Relevance of C/O ratios in the gas-phase synthesis of freestanding few-layer graphene

Paolo Fortugno a,*, Claudia-Francisca López-Cámara a, b, Fabian Hagen c, Hartmut Wiggers a, b, Christof Schulz a, b

a EMPI, Institute for Energy and Materials Processes – Reactive Fluids, University of Duisburg-Essen, Duisburg, Germany
b CENIDE, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
c Engel-Bunte- Institute, Division of Combustion Technology, and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

ARTICLE INFO

Keywords:
Plasma synthesis
Carbon nanomaterials
Freestanding few-layer graphene

ABSTRACT

In microwave-plasma synthesis of few-layer graphene from hydrocarbon precursors, the carbon-to-oxygen and the carbon-to-hydrogen ratios are known to influence the product ratio of graphene to amorphous soot-like particles. While the role of oxygenated hydrocarbons and water as oxygen-supplying species has been studied before, in this paper, we compare the effect of carbon dioxide, molecular oxygen, and nitrous oxide mixed with ethylene to systematically change the C/O ratio while keeping the hydrogen supply constant. Ex situ powder analysis, emission spectroscopy, gas chromatography, and simple reaction kinetics simulations are employed to evaluate and describe the synthesis process. Additionally, thermophoretically sampled nanomaterials are collected close after the first particle inception and analyzed ex situ. The results show that molecular oxygen and nitrous oxide increase the graphene fraction with decreasing C/O ratios and pure graphene is reached at 2:1.5. The decrease in C/O ratio results in an overall decrease in solid carbon yield. With carbon dioxide, pure graphene cannot be generated at a C/O ratio of 2:1.5, although a similar reduction of the particle yield is observed. Thermophoretic sampling showed that the specific mixture of carbon allotropes is already defined a few cm downstream to the plasma zone. Emission spectroscopy shows that carbon dioxide forms carbon species during its decomposition in the plasma, we hypothesize that these released carbon species might influence the environment for local nucleation of solid carbon. Thus, the C/O ratio and available carbon fraction for growth cannot always be used to tailor the carbon microstructure. Moreover, the source of oxygen atoms also seems to have an effect on the resultant microstructure.

1. Introduction

Graphene has attracted considerable interest due to its unique properties such as high electrical and thermal conductivities, optical transparency, and mechanical strength [1]. A wide range of applications has been envisioned, from sensors [2–4] to optoelectronics [5,6], and transparent conductive films for solar cells [7]. In recent years, potential applications have been extended to catalysis [8,9], battery electrode materials [10,11], and supercapacitors [12,13], where graphene often serves as a flexible, conductivity-enhancing and electrochemically-stable component. Graphene is also of interest as additive for enhancing the mechanical, electrical, and thermal properties of polymer composites [14–16].

One way of continuously generating high-purity few-layer-graphene (FLG) flakes is the synthesis via atmospheric-pressure plasma pyrolysis of hydrocarbon reactants. In this method, the hydrocarbon reactant is passed through a plasma zone, which decomposes it into atomic species due to the high temperatures (>3000 K). Downstream, the gas temperature decreases leading to the formation of carbon containing gaseous species that can then nucleate into solid carbon allotropes. This method is also considered for reforming hydrocarbons towards hydrogen while harvesting solid carbon materials [17,18]. The mechanistic understanding required for directing particle formation and growth towards specific valuable allotropes is, however, still lacking.

In the past, multiple authors were able to show that tailoring specific experimental parameters e.g., reactant concentration, input power, and
pressure [19–23], can influence the type and quality of carbon allotrope grown during the plasma synthesis. The carbon-to-oxygen ratio (C/O ratio) in the hydrocarbon precursor was identified as one of the factors controlling the free-standing carbon-allotrope type formed in a plasma reactor [24,25]. Previous results showed that this C/O ratio can be interpreted as an artificial control of the carbon-atom concentration available for growth considering the formation of carbon monoxide (CO) as a loss channel. It was shown that water can also act as an oxygen source yielding graphene from oxygen-free hydrocarbons [26]. Yet, other results suggest that only focusing on oxygen as species reducing C can be tailored for directing carbon inception and growth towards graphene. It is argued that hydrogen can saturate the surface of the growing clusters and thus suppress out-of-plane growth.

In this work, we investigate, whether the oxygen-atom source species has an impact on the graphene synthesis. For this purpose, we employ three different compounds (carbon dioxide, CO$_2$; nitrous oxide, N$_2$O; and molecular oxygen, O$_2$) that deliver oxygen atoms at plasma temperature at various C/O ratios while keeping the supply of hydrogen fixed. To this end, we combine in situ optical spectroscopy, inline gas analysis with thermophoretic sampling and ex situ materials characterization. The experimental findings are supported on the basis of simplified kinetics and chemical equilibrium simulations of the reaction system.

2. Experiment

The experimental setup consisted of the microwave-plasma reactor system shown in Fig. 1. A more detailed explanation can be found in previous works [26]. A quartz tube with inner diameter of 70 mm was positioned at the center of a cylindrical microwave slot antenna (Cyrannus, iplas GmbH). Radiation from a microwave generator (Muegge GmbH MH 20,005–213BA, 2.45 GHz, and maximum power 2 kW) was focused along the center of the fused-silica tube to generate a standing wave that ignited and supported the plasma. The reactive gas mixture (ethylene and oxygen carriers) were fed from the bottom into the plasma zone via a combination of two nozzles. A central nozzle provided the reactive gas mixture diluted in argon (Ar, 5.0 purity). The resulting gas flow was stabilized by a tangentially injected sheath gas flow of 30 slm Ar (5.0) and 1 slm hydrogen (H$_2$, 5.0). All gas flows were controlled with calibrated Bronkhorst mass flow controllers. For all experiments, ethylene (C$_2$H$_4$ ≥ 99.9%) was mixed upstream with Ar and sent into the reactor through the central nozzle. Depending on the case of study, O$_2$ (4.8), CO$_2$ (4.5), or N$_2$O (5.0) were added to the central ethylene/argon mixture (see Table 1 for details).

Each experiment started by evacuating the reactor to ~2000 Pa. Subsequently, the plasma was ignited at the magnetron (output power of 600 W) in a pure Ar flow sheath gas. H$_2$ was then added to the system, and the pressure and microwave power were stepwise increased up to 105 Pa and 1400 W. The oxygen-containing reactant (i.e., the oxygen carrier with the respective flowrate) and ethylene (190 sscm: standard cubic centimeters per minute) were then introduced into the reactor. Each experiment lasted around 1 h, after which the reactor was flushed with Ar. For thermophoretic particle sampling in the post-plasma flow, particles were deposited on lacey-carbon coated TEM grids that were exposed to the plasma region (~15 cm height above nozzle; HAN) by a pneumatically-driven piston. The actuation of the pneumatic system exposing the TEM grid for about ~10 ms was repeated 20 times to ensure sufficient sample collection. More details on the thermophoretic sampling system can be found in Refs. [36–38]. The carbonaceous products were also harvested from a filter placed at the reactor off-gas for more extensive powder analysis. Details on the different studied

![Fig. 1. Schematic of the microwave-plasma reactor including the thermophoretic sampling system and the filter used for particle collection.](image-url)
cases are listed in Table 1.

Case 1 is established as the base case as it does not have any oxygen-carrier addition and solely ethylene (190 scm) was used as reagent. From previous experiments, this case is known to produce a mixture of crumpled FLG, soot-like, and graphitic particles [26,35]. Thus, the flowrates were adopted from these previous studies. Cases 2–4, 5–7, and 8–9 were designed to investigate/screen the role of oxygen using different oxygen carriers (see C/O ratios from Table 1). To maintain a constant inlet gas flow for all experiments even with variable flows of oxygen carriers, the Ar flow was reduced respectively. The total flow rate was thus fixed at 5.19 slm (0.19 slm CO). Oxygen carrier, the Ar flow was reduced respectively. The total flow rates were adopted from these previous studies. Cases 2–4, 5–7, and 8–9 were designed to investigate/screen the role of oxygen using different oxygen carriers (see C/O ratios from Table 1). To maintain a constant inlet gas flow for all experiments even with variable flows of oxygen carriers, the Ar flow was reduced respectively. The total flow rate was thus fixed at 5.19 slm (0.19 slm CO).

Optical emission spectroscopy (OES) was used to obtain information about the plasma temperature and key species (details reported in Ref. [26]). Light emission of the plasma torch was collected with an open SMA optical fiber end connector (numerical aperture: 0.22, fiber core diameter: 0.6 mm) placed ~20 mm downstream of the microwave resonator, where the microwave shielding is installed, i.e., the light is collected through the holes of the microwave shield. The fiber position was adjusted for maximal He signal strength. The collected light was guided into a monochromator (SPEX 1704, 1200 g/mm grating, blazed for 400 nm) by two planoconvex fused silica lenses (f1 = 50 mm, f2 = 150 mm, diameter: 2.5 cm). The diffracted light was detected with a photomultiplier tube (Hamamatsu R955) with a spectral response between 160 and 900 nm, and recorded using LabVIEW. A Hg/Ar light source (LOT QuantumDesign) was employed for calibration. The spectral resolution of the OES system was about 0.02 nm (full-width-half-maximum; FWHM). The instrument function of the spectrometer system was corrected for using the known spectrum of a laser-driven light source (Energetiq DLDS EQ-99X) as reference.

2.2. Inline gas species diagnostics

GC/MS measurements were performed with an Agilent 7890A/Agilent 5975C combination to probe the gas species concentrations downstream of the plasma (~0.8 m HAN). A Plot-Q column was used to separate the test-gas species. Samples were taken in situ during reactor operation by extracting gas samples into 3 l volume vacuum containers (~10⁻³ mbar 1 s⁻¹ leak rate) through a vacuum lock. Prior to sampling, the containers were purged and evacuated multiple times. Then, the containers were filled with the gaseous sample up to approx. 800 mbar (absolute pressure). Afterwards, the containers were transported and measured at the GC/MS system.

2.3. Ex situ materials characterization

The powders harvested from the filter were characterized for their microstructure, morphology, and chemical composition by transmission electron microscopy (TEM, Cs-corrected JEOL Jem 2200FS with 200 kV acceleration voltage), Raman spectroscopy (Renishaw inVia), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe). The thermophoretically sampled particles were analyzed by TEM only.

TEM and high-resolution TEM (HRTEM) samples (powders harvested from the filter) were prepared by dispersing a small amount of the sample powder in absolute ethanol (≥ 99.8% purity) followed by ultrasonic for 20 min. A few droplets of the dispersion were drop-cast on lacy copper TEM grids and dried under a fume hood. Contrary, the samples collected with the thermophoretic sampling system, were measured without further sample preparation as they were already on TEM grids.

For Raman spectroscopy, a small amount of sample powder was transferred onto a glass slide and compacted with a spatula. The measurements were done at room temperature and under ambient atmosphere, at wavenumbers between 300 and 3200 cm⁻¹. The device was operated with a 532 nm frequency-doubled continuous-wave Nd:YAG laser and a diffraction grating of 1800 l/mm. During measurement, the laser power was set to ~0.07 mW with a spot size of 10–15 μm in diameter. These conditions resulted in laser intensities of <100 W/cm², with negligible laser heating of the sample. Measurements were performed at least at two separate locations for each sample, because the carbon powder bed does not form a flat surface as required for recording Raman maps.

Thermogravimetric analysis was used to analyze the thermal oxidation rate of the samples with a Netzsch STA 4491 F1 Jupiter connected to a Netzsch QMS 403 D Aetos for simultaneous mass spectroscopic measurements. For all these measurements, Ar-diluted artificial air (~15% O₂) was introduced into the sample chamber, in which materials were thermally treated from 40 to 1000 °C at a heating rate of 5 °C/min. The mass spectrometer was set up to monitor the mass-to-charge (m/z) ratios of water and CO₂ fragments in addition to artificial air and Ar.

For XPS analysis, powder samples were mounted on a double-sided 3 M Scotch tape onto the sample holder. Binding energies were measured at room temperature with a monochromatic Al-Kα source at hν = 1486.6 eV and at 45° between the specimen and the analyzer. All spectra were attained using 11.75 eV pass energy, and shifted relative using a 360 s etched Cu-foil surface as reference. The spectra were analyzed using the Casa XPS software.

3. Numerical simulation

Two different sets of simulations were performed. First, chemical equilibria of the gas mixture at the plasma temperature were calculated for reference Case 1 and for all added oxygen carriers with C/O ratios of 0 and 2.15 (Case 4, 7, and 9 before (i.e., C/O ratio = 0) and after C₂H₄ addition; C/O ratio = 2.15) for comparison with OES measurements. Secondly, kinetics simulations of the reactions occurring in the plasma region (from the nozzle exit and up to 0.5 m downstream) were performed to compare the resulting species concentration profiles from the simulation with the observed ones from OES and GC/MS measurements. The simulations were limited to the initial 0.5 m, because already at a distance of ~0.3 m from the plasma zone, temperatures below 1000 K were reached at which no further reactions were predicted. The main goal of the simulations was to qualitatively support the interpretation of the reaction environment leading to the observed solid materials by evaluating the concentrations of the gas species (CO, C₂H₂, C₂H₄) formed.

The simulations were performed with Ansys Chemkin-Pro 2023. Chemical equilibria were calculated with the chemical and phase equilibrium calculations module. Calculations were performed for 1 bar input pressure for the gas compositions described in the previous paragraph. A step size of 10 K in the range of 200–8000 K for constant temperature and volume was chosen. For the reaction kinetics simulations, the 1D plug-flow reactor module was chosen to mimic the experimental setup, because the module allows for fast and simple computation of the desired species profiles, while more elaborate 2D/3D models would require more detailed information about the boundary
conditions, which are partly unknown. The plug-flow reactor model requires the input of a temperature profile, species concentrations and the overall flowrate of the reactant mixture, the reactor dimensions, pressure, inlet gas viscosity, and an estimation of the normalized internal and external surface area for the implementation of surface reactions and heat transfer. Surface reactions and heat transfer are ignored as the mechanism described in the next paragraph does not include them and the reactor walls are assumed to be isothermal. The reactor dimensions are simplified by assuming that the complete domain (up to 0.5 m) only consists of the quartz tube with an inner diameter of 70 mm. The pressure was set to 1000 mbar as this is the reactor pressure during synthesis. For the inlet gas viscosity, the value for Ar at the assumed temperature was chosen. The volumetric gas flows in the simulation were the ones described in Section 2, assuming homogeneous mixing. The temperature profile was also fed into the model as reported in Ref. [37]. Based on the OES measurements performed here, the gas temperature profile was slightly corrected upwards and the maximum temperature was set to 3700 K. Deviations from this peak temperature value were only observed for C2 when CO2 was added into the Ar/H2 plasma without C2H2 present. Because such deviation was observed for these cases only, we assume it originates from a nonthermal effect leading to highly rotationally excited C2*, potentially as a result of carbon atom recombination. Based on the measured temperature profile, the residence time and the species concentrations were simulated. The obtained stable species concentrations in the plasma effluent were found to be insensitive to the assumed peak temperature in the plasma, similar to previous work [26]. For comparison, all simulated species profiles are shown in the Supplementary Material for two different peak temperatures (Figures S5–S14). Simulation results for specific cases were compared to GC/MS measurements described in Section 4.1. Gas sampling for GC/MS analysis was performed by connecting evacuated containers to the gas flow at a fixed position at ~0.8 m HAN. Based on the simulations, the species concentrations have reached a stable state at this point and therefore the measurement results can be directly compared to the simulations.

For simulations, the USC Mech Version II [40] and the nitrogen chemistry part from the GRI-Mech 3 mechanism [41] was used. Reactions driven by plasma chemistry were not accounted for. This assumption can be justified by the fact that the plasma is mostly confined to the resonator and no plasma torch reaching into the effluent is observed. Therefore, from distances of HAN > 12 cm, we do not expect a significant fraction of charged species and the process is mainly thermal. The largest species considered in the mechanism were C6 and C7 species, with C3H2 and benzene (C6H6) being the ones with the highest predicted abundance. The formation of solid material as a carbon sink is neglected in the simulation because models that reliably describe the growth of graphene are not available and challenging to implement [37], and more detailed combustion models do not predict carbon growth for the given conditions. Since the solid carbon yield is below 10 wt.% in our experiments, the effect of this simplification is considered negligible. The reliability of the chemical equilibrium calculations are limited to typical combustion temperatures, because the utilized combustion mechanisms only contain a small number of species and some of the species’ properties are estimated.

4. Results

4.1. Numerical simulation results and validation

The left ordinate of Fig. 2 shows the results (mole fractions) from the Chemkin numerical kinetics simulation of Case 1. Only the most abundant species and some intermediate species are shown. The simulation can be separated in three distinguishable regions (from 0 to 0.05 m, 0.05 to 0.1 m, and 0.1 to 0.5 m). These three regions are also observed for the other cases studied (see Supplementary Material Section 1). In the first region (from 0 to 0.05 m), the room-temperature homogeneously-mixed gas heats up to ~3700 K. While reaching this value, the reactant(s) decompose, and several unstable decomposition products (e.g., atomic hydrogen, C2H, and C) are formed. In all cases except for Case 1, also CO is formed within this region. The second region (0.05 to 0.1 m) represents the plasma zone, in which the gas temperature is assumed to be constant and equal to 3700 K, and the species concentrations are

Fig. 2. Temperature profile and kinetics simulation of the species formed in the reactor for Case 1. The comparison between validation measurements by GC/MS and the simulation is shown on the second ordinate on the right (axis uses a different scale).
constant and in thermodynamic equilibrium. The third region (0.1 to 0.5 m) represents the off-gas region in which the gases cool down naturally as they leave the plasma region. Therefore, this region shows a decrease of the temperature down to 600 K, the unstable species disappear, and simple stable molecules are formed (e.g., acetylene/ diacetylene, methane, and ethane). The number of formed hydrocarbons depends on the cooling rate and it is insensitive to the absolute peak temperature. The residence time in the complete simulation domain is calculated to be ~0.9 s with a negligible difference (<10 ms) between the experimental cases. The residence time in the plasma region (HAN = 0.05–0.09 m) is for all cases ~17 ms.

For Cases 1, 4, 7, and 9 (the latter three having a C/O ratio = 2:1.5), the CO, C2H2, and C2H4 species obtained from the Chemkin simulations were compared to GC/MS measurements. The right y-axis of Fig. 2 shows the comparison between experimentally-determined and simulated species concentrations for Case 1. The comparison for all the cases studied is given in Table 2.

Comparing the simulated and measured values for CO, C2H2, and C2H4 (Table 2 and Fig. 2; right y-axis), the C2H4 concentrations are underpredicted in the simulations by a factor of 2–3, while the C2H2 concentrations do not show a consistent trend of over- or under-prediction (within 20%) by the simulations in respect to the experimental measured values; similar happens to the CO concentrations (within 25%). For Case 7 (with N2O addition), both the simulation and the measurement show the formation of HCN with similar concentrations to the ones for C2H2. However, due to the lack of calibration for the HCN GC signal, its exact value could not be quantified by the GC/MS measurements. The simulated species concentrations strongly depend on the assumed temperature decay rate. The differences in the predicted and assumed C2H4 concentrations is unlikely to originate from remaining (i.e., not decomposed) C2H4. Previous FTIR measurements [26] with a detection limit of ≈1 ppm showed complete decomposition of the reactants at similar conditions (similar microwave power and reactant flow rates). Therefore, the differences between measurement and simulation are attributed to inaccuracies of the temperature profile used as input for the simulations which could affect the formation temperature of C2H4 in the plasma off-gas. Non-equilibrium phenomena were observed under certain conditions and the effect of such non-thermal energy distributions on the reaction cannot be excluded. Since the lowest measured temperatures in the plasma zone are already very high, further increase in assumed peak temperatures did not lead to significant changes in the simulation results. The overall process is apparently determined by the conditions in the cooling phase, but not by the peak temperatures. Therefore, it is concluded that the underlying temperature profile decently describes the experimental conditions, because the measured and simulated concentrations for C2H2 (and CO) match within 20% (25%). The mass balances for oxygen and carbon are closed by GC/MS measurements of CO, C2H2, and C2H4 in the reactor off-gas within the measurement uncertainty. These measurements also confirm that the solid carbon yield is below 10%.

Comparing all the simulated cases, Case 1 shows the largest amount of formed C6+ species (i.e., all molecules with six or seven carbon atoms and molar concentrations of >10−15). Upon the addition of any of the employed oxygen carriers, the C6+ concentration decreases by almost two orders of magnitude for C/O ratios of 2:1.5. Fig. 3 shows a comparison for all the oxygen carriers used in the study cases of this work, and the amount of predicted C6+ species. A comparison with H2O, which has been used successfully to direct carbon growth previously [26], reveals that all oxygen carriers are expected to act similarly in suppressing the carbon growth. Only the N2O cases show a stronger reduction because the formation of HCN is predicted, which acts as an additional large gaseous carbon sink together with CO. Water is not formed in relevant concentrations (the simulation yield water concentrations below 10 ppb) because the supplied oxygen is almost completely consumed by CO formation.

An increase in CO concentration is expected with decreasing C/O ratios. The amount of CO produced can hereby be interpreted to reduce the amount of available carbon atoms for the growth of solid matter. This has been identified as a good indicator for the growth of graphene and/or soot in previous work [26]. Similarly, a correlation was also observed for the amount of C6+ molecules formed in the simulations. When the amount of produced CO increases, less C6+ species are predicted to form. This is important because C6+ species, such as benzene, are considered to be crucial precursors for carbon growth; thus, having less of them will correlate to less carbon and particle growth.

4.2. Characterization of materials

Fig. 4 shows TEM images of powders harvested at the filter downstream of the reactor (more images are shown in Section 2 of the Supplementary Material). When employing C2H4 without the addition of oxygen carriers (Case 1), similar to the literature [26,28], the simultaneous formation of multiple different carbon forms is observed. This includes FLG, small (<25 nm) soot-like particles, and large (>80 nm) graphitic particles. Upon the addition of oxygen carriers, different effects are observed: The addition of N2O and O2, C/O ratios of 2:0.5 (Cases 2 and 5) alters the formed carbon phase by removing most of the graphitic particles and leading to less soot-like particles present; by increasing the ratio to 2:1.5 (Cases 4 and 7), the undesired particle phases obtained in Case 1 are no longer visible. Unlike for the cases with

Table 2

Comparison of measured and simulated concentrations of CO, C2H2, and C2H4.

<table>
<thead>
<tr>
<th>Species</th>
<th>Simulation / ppm</th>
<th>Experiment / ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
<td>Case 4</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>7803</td>
</tr>
<tr>
<td>C2H2</td>
<td>4794</td>
<td>1239</td>
</tr>
<tr>
<td>C2H4</td>
<td>38</td>
<td>36</td>
</tr>
</tbody>
</table>
N₂O or O₂ addition, the addition of CO₂ (Case 9) does not lead to a complete removal of soot-like particles. In the performed experiments with CO₂ (C/O ratios of 2:1 and 2:1.5; Cases 8 and 9), a sizable number of particles — altogether with FLG — can be found. More images can be found in Figure S16 of the Supplementary Material.

It is also observed that the amount of harvested powder on the downstream filter decreased with the addition of oxygen carrier. The carbon yield for Case 1 (without oxygen carrier) is ~6.6 wt.%, which decreases to 1.1–1.8 wt.% for a C/O ratio of 2:1.5. This global reduction in yield is observed for all oxygen carriers used, including CO₂.

Raman spectroscopy is employed to further probe the microstructural properties of the generated nanocarbon materials. Fig. 5a and b show Raman spectroscopy results for the cases discussed in Fig. 4. For all cases, two spectra were acquired at two different positions on the sample. The second measurements are highlighted by lighter colors. All the individual Raman spectra are shown in detail in Section 3 of the Supplementary Material. The Raman spectra of carbonaceous materials are typically analyzed by fitting and comparing the intensity and width of the different displayed peaks. The most commonly employed peaks to describe the quality of graphene-like materials are D (~1350 cm⁻¹), G

Fig. 4. TEM images of collected and prepared powders. By precursors: pure ethylene (Case 1); addition of O₂ at C/O ratios of 2:0.5 and 2:1.5 (Cases 2 and 4); addition of N₂O at C/O ratios of 2:0.5 and 2:1.5 (Cases 5 and 7); addition of CO₂ at C/O ratio of 2:1.5 (Case 9). Blue arrows indicate example soot-like particles.
For Case 1 in Fig. 6, several different peaks can be identified. At low temperatures (ca. 650 °C), a peak can be assigned to the presence of soot-like particles in the sample. The main peak at ~730 °C is assigned to few-layer graphene flakes. Both temperature values match well with the ranges reported in literature for soot and FLG oxidation [48,50]. Even a third peak – which was not fitted – can be seen at larger temperatures (~790 °C), which can be assigned to the generated graphitic particles. To prove that the lowest temperature peak indeed relates to the soot-like particles, control experiments were performed. To generate a reference of soot-like particles, toluene was chosen as reactant as it has already been reported to generate soot-like particles with similar reactant flowrates (refer to previous work [37,55]). The soot-like particle were then measured and samples for Case 1 were oxidized at 660 °C, i.e., heating it up enough to selectively remove the carbon allotrope that is susceptible to oxidation at low temperature. Both approaches confirm that the low temperature peak refers to soot-like particles (find more detail in Section 4 of the Supplementary Material).

For all cases in which the amount of oxygen carrier is increased (see the comparison of Cases 5–7 in Fig. 6), the peak corresponding to the soot-like particles is reduced to the point at which it cannot be observed anymore. Yet, the measured CO$_2$ QMS signal (shown in Fig. S20) at m/z = 44, originating from carbon oxidation, reveals that the samples still contain soot-like particles at C/O ratios of 2:1, i.e., the CO$_2$ signal still shows multiple peaks, while for 2:1.5 they are not distinguishable anymore. Only when CO$_2$ is used as oxygen carrier (Case 9, C/O ratio = 2:1.5), a low oxidising carbon phase can be observed by the QMS data, which is in line with the TEM observation of soot-like particles being present. The estimated content, by fits and qualitative comparison, for the different carbon phases is summarized in Table 3.

Together with the observation by TEM, a carbon content of soot-like particles of 0 wt.% for Case 4 and Case 7 is assumed. XPS is used to analyze the surface chemistry of the samples. Because both oxygen- and nitrogen-containing reactants are added into the
reactor, it could occur that part of these atoms end up bonded to the carbon lattice and do not contribute to reactions taking place purely in the gas-phase. Fig. 7 shows the XPS for Case 1 and the cases prepared with the addition of C/O ratios 2:1.5.

All samples have a high purity, i.e., carbon contents of ≥99 at.% as determined by integrating the atomic lines of the survey scan. Comparing the oxygen content, there is no observable difference between the different experimental cases. In all cases, the oxygen content is below 1 at.% and the slight differences are not considered significant. Furthermore, no nitrogen-bonding to carbon is detected. Therefore, effects or influences by doping or unaccounted heterogeneous reactions between the solid carbon and gaseous atomic species of nitrogen and oxygen can be neglected. One aspect that needs to be mentioned is that the XPS uses a similar measurement spot size as the Raman microscope. Therefore, these measurements have similar drawbacks and e.g., the independent determination of soot/FLG ratio by analyzing, e.g., the C$_{1s}$ high-resolution spectrum becomes challenging (see Section 5 of the Supplementary Material). Still, fitting the high-resolution region of the C$_{1s}$ spectra shows changes in the relative ratio of soot-like particles to FLG in which the soot-like particle fraction was removed at C/O ratios of 2:1.5 for N$_2$O and O$_2$ addition (Figure S21).

4.3. Optical emission spectroscopy results

The first step for the spectroscopic investigation of the gas-phase species during plasma synthesis is to analyze the species created upon the admixture of the different oxygen carriers. The comparison is shown in Fig. 8.

For the pristine Ar/H$_2$ plasma in Fig. 8, only neutral argon (690–840 nm) and hydrogen lines (656 and 486 nm) are visible [56]. When adding

Table 3

Content of soot-like particles in wt.% determined by thermogravimetric measurements.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Soot particle fraction / wt.%</th>
<th>FLG fraction / wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>−25</td>
<td>−75</td>
</tr>
<tr>
<td>Case 2</td>
<td>−5–10</td>
<td>−90–95</td>
</tr>
<tr>
<td>Case 3</td>
<td><5</td>
<td>>95</td>
</tr>
<tr>
<td>Case 4</td>
<td>−0</td>
<td>−100</td>
</tr>
<tr>
<td>Case 5</td>
<td>−13</td>
<td>−87</td>
</tr>
<tr>
<td>Case 6</td>
<td>−5</td>
<td>−95</td>
</tr>
<tr>
<td>Case 7</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Case 8</td>
<td><5</td>
<td><95</td>
</tr>
<tr>
<td>Case 9</td>
<td>>5</td>
<td>>95</td>
</tr>
</tbody>
</table>
O$_2$ (Case 4), OH lines at \sim305 nm [57] and O triplets at \sim777 and \sim844 nm [56, 58] become visible. Both OH and O were also observed when introducing N$_2$O and CO$_2$ into the plasma (Cases 7 and 8, respectively). For N$_2$O (Case 7), NH emission at \sim335 nm can also be seen. While the appearance of OH implies its formation by atomic oxygen and hydrogen, the presence of NH indicates the dissociation of N$_2$ formed during N$_2$O decomposition. The presence of NH has been reported in some similar processes, in which N$_2$ was present due to air contamination [59, 60]. The observation of O, H, OH, and NH qualitatively agrees with the chemical equilibrium calculations (Figures S2–3), which also predict the presence of these species. CO$_2$ addition leads to C$_2$ Swan band emission at \sim516 nm and atomic carbon emission at \sim250 nm [56]. Similar observations for CO$_2$ electrical discharges have been reported, as discussed by Carbone et al. [61, 62] or by Miotk et al. [63], and it is typically observed for microwave plasma above \sim100 mbar. Based on chemical equilibrium calculations, the simultaneous presence of O, OH, and C would be expected to occur for CO$_2$ at temperatures above the assumed plasma temperature of 3700 K only. However, in the plasma non-thermal effects resulting, for example from collisions with metastable Ar might explain the presence of C from CO decomposition already at lower temperatures. Additionally, the line-of-sight light collection of our optical measurements needs to be considered and thus, the species signals can originate from different volume elements in axial direction. When using plasma torch systems or flames, such as in the work by Snirer et al. [64] and Diao et al. [65], spatially-resolved measurements showed a strong spatial dependence of the species distributions close to the nozzle.

The addition of ethylene into the reactor leads for most of the investigated cases to the occurrence of the lines indicated in the lower spectrum of Fig. 9 related to various carbon species.

One can identify Ar and H lines and additional emission of the C$_2$ Swan system. For the region between 190 and 450 nm, the presence of CH [66] and C$_3$ [67] can be confirmed. One of the CH lines might overlap with the C$_2$ Deslandres-d’Azambuja system at \sim385 nm [68]. Similar to previous work, lines corresponding to oxygen carriers (O, OH) vanish. In all cases of employing N$_2$O (Case 5–7), strong CN violet band emission at \sim380 nm [69] is visible, confirming the intermediate presence of atomic nitrogen.

The detected C$_2$ and OH (prior to C$_2$H$_4$ injection) emission lines are used to calculate rotational temperatures in the plasma region. Because the plasma process is operated at atmospheric pressure, thermal equilibrium is assumed and the values for the rotational temperatures are assumed to be equal to the gas temperature. For C$_2$ both the Boltzmann plot method for lines between 510 and 520 nm and fitting the full spectrum with PGOPHER [70] in the range of 480–520 nm, are employed. The OH emission is analyzed by the Boltzmann plot method only. For most of the experimental cases, the OH and C$_2$ derived temperatures agreed well and temperatures between \sim3200–3900 K were measured similar to values estimated in previous works. A comparison of all obtained rotational temperatures is shown in Figure S22 of the Supplementary Material. The only exception is observed for the OH and C$_2$ emission in cases in which CO$_2$ was added without C$_2$H$_4$ (Fig. 8). For, e.g., Case 8, the OH temperature is approx. 3570 K while the C$_2$ derived temperature is \sim6100 K (both are calculated with the Boltzmann plot method). Typically, temperatures of \sim4000 K are required to thermally dissociate CO into atomic carbon and oxygen (CO$_2$ is usually not regarded as a direct source for atomic carbon), so such high rotational temperatures for C$_2$ are not necessarily surprising. The formation of its excited state ($^3\text{P}_3$) can proceed by multiple ways including reactions of two ground state ($^1\text{P}_1$) carbon atoms with a third body [61] at time scale within \sim2 μs which are required to reach thermal equilibrium [71]. However, because such high temperatures are only uniquely observed for the addition of CO$_2$ prior to the injection of C$_2$H$_4$, its presence is more likely a result of non-equilibrium processes.

4.4. Thermophoretic sampling

Thermophoretic sampling of synthesized nanomaterials close to the plasma region was performed to judge whether the distinct morphology differences observed from the ex situ filter harvested materials are already present, following the first particle inception and growth zone. That is because earlier investigations showed that FLG morphologically transforms along the axis in the plasma effluent [37]. Case 1 has been investigated as a reference, along with all the oxygen carriers with 2:1.5 C/O ratios. Fig. 10 shows TEM images of the materials collected, displaying abundant small particles on the lacey carbon film. These particles are made out of iron, and they are generated by partial evaporation of the sheath protecting the TEM grid during sampling at low HAN and does not refer the observed soot-like particles.

No distinct differences between the images obtained by ex situ analyzed powders for the grown carbon allotropes and the materials collected inside the reactor are observed (as shown in Fig. 4). For the reference Case 1, the sample consists of a mixture of three different carbon allotropes including soot-like particles, graphene flakes, and graphitic particle-like structures. For Case 4 (O$_2$) and Case 7 (N$_2$O), only FLG sheets are observed as the formed product. For Case 9 (CO$_2$), the

![Fig. 9. Emission spectra obtained for Case 1 (pure C$_2$H$_4$) and Case 7 (2:1.5 N$_2$O) after the addition of C$_2$H$_4$. For visibility reasons, both spectra are separated in three different regions. Intensities are on different scales.](image-url)
The presence of both FLG and soot-like particles is observed.

5. Discussion

The Chemkin simulations indicate a reduction C6+ species upon the addition of the three different oxygen carriers but a negligible difference in between the effect of the oxygen carriers. Based on this result, no significant difference in the formation of the carbon allotropes would be expected for the three oxygen carriers. Based on the simulations, the addition of soot-like particles and favor the formation of FLG with decreasing C/O ratio when added to ethylene. The concentrations obtained from the simulation were compared to the experimental cases with a C/O ratio of 2:1.5 with GC/MS measurements, obtaining a maximum difference of 25% for C2H2 and CO. C2H4 concentrations were underpredicted by a factor of 2–3, but only represent a small fraction (<1%) of the overall carbon species present in the reactor. Following this expectation, for the cases with O2 and N2O addition, an increase in the relative FLG fraction up to the purely FLG was observed when the C/O ratio was decreased from 2:0.5 to 2:1.5. The simultaneous depletion of hydrogen and carbon through the formation of HCN did not show a noticeable effect on the nanocarbon allotropes for the experimental cases with N2O addition. For cases with CO2 addition, however, the experiments showed a different behavior. For both Cases 8 and 9, the formation of a small fraction of soot-like particles was noticed, although the yield of solid particles was reduced to levels similar to the cases for O2 and N2O.

The TEM results of thermophoretically sampled materials from the near-plasma region (following the first particle inception) and the ones harvested from the filter downstream of the reactor reveal the same carbon allotrope composition. Thus, the distinct allotrope differences are already defined early in the growth process.

To evaluate these observations, OES in the plasma region was performed. It was observed that the species formed differ for the three oxygen carriers. O2 and N2O mostly lead to the formation of atomic oxygen or OH. For N2O, also NH emission is observed. CO2 apparently does not only lead to the formation of O and OH, but also initiates the formation of C and C2, where the latter is considered an important growth species for carbon nanomaterials. Rotational temperatures were at ~3570 K for OH for all cases, while the C2 temperatures reached values up to 6100 K in case of CO2 added to the plasma in absence of C2H2. We attribute this finding to non-thermal effects generating hot electronically excited C2+. We nevertheless analyzed the potential effect of such high peak temperatures on the simulations and found that the kinetics simulations are insensitive to such variations in peak temperature and the concentration of the species formed mostly depends on the cooling rate. A comparison between simulations for all cases with two different peak temperatures is given in Section 1 of the Supplementary Material. For both temperature profiles, similar species concentrations are predicted downstream that are comparable to the measured values.

The combination of these results implies that the formation of soot-like particles when CO2 is used as oxygen carrier is related to the local release/formation of carbon species upon its decomposition because the morphologies are already defined in an early stage downstream of the plasma, as observed by thermophoretic sampling, and the amount of the most abundant hydrocarbon species and carbon monoxide match the
expectations. Their presence might influence the nucleation behavior during the start of carbon formation.

6. Conclusions

Experiments were carried out to investigate the influence of different oxygen carriers on their affinity to suppress the growth of soot-like particles in the plasma pyrolysis of ethylene. Comparing the three oxygen carriers investigated, their addition did lead to a suppression of overall solid carbon growth. For nitrous oxide and molecular oxygen, decreasing C/O ratios led to products enriched in few-layer graphene (FLG). At a C/O ratio of 2:1.5, full suppression for the formation of soot-like particles was observed and pure FLG was obtained. Carbon dioxide addition also led to increased FLG ratios (in comparison to only using ethylene), but a full suppression of soot-like particle growth was not observed. Thermophoretic sampling in the plasma effluent showed that this difference in particle composition was already present in the near-plasma region after the first inception of particles. Optical emission spectroscopy suggests that this might be caused by an additional release of atomic carbon generated by carbon dioxide decomposition. These additional carbon species might be sufficient to influence the nucleation behavior of the first formed carbon nanoparticles.

Appendix A: Supplementary Material

Supplementary Material is available online.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

The authors acknowledge funding by the German Research Foundation (DFG) within the research unit “Model-based scalable gas-phase synthesis of complex nanoparticles” (FOR 2284, project number: 262219004). P.F. acknowledges support from the International Max Planck Research Schools SurMat and the DFG priority program 2289 (project number: 441399220). Support by the Interdisciplinary Center for Analytics on the Nanoscale (ICAN) of the University of Duisburg-Essen is gratefully acknowledged. The authors acknowledge support from J. Herzer for the GC/MS measurement and Sebastian Peukert for helpful discussions.

Supplementary materials

References