 𝑥𝑡,𝑖 and 

object 𝑖 . 

Be 𝑑𝑡,𝑖 = {𝑥𝑡,𝑖 > 0}, 𝑡 ∈ 𝑇  the non-zero demand of object 𝑖 at time 

𝑡 and 𝐷𝑖 = {𝑑𝑡,𝑖 , 𝑡 ∈ 𝑇} the sequence of non-zero demands of ob-

ject 𝑖. 

Arithmetic mean of the elements in 𝑃𝑖 (“p_mean”):  

𝑝𝑖,𝑚𝑒𝑎𝑛 =
1

𝑛(𝑃𝑖)
∑ 𝑝𝑖

𝑝𝑖∈𝑃𝑖

 

Standard deviation of the elements in 𝑃𝑖 (“p_stdev”): 

𝑝𝑖,𝑠𝑡𝑑𝑒𝑣 =
1

𝑛(𝑃𝑖)
∑ |𝑝𝑖 − 𝑝𝑖,𝑚𝑒𝑎𝑛|

𝑝𝑖∈𝑃𝑖

 

Slope of the ordinary least squares regression of the elements of 𝑃𝑖 

(“p_trend”): 

𝑝𝑖,𝑡𝑟𝑒𝑛𝑑 =
∑ (𝑘 − 𝑘)(𝑤𝑘,𝑖 − 𝑝𝑖,𝑚𝑒𝑎𝑛𝑘∈{0,1,…,𝑛(𝑃𝑖)−1} )

∑ (𝑘 − 𝑘)
2

𝑘∈{0,1,…,𝑛(𝑃𝑖)−1}

 

where 𝑘 denotes the arithmetic mean of the values of 𝑘 ∈
{0,1, … , 𝑛(𝑃𝑖) − 1} 

Arithmetic mean of the elements in 𝐷𝑖 (“d_mean”):  

𝑑𝑖,𝑚𝑒𝑎𝑛 =
1

𝑛(𝐷𝑖)
∑ 𝑑𝑖

𝑑𝑖∈𝐷𝑖

 

Standard deviation of the elements in 𝑃𝑖 (“d_stdev”): 

𝑑𝑖,𝑠𝑡𝑑𝑒𝑣 =
1

𝑛(𝐷𝑖)
∑ |𝑑𝑖 − 𝑑𝑖,𝑚𝑒𝑎𝑛|

𝑑𝑖∈𝐷𝑖

 

Slope of the ordinary least squares regression of the elements of 𝐷𝑖 

(“d_trend”): 

𝑑𝑖,𝑡𝑟𝑒𝑛𝑑 =
∑ (𝑘 − 𝑘)(−𝑑𝑖,𝑚𝑒𝑎𝑛𝑘∈{0,1,…,𝑛(𝐷𝑖)−1} )

∑ (𝑘 − 𝑘)
2

𝑘∈{0,1,…,𝑛(𝐷𝑖)−1}

 

where 𝑘 denotes the arithmetic mean of the values of 𝑘 ∈
{0,1, … , 𝑛(𝑃𝑖) − 1} 

Table 30: Calculation of the two components and their statistics of the PD-statistics 

The PD-statistics aim to provide an additional approach to capture periodicity of non-zero demands and 

the value of non-zero demands alongside the Syntetos-Boylan classification. By using the mean, stdev 

and trend statistics, we aim to not only capture only static characteristics of the TS but also variations 
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over time. The effectiveness of the PD-statistics compared to the Syntetos-Boylan approach is discussed 

in Sections 6.4 and 6.5. 

We chose the P-statistic rolling window size ℎ = 7 for all experiments to cover exactly one week, as 

both data sets provide daily observations. This parameter is subject to further optimization in future 

research, as we also discuss in Section 6.6. 

In step three (B3), the pipeline clusters the TS. As a clustering algorithm, we apply the k-means cluster-

ing algorithm. The number of clusters is given in the experiment settings. As input, the cluster algorithm 

takes either the Syntetos-Boylan representations or the PD-statistics. All values are min-max (linear 

normalization to domain zero to one) scaled before clustering. Time series in identical clusters are then 

aggregated (summed up) for each time step. 

In step four (B4), the pipeline trains a forecasting model on the aggregated time series and calculates a 

one-step ahead forecast for each time step of the aggregated TS. As forecasting algorithm, we apply the 

LGBM algorithm as implemented in the scikit-learn package (HistGradientBoostingRegressor). We use 

only the default hyperparameter setting from the package and do not apply hyperparameter optimization. 

Additionally, we applied the TSB approach based on Croston’s approach (referred to as Croston_TSB) 

proposed by Teunter et al. at one point of the study. The results cannot compete with the results of the 

LGBM algorithm, however we find it a good comparison for the reader to relate to a well-known clas-

sical iTS forecasting algorithm (Teunter et al. 2011). 

The forecasting model is trained with the training data of all aggregated time series simultaneously. No 

additional exogenous data as explanatory variables is provided. In order to split training and test data, 

we apply k-fold cross validation (with three folds). We refer the reader to the following articles for those 

not familiar to the k-fold approach in conjunction with TS cross validation (Bergmeir and Benítez 2012; 

Bergmeir et al. 2018). 

The three-fold cross validation ensures that the forecasting algorithm is never trained on data that it is 

supposed to predict. During the training and forecasting, the model is iteratively trained on two thirds 

of the data set and predicts the outcome of the remaining third part of the data without knowledge of the 

time series of the third part. The model is then reset to the initial state, before it is trained on a different 

part of the data int the next iteration (i.e., “cold start”, see Figure 18). After three iterations, the fore-

casting algorithm has generated predictions for all three thirds of the time series, whilst having learned 

always the other two thirds in each iteration. The same principle is also applied in the subsequent steps 

B5, A4 and A5. We emphasize that no hyperparameter tuning is done (i.e., the default parameters of the 

scikit-learn package are always used), so we do not draw an additional validation sample from the data. 
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Figure 18: Scheme of the three fold k-fold cross-validation approach. The input data is split into three folds. The k-fold prin-

ciple ensures that no information about the forecasted time series is leaked to the forecasting model. 

In step five (B5) of the basic pipeline, we apply another LGBM model to disaggregate the aggregate 

forecast. The model is trained to learn the relationship between forecasts on aggregated level and dis-

aggregated actual values on disaggregate level. Technically speaking, the model is trained with aggre-

gate forecast values and the TS identification number as input and disaggregate actual values as target 

variable. The trained model then produces disaggregation forecasts, again using k-fold with three folds 

to separate training and test data. 

In the final step (B6) of the basic pipeline, the disaggregate forecasts are compared to the actual time 

series values using the following evaluation metrics: coefficient of determination (R²), rooted mean 

squared error (RMSE), mean absolute error (MAE) equal to mean absolute deviation (MAD), MAD by 

mean ration (MADmeanRatio) (Kolassa and Schütz 2007), mean absolute scaled error (MASE), and 

rooted mean squared scaled error (RMSSE). The pipeline applies the metrics per TS and then calculates 

the weighted mean, weighted by the TS share of total values. 

To compare our approach with a state-of-the-art approach, we also produce one forecast without aggre-

gation-disaggregation, which we refer to as “baseline”. We employ the same experiment settings and 

randomization; however, the data is not clustered, and the forecasting model is trained and produces a 

forecast on the original time series level. The baseline is implemented as clustering approach with cluster 

size equal to exactly one time series per cluster. The pipeline skips the steps B3 and B5. 

The baseline predictions are forecasted by an LGBM model, which is newly trained on the not-aggre-

gated input time series. Thereby, there is no systematic difference induced through the forecasting algo-

rithm between the baseline and the experiments. By this design choice we aim to keep the approach 

agnostic to the forecasting algorithm applied. 

The entire pipeline is implemented using scikit-learn for Python 3.8 (Pedregosa et al. 2011). 

6.3.3 Experiment design 

The basic pipeline as we describe before, can be called with different settings and randomization. Table 

31 shows the relevant settings that we used for this study (A1). From the possible experiment values, 

we generated all possible combinations of experiments 𝑠 ∈ 𝑆 = {0,1, … , 𝑠𝑚𝑎𝑥} (cross product of the 

attributes and values) and executed the basic pipeline (A2). In total, we have defined 11 experiments (5 
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cluster sizes × 2 representation approaches + 1 baseline) and 132 experiment runs (11 experiments × 

12 randomizations: 12 arbitrary random seeds with values 900 to 911). 

Table 31: Overview of experiment design settings. 

The result of all runs is a comprehensive database of aggregate and disaggregate forecasts, the corre-

sponding baseline forecasts, and their evaluation results in step A3. We calculate the difference of eval-

uation results of all evaluations compared to their respective baseline on disaggregate level: 

𝑑𝑒𝑙𝑡𝑎𝑖,𝑠,𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐

= 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠) − 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠) 

(1) 

𝑑𝑒𝑙𝑡𝑎_𝑝𝑒𝑟𝑐𝑖,𝑠,𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐

= 𝑑𝑒𝑙𝑡𝑎𝑖,𝑠,𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐/𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠) 

(2) 

From the deltas per TS and experiment, we can decide whether our approach or the state-of-the-art 

baseline approach yields better results in the particular instance. We label all experiment-TS combina-

tions with “stsf” for delta values larger or equal zero and “baseline” for delta smaller zero. This means 

that time series are labeled “stsf” if the evaluation metric indicates lower or equal forecasting errors and 

“baseline” in the case that the evaluation metric indicates higher forecasting errors. This is the case for 

all evaluation metrics, except for the R² metric. Here, delta values lower or equal. 

𝑙𝑎𝑏𝑒𝑙𝑖,𝑠 = {
′𝑠𝑡𝑠𝑓′,          𝑑𝑒𝑙𝑡𝑎𝑖,𝑠,𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐 ≥ 0

′baseline ′,   𝑑𝑒𝑙𝑡𝑎𝑖,𝑠,𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐 < 0
 

(3)3 

At this point, we can systematically run experiments with different settings and compare them to the 

baseline on a per-TS level. Therefore, we can study whether our proposed approach yields better fore-

casting results, which settings of the approach perform best and which TS benefit how much from the 

approach. To deduce whether and which TS characteristics account for better forecasting results, we 

introduce the last steps of the experiment design. 

In step A4, we train another LGBM model to classify the labels of the time series. We call this model 

the meta-learner model. As additional input, we provide the model with the representation data of the 

time series (both Syntetos-Boylan representation and PD-statistics). In A5, the model then predicts the 

labels for the time series, again in a three folded k-fold cross-validation approach. Finally, based on the 

predicted label of the meta-learner, we have a prediction, whether the forecast of our approach or the 

baseline’s forecast will probably be more accurate. From this, we can construct an all-stars forecast, 

consisting of either our approach’s results or the baseline’s results. 

To provide a evident comparison with a simple state-of-the-art approach, we also implemented the ap-

proach Teunter et al. as an additional baseline approach. We will refer to the results as Croston_TSB in 

the remainder of the study. We apply time series cross validation as implemented in the TimeSeriesSplit 

 
3 For all evaluation metrics except the R² metric. For the R² metric, labels are assigned reverse. 

Experiment Sample size Representation No. of clusters 

0 

500 TS 

PD-statistics 

3 

1 5 

2 10 

3 100 

4 200 

5 

Syntetos-Boylan 

3 

6 5 

7 10 

8 100 

9 200 

10 (Baseline) w/o no clustering 
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function of the scikit-learn package. We provide at least 50% of each univariate time series to the algo-

rithm for training and the next consecutive time step as test. 

6.3.4 Remarks on the STSF pipeline design 

We point out that the STSF pipeline approach is generally agnostic to the standard algorithms employed 

in most steps. The essence of the STSF approach is the design depicted in Figure 17, not the particular 

algorithm. We therefore encourage future research to replace especially the PD-statistics and Syntetos 

Boyle classification as representation in (B2), the k-means algorithm in (B3) or the LGBM algorithm in 

steps (B4), (B5) and (A4/5) to further optimize the approach. 

The influence of the LGBM algorithm as the forecasting algorithm is minimized by the baseline com-

parison. Both the experiments as well as the baseline apply the LGBM algorithm in the same way in 

steps (B4) and (B5). 

Further, the pipeline presented in the previous sections implies several parameters and design choices 

(e.g., the selection of the clustering algorithm or forecasting algorithm, the P-statistics window size ℎ, 

etc.). Important parameters, such as the number of clusters, were included in the experiment design with 

different values for direct comparison. However, due to limited computational power, we did not con-

sider all parameters, but made reasonable decisions for initial values for some of them. We note in 

Section 6.6 that the comprehensive research of optimal parameter values is subject to future research on 

the STSF pipeline. 

6.4 Results 

This section describes the results of the approach in the experiments. We will show that the basic pipe-

line cannot improve results overall, and how the meta-learner can lead to overall results and which time 

series benefit from our approach. 

6.4.1 Basic pipeline results 

We first compare the total weighted evaluation results over all TS per run (experiment and randomiza-

tion). As we are primarily forecasting intermittent time series, we concentrate on the RMSE evaluation 

metric as unbiased metric for the conditional median, as proposed by Kolassa (Kolassa 2016, 2020). 

Section 6.4.4 provides a comparison of the results for all evaluation metrics. Further discussion of the 

interpretation of the differences between the metrics results are provided in Section 6.6. 
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M5 Kaggle store sales 

  

Figure 19: Boxplot of RMSE_delta_perc per experiment before application of the meta-learner (see pipeline step B6). The 

RMSE is calculated as weighted average of TS scores, weighted by total values of the TS. Dots indicate the 

RMSE_delta_perc results of each experiment and randomization. Experiments 0-4 based on PD-statistics representation, ex-

periments 5-9 on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 100, 200. 

Figure 19 shows the results of the experiments before application of the meta-learner as described in 

step B6, measured by the percentage delta of the RMSE compared to the baseline. The pairwise t-test 

for mean values between scores of the experiments with their respective baselines indicates statistical 

significance for different mean values at p-values ≪ 0.05. All significance tests are performed using the 

Benjamini-Hochberg correction for multiple hypothesis test and p-values are corrected according to 

their approach (Benjamini and Hochberg 1995). Section 6.4.4 describes how the correction was applied. 

We will generally consider p-values below 5% as significant throughout this study for pairwise t-tests 

for independent mean values under Benjamini-Hochberg correction. We note that the actual p-values 

are mostly considerably lower than this value in fact, unless stated differently. As the mean 

RMSE_delta_perc is negative for all experiments but one (Kaggle store sales experiment 3), we can 

deduce that the overall performance of our approach is less than the performance of the baseline (i.e., 

baseline score is lower than experiment score – where RMSE is a metric where smaller values are better). 

Consequently, our approach is up to 5% worse than the baseline, when applied to all TS. 

Table 32 exhibits the mean RMSE evaluation results compared between the LGBM algorithm and the 

Croston_TSB algorithm after step B6 of the basic pipeline (Teunter et al. 2011). As the LGBM evalua-

tion results dominate the TSB results in each randomization, we concentrate on the LGBM results in the 

further course of the study. 

Mean RMSE evaluation result of the basic pipeline before meta-learner application (Step B6) 

Randomization 

(seed no) → 

900 901 902 903 904 905 906 907 908 909 910 911 

M5 

Croston_TSB 1.96 2.52 2.06 2.61 2.31 2.98 1.93 2.06 1.79 1.94 2.32 2.16 

STSF (LGBM) 1.80 2.51 1.93 2.42 2.14 2.73 1.80 1.87 1.65 1.87 2.22 2.11 

Baseline (LGBM) 1.77 2.49 1.91 2.39 2.12 2.79 1.77 1.85 1.63 1.86 2.20 2.11 

Kaggle store sales 

Croston_TSB 485.1 385.1 461.9 390.3 515.7 589.3 450.0 395.1 378.0 402.9 562.3 534.6 

STSF (LGBM) 305.6 255.8 287.1 230.3 319.9 358.6 272.4 258.8 237.6 255.2 347.6 323.6 

Baseline (LGBM) 296.7 256.4 279.7 223.4 308.4 343.4 263.4 256.5 231.7 246.7 333.3 309.7 

Table 32: Experiments mean RMSE evaluation results before meta-learner application. The randomizations are denoted by 

the used seed values. The LGBM algorithm exhibits notably lower errors than the TSB algorithm throughout all randomiza-

tions. 
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6.4.2 Meta-learner results 

As described in the previous section, a meta-learning model is applied on TS-level to predict inde-

pendently which TS benefit from our approach and to assemble an all-stars approach. The results are 

shown in Figure 20. 

 

M5 Kaggle store sales 

  

Figure 20: Boxplot of RMSE_delta_perc per experiment after application of the meta-learner (see pipeline step A6). The 

RMSE is calculated as weighted average of TS scores, weighted by total values of the TS. Dots indicate the 

RMSE_delta_perc results of each experiment and randomization. Experiments 0-4 based on PD-statistics representation, ex-

periments 5-9 on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 100, 200. 

In contrast to the previous results in Figure 19, the mean experiment scores with meta-learning all out-

perform the baseline on an experiment level, only with one exception (Kaggle store sales Experiment 

4). The mean value of all RMSE_delta_perc per experiment accounts for 0.7% for M5 and 1.2% for 

Kaggle store sales. See Table 34 for tabular experiment results. 

We observe no patterns in the direct comparison of Figure 19 and Figure 20 with respect to the relation-

ship of the experiments amongst each other. As well, the experiment with PD-statistics approach repre-

sentation (Experiments 0-4) perform comparably to the experiments with Syntetos-Boylan representa-

tion (Experiments 5-9). Observing results on the experiment and randomization level (single dots in the 

figures), 98% of M5 results perform better than the baseline (RMSE_delta_perc results greater or equal 

to zero) and 80% of Kaggle store sales results are above baseline. 

Figure 21 shows the significant improvement of our approach for TS that the meta-learning algorithm 

predicts as stsf. The mean scores are up to 10% and at least 2% better than the corresponding baseline 

scores. 

Table 33 depicts the accuracy of the meta-learner when predicting TS labels. Over all experiments, the 

meta-learner classifies 84% of labels correctly, with values between 68% (minimum) and 93% (maxi-

mum) per experiment and data set. 

The results of all figures shown in this and the previous section exhibit p-values ≪ 0.05 in paired t-tests 

for independent mean values (baseline vs. experiment evaluation scores, under Benjamini-Hochberg 

correction). We therefore deduce statistical significance for all statements in this section (also see Table 

38). 
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 Experiment  
0 1 2 3 4 5 6 7 8 9 

predicted 

label → 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

stsf base

line 

actual 

label ↓ 

M5 data set 

stsf 25% 6% 26% 4% 29% 6% 31% 17% 30% 23% 27% 6% 27% 6% 24% 5% 26% 7% 26% 8% 

baseline 3% 65% 2% 68% 2% 63% 10% 42% 9% 38% 2% 65% 2% 66% 4% 67% 3% 64% 2% 64% 

Kaggle store sales data set 

stsf 38% 9% 40% 11% 41% 11% 43% 14% 49% 16% 34% 8% 34% 9% 32% 9% 20% 11% 16% 12% 

baseline 7% 46% 7% 42% 8% 41% 9% 34% 9% 27% 8% 50% 7% 50% 9% 50% 11% 58% 10% 62% 

Table 33: Confusion matrix of the actual (rows) and predicted (columns) ‘stsf’- and ‘baseline’-labels of the meta-learning 

step for each experiment (aggregated over all seeds). Experiments 0-4 based on PD-statistics representation, experiments 5-9 

on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 100, 200. 

M5 Kaggle store sales 

  

Figure 21: Boxplot of RMSE_delta_perc per experiment after application of the meta-learner (see pipeline step A6) and only 

for TS with predicted “a” label. The RMSE is calculated as weighted average of TS scores, weighted by total values of the 

TS. Dots indicate the RMSE_delta_perc results of each experiment and randomization. Experiments 0-4 based on PD-statis-

tics representation, experiments 5-9 on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 100, 200. 

 

 Experiment (measured by mean RMSE_delta_perc x 100% over all random seeds) 

 0 1 2 3 4 5 6 7 8 9 10 11 

M5 data set 

Before meta-learner (B6) 
– see Figure 19 

-0.73% -0.70% -0.63% -0.39% -0.06% -0.43% -0.51% -0.61% -1.41% -1.44% -0.73% -0.70% 

After meta-learner (A6) 

all TS – see Figure 20 
0.79% 0.75% 0.76% 0.75% 0.89% 0.94% 0.96% 0.82% 0.53% 0.49% 0.79% 0.75% 

After meta-learner (A6) 
only predicted “stsf”-la-

bels – see Figure 21 

1.97% 2.03% 2.01% 1.70% 1.63% 1.98% 2.06% 1.79% 1.70% 1.46% 1.97% 2.03% 

Kaggle store sales data set 

Before meta-learner (B6) 
– see Figure 19 

-4.22% -3.91% -2.85% 1.50% -3.30% -4.40% -3.96% -4.08% -2.84% -1.79% -4.22% -3.91% 

After meta-learner (A6) 

all TS – see Figure 20 
1.10% 1.36% 1.87% 1.94% -1.73% 1.21% 1.40% 1.50% 1.50% 1.85% 1.10% 1.36% 

After meta-learner (A6) 

only predicted “stsf”-la-

bels – see Figure 21 

4.67% 4.80% 6.91% 4.92% -3.16% 4.07% 4.59% 4.69% 5.81% 5.54% 4.67% 4.80% 

Table 34: Overview of results of the experiments, given as mean RMSE in percent from the previous Figure 19, Figure 20 

and Figure 21. Bold values indicate best experiment result per table row. Experiments 0-4 based on PD-statistics representa-

tion, experiments 5-9 on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 100, 200. 
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6.4.3 Classification of time series with forecast improvement 

From the high classification accuracy of the meta-learner, we deduce that there are characteristics of the 

time series that make the identification of TS that benefit from our approach possible. From the previous 

results, general intuition implies that the number of clusters, the representation type, and the individual 

TS characteristics play a role in the degree of improvement. In this subsection, we concentrate on the 

TS characteristics only, which were the only inputs available to the meta-learning algorithms: PD-sta-

tistics and Syntetos-Boylan representation (irrespective of the actual representation used in clustering). 

Figure 22 and Figure 23 visualize the PD-statistics and evaluation results. Each point in the scatter plot 

denotes one TS out of the experiments 0 – 9. Points with green color show TS where the approach 

exhibits better evaluation results than the baseline. From the visualization, intuition indicates that accu-

mulations of green points are identifiable – especially for low values of p_stdev, p_mean, d_stdev, and 

d_mean. One can also identify a cone-shaped relationship between the P-statistics in Figure 22. It is also 

apparent that the separation between positive and negative RMSE_delta_perc for the Kaggle store sales 

data is more distinct than for the M5 data, as well as the spread of the RMSE_delta_perc values them-

selves. 

 

M5 

 

Kaggle store sales 

 

Figure 22: 3D scatter plot of P-statistics on TS level. The colors indicate the RMSE_delta_perc. Data from all experiments 

and seeds. Observe that the color scales are different for M5 and Kaggle store sales. 

M5 

 

Kaggle store sales 

 

Figure 23: 3D scatter plot of D-statistics on TS level. The colors indicate the RMSE_delta_perc. Data from all experi-

ments and seeds. Observe that the color scales are different for M5 and Kaggle store sales. 
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Input Importance  
M5 Kaggle 

store sales 

d_mean 13% 19% 

d_stdev 11% 12% 

p_stdev 11% 2% 

CV2 11% 17% 

adi 8% 4% 

p_mean 7% 3% 

d_trend 7% 9% 

p_trend 6% 2% 

CV2_aggr 4% 6% 

d_trend_aggr 4% 6% 

d_stdev_aggr 4% 6% 

d_mean_aggr 3% 7% 

adi_aggr 3% 1% 

p_mean_aggr 3% 1% 

p_trend_aggr 2% 1% 

p_stdev_aggr 2% 1% 
 

 M5  Kaggle store sales 

Feature cut off AUC cut off AUC 

p_stdev 1.58 0.73 3.08 0.47 

d_mean 1.55 0.72 11.32 0.77 

d_stdev 0.91 0.70 7.03 0.74 

CV2 0.31 0.67 0.48 0.32 

p_mean 1.79 0.65 4.21 0.77 

d_stdev_aggr 14.60 0.60 3,482.52 0.67 

d_mean_aggr 30.74 0.59 4,976.98 0.69 

p_trend 0.00 0.57 0.00 0.46 

d_trend_aggr 0.02 0.57 3.18 0.66 

p_mean_aggr 6.96 0.55 6.95 0.65 

p_trend_aggr 0.00 0.50 0.00 0.40 

CV2_aggr 0.27 0.46 0.12 0.32 

d_trend 0.00 0.45 0.00 0.61 

p_stdev_aggr 0.42 0.45 0.43 0.39 

adi_aggr 1.00 0.44 1.00 0.35 

adi 2.01 0.29 1.00 0.31 
 

Table 35: Meta-learner feature importance values. The val-

ues are generated by a random forest model (not the origi-

nal LGBM model) for visualization purposes only. 

Table 36: Overview of possible cut-off values and AUC values 

determined by the ROC-curve approach. 

To determine the overall importance of the TS characteristics, we evaluated the feature importance func-

tion of the meta-learner. The scikit-learn LGBM implementation (HistGradientBoostingRegressor) does 

not provide a feature importance function, therefore we trained a random forest model instead of the 

LGBM meta-learner (only to obtain feature importance values). Table 35 shows the importance of each 

input to the meta-learner. We note that the most relevant inputs are p_stdev, adi, p_mean, d_mean and 

CV2. While p_stdev represents a feature of high importance for the M5 data set TS characterization, the 

input is not of high importance for the classification of the Kaggle store sales data set. 

In Table 36, we determined cut-off values for each input to discriminate “stsf” and “baseline” label TS. 

Therefore, we chose the ROC curve approach per input. The high AUC values for p_stdev, p_mean, 

d_mean, and CV2 again imply the relevance of these inputs to the discrimination of labels. The suggested 

cut-off values were determined by the threshold value of the minimum Euclidian distance of the ROC 

curve to the point (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒, 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒)  =  (0,1). In contrast to Table 35, the 

AUC of the input adi implies no relevance to discriminate the labels. 

We also observe that the representation values of the aggregated clustered time series (denoted by _aggr) 

have limited relevance to discriminate between the labels. 

6.4.4 Comparison of different evaluation metrics 

While the previous sections concentrated on the results by the RMSE metric, all experiments were eval-

uated by all metrics stated in section 6.3.2. For comparison with the already discussed results, we show 

the results in the following tables. 
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Experiment No. delta_perc for TS with predicted “stsf”-label 

MADmeanRatio MAE MASE R2 RMSE RMSSE 

M5 data set 

0 5.29% 5.29% 2.67% -3.27% 1.97% 1.63% 

1 4.94% 4.94% 2.42% -4.43% 2.03% 1.51% 

2 4.71% 4.71% 1.95% -4.28% 2.01% 1.44% 

3 3.08% 3.08% 1.84% -2.66% 1.70% 1.41% 

4 2.74% 2.74% 1.97% -2.53% 1.63% 1.27% 

5 4.85% 4.85% 3.01% -2.25% 1.98% 1.72% 

6 4.43% 4.43% 2.44% -2.28% 2.06% 1.86% 

7 3.47% 3.47% 1.80% -1.75% 1.79% 1.52% 

8 1.94% 1.94% 1.28% -3.41% 1.70% 1.04% 

9 1.93% 1.93% 1.66% -2.93% 1.46% 0.98% 

Kaggle store sales data set 

0 17.59% 17.59% 21.38% -1.64% 4.67% 4.25% 

1 15.10% 15.10% -16.82% -0.68% 4.80% 4.51% 

2 17.25% 17.25% 1.62% -0.79% 6.91% 6.53% 

3 9.26% 9.26% 10.58% -0.48% 4.92% 4.00% 

4 7.45% 7.45% 8.34% 0.34% -3.16% -1.75% 

5 18.38% 18.38% 19.78% -0.54% 4.07% 4.03% 

6 19.88% 19.88% 21.26% -0.55% 4.59% 4.36% 

7 16.84% 16.84% 16.50% -0.62% 4.69% 5.06% 

8 15.73% 15.73% 18.38% -0.61% 5.81% 4.79% 

9 11.02% 11.02% 8.16% -0.62% 5.54% 4.77% 

Table 37: Delta_perc values for different evaluation metrics for TS with predicted "stsf"-label. Bold values indicate the ex-

periment with the best result per evaluation metric. Experiments 0-4 based on PD-statistics representation, experiments 5-9 

on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 100, 200. 

Table 37 shows the delta_perc results for different metrics (only predicted “stsf”-label TS). The RMSE 

results are identical to the previous sections. The MAE results are equal to the MADmeanRatio results, 

as the weighted average function has the same effect. For the R² metric, we observe predominantly 

negative values. However, these are expected as the R² metric indicates better forecasting accuracy with 

higher evaluation scores, as opposed to the other metrics. Hence, negative delta_perc values indicate 

only for R² that the experiment results exhibit a better evaluation result than the baseline. The values for 

MASE, RMSE and RMSSE are comparable to the MADmeanRatio values, however on an overall lower 

level. 

From Table 37 we draw the following conclusions: 

• Most of the experiments exhibit a positive delta_perc value, which indicates that the STSF ap-

proach performs a higher forecasting accuracy than the baseline. 

• The evaluation results of the Kaggle store sales are overall higher compared with the M5 results. 

• We do not observe a systematic pattern when we compare the results between the experiments. 
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 p-value of paired t-test, Benjamini-Hochberg corrected H0 hypothesis rejected? 

Metric 

→ 

Exper-

iment ↓ 

MAD-

mean-

Ratio 

MAE MASE R2 RMSE RMSSE 

MAD-

mean-

Ratio 

MAE MASE R2 RMSE RMSSE 

M5 data set 

0 0.02% 0.21% 1.47% 0.09% 0.36% 0.00% True True True True True True 

1 0.06% 0.04% 0.00% 0.04% 0.11% 0.00% True True True True True True 

2 0.03% 0.30% 0.33% 0.07% 0.48% 0.00% True True True True True True 

3 0.02% 0.02% 0.06% 0.05% 0.07% 0.05% True True True True True True 

4 0.00% 0.01% 0.06% 0.04% 0.08% 0.02% True True True True True True 

5 0.06% 0.02% 0.39% 0.02% 0.03% 0.19% True True True True True True 

6 0.12% 0.02% 0.04% 0.03% 0.26% 0.39% True True True True True True 

7 0.44% 0.26% 0.01% 0.00% 0.16% 0.19% True True True True True True 

8 0.49% 0.23% 2.98% 0.30% 0.47% 0.12% True True True True True True 

9 0.06% 0.75% 0.81% 0.26% 0.32% 0.55% True True True True True True 

Kaggle store sales data set 

0 0.00% 0.00% 0.00% 6.32% 2.88% 1.78% True True True False True True 

1 0.11% 0.11% 1.62% 1.04% 0.95% 0.98% True True True True True True 

2 0.02% 0.00% 93.92% 1.03% 0.20% 0.55% True True False True True True 

3 3.30% 3.22% 3.07% 0.06% 0.06% 0.02% True True True True True True 

4 1.67% 0.69% 1.95% 1.30% 1.30% 3.92% True True True True True True 

5 0.02% 0.00% 0.02% 0.53% 1.61% 0.69% True True True True True True 

6 0.00% 0.00% 0.00% 0.25% 0.45% 0.21% True True True True True True 

7 0.02% 0.00% 0.02% 0.40% 0.62% 0.45% True True True True True True 

8 0.01% 0.00% 0.00% 7.01% 5.53% 8.17% True True True False False False 

9 0.02% 0.00% 23.87% 2.09% 2.33% 2.79% True True False True True True 

Table 38: Left part of the table shows p-values of the paired t-tests for independent mean values of the experiment evalua-

tions compared to their respective baseline, corrected by Benjamini-Hochberg approach for multiple comparisons (false-de-

tection-rate parameter: 5%). The right part of the table shows the, whether the H0 hypothesis (“experiment and baseline yield 

same mean value") can be rejected at a confidence level of 95%. The table directly relates to Table 37. Experiments 0-4 

based on PD-statistics representation, experiments 5-9 on Syntetos-Boylan representation. Experiment cluster sizes: 3, 5, 10, 

100, 200. 

Table 38 shows the p-value of paired t-tests for independent mean values of the evaluation results be-

tween the experiments and the respective baselines. To prevent alpha inflation in the multiple compari-

son problem, the p-values are corrected by the Benjamini-Hochberg approach at a false-detection-rate 

of 5% (Benjamini and Hochberg 1995). The table also shows whether the H0 hypothesis (“mean values 

of the experiment and baseline evaluation are identical”) can be rejected at a confidence level of 95%. 

We observe that most evaluation results on experiment and evaluation metric level are significant (114 

out of 120). We conclude that the experiment evaluation results significantly deviate from the baseline 

evaluation results and therefore that our findings from the previous section to be highly unlikely to be 

the product of lucky sampling.  

6.5 Summary of Results and Conclusion 

In this section, we take up the research questions from Section 6.1 and draw our conclusions based on 

the results of the previous section. 

Regarding RQ1, we conclude from the results that the approach that we propose can improve forecasting 

of time series. The results in Section 6.4.1 show that the basic pipeline (B1-B6) is not able to improve 

the evaluation score when the approach is applied to all time series. All overall evaluation results of the 

basic pipeline indicate lower forecasting performance than the baseline approach (see Figure 19, all 

RMSE_delta_perc values less than zero). However, the results in Section 6.4.2 show that the full pipe-

line, including the meta-learner yields better evaluation results than the respective baseline approach in 

most of the cases (see Figure 20). This empirical finding is supported by the high confidence levels of 

the t-test for different mean values (see Table 38). We remark that, depending on the applied evaluation 
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metric, not all experiments yield that the STSF approach shows better results than the baseline approach 

(see Section 6.4.4). 

The question raised in RQ2 concerns the capability to identify TS that benefit from the approach. As 

the meta-learner exhibits high accuracy in classifying “stsf”/”baseline” (better or worse than baseline) 

labels on TS level only based on the knowledge of the TS representation itself, we can conclude that 

classification is possible. Furthermore, RQ2 addresses how the TS that benefit from our approach are 

characterized and how much the improvement is. From the results in Section 6.4.3, we conclude that 

these TS are mainly characterized by: (1) strong influence of a low variation in periodicity (i.e., p_stdev), 

(2) low overall demand and demand fluctuation (i.e. d_mean, d_stdev), and (3) low periodicity values 

(i.e. p_mean) (see Table 36). In the Syntetos-Boylan categorization, these are “intermittent” TS (how-

ever not exactly congruent with their definition of “intermittent”). The reader should note that the men-

tioned cut-off values are meant to help to understand the results, but not as a practical recommendation 

to select TS suitable to the approach, especially as we do not provide overarching values for the statistics 

for both data sets. As the overall results of the approach rely heavily on the correct labeling of TS, the 

meta-learner approach is advised. 

With respect to RQ3, we conclude that TS that benefit from our approach can be identified in advance, 

i.e., before running the approach. Table 35 shows that the TS characteristics (PD-statistics and Syntetos-

Boylan representation on TS-level) account for most of the feature importance of the meta-learner. 

These characteristics can be calculated before the actual approach (see Step B1). The characteristics on 

aggregate level account for a small proportion of the feature importance (~ 22%). Accordingly, training 

the meta-learner only for non-aggregated TS characteristics inputs yields comparably accurate predicted 

labels. 

In addition to the focus on TS characteristics, we can also conclude for RQ4 how other influences affect 

the approach. We could not observe systematical differences between the experiments; therefore we 

cannot conclude whether the number of clusters or the representation approach yield relevant differ-

ences. This poses a potential for improvement of the approach, as we will conclude in Section 6.6. From 

a practitioner view, this means that the STSF approach is relatively robust to the parameters and will 

exhibit improved forecasting accuracy even without emphasized hyper-parameter optimization. 

However, as the evaluation results strongly differ between the two data sets, we can conclude that the 

data set characteristics influence the performance of the STSF approach.  

Summarizing the results, we conclude that our approach contributes to the forecasting of iTS by provid-

ing an approach that exhibits reliable, predictable, and reproducible increase of forecasting accuracy for 

TS that can be characterized in advance before conducting the approach. With an overall improvement 

based on the RMSE metric for the experiment forecast compared to the state-of-the-art baseline ap-

proach of 2.06% (M5, Experiment 6) and 6.91% (Kaggle store sales, Experiment 2) the improvement is 

to be considered relevant and significant (by the t-tests conducted, see Table 37 and Table 38). Also, for 

other metrics (see Section 6.4.4), we find significant experiments that provide an improvement over the 

baseline approach. In its current state, it already provides a tool for practitioners to improve the fore-

casting quality of iTS. Due to the modular design of the pipeline, it also provides an extensible frame-

work for research to enhance the pipeline further. To the best of our knowledge from the review of the 

literature, no comparable approach exists that applies aggregation-disaggregation to iTS only based on 

TS characteristics alone. As discussed in Section 6.1, this is a relevant use case for practice and aca-

demia, in cases where forecasting is supposed to be improved where no TS hierarchy is available or is 

not applicable. 
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6.6 Critical Discussion 

An empirical study always bears the risk that particularities of the setup bias the study results – espe-

cially the choice of the data set or data sampling. Our study minimizes this bias by: (1) two well-known 

and publicly available data sets (M5 competition and Kaggle store sales data set), (2) standard imple-

mentation of well-researched libraries (mainly scikit-learn), and (3) the extensive use of reproducible 

randomization in all steps. The data sets are known for a realistic representation of practice relevant time 

series, as it comes from actual retail store sales. We also remark that corrected p-values of the t-tests 

imply statistical significance on high levels of confidence. Therefore, we argue that our results are un-

likely to be caused by lucky sampling. 

In addition, the pipeline and experiment design offer flexibility for many design choices, especially (1) 

the choice of a representation method, (2) different clustering, aggregation, and disaggregation algo-

rithms, (3) various forecasting algorithms, and several more decisions. We explain our choices for the 

three particular points in the following. However, we point out that, in general, due to the vast number 

of design choices and combinations thereof, neither exhaustive empirical testing nor theoretical research 

could systematically lead to a best optimal approach in feasible time. Our study represents one feasible 

approach with reasonable and justified derivation of the applied methods. We assess the vast possibilities 

of design choices as potentials for future research to enhance our proposed approach. 

As the Syntetos-Boylan representation method is a state-of-the-art approach to classify intermittent TS, 

we decided to apply this method in our approach. The PD-statistics approach that we propose is based 

on the basic principles of iTS forecasting: periodicity and demand size (comparable to Croston’s 

method). Deriving primitive statistics (mean, standard deviation, and trend) follows the TS feature ex-

traction approaches of several authors who provide time series feature extraction approaches (Fulcher 

and Jones 2014; Hyndman et al. 2015; Christ et al. 2018). Future research can systematically study 

whether one of the two representation approaches (PD-statistics or Syntetos-Boylan) yields higher fore-

casting accuracy. 

We also tested different clustering algorithms but found little difference in results. The k-means algo-

rithm is a state-of-the-art approach. In our study, it is useful as it is suitable for clustering when data 

points are in overall dense formations rather than distinctly separable clusters. However, we are aware 

that more advanced clustering techniques for TS exist, as shown in Section 6.2.4. For disaggregation, 

we chose the same forecasting algorithm as in Step B4, for consistency. We assume that advanced dis-

aggregation poses a potential lever for improvement. 

The forecasting algorithm could also be a point of discussion in the assessment of our approach. How-

ever, we deliberately chose to abstract from the choice of forecasting algorithm as much as possible by 

using the exact same algorithm for baseline and experiment calculation. From our tests, different algo-

rithms did not systematically improve or impair the results. As shown in Section 6.2, the LGBM can be 

regarded as a state-of-the-art forecasting algorithm, especially as it has proven best results in the M5 

competition. We also considered using Croston’s method or SBA/TSB forecasting as baseline forecast-

ing algorithm. However, this yields lower forecasting accuracy, which, if used as a baseline, would 

impair our experiment results, as it would provide an unrealistic low baseline accuracy. We point out 

that evaluating the effectiveness of the STSF approach is subject to further research. 

We also remark that there were no additional inputs, such as date and time information (e.g., day of 

week, month, weekend, holiday, etc.) or other exogenous variables (e.g., weather, sales promotion, etc.). 

Such information could be easily incorporated into the STSF approach whenever a forecasting algorithm 

is implemented that accepts additional input. Generally, additional inputs are suitable to improve fore-

casting accuracy under the right conditions. However, we aim to only study the STSF approach and not 

to overall achieve a high forecast accuracy in this study. We therefore consciously chose to not employ 

additional inputs to achieve a simple experiment design with as little further influences as possible. We 

advise future studies to systematically probe how additional inputs affect the performance 

In Section 6.4.4 we discussed the different results and significance levels of the results depending on 

the evaluation metric. Research shows that different metrics can indicate considerably different inter-

pretations. For example, Kiefer et al. compare evaluation results of different metrics and forecasting 

approaches. The ranking of the approaches differs much depending on the applied evaluation metric 

(Kiefer et al. 2021). In our case, the overview of the metrics also indicates that the improvement by the 
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STSF approach is relatively high for the metrics MADmeanRatio, MAE, R² and MASE, however rela-

tively low for the quadratic metrics RMSE and RMSSE. Generally, we note that the metrics that employ 

squared forecasting error measurements are more suitable for intermittent TS forecasting as they repre-

sent unbiased metrics for the conditional mean forecasting error, rather than the conditional median 

forecasting error (Kolassa 2016, 2020). We remark that it is not clear how particularities of the data set 

account to this result. We conclude that studying the systematics of the influence of the applied evalua-

tion metrics on the results in the context of the STSF approach is subject for further research. 

As an outlook for future research, we propose several directions. First, the approach should be tested in 

the context of more data sets to gain a deeper understanding of the relationship between the performance 

of the approach and the characteristics of the TS in the data sets. Second, we propose that the major 

levers in the STSF, namely the representation and clustering logic (pipeline steps B2, B3), the disaggre-

gation logic (pipeline step B5) as well as the meta-learner setup (pipeline steps A4, A5) should be sys-

tematically tested by comparing different methods. From our experiments, we believe that especially 

more relevant TS features used for TS representation and for meta-learning can boost the performance 

of the STSF approach. An important step towards understanding ways to improve the representation and 

clustering will be to compare the hierarchy constructed by the clustering based on the TS characteristics 

with the already existing hierarchy of the M5 and Kaggle store sales data sets. 
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7 Generalization of the Approach’s 
results 

[This chapter corresponds to an article submitted to the Journal of Forecasting (JoF). It is currently in 

first submission status in the acceptance process at JoF: Bauer, Markus; van Dinther, Clemens; Grimm, 

Florian; Kiefer, Daniel (2023a): Evaluating the Similarity-based Time Series Forecasting Approach: 

Generalization of the Results.  – further referred to as Bauer et al. 2023a. The article is based on the 

submitted article in the previous chapter.] 

Evaluating the Similarity-Based Time 
Series Forecasting Approach: 
Generalization of the Results 

Forecasting sets of time series with no additional external data is known to be difficult. In this article, 

we pick up the Similarity-based Time Series Forecasting (STSF) approach which demonstrates an ap-

proach that exploits statistical similarities to cluster time series and applies an aggregation-disaggrega-

tion forecasting procedure. Our study extends this approach to six additional data sets with substantially 

different characteristics and compares the results of the STSF approach on these data sets. We describe 

the extensive experiment design conducted, the evaluation based on the RMSE metric and five more 

metrics, and the tests for statistical significance. We conclude that the STSF approach improves the 

forecasting results by 1% to 5% for four data sets and 25% to over 40% for two more data sets. Further-

more, we empirically explore the potential of the approach for the data set and identify levers to improve 

the STSF approach, and point out future potentials for research of the STSF pipeline. 

7.1 Introduction and Problem Definition 

The field of time series forecasting generally studies how the prediction of future values of time series 

can be performed and optimized. In this context, we define the time series of sequences of time as 

discrete observations of a variable. Time series forecasting is relevant for both research (e.g., physics, 

biology, engineering, etc.) and practical applications (e.g., finance, business, healthcare, etc.). As a con-

crete example, we chose the customer demand for goods in the stores of a retailer – without the loss of 

generality. To predict future observations, researchers employ both statistical and machine learning 

(ML) methods. 

In this study, we concentrate on specific cases of time series forecasting, which can be further specified 

by four characteristics:  

1. The absence of external data that can be used to correlate the variable observation to other de-

pendent variables (for example, retail store sales: the demand for ice could depend on the outside 

temperature). 
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2. The knowledge that a hierarchical relationship exists between the time series objects where ob-

jects’ time series are likely to have correlated patterns of values (for example, retail store sales: 

“green umbrellas” and “black umbrellas” can be considered part of the general article group 

“umbrellas” that could be expected to exhibit similar customer demand patterns). 

3. No actual knowledge of the particular hierarchy and relationships of objects (for example, retail 

store: no comprehensive and statistically justified product hierarchy for some hundred-thou-

sands of products has been compiled yet – the usual situation practitioners will find in real-life 

situations). 

4. The presence of intermittent time series, which are time series with a notable share of periods 

where the value of the variable equals zero (for example, retail store sales: umbrellas might not 

be requested by customers during periods characterized by no precipitation). 

In this study, we examine an approach described earlier by Bauer et al., called Similarity-based Time 

Series Forecasting (STSF) which is specialized in the conditions explained previously. The approach 

employs an ML pipeline where the time series of one data set is first clustered based on specific time 

series characteristics, then forecasted in an aggregation-disaggregation approach, and finally assessed 

by a classifying ML algorithm to identify time series that are likely to benefit from the approach. The 

authors compare the results of their approach to a baseline approach that omits the clustering and aggre-

gation-disaggregation steps. In their empirical study, they apply the STSF pipeline to two publicly avail-

able data sets, namely the M5 competition data set and the Kaggle store sales data set (see description 

in Section 7.3.1). 

Bauer et al. conclude that the approach empirically exhibits improvements of up to 7% compared to the 

baseline approach for time series that are predicted to benefit from the STSF approach assumed from 

the applied evaluation metric (Bauer et al. 2023b). Extending their work, we address the following re-

search questions in this study: 

RQ1. Does the STSF approach yield higher forecasting accuracy rates than the baseline approach 

for other data sets than the M5 competition and Kaggle store sales data set? 

RQ2. Are the improvements consistent and significant? 

RQ3. What ranges of improvements in the forecast evaluation can be measured based on the 

examined data sets? 

RQ4. Is the approach able to determine time series that yield higher evaluation results with the 

approach compared to the baseline? Which factors can be identified that contribute to 

higher evaluations? 

7.2 Related Work 

In this study, we specifically assess the study by Bauer et al. To relate the approach to the state-of-the-

art of time series forecasting, we researched literature concerning general time series forecasting as well 

as certain subtopics that are relevant components of the proposed approach:  

1. Similarity measures for time series and intermittent time series categorization 

2. Time series clustering based on similarities 

3. Aggregation-disaggregation forecasting 
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7.2.1 General approaches in time series forecasting 

Time series forecasting applies general algorithms from statistics and, in recent years, also ML. Com-

monly used statistical methods are linear regression, exponential smoothing, and autoregression and 

notable examples thereof are ARIMA and ARCH and their manifold variants (de Gooijer and Hyndman 

2006). In the studies in the following sections, the exponential smoothing method by Holt and Winters 

is commonly used (Winters 1960; Holt 2004). While many studies refer to this method as ETS (expo-

nential smoothing), the Holt-Winters method is only one special form of ETS that can capture season-

ality. 

Recent developments in ML algorithms have also been widely adopted by the community of time series 

forecasting researchers. Such examples are genetic or evolutionary algorithms (GA, EA), support vector 

machines (SVM), decision tree algorithms (DT), and artificial neural networks (ANN). Again, a broad 

variety of specialized techniques have been developed and adopted for each of the above-mentioned 

algorithms (Mahalakshmi et al. 2016). 

A general statement about which algorithm performs best is almost impossible to make and highly de-

pendent on specific circumstances such as the data set, the forecasting goal, the evaluation metric, etc., 

as Petropoulos et al. elaborate in their study (Petropoulos et al. 2014). 

In recent years, forecasting competitions have been a playground for researchers and practitioners to 

compare their forecasting approaches in comparable ways on publicly available data sets and under 

reproducible conditions. The online platform Kaggle hosts numerous such competitions for all purposes. 

Among the competitions that received significant attention from the research community, some are es-

pecially noteworthy here: the Makridakis competitions (1982: M1, 1993: M2, 2000: M3, 2020: M4, 

2021: M5), the neural networks competitions (NN3, NN5), the KDD Cup, and the Global Energy Fore-

casting Competitions (Hyndman 2020). In the recent M5 competition, implementations of the 

LightGBM Gradient Boosting Decision Tree algorithm (Ke et al. 2017) have been ranked on top scores 

(Makridakis et al. 2022). 

7.2.2 Time series clustering 

Time series clustering is a field of research that specifically applies clustering approaches to time series. 

The goal is to define groups of similar time series out of a population of time series. As Aghabozorgi et 

al. point out, the approaches follow four steps on a most abstract level: (1) calculation of a time series 

representation, (2) definition of a similarity measure based on the time series representation, (3) cluster-

ing of the time series using the similarity measure, and (4) evaluating the quality of clusters of time 

series. Steps (3) and (4) are often combined in iterative steps until the algorithm reaches a certain level 

of cluster quality or until the algorithm has constructed a pre-defined number of clusters. In each of the 

steps (1) to (4), the study finds a multitude of approaches and variations thereof. In general, none of the 

approaches dominates any other, but each has its case-specific advantages (Aghabozorgi et al. 2015). 

Most relevant for this study are approaches to characterize time series. i.e., time series representations. 

Generally, several studies propose extensive frameworks to extract time series features, for example, by 

Hyndman et al., FeatuRe by Christ et al., TSFEL by Barandas et al., as well as Tslearn by Tavenard 

et al. (Hyndman et al. 2015; Christ et al. 2018; Barandas et al. 2020; Tavenard et al. 2020). All studies 

run up to several hundred calculations to generate generic features that can be used to represent the time 

series. The main challenge for researchers and practitioners is then to select the truly relevant features 

from the plethora of generic features. With their frameworks, the authors provide several feature selec-

tion tools, but the application still needs to be adapted case specifically. 
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Syntetos et al. provide a categorization approach to differentiate between smooth, erratic, intermittent, 

and lumpy time series. Generally, intermittent time series are time series with a considerable portion of 

observations with zero demand. The authors propose to categorize time series by two measures: (1) 

average demand interval (adi) denotes the mean number of observations with zero demand between two 

non-zero demand observations. (2) CV2 denotes the coefficient of variation of only the non-zero time 

series observations (i.e., excluding the zero demand observations). Based on the two measures, the au-

thors derive four classes of time series (see Table 39, Syntetos et al. 2005). In this study, we apply the 

measures adi and CV2 as one approach for time series categorization. 

TS categorization adi ≤ 1.32 adi > 1.32 

CV2 > 0.49 “erratic” “lumpy” 

CV2 ≤ 0.49 “smooth” “intermittent” 
 

Table 39: Categorization scheme of 

intermittent time series (Syntetos et 

al. 2005) 

7.2.3 Aggregation-disaggregation and hierarchical forecasting 

We observe two types of methodologies that exploit aggregation-disaggregation for time series fore-

casting: (1) temporal aggregation (TA) techniques and (2) hierarchical forecasting (HF). Temporal ag-

gregation techniques aggregate observations into greater buckets of time periods. Hierarchical forecast-

ing exploits hierarchical relationships between the objects to be forecasted, e.g., products in a common 

product group. 

Both in TA and HF, the literature differentiates between bottom-up (BU) approaches where forecasts of 

objects (lower temporal levels respectively for TA) are aggregated to yield an aggregate object group 

forecast (higher temporal levels respectively for TA) or, vice versa, aggregate object level forecasts are 

disaggregated to the object level to yield object level forecasts (top-down approach – TD) (Babai et al. 

2022). Early studies have shown that time series forecasting at low levels can benefit from aggregate 

level forecasts and vice versa (Zotteri et al. 2005; Athanasopoulos et al. 2009). Recent studies have 

further developed this field of research by focusing on coherent BU-TD forecasts, where BU forecasts 

and TD forecasts consistently add up between levels of aggregation. Notable foundational research has 

been conducted by Hyndman et al., known as “GLS reconciliation” or “optimal combination” and Wick-

ramasuriya et al., known as “minimum trace reconciliation (minT).” Their studies show that an inte-

grated reconciled forecast that is consistent across all levels of aggregation can be practically estimated 

(Hyndman et al. 2011; Wickramasuriya et al. 2019). Recently, Hollyman et al. surveyed and consoli-

dated the numerous works in the field of coherent TD-BU approaches into one approach (Hollyman et 

al. 2021). Pennings and van Dalen propose an approach that simultaneously forecasts all levels of a 

given product hierarchy and conclude better forecasting accuracy than with traditional BU or TD ap-

proaches (Pennings and van Dalen 2017). Along with several experimental studies, the literature shows 

that the approaches not only produce coherent forecasts over aggregation levels but also overperform 

traditional TD or BU approaches (Eckert et al. 2021; Athanasopoulos et al. 2009). 

The research also covers several approaches where temporal hierarchies and TA are analogously applied 

to HF to improve forecasting (Athanasopoulos et al. 2017). Nystrup et al. propose an approach where 

the time series of different levels of a temporal hierarchy are assessed by their autocorrelation and fore-

casted simultaneously. In their experimental study on load forecasting, they also find that their approach 

is coherent over the temporal levels and outperforms TD or BU approaches (Nystrup et al. 2020). 

The studies in this section all assume the knowledge of an externally given hierarchy of objects (e.g., by 

region, product group, customer group, week, month, etc.). In contrast to this, the study by Bauer et al. 
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makes the premise that such a hierarchy may exist but is not available for the forecast algorithm (see 

Section 6.1, points 2 and 3). 

7.2.4 Time series similarity forecasting 

Numerous studies combine the previously described elements of time series similarity measures, clus-

tering, and/or aggregation-disaggregation. 

In a first step, we find that several studies use time series similarity measures to identify similar time 

series and then cluster the time series. In many cases, the studies primarily use this clustering to segment 

the time series for forecasting. They either choose specific forecasting algorithms for each cluster of 

time series (cluster-specific algorithm) (for example, Gür et al. 2015) or train different models of the 

same algorithm separately and independently on each cluster of time series (cluster-specific learning) 

(for example, Venkatesh et al. 2014; Bandara et al. 2020; Hartomo and Nataliani 2021). Other studies 

use time series similarities to sample from clusters of similar time series to obtain forecasts (Martinez 

Alvarez et al. 2011). 

Laurinec et al. present a comparable approach to Bauer et al. to forecast electricity demand. They nor-

malized electricity demand time series and calculated representations of the time series which are the 

coefficients of multiple linear regressions of each time series. The time series are subsequently clustered 

(k-means and DBSCAN) by their representations and aggregated. Different forms of classical statistical, 

bootstrap, and ensemble forecasting methods are then applied to generate forecasts. In contrast to the 

study by Bauer et al., the aggregated forecast is not disaggregated back to the original level. The study 

concludes that several algorithms produced better forecasting outputs when the clustering and aggrega-

tion approach was applied (Laurinec et al. 2019; Laurinec et al. 2016). 

Pang et al. also propose a hierarchical forecasting approach to predict electricity demand. Their approach 

uses the x-means algorithm (Pelleg and Moore 2002) to construct a hierarchy of consumption timelines 

with similar patterns. The study then applies different state-of-the-art coherent HF techniques (GLS 

reconciliation and minT) as well as their extended approach using regularization (called CHF, CHF-reg) 

for forecasting on all levels of the constructed hierarchy. However, the exact clustering procedure is not 

explained in detail. The authors conclude that their CHF-reg approach performs with a higher forecast-

ing accuracy than GLS or minT (Pang et al. 2018) although the study does not evaluate whether the 

clustering approach yielded better results than forecasting the original time series separately without the 

constructed hierarchy. 

 Pipeline Application Representation and 

similarity 

Clustering 

and aggre-

gation 

Forecasting Disaggrega-

tion 

Laurinec et al. 

2019 and Lau-
rinec et al. 

2016 

1. Representation 

2. Clustering 
3. Aggregation 

4. Forecasting 

Electricity 

demand fore-
cast 

a) Robust Linear 

Model, b) Generalized 
Additive Model c) 

Holt-Winters Exponen-

tial Smoothing and d) 
Median daily profile 

k-means and 

k-means ++ 

Several different 

approaches from 
statistics, ma-

chine learning 

and ensemble 
methods 

No disaggre-

gation 

Pang et al. 

2018 

1. Clustering 

2. Coherent hierar-
chical forecasting 

Electricity 

demand fore-
cast 

Not described x-means 

(Pelleg and 
Moore 2002) 

ETS  

Bauer et al. 

2023b 

1. Representation 

2. Clustering 
3. Aggregation 

4. Forecasting 

5. Disaggregation 
6. Best forecast pre-

diction 

General in-

termittent 
time series 

PD-statistics, 

Syntetos-Boylan 

k-means eu-

clidiean dis-
tance 

LGBM regres-

sion 

LGBM re-

gression 

Table 40: Comparison of time similarity forecasting approaches. 
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7.3 Methodology and Approach 

Similar to the previous study by Bauer et al., we evaluate the STSF approach empirically by employing 

a systematic scheme of experiments. We thus chose six data sets, ran a series of experiments and ran-

domizations, and then compared the STSF results with the baseline approach. The following sections 

depict the data sets, experiments, evaluation results, and the analysis of the evaluation. 

For the formulas used below, we introduce the following terminologies. A forecast is an estimation 

𝑦̂𝑖,𝑡+1 of an actual future observation 𝑦𝑖,𝑡+1 where 𝑖 ∈ 𝐼 = {0,1, … , 𝑖𝑚𝑎𝑥} is an object (e.g., product) 

from a set of objects at a time step 𝑡 ∈ 𝑇 = {0,1, … , 𝑡𝑚𝑎𝑥} from a sequence of time steps. The forecast 

is based on an approximation of the function 𝑦𝑖,𝑡+1 = 𝑓(𝑋𝑖 , Φ) + 𝜖𝑖,𝑡+1, where 𝑋𝑖 = {𝑥𝑖,𝑡}, 𝑡 ∈

{0,1, … , 𝑡} are known past observations of the object 𝑖, Φ denotes a set of observations of stochastic 

influences, and 𝜖𝑖,𝑡+1 a random stochastic variable that may depend on 𝑋𝑖 and Φ. The mean value of the 

observations of the object 𝑖 is denoted as 𝑦𝑖. 

7.3.1 Overview of data sets 

While Bauer et al. only evaluated their approach with the M5 competition and Kaggle store sales data 

sets, this study considers six additional data sets (see Table 41 and Figure 24). Except for the OEM 

article data set, all other data sets are publicly available as forecasting competitions on Kaggle and hence 

the results of the experiments are reproducible and verifiable by other researchers. The data sets Kaggle 

store sales, M4 monthly, M5 competition, OEM article, Rossmann, and Walmart represent different 

forms of sales of goods. COVID4 represents the number of confirmed COVID19 cases while Website 

traffic represents the traffic of Wikipedia articles. 
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 COVID4 Kaggle 

store sales 

M4 

monthly 

M5 

competitio

n 

OEM 

article 

Rossmann Walmart Website 

traffic 

Descrip-

tion 

Confirmed 

COVID 

cases per 
country 

Kaggle 

competition 

on store 
sales 

Makridakis 

M4 

accuracy 
competition 

monthly 

level 

Makridakis 

M5 

accuracy 
competition 

After 

market 

article sales 
of an 

automotive 

OEM 

Rossmann 

store sales 

forecasting 

Walmart 

store sales 

forecasting 

Wikipedia 

web traffic 

per page 

Source Kaggle4 Kaggle5 Kaggle6 Kaggle7 Non-public Kaggle8 Kaggle9 Kaggle10 

No. of 

time se-

ries11 

313 1,782 48,000 30,490 89,329 934 3,291 145,035 

No of time 

steps 

115 1,684 2,79412 1,941 284 942 143 804 

Share of 

zero time 

periods 

34.7% 31.3% 0.0% 68.0% 90.2% 16.8% 10.5% 7.4% 

TS classification13 

- smooth 133 

(42.5%) 

945 

(53.0%) 

45,563 

(94.9%) 

1,908 

(6.3%) 

17,457 

(19.5%) 

932 

(99.8%) 

2,536 

(77.1%) 

26,985 

(18.6%) 

- erratic 180 

(57.5%) 

427 

(24.0%) 

2,437 

(5.1%) 

868  

(2.8%) 

1,300 

(1.5%) 

0 397 

(12.1%) 

111,156 

(76.6%) 

- intermit-

tent 

0 226 

(12.7%) 

0 22,150 

(72.6%) 

44,427 

(49.7%) 

2 

(0.2%) 

68 

(2.1%) 

581 

(0.4%) 

- lumpy 0 184 

(10.3%) 

0 5,564  

(18.2%) 

26,145 

(29.3%) 

0 290 

(8.8%) 

6,313 

(4.4%) 

Table 41: Overview of data sets applied in this study, including an outline of their time series’ characteristics. The composi-

tion of the data sets varies strongly with respect to size and TS classification. 

Table 41 shows that the composition of the data sets concerning time series characteristics differs con-

siderably. The experiments are therefore supposed to represent a broader average of typical forecasting 

data sets than the original data sets alone, to allow for more general statements in this study. 

 
4 https://www.kaggle.com/competitions/covid19-global-forecasting-week-4 
5 https://www.kaggle.com/competitions/store-sales-time-series-forecasting 
6 https://www.kaggle.com/datasets/yogesh94/m4-forecasting-competition-dataset 
7 https://www.kaggle.com/competitions/m5-forecasting-accuracy 
8 https://www.kaggle.com/competitions/rossmann-store-sales 
9 https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting 
10 https://www.kaggle.com/competitions/web-traffic-time-series-forecasting 
11 Only considering complete time series within the data set containing data (even if zero or NaN) for 

all time steps 
12 Describes the maximum value per time series; not all time series in M4 monthly data set exhibit full 

length 
13 According to the classification of Syntetos et al. (Syntetos et al. 2005) 
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Figure 24: Visualization of the proportions of the data sets’ time series characterizations. 

Analogously to the original study by Bauer et al., we only extracted the univariate time series from the 

data sets and do not provide additional data such as date and time information (e.g., day of the week, 

month, season, holidays, etc.) or exogenous information (e.g., weather, sales promotions, product infor-

mation, store ID, etc.). We deliberately chose to only provide the univariate time series to reduce the 

complexity of the experiment comparison in the following sections. We emphasize that the target of this 

study is to deduct general statements concerning the STSF approach’s performance, and not to achieve 

a competitive result in the forecasting competitions (which would indisputably require several of the 

additional forecasting inputs mentioned). 

7.3.2 STSF pipeline 

The STSF approach applies a basic pipeline and an experiment layer (see Figure 25). In the following, 

we describe the STSF as proposed in Bauer et al. and highlight the deviations from the original approach. 

The basic pipeline takes a data set as input (B1), applies a representation algorithm on the time series to 

quantify their time series characteristics (B2), clusters the time series according to their representation, 

and aggregates the time series values per time step for each cluster (B3), conducts forecasting on the 

aggregate time series (B4), and disaggregates the result using another forecasting algorithm (B5) before 

it finally evaluates the forecast result on a disaggregate level with the original data (B6). To be in line 

with the original study by Bauer et al., we employ the same algorithms in the pipeline: k-means cluster-

ing (B3), Histogram-based Gradient Boosting Regression Tree for aggregate forecasting (B4), and dis-

aggregation (B5). Both algorithms are used from the scikit-learn implementation (Pedregosa et al. 2011). 

The forecast (B4, B5, and the baseline forecasting) is provided with a rolling window of 20 past time 

steps as input to perform a prediction of the next consecutive time step (i.e., one step ahead prediction). 

The evaluation (B6) is based on the root mean square error (RMSE). In addition to the RMSE, we will 

also report further metrics: MADmeanRatio (Kolassa et al. 2007), mean absolute error (MAE), mean 

absolute scaled error (MASE), root mean square scaled error (RMSSE) (Hyndman and Koehler 2006), 
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and coefficient of correlation (R²). The result per time series is subsequently weighted by the mean value 

of the time series as a share of the whole data set to yield an evaluation result per data set. We chose the 

RMSE metric as the main evaluation metric as it yields an unbiased estimation of the unbiased condi-

tional mean error as opposed to absolute errors that aim for the conditional median error. As Kolassa 

shows, the latter is unfavorable for intermittent time series forecasting (Kolassa 2016, 2020). 

As time series representation approaches (see B2), we apply the Syntetos-Boylan approach as well as 

the PD-statistics approach, as proposed by Bauer et al. The PD-statistics calculate representations of 

each time series based on the periodicity (P-statistic, i.e., the sequence of non-zero demands in rolling 

windows of the time series of length ℎ) and the non-zero demand values (D-statistics, i.e., sequence of 

values of the demand observations from the time series that are greater than zero). Based on the perio-

dicity sequence and the non-zero demand sequence, three statistical features are calculated: the arithme-

tic mean (_mean), the standard deviation (_stdev), and the slope of the ordinary least square regression 

of the sequence values along the time axis (_trend). The result comprises six features derived from each 

time series: p_mean, p_stdev, p_trend, d_mean, d_stdev, and d_trend. 

On the experimental level, a set of experiments is defined, specifying the parameters for the basic pipe-

line (A1) and these experiments are then run iteratively by the basic pipeline with randomization (A2). 

The results of the randomized experiment runs are then compared to the baseline results (A3), both on 

a time series level as well as on an experiment level. Subsequently, each time series of each experiment 

is labeled “stsf” if the RMSE evaluation result of the time series is smaller than the respective corre-

sponding baseline’s time series’ RMSE evaluation result or labeled “baseline” otherwise. The meta-

learner classifier is then trained to predict “stsf” or “baseline” labels for each time series per experiment 

(A4). The inputs for the meta-learner are the time series representation data (see B2) as well as the 

respective aggregate’s time series’ representation data (see B3). The result of the meta-learner’s predic-

tion represents predicted “stsf” and “baseline” labels for each time series per experiment. In step A5, a 

predicted optimal set is compiled: the prediction of the time series from the basic pipeline aggregation-

disaggregation forecast for predicted “stsf”-label time series and the baseline forecast for predicted 

“baseline”-label time series (A5) and finally evaluated (A6). 

The baseline comparison in step A3 is calculated as the difference between the RMSE of the baseline 

minus the RMSE of the experiment divided by the baseline RMSE (see formula F1). We refer to this 

metric as RMSE_delta_perc. Section 7.3.3 describes the details of the experiments conducted in this 

study. 

F1. 𝑅𝑀𝑆𝐸_𝑑𝑒𝑙𝑡𝑎_𝑝𝑒𝑟𝑐 =
𝑅𝑀𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑅𝑀𝑆𝐸𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑅𝑀𝑆𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
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Figure 25: The forecasting and experiment pipeline of the STSF approach (Bauer et al. 2023b). 

All forecasts (B4, B5, A4/A5) are performed using k-fold cross validation with three folds to split the 

data into train and test data portions. Therefore, the predictions are independent of the training data, i.e., 

the model always predicted the forecasts for portions of the data that it has not been trained on (Bergmeir 

and Benítez 2012). 

We highlight one relevant difference to the pipeline described by Bauer et al. in step B5. While the 

original study only provides a window of the last two historical values of the target variable to the ML 

disaggregation algorithm, we provide a window of as many historical values as provided in step B4 or 

also to the forecasting algorithm in the baseline step (i.e., the last 20 time steps in all cases consistently). 

Providing fewer data in step B5 is (1) unnecessary because it does not provide more information to the 

STSF algorithm than to the baseline approach algorithm. Rather, providing a shorter window of histor-

ical values (2) poses an unjustified disadvantage to the STSF approach as the disaggregation loses in-

formation on the disaggregated time series behavior compared to the baseline approach. 

7.3.3 Experiments 

The experiments conducted for each data set are listed in Table 42. The parameter sample size describes 

the number of time series randomly selected from the data sets for the experiment (without replacement). 

For each experiment, 12 randomized iterations of the basic pipeline were performed (see Figure 25 step 

A3). 

The experiments mainly differ in the representation scheme applied (see Figure 25 step B2) and the 

number of clusters (see Figure 25 step B3). 
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  COVID4 Kaggle 

store sales 

M4 

monthly 

M5 

competition 

OEM 

article 

Rossmann Walmart Website 

traffic 

Sample size 300 TS 500 TS 500 TS 500 TS 500 TS 500 TS 500 TS 500 TS 

P-statistics window 

size ℎ 

7 7 12 7 7 7 7 7 

Randomizations 12 12 12 12 24 12 12 12 

          

Represen-

tation 

No of 

clusters 

Experiment No. 

PD- 
statistics 

3 0 0 0 0 0 0 0 0 

5 1 1 1 1 1 1 1 1 

10 2 2 2 2 2 2 2 2 

100 3 3 3 3 3 3 3 3 

200 4 4 4 4 4 4 4 4 

Syntetos- 
Boylan 

3 5 5 5 5 5 5 5 5 

5 6 6 6 6 6 6 6 6 

10 7 7 7 7 7 7 7 7 

100 8 8 8 8 8 8 8 8 

200 9 9 9 9 9 9 9 9 

Baseline No clustering 

Table 42: Overview of the experiments conducted and the experimental settings per data set. 

The experiment design is directly comparable to the original study of Bauer et al. We can therefore 

directly relate the experiment results with their study and deduce the influence of the data set character-

istics on the approach’s performance. 

We point out two deviations in the experiment design: 

• The sample size for COVID4 was reduced to 300 time series per randomization (compared to 

500 time series for the other data sets) because the total number of time series in the COVID4 

data set is only 313 (i.e., it is impossible to randomly draw 500 time series without replacement). 

• We used 24 randomization runs for the experiments that used the OEM article data set to in-

crease the mass of statistical evidence (see Section 7.4.4). 

7.4 Experiment Results 

This section describes the evaluation results of the experiments and is divided into five subsections: 

1. Before meta-learner: the evaluation results of the basic pipeline (i.e., step B6), before the meta-

learner is applied. 

2. Scope all: the evaluation results of the entire experiment’s sample of time series (both predicted 

“stsf”- and “baseline”-label time series, see Section 7.3.2). 

3. Scope predict “stsf”: the evaluation result of only predicted “stsf”-label time series. 

4. Comparison of evaluation and statistical significance: detailed overview of all experiments, 

comparison of the calculated metrics, and significance test results. 

5. Meta-learner classification accuracy: an overview of the classification accuracy of the meta-

leaner. 

Subsections 7.4.1 to 7.4.3 describe the evaluation results using the RMSE metric. The structure is iden-

tical in these three subsections. 

7.4.1 Before meta-learner 

Figure 26 and 4 and Table 43 show the results of the experiments after the completion of the basic 

pipeline step B6. This means that no meta-learn classification prediction has taken place up to this point 

and we are not looking at the “all-stars” predictions. 
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The systematic comparison of all results follows in Section 7.5. In this section, we briefly outline some 

remarkable observations. 

 

 

Mean RMSE_delta_perc per data set 

COVID4 19.67% 

Kaggle store sales 2.92% 

M4 monthly 40.77% 

M5 competition 1.32% 

OEM article 7.38% 

Rossmann 1.92% 

Walmart -2.07% 

Website traffic 0.10% 

Figure 26: Overview of evaluation results per data set – before meta-learner Table 43: Overview of mean 

RMSE_delta_perc per data set – before 

meta-learner 

On the data set level, we observe three main particularities: 

• The mean RMSE_delta_perc values per data set vary from -2% to 41%, and the mean 

RMSE_delta_perc values per experiment and randomization from -8% to 68%. 

• Of all experiments and randomizations, we observe that in 70% of the cases, the 

RMSE_delta_perc is greater than zero, i.e., the mean result of the experiment is better when the 

STSF basic pipeline is applied. 

• The results of the COVID4 data set show the greatest deviation by far compared to the other 

data sets – whereas especially the data sets Kaggle store sales and M5 show little variation in 

the evaluation results. 

• As a major difference from the results reported by Bauer et al., we observe that the mean eval-

uation results of all data sets (except Walmart) are positive. This means that, on average, the 

basic pipeline results of the STSF approach are better than their corresponding baselines. We 

conclude that the reason is the change of the increased time frame history of the target variable 

provided to the disaggregation algorithm in step B5 (as described in Section 7.3.2). 

• In addition, we observe that all experiments and randomizations of the data sets Kaggle store 

sales and M4 monthly exhibit RMSE_delta_perc values greater than or equal to zero. Hence, the 

STSF approach appears to be better than the baseline in all experiments even before the appli-

cation of the meta-learner. 

• Both the mean and deviation of the evaluation results vary strongly between the data sets. 
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Figure 27: Overview of the evaluation results per data set and experiment – before meta-learner 

While we cannot identify patterns in the results of many data sets when comparing the evaluation results 

on an experimental level, we find the following particularities in the M5 competition, OEM article, and 

Rossmann data sets: 

• The evaluation results of the M5 competition exhibit descending RMSE_delta_perc values with 

an increasing number of clusters. We remember that experiments 0–4 and 5–9 exhibit the cluster 

number pattern: 3, 5, 10, 100, and 200. Hence, we can suspect a dependency between the number 

of clusters and evaluation results for the data set M5 competition. 

• The Rossmann evaluation results also seem to exhibit a pattern with respect to the number of 

clusters. However, in this case, we observe a decrease from the cluster numbers 3 to 10 and an 

increase from 10 to 200. 

• The previous results appear to indicate that an optimal sweet spot exists depending on the num-

ber of clusters. While we report the number of clusters here, we note that the actual dependency 

can rather be assumed in the number of elements per cluster, rather than the absolute number of 

clusters. 

• We also observe that the results of the OEM article data set exhibit two randomizations where 

the evaluation results are considerably higher than the remaining randomizations. 

7.4.2 Scope all 

Figure 28, Figure 29 and Table 44 show the results of the complete STSF pipeline, including the appli-

cation of the meta-learner. In this subsection, we consider the weighted RMSE_delta_perc results of all 

time series per data set – in contrast to the next subsection, where we concentrate on the time series 

predicted by the meta-learner under the label “stsf” (i.e., assumed to be better with STSF than baseline 

approach). 
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The main particularities on the data set evaluation level include:  

• The mean RMSE_delta_perc values per data set vary from 1% to 43%, and the mean 

RMSE_delta_perc values per experiment and randomization from -3% to 51%. 

• Of all experiments and randomizations, we observe that in 94% of the cases, the 

RMSE_delta_perc is greater than zero, i.e., the mean result of the experiment is better when the 

STSF approach is applied. 

• All data sets’ mean evaluation results have improved (i.e., are higher) compared to the pre-meta 

learner results in the previous subsection. 

• The variations in the mean value patterns are similar to the previous subsection’s results (on a 

visual level). 

• The data sets with negative single experiment and randomization evaluation results in the pre-

vious subsection also exhibit negative values in the scope of all evaluations. 

 

 

Mean RMSE_delta_perc per data set 

COVID4 25.54% 

Kaggle store sales 3.42% 

M4 monthly 43.47% 

M5 competition 1.60% 

OEM article 1.31% 

Rossmann 4.18% 

Walmart 2.33% 

Website traffic 1.02% 

Figure 28: Overview of evaluation results per data set – scope all Table 44: Overview of mean 

RMSE_delta_perc per data set – scope all 

On the experiment comparison level, we observe the following particularities compared to the previous 

subsection: 

• The evaluation results of the M5 and Rossmann data sets exhibit the same patterns that suggest 

a dependency between the number of clusters and the results. 

• The OEM article’s evaluation results do not exhibit particularly high values as seen in the pre-

meta learner results. 
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Figure 29: Overview of the evaluation results per data set and experiment – scope all 

In addition to the usual evaluation results that we report in this study, Table 45 shows the RMSE evalu-

ation results (as opposed to RMSE_delta_perc) to illustrate the absolute error levels of the predictions. 

It is important to note that the values are not suitable for comparison to other studies’ results of the 

competitions, as this study does not aim to compete with the challenges but only to evaluate the STSF 

performance. 

Mean RMSE evaluation result per data set for scope all, after application of the meta-leaner (step A6)  
COVID4 Kaggle store 

sales 

M4 monthly M5 com-

petition 

OEM article Rossmann Walmart Website 

traffic 

STSF 1,284.2 274.0 1,082.2 2.0 30.9 1,115.4 5,118.5 3,875.9 

Baseline 1,759.2 283.2 1,913.9 2.1 31.5 1,164.1 5,235.7 3,910.5 

Table 45: Overview of the RMSE evaluation results per data set for scope “all evaluations” (as opposed to the 

RMSE_delta_perc values that are reported in the remainder of this study). 

7.4.3 Scope predict “stsf” 

This subsection concentrates on the RMSE_delta_perc evaluations of time series that the meta-learner 

model predicts to perform better under the STSF approach than the baseline approach. Figuratively 

speaking, this “stsf” prediction evaluates a subset of time series of the scope “all” evaluation. 
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Mean RMSE_delta_perc per data set 

COVID4 28.51% 

Kaggle store sales 4.34% 

M4 monthly 45.16% 

M5 competition 1.79% 

OEM article 2.13% 

Rossmann 5.74% 

Walmart 6.81% 

Website traffic 4.75% 

Figure 30: Overview of evaluation results per data set – scope predict “stsf” Table 46: Overview of mean 

RMSE_delta_perc per data set – scope 

“stsf” 

On the data set evaluation level, we observe the following: 

• The mean RMSE_delta_perc values per data set vary from 1% to 45%, and the mean 

RMSE_delta_perc values per experiment and randomization from -24% to 52%. 

• Of all experiments and randomizations, we observe that in 94% of the cases, the 

RMSE_delta_perc is greater than zero, i.e., the mean result of the experiment is better when the 

STSF approach is applied. 

• As expected, all data sets’ mean evaluation results have improved (i.e., are higher) compared to 

the pre-meta learner results in the previous subsection (we study the subset of predicted “best” 

time series). 

• The variations in the mean value patterns are similar to the previous subsections’ results (on a 

visual level). 

• The data sets with negative single experiment and randomization evaluation results in the pre-

vious subsection also exhibit negative values in the all evaluation scope. 

• We observe a single experiment and randomization of the Website data set with a particularly 

low value. 
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Figure 31: Overview of the evaluation results per data set and experiment – scope predict “stsf” 

7.4.4 Comparison of the evaluation metrics and statistical 
significance 

This section describes the overview of all experimental results evaluated with all six evaluation metrics. 

All results can be found in Table 50 (see Section 7.8 “Appendix”). In addition, this section contains the 

description of the statistical significance tests to assess whether the STSF experiment results differ sig-

nificantly from the baseline results. Table 51 shows all results (see Section 7.8 “Appendix”). 

We applied multiple hypothesis testing to show which experimental results differ significantly from the 

baseline results. Our H0 hypothesis is that the mean values of the experiments’ evaluation results do not 

differ from the corresponding baseline results. If the H0 hypothesis can be rejected at a high level of 

confidence, we conclude that the experiments and their baselines do differ significantly in their mean 

values. 

We apply the pairwise t-test for mean values to each evaluation result pair of experiment and corre-

sponding baseline whereby we are aware that multiple hypothesis testing results in alpha-inflation if not 

appropriately corrected. Therefore, we apply the Benjamini-Hochberg procedure to correct the p-values 

obtained from the pairwise t-test (Benjamini and Hochberg 1995). We require a confidence level of 95% 

and set the false-detection rate of the Benjamini-Hochberg procedure to 5%. 
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Share of rejected H0 hypothesis per data set and evaluation metric 
 

MADmeanRa-

tio 

MAE MASE R2 RMSE RMSSE 

COVID4 100% 100% 70% 100% 100% 100% 

Kaggle store sales 100% 100% 100% 100% 100% 100% 

M4 monthly 100% 100% 100% 100% 100% 100% 

M5 competition 100% 100% 100% 100% 100% 100% 

OEM article 90% 90% 90% 70% 20% 60% 

Rossmann 100% 100% 100% 100% 100% 100% 

Walmart 100% 100% 100% 100% 100% 100% 

Website 100% 80% 100% 90% 80% 70% 

Table 47: Summary of the H0 hypothesis rejection rate based on the number of experiments rejected per data set and evalua-

tion metric. The rejection is calculated under Benjamini-Hochberg corrected pairwise t-tests, with a 95% confidence level 

and 5% false-discovery rate. 

Table 51 shows the detailed results of the hypothesis testing procedure whereby the entries in Table 51 

directly correspond to the entries in Table 50 (both see Section 7.8 “Appendix”). Table 47 summarizes 

the results. We observe that almost 95% of the H0 hypotheses can be rejected under the defined param-

eters for p-value confidence level and false-discovery rate (i.e., the mean STSF approach evaluation 

result value is assumed to be significantly different from the baseline approach). This is especially re-

markable as we compare 420 experiments with their respective baselines (i.e., 7 data sets x 10 experi-

ments per data set x 6 evaluation metrics), and therefore the influence of the Benjamini-Hochberg cor-

rection is considerably high. 

However, we remark that the H0 hypothesis for the OEM article data set cannot be rejected for the 

RMSE metric for all experiments except Experiments 1 and 6 (20% of experiments rejected) and simi-

larly for some experiments evaluated under RMSSE (60%) and R2 (70%). We suspect that apart from 

the obviously relatively low RMSE_delta_perc values, the comparably low accuracy rates of the meta-

learner (see Section 7.4.5) account for the outcome of the significance tests. At this point, it is worth 

noting that we ran 24 randomizations for the OEM article data set, compared to the 12 randomizations 

used for the other data set. We chose this adjustment in the number of randomization runs to increase 

the number of observations to generate more evidence for the statistical tests. 

We conclude that, except for the OEM article dataset, the results of all RMSE_delta_perc experiment 

evaluations can be regarded as significant under the selected premises. 

7.4.5 Meta-learner classification accuracy 

RQ4 asks whether it is possible to identify whether a time series is likely to benefit from the STSF 

approach (i.e., we observe a better evaluation result when STSF is applied compared to the baseline 

result). The meta-learner is trained to answer this question and thus we observe the classification accu-

racy of the meta-learner. 

We define the accuracy of the meta-learner as the proportion of correctly identified labels (true-“stsf” 

and true-“baseline”) of the total number of labels. Figure 32 shows the accuracy evaluation of all exper-

iments and randomizations and the mean accuracy evaluations per data set are given in Table 48. We 

recall that separate meta-learner models are trained for each data set, so there is no overarching training 

of the meta-learner for all data sets. 
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Mean meta-learner classification 

accuracy per data set 

COVID4 74% 

Kaggle store sales 78% 

M4 monthly 89% 

M5 competition 89% 

OEM article 79% 

Rossmann 85% 

Walmart 70% 

Website traffic 70% 

Figure 32: Accuracy of the meta-learner classification per data set denoted 

as a proportion of correctly identified time series of all time series. Each dot 

represents one experiment and randomization. 

Table 48: Overview of the mean accuracy 

of the meta-learner classification per data 

set denoted as the proportion of correctly 

identified time series of all time series. 

We can see that the average accuracy for all data sets is 70% or higher and we observe a mean accuracy 

score of 79% over all data sets. Especially M4 monthly, M5 competition, and Rossmann exhibit accuracy 

values of 89% and 85% respectively. However, Figure 32 shows that, apart from the mean value, the 

variance within each data set’s accuracy results differs. Here, COVID4 and OEM article show consid-

erably high variance compared to the other data sets. 

To further understand the accuracy of the meta-learner, we introduce Figure 33. It compares the true-

stsf rate and true-baseline rate. The true-stsf rate denotes the share of rightfully predicted “stsf” time 

series of all actual “stsf” time series of one experiment and randomization (true-baseline rate analo-

gously). 
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Figure 33: Detailed overview of the accuracy of the meta-learner per data set on an experiment and randomization level. 

“True-stsf rate” denotes the share of correctly true-stsf labeled time series of the actual stsf time series (“true-baseline rate” 

analogously for baseline labels). 

We observe that the true-stsf rate is comparably high for most data sets. However, the true-baseline rate 

is rather low for most data sets. One should note that the “stsf” and “baseline” labels are imbalanced in 

the data sets. Across all data sets, 64% of time series are actual “stsf” and 36% are actual “baseline.” 

We will refer to this in the discussion in Section 6.6. 

7.5 Summary of the Results 

Here, we summarize the results from Section 7.4 and refer to the research questions from Section 6.1. 

In RQ1, we raised the question of whether the STSF approach by Bauer et al. 2023b can improve fore-

casting results in different data sets than the two presented in the original study. We conclude that the 

results from Sections 7.4.1 to 7.4.3 indicate that the STSF approach improves the results in the additional 

six data sets in a range from 1% to 44% (mean RMSE_delta_perc, all time series) and hence we can 

confirm RQ1. 

RQ2 posed the question of whether the results are consistent and statistically significant. From the re-

sults of Sections 7.4.1–7.4.3, we conclude that the results are consistent in the way that the STSF ap-

proach’s mean evaluation results are always better than the forecast without the approach (i.e., baseline) 

on the mean data set evaluation level and in 94% of cases when evaluated per experiment and random-

ization. Nevertheless, the results indicate that not every experiment and randomization is always better 

than the baseline and that the variance differs between data sets and experiments. Thus, overall, we 

conclude that the results are consistent in the vast majority of cases. 
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Considering the statistical significance of the results, we conclude that the hypothesis testing indicates 

that 95% of the experiment results significantly differ from the baseline results at high levels of confi-

dence. However, especially for the OEM article data set, several tests cannot be rejected. 

Overall, for RQ2 we conclude that the majority of experiments are consistent and statistically significant 

and are therefore suitable to support the findings from RQ1. 

In RQ3, we asked in what ranges we can ex-

pect improvements from the STSF approach. 

Table 49 shows the summary of the results 

from the previous sections. We observe that 

most (6 out of 8) data sets exhibit mean 

RMSE_delta_perc values between approxi-

mately 1% and 5% whereby two data sets 

(COVID4 and M4 monthly) exhibit funda-

mentally higher values (25% to over 40% for 

scope all). Hence, we conclude that one can 

usually expect improvements of 1%–5% in 

regular cases and higher rates of improve-

ments under certain conditions. It is im-

portant to note that these numbers concern 

all time series in the respective random sam-

ples (i.e., scope all). When we refer to the time series predicted by the meta-learner to exhibit better 

performance when STSF is applied (i.e., scope predict-“stsf”), relative improvements for these time 

series are higher—typically 2% to 7% in the data sets in this study. However, this study does not con-

clude what conditions determine the relative improvement. 

Finally, RQ4 discusses if we can predict whether a time series performs better when STSF is applied 

than when the approach is not applied (i.e., label “stsf” or “baseline”). As the accuracy scores in Section 

7.4.5 show, the meta-learner can classify the labels “stsf” or “baseline” based on the time series charac-

teristics at a mean accuracy of 79%, which is considerably above random guessing. We therefore can 

confirm the conclusion by Bauer et al. 2023b that the time series characteristics contain relevant infor-

mation to deduce whether a time series benefits from the application of STSF. Further, we conclude that 

the representation approaches PD-statistics and Syntetos-Boylan statistics are suitable to capture and 

represent this information. 

In addition to the conclusions directly related to the research questions, we summarize two additional 

findings from Section 7.4: 

• Based on the pattern that we observe when comparing the experiments of the data sets M5 com-

petition and Rossmann, we suspect that an optimal cluster size exists. However, we cannot con-

firm this assumption for the other data sets. Decreasing the increment between the number of 

clusters in the experiment design could help to confirm this assumption. 

• In contrast to the original study by Bauer et al., we do not find a strong indication that especially 

intermittent time series benefit from the approach. From the findings, we cannot deduct a strong 

relationship between intermittency characteristics and the evaluation results. 

7.6 Critical Discussion 

In this section, we discuss the limitations of this study and highlight open questions for future research. 

Summary of mean RMSE_delta_perc results per data set 

 Before meta-
learner (step 

B6, Section 

7.4.1) 

Scope all 
(step A6, Sec-

tion 7.4.2) 

Scope predict 
“stsf”(step 

A6, Section 

7.4.3) 

COVID4 19.67% 25.54% 28.51% 

Kaggle store sales 2.92% 3.42% 4.34% 

M4 monthly 40.77% 43.47% 45.16% 

M5 competition 1.32% 1.60% 1.79% 

OEM article 7.38% 1.31% 2.13% 

Rossmann 1.92% 4.18% 5.74% 

Walmart -2.07% 2.33% 6.81% 

Website traffic 0.10% 1.02% 4.75% 

Table 49: Summary of the mean RMSE_delta_perc values from the 

previous section. 
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As described in the original study on STSF by Bauer et al., one should observe the general limitations 

of empirical studies which can only use a limited amount of data and experiments. This study contributes 

to broadening the data foundation of the original study and especially the time series characteristics used 

in this study are more diverse than the data in the original study. Nevertheless, other data sets could 

behave differently and help to gain new insights into the STSF. 

We observe two directions for further studies on the STSF pipeline. 

First, the proposed modular pipeline design allows researchers to flexibly replace algorithms in each 

step. We deliberately kept these algorithms and most of the parameters identical to the original study. 

However, we could observe that by adjusting the history window parameter of the disaggregation algo-

rithm, the basic pipeline results could already be improved considerably. As a positive side effect, this 

helps to decrease the importance of the meta-learner algorithm to improve the results after the basic 

pipeline whereby this is especially helpful when the accuracy of the meta-learner is low for a particular 

data set for any reason. 

In the context of improving the pipeline’s algorithms and parameters, we observed that especially the 

time series representation approach is of great importance for the overall pipeline’s performance. We 

suggest that experimenting with the time feature series extraction tools introduced in Section 7.2.2 can 

help to improve the approach. Extracting relevant features not only helps to produce clusters that aggre-

gate information from similar generating processes in step B3, but also in training the meta-learner in 

step A4. 

Second, a better understanding of the relationship between the data set characteristics, the forecasting 

accuracy, and the meta-learner accuracy is a promising focus for future research. 

7.7 Contribution and Conclusions 

In this study, we substantiate the empirical evidence that the STSF approach is suitable for improving 

time series forecasting when a hierarchy of the time series is assumed but not available or known. In six 

data sets in addition to the original data sets of Bauer et al., we show that we can predict what time series 

benefit from using the STSF approach and that the STSF approach yields improvements in the evalua-

tion metric results of between 2% to 7% for these predicted time series. The chosen data sets are publicly 

available and the results reproducible. Moreover, by exhibiting a variety of time series characteristics, 

the data sets are well suited to show that the STSF approach applies to different types of time series. 

Therefore, we contribute to the research of time series forecasting by affirming that the STSFT approach 

helps to improve forecasting in various scenarios. 

Moreover, this study shows promising approaches for future research on the STSF pipeline. 
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7.8 Appendix 

7.8.1 Detailed evaluation results on the experiment level for all data 
sets and all evaluation metrics 

Experiment No. delta_perc for TS with predicted “stsf”-label 

MADmeanRatio MAE MASE R2 RMSE RMSSE 

COVID4 

0 20.5% 20.5% 8.0% -0.5% 33.1% 17.9% 

1 22.2% 22.2% 23.2% -0.4% 31.2% 24.5% 

2 22.2% 22.2% 23.5% -0.4% 29.3% 23.2% 

3 20.2% 20.2% 22.7% -0.3% 22.9% 22.1% 

4 16.8% 16.8% 15.9% -0.3% 22.1% 20.0% 

5 19.9% 19.9% 14.9% -0.3% 25.1% 19.4% 

6 22.1% 22.1% 9.8% -0.4% 30.5% 20.7% 

7 21.1% 21.1% 5.2% -0.4% 31.4% 22.5% 

8 22.5% 22.5% 24.4% -0.4% 27.7% 25.7% 

9 23.8% 23.8% 25.1% -0.4% 31.7% 28.3% 

Kaggle store sales 

0 3.0% 3.0% 3.1% -0.5% 4.5% 4.0% 

1 3.2% 3.2% 3.2% -0.6% 4.8% 4.1% 

2 3.2% 3.2% 3.2% -0.6% 4.9% 4.1% 

3 4.1% 4.1% 4.0% -0.6% 5.5% 4.5% 

4 1.8% 1.8% 1.7% -0.2% 1.9% 1.8% 

5 2.9% 2.9% 2.9% -0.5% 4.9% 4.6% 

6 3.1% 3.1% 3.0% -0.6% 5.3% 4.8% 

7 2.7% 2.7% 2.6% -0.5% 4.6% 4.2% 

8 2.6% 2.6% 2.6% -0.4% 3.5% 3.1% 

9 2.4% 2.4% 2.4% -0.4% 3.5% 3.0% 

M4 monthly 

0 53.3% 53.3% 59.9% -37.7% 45.2% 53.9% 

1 53.9% 53.9% 60.4% -38.1% 45.8% 54.4% 

2 54.3% 54.3% 61.0% -38.2% 45.8% 54.2% 

3 54.4% 54.4% 61.4% -37.9% 45.6% 53.1% 

4 55.0% 55.0% 62.3% -38.3% 45.9% 54.0% 

5 53.6% 53.6% 59.5% -37.8% 46.1% 53.1% 

6 53.6% 53.6% 59.2% -37.8% 45.8% 52.6% 

7 52.9% 52.9% 58.6% -37.3% 45.0% 51.2% 

8 50.0% 50.0% 56.0% -35.7% 42.4% 47.7% 

9 50.4% 50.4% 56.2% -36.1% 42.8% 48.0% 

M5 competition 

0 1.8% 1.8% 1.6% -1.7% 2.0% 1.8% 

1 1.8% 1.8% 1.7% -1.7% 1.9% 1.7% 

2 1.9% 1.9% 1.7% -1.8% 1.9% 1.8% 

3 2.2% 2.2% 2.2% -1.5% 1.6% 1.4% 

4 2.1% 2.1% 2.0% -1.1% 1.2% 1.1% 

5 1.8% 1.8% 1.7% -1.9% 2.2% 2.1% 

6 1.7% 1.7% 1.7% -2.0% 2.3% 2.2% 

7 1.4% 1.4% 1.4% -1.7% 1.9% 1.8% 

8 1.0% 1.0% 1.0% -1.3% 1.5% 1.4% 

9 1.0% 1.0% 0.9% -1.4% 1.4% 1.3% 

OEM article 

0 6.7% 6.7% 7.1% -31.5% 2.9% 2.8% 

1 7.0% 7.0% 7.6% 30.1% 2.9% 2.6% 

2 6.4% 6.4% 6.7% -34.0% 2.8% 2.8% 

3 5.8% 5.8% 6.3% 78.0% 0.8% 0.4% 

4 4.0% 4.0% 4.8% 5.0% 1.3% 0.7% 

5 7.5% 7.5% 8.1% -13.2% 2.6% 2.6% 

6 7.4% 7.4% 8.1% -5.1% 3.1% 2.8% 

7 6.6% 6.6% 6.9% -19.4% 2.6% 2.6% 

8 6.3% 6.3% 7.5% -197.5% 0.6% 0.6% 

9 3.8% 3.8% 4.2% -2.3% 1.6% 0.8% 

Rossmann 

0 4.3% 4.3% 4.2% -0.9% 4.6% 4.6% 

1 3.8% 3.8% 3.8% -0.8% 4.0% 3.9% 

2 3.7% 3.7% 3.5% -0.7% 3.5% 3.4% 

3 8.0% 8.0% 8.0% -1.4% 7.7% 7.9% 

4 9.8% 9.8% 9.6% -1.8% 10.2% 10.1% 

5 4.8% 4.8% 4.8% -1.1% 6.0% 6.0% 
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6 3.0% 3.0% 3.0% -0.6% 3.4% 3.3% 

7 2.4% 2.4% 2.4% -0.4% 1.8% 1.8% 

8 7.6% 7.6% 7.5% -1.3% 7.4% 7.3% 

9 8.3% 8.3% 8.2% -1.6% 8.9% 8.7% 

Walmart 

0 4.8% 4.8% 4.4% -1.3% 7.8% 6.5% 

1 4.4% 4.4% 4.3% -0.9% 6.8% 5.8% 

2 4.4% 4.4% 4.7% -0.6% 6.8% 6.8% 

3 4.7% 4.7% 5.3% -0.5% 6.3% 6.4% 

4 4.0% 4.0% 4.4% -0.5% 5.9% 5.7% 

5 5.0% 5.0% 4.7% -1.2% 8.1% 7.0% 

6 4.7% 4.7% 4.3% -1.1% 7.1% 6.0% 

7 3.9% 3.9% 4.0% -1.1% 5.8% 6.0% 

8 5.1% 5.1% 5.8% -0.6% 8.0% 8.0% 

9 4.5% 4.5% 5.1% -0.4% 5.6% 6.5% 

Website traffic 

0 3.2% 3.2% 3.3% -15.5% 6.2% 7.4% 

1 5.3% 5.3% 4.3% -19.4% 5.7% 7.1% 

2 3.3% 3.3% 3.5% -17.5% 5.1% 7.4% 

3 4.2% 4.2% 5.4% -13.6% 6.1% 7.0% 

4 3.2% 3.2% 3.7% -5.3% 3.9% 5.0% 

5 5.7% 5.7% 4.9% -17.0% 4.1% 4.6% 

6 4.1% 4.1% 3.2% 4.2% 4.2% 6.0% 

7 4.0% 4.0% 3.6% -14.8% 5.0% 6.0% 

8 4.4% 4.4% 4.3% -3.2% 3.6% 0.9% 

9 3.4% 3.4% 3.6% -7.9% 3.6% 4.8% 

Table 50: Evaluation results of each experiment by all evaluation metrics denoted as _delta_perc. Recap: Experiments 0–4 

with PD-statistics representation, experiments 5–9 with Syntetos-Boylan representation. Cluster sizes: 3, 5, 10, 100, and 200. 

7.8.2 Overview of the result significance test 

 p-value of paired t-test, Benjamini-Hochberg corrected H0 hypothesis rejected? 

Metric 

→ 

Exper-

iment ↓ 

MAD-

mean-

Ratio 

MAE MASE R2 RMSE RMSSE 

MAD-

mean-

Ratio 

MAE MASE R2 RMSE 
RMSS

E 

COVID4 

0 3.04E-05 5.17E-04 2.24E-01 1.44E-04 1.74E-04 1.25E-03 True True False True True True 

1 2.07E-05 1.29E-05 8.94E-03 2.08E-04 9.33E-05 8.58E-05 True True True True True True 

2 8.52E-06 2.07E-06 1.07E-02 1.16E-04 9.99E-05 4.02E-05 True True True True True True 

3 6.84E-05 2.42E-05 7.52E-03 1.65E-03 7.70E-04 2.08E-04 True True True True True True 

4 2.35E-05 1.70E-05 4.98E-02 1.85E-04 1.26E-04 2.56E-05 True True True True True True 

5 1.11E-06 4.35E-08 6.20E-03 7.77E-05 5.38E-06 4.59E-05 True True True True True True 

6 5.08E-05 1.69E-05 1.54E-01 1.91E-04 3.95E-05 2.78E-03 True True False True True True 

7 1.42E-07 1.25E-08 2.66E-01 2.56E-05 1.67E-05 1.67E-05 True True False True True True 

8 3.00E-05 1.70E-05 1.61E-02 6.85E-04 3.85E-04 9.04E-05 True True True True True True 

9 4.04E-06 2.39E-06 8.97E-03 7.53E-05 4.02E-05 1.70E-05 True True True True True True 

Kaggle store sales 

0 7.91E-07 8.58E-08 2.06E-06 1.56E-06 1.04E-07 4.12E-08 True True True True True True 

1 2.43E-07 3.14E-08 7.53E-07 2.18E-06 1.28E-07 2.55E-08 True True True True True True 

2 1.54E-06 2.11E-07 6.83E-06 1.07E-05 1.41E-06 6.53E-07 True True True True True True 

3 9.60E-08 7.90E-09 3.94E-07 1.03E-05 7.97E-07 3.44E-07 True True True True True True 

4 5.14E-07 1.02E-06 2.51E-06 3.46E-06 1.25E-06 4.88E-07 True True True True True True 

5 1.47E-05 3.94E-07 1.70E-05 1.31E-04 5.35E-06 4.08E-06 True True True True True True 

6 1.08E-05 2.50E-07 6.87E-06 6.51E-05 1.46E-06 5.46E-07 True True True True True True 

7 9.04E-05 1.40E-05 7.94E-05 2.72E-04 2.63E-05 2.02E-05 True True True True True True 

8 2.05E-04 4.58E-05 2.22E-04 4.12E-03 1.61E-03 1.12E-03 True True True True True True 

9 8.50E-04 2.81E-04 6.69E-04 3.46E-03 1.49E-03 9.72E-04 True True True True True True 

M4 monthly 

0 4.60E-13 2.08E-12 6.44E-10 3.53E-12 8.03E-13 7.27E-12 True True True True True True 

1 7.27E-13 2.66E-12 2.92E-10 5.53E-12 2.32E-12 8.56E-12 True True True True True True 

2 2.32E-12 7.60E-12 6.44E-10 7.93E-12 6.17E-12 5.37E-11 True True True True True True 

3 7.27E-12 3.88E-11 4.46E-10 2.52E-11 4.74E-11 7.57E-11 True True True True True True 

4 5.16E-12 2.29E-11 6.85E-10 7.70E-12 9.00E-12 2.52E-11 True True True True True True 

5 7.66E-09 1.54E-08 4.79E-07 2.30E-08 5.77E-09 1.04E-07 True True True True True True 

6 7.95E-09 1.59E-08 4.79E-07 3.08E-08 7.97E-09 1.14E-07 True True True True True True 

7 3.77E-09 1.23E-08 5.00E-07 1.12E-08 1.06E-09 5.74E-08 True True True True True True 

8 2.27E-08 5.24E-08 4.57E-07 2.90E-08 1.53E-08 1.02E-07 True True True True True True 

9 2.59E-09 8.56E-09 3.80E-07 1.76E-08 4.65E-09 1.20E-07 True True True True True True 
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M5 competition 

0 2.51E-08 9.08E-06 6.92E-07 4.47E-06 1.46E-04 4.49E-05 True True True True True True 

1 1.25E-08 2.68E-05 4.98E-07 2.14E-05 4.14E-04 7.14E-05 True True True True True True 

2 2.51E-08 5.14E-06 6.53E-07 1.97E-05 3.11E-04 7.13E-05 True True True True True True 

3 2.45E-06 4.79E-07 2.53E-05 1.85E-04 3.22E-03 1.15E-03 True True True True True True 

4 7.16E-06 2.63E-07 7.05E-05 9.21E-04 4.86E-03 2.53E-03 True True True True True True 

5 3.71E-10 8.69E-06 1.24E-09 2.07E-05 2.98E-04 8.58E-05 True True True True True True 

6 6.85E-10 6.79E-06 1.25E-08 6.33E-06 2.01E-04 4.65E-05 True True True True True True 

7 1.95E-08 1.08E-05 7.22E-08 1.96E-05 3.42E-04 8.70E-05 True True True True True True 

8 1.67E-05 2.47E-04 4.15E-05 2.64E-05 5.66E-04 1.93E-04 True True True True True True 

9 1.21E-03 2.53E-03 8.48E-03 2.72E-04 1.96E-03 6.88E-04 True True True True True True 

OEM article 

0 1.32E-03 3.96E-03 2.03E-03 1.69E-05 8.43E-02 2.83E-03 True True True True False True 

1 2.70E-03 3.03E-03 6.73E-03 1.20E-03 4.76E-02 1.69E-02 True True True True True True 

2 3.37E-03 3.25E-03 5.69E-03 8.84E-05 6.96E-02 1.08E-02 True True True True False True 

3 6.64E-03 6.31E-03 9.68E-03 4.64E-01 9.27E-02 2.65E-01 True True True False False False 

4 6.14E-02 1.24E-01 5.02E-02 1.46E-01 7.16E-02 1.20E-01 False False False False False False 

5 7.97E-04 8.58E-05 1.33E-03 1.19E-03 1.46E-01 4.88E-03 True True True True False True 

6 3.96E-03 7.79E-04 5.69E-03 4.05E-04 3.35E-02 3.29E-03 True True True True True True 

7 4.83E-03 2.14E-03 8.50E-03 1.74E-03 5.31E-02 1.30E-02 True True True True False True 

8 2.63E-03 3.91E-03 3.87E-03 7.93E-01 1.59E-01 2.23E-01 True True True False False False 

9 2.73E-02 4.19E-02 4.69E-02 4.98E-02 1.13E-01 2.73E-01 True True True True False False 

Rossmann 

0 5.22E-08 5.94E-08 5.70E-08 2.24E-08 1.39E-08 1.25E-08 True True True True True True 

1 1.46E-09 1.53E-09 2.34E-09 2.34E-09 3.57E-09 2.34E-09 True True True True True True 

2 7.77E-05 7.79E-05 1.04E-04 8.17E-05 6.75E-05 7.50E-05 True True True True True True 

3 3.53E-13 3.65E-13 3.53E-13 7.27E-12 5.94E-12 3.14E-12 True True True True True True 

4 4.60E-13 7.27E-13 3.88E-13 1.05E-12 2.57E-12 2.32E-12 True True True True True True 

5 1.76E-09 2.07E-09 2.23E-09 7.13E-10 8.24E-10 8.24E-10 True True True True True True 

6 1.65E-06 2.29E-06 1.82E-06 2.20E-07 9.46E-08 1.20E-07 True True True True True True 

7 2.76E-06 2.26E-06 5.99E-06 4.49E-05 2.50E-05 2.71E-05 True True True True True True 

8 2.32E-12 2.32E-12 2.15E-12 7.70E-12 5.31E-12 5.81E-12 True True True True True True 

9 2.86E-12 2.86E-12 3.19E-12 2.29E-11 2.50E-11 8.54E-12 True True True True True True 

Walmart 

0 1.21E-06 2.85E-07 7.00E-07 4.15E-05 2.06E-05 6.05E-07 True True True True True True 

1 1.15E-05 2.07E-06 7.68E-06 8.30E-05 2.85E-06 6.82E-07 True True True True True True 

2 5.38E-06 8.86E-07 2.71E-06 4.89E-05 4.81E-06 8.02E-08 True True True True True True 

3 1.20E-07 1.87E-07 3.11E-07 5.66E-04 1.09E-04 2.29E-08 True True True True True True 

4 3.33E-06 4.34E-06 3.75E-06 8.50E-04 2.72E-04 1.36E-05 True True True True True True 

5 5.36E-07 1.42E-07 4.04E-07 6.49E-05 8.99E-06 4.17E-08 True True True True True True 

6 7.97E-07 2.51E-08 1.06E-06 6.41E-04 4.98E-05 8.40E-06 True True True True True True 

7 1.69E-05 9.84E-06 7.16E-06 1.37E-03 4.36E-04 4.25E-06 True True True True True True 

8 2.43E-08 3.28E-08 7.95E-08 4.34E-06 3.98E-07 1.22E-08 True True True True True True 

9 4.35E-08 1.28E-07 1.36E-07 4.59E-04 2.93E-04 8.04E-08 True True True True True True 

Website 

0 3.92E-04 3.76E-03 4.84E-04 9.95E-05 7.53E-05 1.15E-02 True True True True True True 

1 1.31E-02 1.93E-01 1.69E-02 4.30E-02 2.82E-02 1.10E-01 True False True True True False 

2 2.92E-03 2.38E-03 3.35E-03 1.99E-04 1.44E-04 4.24E-03 True True True True True True 

3 1.46E-04 1.04E-03 1.33E-05 3.59E-05 4.14E-05 2.94E-05 True True True True True True 

4 2.06E-04 4.29E-04 5.41E-06 5.10E-03 1.84E-02 4.55E-04 True True True True True True 

5 7.56E-03 1.74E-01 6.94E-03 6.88E-03 1.55E-01 6.48E-02 True False True True False False 

6 1.07E-03 2.24E-04 2.36E-03 3.05E-03 2.43E-02 1.51E-02 True True True True True True 

7 3.01E-03 7.06E-03 3.34E-03 7.19E-04 1.08E-04 1.00E-06 True True True True True True 

8 1.20E-05 6.90E-04 1.67E-05 5.02E-01 3.17E-01 9.61E-01 True True True False False False 

9 3.58E-04 3.05E-03 1.93E-02 1.36E-04 3.40E-04 2.72E-04 True True True True True True 

Table 51: Hypothesis testing of the statistical significance of different means of experiments and baselines. The table shows 

the Benjamini-Hochberg corrected p-values and H0 rejection und Benjamini-Hochberg procedure at a confidence level of 

95% and false-detection rate of 5%. Values in bold and italics indicate that the H0 hypothesis cannot be rejected at the given 

confidence levels. The table directly corresponds to Table 50. Recap: Experiments 0–4 with PD-statistics representation, ex-

periments 5–9 with Syntetos-Boylan representation. Cluster sizes: 3, 5, 10, 100, and 200. 
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8 Conclusion 

In this thesis, I (1) introduced to the topic of demand forecasting, (2) systematically studied the current 

state-of-the-art in research and practice as well as current open issues, (3) demonstrated the application 

of demand forecasting in general and intermittent time series forecasting in particular, and (4) introduced 

a novel approach to forecasting demand for unknown hierarchical structures of time series. 

This chapter concludes the thesis by summarizing the contributions of the previous chapters, answering 

the research questions posed in Chapter 1.1 and providing an outlook for future research. 

8.1 Summary of the results 

In Chapter 1.1, I raised the following research questions as guidelines for my studies: 

RQ I. What is the current state of demand forecasting in research, what are open issues dis-

cussed in literature and how far has adoption of the current state of the art proceeded in 

companies? 

RQ II. How can demand forecasting studies be structured to increase the comparability be-

tween studies? 

RQ III. What is the forecasting performance of machine learning methods compared to classical 

approaches for intermittent time series and how can approaches be selected depending 

on the time series characteristics? 

RQ IV. How can intermittent and hierarchical demand forecasting be improved? 

 

Chapter 2 (On the Industry Need for Machine Learning and Demand Forecasting) and Chapter 3 (How 

the Demand Forecasting Literature and Applications can Benefit from Better Comparability) together 

contribute to research question RQ I. I showed in Chapter 2 that machine learning approaches in general 

are well researched, yet the prevalence of the implementation of these approaches in companies is rela-

tively low. In this chapter, I showed that the success of the adoption of machine learning approaches is 

connected to the maturity of the companies in the dimensions (a) machine learning know how, (b) avail-

able personnel capacities, (c) availability of data, (d) acceptance of machine learning technologies by 

the stakeholders and (e) capability for interdisciplinary cooperation. In Chapter 3, I showed in detail the 

methods applied in demand forecasting literature–comparing the major fields of application in demand 

forecasting and at the same time along the generalized process of demand forecasting. I could thereby 

show that the research in the different fields of applications could benefit from adopting of approaches 

of the respective other fields as well as from adopting approaches from other disciplines in forecasting. 

Moreover, Chapter 3 summarized the open issues stated in the literature, concerning data availability, 

comparability of studies mainly in input data and evaluation methods, and development of new fore-

casting algorithms, especially leveraging hybridization of existing approaches. 

The findings concerning RQI. from these chapters are thus relevant for this dissertation as well as for 

research. I was able to show that there is great interest in applications for machine learning and demand 

forecasting in practice - for which many approaches have already been explored in research. However, 

I was able to show that further influencing factors are needed to introduce these into practice. 
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Furthermore, I could show that similar open research questions exist in the application areas in research. 

Nevertheless, the exchange and comparison between the application fields in research is still too low 

and progress could concretely be made by a better exchange between the research fields. 

Chapter 3 in addition contributes to research question RQ II. The chapter introduces the systematic 

approach to describe demand forecasting studies in a structured way. As shown with the 116 studies 

examined, this allows studies to be described uniformly in the process steps of (1) forecasting goal 

definition, (2) data preparation, (3) feature engineering, and (4) model design, making them comparable 

for other researchers. The systematic thereby includes the description of the data input, the prediction 

goal, the approach and methods used, and the evaluation results. The introduction of this new systematic 

represents a substantial new contribution to research. Because the systematic makes it possible, as de-

scribed, to create comparative studies that directly address the results of other studies without empiri-

cally reproducing them. This advantage enables the scientific community to gain new insights and make 

faster progress. Thus, the finding to research question RQ II. represents one of the most substantive 

contributions of this dissertation. 

One of the most frequently cited open research questions in the literature in Chapter 3 was how to better 

use external influences to improve demand forecasting. In Chapter 4 (Developing an Understanding of 

External Factors Influencing Demand Forecasting Models using a Case Example), I provided an exam-

ple of how demand forecasting can be applied and the impact of training with external influences. The 

chapter contributed to research by showing how demand forecasting can be used to predict the impact 

of specific events and how models must be trained to relate past events to the impact on the target 

variable to find analogies in future patterns. In my literature search, I did not find any comparable work 

that similarly systematically explores the relationship of external influences, exceptional events, and 

machine learning training parameters on demand forecasts. 

Research question RQ III. is answered in Chapter 5 (How Time Series Characteristics Affect the Fore-

cast Quality in State-of-the-Art Algorithms for Intermittent Demands). The three studies together show 

that the tested state of the art machine learning algorithms do not systematically produce better predic-

tion results than the comparable classical algorithms for intermittent time series forecasting. Thus, the 

chapter already contributes by systematically comparing the state-of-the-art algorithms. In addition, the 

chapter highlights a relevant new aspect. Based on the properties of time series, the best method can be 

systematically chosen from a selection of forecasting methods using classification algorithms. Thus, the 

chapter shows not only that a relationship between time series properties must exist, but also how this 

relationship can be predicted. The findings from this chapter thus contribute to research by enabling 

researchers and practitioners to systematically select the best of the available methods for demand fore-

casting, depending on what types of time series are available. This can reduce the time and resources 

required. 

Chapter 6 (A New Approach in Hierarchical Demand Forecasting) introduced to the special sub-disci-

pline of hierarchical and intermittent demand forecasting. I showed in the chapter that so far there is no 

research on forecasting of hierarchical organized demands when the hierarchy structure is unknown–

especially not in combination with intermittent time series characteristics. I closed the gap in research 

by introducing the novel similarity-based time series forecasting (STSF) approach. I showed in Chapter 

6 that the approach is able to improve forecasting accuracy by 2-7% (based on the RMSE evaluation 

metric) in the empirical study incorporating two publicly available data sets. Thus, this chapter makes 

an important contribution to the research by providing a modular framework ready to apply and agnostic 

to the particular algorithms used for the empirical study. 
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Together with the findings from Chapter 7 (Generalization of the Approach’s results), the two chapters 

give an answer to research question RQ IV.  The STSF approach is an appropriate approach to improve 

hierarchical demand forecasting. The extended foundation of six additional data sets in Chapter 7 sub-

stantiates the empirical findings from the study in Chapter 6. Moreover, I conclude from the findings in 

Chapter 7 that the approach is beneficial to be applied to all sorts of time series, not only in particular to 

intermittent time series. In addition, the chapter contributes to the research by providing indications what 

kind of data sets benefit most from the STSF approach and how future research can further develop the 

framework. 

Thus, the findings related to research question RQ IV. from Chapters 6 and 7 represent one of the most 

significant contributions of this dissertation to the state of the art. In summary, the STSF framework can 

reliably (for more than 94% of the time series tested) improve demand forecasts relevantly (between 1-

40% vs. baseline depending on the dataset) for all types of time series tested in the experiments. The 

statements from the two chapters are supported by the confirmations of the statistical significance tests. 

8.2 Critical discussion 

The previous chapters contained critical discussion sections where the respective studies were scruti-

nized in detail. In this final chapter, this thesis summarizes the main aspects of the critical discussions 

into a general view and discuss major critical points of the thesis. These points are finally the foundation 

for Chapter 8.3 (Outlook). 

Chapter 3 (How the Demand Forecasting Literature and Applications can Benefit from Better Compa-

rability) has summarized the open issues in demand forecasting literature, e.g., new challenges of pro-

cessing input data (especially big data and data quality), development of new (hybrid) forecasting algo-

rithms and the issue of missing comparability of studies in terms of data used, methods applied and the 

standardization of evaluation of results. Apparently, this thesis cannot provide answers to all the ques-

tions of the research, wherefore I concentrated mainly on diving into two aspects: The development of 

a framework to standardize comparability of demand forecasting studies and the development of a new 

approach to improve demand forecasting in the absence of known time series hierarchies. 

In this critical review, it should be noted, that Chapter 3 describes a suitable, comprehensive, and novel 

framework to systematically compare demand forecasting studies. However, at this point of time, it 

comes with two shortcomings. First, the novel approach is not yet applied by studies to ensure compa-

rability to other studies. Therefore, it is so far only a descriptive framework for the demand forecasting 

process and a synthesis of the structures described in the research literature–it has yet to be implemented 

in research. Second, because the framework has not yet been applied, this thesis could only provide a 

qualitative overview of the state-of-the-art–as opposed to a systematic quantitative meta-analysis that 

compares studies’ evaluation results based on the input data and methods applied. 

We also critically review the findings of the novel STSF approach, described in the chapters 6 and 7. 

With the study of Chapter 6 alone, one would rightfully criticize that an empiric study based on only 

two data sets does not provide broad foundation and could be the result of lucky coincidence or carefully 

chosen particular data sets. However, Chapter 7 confirms the findings on additional six data sets, making 

this objection unlikely. Moreover, the data sets are commonly used in demand forecasting literature and 

not particularly known for any unusual characteristics. In addition, the experiment design was chosen 

such that lucky sampling within the data sets is unlikely, as shown by the statistical tests. 
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However, the studies remain empirical research. The findings from the empirical experiments strongly 

support the hypothesis that the STSF approach considerably improves demand forecasting under the 

given conditions (time series with a hierarchical structure that is not known). However, I am aware that 

the thesis does not provide the theoretical foundation to make general proven statements. 

Also, the two studies in Chapters 6 and 7 support the assumption that there is a definable dependency 

between the characteristics of the input data, the applied STSF pipeline including its parameters and the 

improvement by the approach. The meta-learner that is part of the STSF pipeline showed high accuracy 

scores in classifying time series that benefit from the STSF approach. It can be concluded that there is 

exactly the dependence between time series characteristics and forecasting accuracy. However, this de-

pendence is only defined implicitly in the meta-learner–the thesis does not make the dependence ex-

plicit. 

8.3 Outlook 

This final Sub-chapter of the thesis provides an outlook for future developments in demand forecasting 

and especially opportunities for further studies based on the proposed approaches. This outlook is ori-

ented on the previous critical discussion. 

Chapter 2 showed that there is a gap between the research of machine learning methods and their appli-

cation in companies. I showed what success factors provide chances for companies to implement ma-

chine learning, amongst which especially demand forecasting applications. I conclude that the research 

community can support the advancement of applications by providing use-case specific frameworks and 

approaches that are easy to implement. In turn, it is safe to presume that an accelerated implementation 

of approaches in practice will lead to beneficial circumstances for research (e.g., availability of data, 

private and public funding, new use cases for research, etc.). 

The open issues in demand forecasting summarized and derived from the literature review in Chapter 3 

all pose opportunities for future research, especially as also named in the previous Sub-chapter: new 

challenges of processing input data (especially big data and data quality), development of new (hybrid) 

forecasting algorithms and the issue of missing comparability of studies in terms of data used, methods 

applied and the standardization of evaluation of results. Literature has unanimously identified these open 

issues as of high concern for the future development of demand forecasting. 

In addition, the framework proposed in Chapter 3 to describe and compare demand forecasting studies 

provides two additional approaches for further research. First, the research community can benefit from 

applying the framework to structure their studies to make their results easily comparable for other re-

searchers. Second, based on more comparable studies, systematic quantitative meta-studies can analyze 

what differences in the approaches have which effects on the results. 

I also suggest potential future research based on the proposed STSF approach. As discussed in the crit-

ical review in Chapter 8.2, I derive two major open points from the empirical study. First, developing a 

solid theoretical foundation of the empirical findings would further substantiate the generality of the 

statements. Second and forward looking, systematic research of the mechanisms between the data input 

characteristics, the pipeline setup, and the forecasting result accuracy will enable to focus effectively on 

how to further optimize the pipeline. The existing empirical study setup can be further developed to 

systematically run experiments, altering the parameters and algorithms and measuring the improvements 

on the forecasting accuracy. 
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