KIT | KIT-Bibliothek | Impressum | Datenschutz

Pressure tuning of charge density waves in superconducting BaNi2(As1-xPx)2

Lacmann, Tom Laurin ORCID iD icon 1; Abbas, Haghighirad Amir; Michaela, Souliou Sofia; Rolf, Heid; Mehdi, Frachet; Fabian, Henßler; Mai, Ye; Philippa, McGuinness; Michael, Merz; Kristin, Willa; Tomasz, Poreba; Konstantin, Glzyrin; Gaston, Garbarino; Le Tacon, Matthieu
1 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Hydrostatic and uniaxial pressure have proven to be good tools for tuning competing orders, including superconductivity and charge density waves (CDW), in a wide variety of materials [1-2]. These techniques allow to gain new insights into the origin of the different orders and their interplay. The superconductor BaNi2As2 (Tc≈0.6 K) is isostructural with the Fe-based superconductor BaFe2As2 at ambient conditions but does not exhibit long-range magnetic order [3]. In analogy to the spin density wave in BaFe2As2, a degenerate incommensurate CDW is observed, and has been shown to be unconventional in nature [4-5]. Consequently, BaNi2As2 is a potential candidate system for charge driven nematicity, and recent Raman study further unveiled an unusual coupling of nematic fluctuations to the lattice, forming a nematic liquid [6]. Nematicity enhanced Cooper pairing has also been proposed in the Sr-substituted system [7], yet overall the interplay between lattice, charge density waves and superconductivity remains unclear.
To better understand their relation, we present high-resolution X-ray diffraction studies of pure and P-substituted BaNi2As2 single crystals under hydrostatic and uniaxial pressure. ... mehr


Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Publikationstyp Poster
Publikationsdatum 03.08.2023
Sprache Englisch
Identifikator KITopen-ID: 1000161100
HGF-Programm 47.11.02 (POF IV, LK 01) Emergent Quantum Phenomena
Veranstaltung Elastic Manipulation and Dynamics of Quantum Materials (2023), Dresden, Deutschland, 31.07.2023 – 04.08.2023
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page