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Anderson localization on random regular graphs (RRG) serves as a toy-model of many-body localization
(MBL). We explore the transition from ergodicity to localization on RRG with large connectivity m. In the
analytical part, we focus on the inverse participation ratio of eigenstates and identify several regimes on the
ergodic side of the transition—self-consistent golden rule, golden rule, precritical, and critical—that the system
consecutively goes through when the disorder increases toward the point Wc of the localization transition. We
also perform exact-diagonalization numerics as well as a population-dynamics analysis combining analytical
and numerical techniques. Results of all the approaches are in excellent mutual agreement. We further explore
the evolution from ergodicity to localization in two models of Fock-space MBL: fermionic and spin quantum
dots. Large-connectivity RRG models serve as an approximation for this class of many-body problems; one of
our central goals is to better understand the status of this approximation. Our numerical simulations support
the conjecture that, in the limit of a large system, there is a sharp ergodicity-to-localization transition in the
quantum-dot models. Furthermore, our results are consistent with the RRG-like scaling of the critical disorder,
Wc ∼ m ln m. While in the golden-rule range the behavior of quantum-dot models is in agreement with analytical
predictions based on the RRG model, substantial deviations occur in the precritical regime. Our results indicate
that the precritical and critical behavior (as well as the numerical coefficient in the formula for Wc) in the
quantum-dot models may be different from what one would expect from the RRG-like approximation.
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I. INTRODUCTION

A. Anderson and many-body localization

Anderson localization [1] is one of the most fundamental
phenomena in condensed matter physics. Anderson transi-
tions between localized and delocalized phases (and between
topologically distinct localized phases) exhibit a rich fasci-
nating physics that depends on symmetry class and spatial
dimensionality of the system and of the underlying topol-
ogy [2]. While Anderson localization in its conventional
setting refers to a single-particle problem, recent years have
witnessed a great interest to the problem of many-body local-
ization (MBL) in highly excited states (i.e., those with a finite
energy density) of interacting disordered systems [3,4]. The
reader is referred to Refs. [5–9] for reviews of various facets
of MBL.

A conceptual importance of MBL may be additionally
emphasized by noticing that the MBL implies a breakdown of
a basic postulate of the statistical mechanics: the ergodicity.
One way to probe this is to study properties of eigenstates
and eigenvalues of the many-body Hamiltonian. On the er-
godic side of the MBL transition, many-body states strongly
hybridize within an energy shell including a very large num-
ber of levels (increasing with increasing system size). This
manifests itself in the Wigner-Dyson statistics of energy levels
and in the scaling of the inverse participation ratio (IPR)

describing an efficient spreading of eigenstates over basis
states within the energy shell. On the other hand, in the
MBL phase, even adjacent-in-energy states typically do not
hybridize, which implies the Poisson energy-level statistics
and is obviously also reflected in the behavior of the IPR. In
this general form, a notion of the ergodicity-to-MBL transition
applies also to models without a real-space structure, like
quantum dot models considered in the present work.

A controllable analytical solution of the MBL problem
has turned out to be an extremely challenging task. Original
approaches to the MBL transition in Refs. [3,4] (as well as
in a related later work [10]) were based on the analysis of
the perturbative series. Later, it was demonstrated [11] that
Hartree-Fock matrix elements (disregarded in Refs. [3,4])
lead to spectral diffusion and, as a result, parametrically en-
hance delocalization and shift the transition point as given
by the perturbative treatment. Furthermore, recent works have
shown that exponentially rare regions of anomalously strong
or weak disorder may essentially affect the scaling of the
MBL transition and the corresponding critical behavior in the
limit of a large system [12,13]. These ideas served as a basis
for several phenomenological renormalization-group schemes
[14,15] that were conjectured to describe scaling properties
around the MBL transition.

Since a complete analysis of genuine MBL models turns
out to be so difficult, simplified models amenable to a
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controllable analytical study are of great use. In this con-
text, the problem of Anderson localization on random regular
graphs (RRG) has emerged as a toy-model for the MBL prob-
lem, see Ref. [9] for a review. An RRG is a graph of finite size
that has locally a treelike structure with a fixed coordination
number (to be denoted m + 1) for all vertices. An RRG is
thus locally similar to Bethe lattice. However, an RRG has
a finite size (at variance with an infinite Bethe lattice) and is
also crucially different from a finite portion of Bethe lattice:
it does not have a boundary but instead possesses large-scale
loops. The structure of an RRG approximately mimics that of
the Hamiltonian of an interacting systems in the associated
many-body Hilbert space. Specifically, vertices correspond
to eigenstates of the noninteracting part of the Hamiltonian,
while the links correspond to matrix elements of the interac-
tion.

B. Goals and structure of the paper

Our central goal in this work is to explore the transition
from ergodicity to localization in two closely related classes
of models—Anderson models on RRG with large values
of connectivity m and many-body quantum-dot models in
fermionic and spin versions—by a combination of analytical
and computational approaches. For the RRG problem, we
extend previous analytical studies to large-m models and show
that it leads to emergence of broad regimes that do not exist
at m ∼ 1. We verify the analytical results by a numerical
study, which also allows us to study which of the analytically
predicted regimes can be observed in systems accessible to
exact diagonalization. In particular, we demonstrate that the
ultimate critical behavior becomes out of reach for exact
diagonalization at large m but, at the same time, a broad
precritical regime opens that is numerically accessible. For
the quantum-dot models, we develop approximate analytical
treatment based on a mapping on RRG (an “RRG-like approx-
imation”). The status of this approximation becomes unclear
for sufficiently strong disorder, making a comparison between
the analytical and numerical results particularly important.
More generally, the numerical study of quantum-dot models
addresses the following fundamental questions: What is the
scaling of the critical disorder Wc with the number n of orbitals
(respectively, spins) in these models? Does a crossover from
ergodicity to MBL in this class of models become a sharp
MBL transition in the large-n limit?

The structure of the article is as follows. In Sec. IV, we
explore the RRG model with large connectivity m by using
three approaches: (i) purely analytical, (ii) first-principle nu-
merics (exact diagonalization), and (iii) numerical solution
(by means of population dynamics) of analytically derived
self-consistency equation. Excellent agreement between all
three approaches is found. In Sec. V, we study the fermionic
and spin quantum dots by exact diagonalization. Our results
support analytical predictions for Wc and provide evidence of
a sharp MBL transition in the thermodynamic limit. Finally,
in Sec. VI, we extend analytical results of Sec. IV to derive
an RRG-like approximation for the spin quantum dot model.
We then compare the exact-diagonalization numerics from
Sec. V to this approximation. Our findings in Sec. VI confirm
the validity of the RRG approximation in a large part of the

ergodic phase (golden-rule regime) but also demonstrate sub-
stantial deviations for stronger disorder, when W approaches
Wc. Section VII contains a summary of our results as well as a
discussion of their implications and of perspectives for future
research.

II. LOCALIZATION ON RRG AND IN VARIOUS
MANY-BODY MODELS

In this section, we briefly discuss previous works on the
Anderson localization on RRG and its relations to various
MBL problems, with a particular focus on quantum-dot mod-
els. These results serve as a starting point for the present paper.

A. MBL and Anderson localization on RRG

An idea to think about a many-body problem in terms
of a tree (Bethe lattice) in Fock space was put forward in
Ref. [16] in the context of a decay of a hot quasiparticle
in a zero-temperature quantum dot. It was subsequently un-
derstood that this connection is much more general and that
the appropriate graphs are not strictly trees but rather have
the RRG structure. (The importance of this distinction was
demonstrated in Refs. [17,18].)

The Anderson localization on RRG (including some varia-
tions of this model) was addressed in a considerable number
of recent works [19–35], see also earlier papers [36–38] on
a closely related sparse random matrix model. We refer the
reader to Ref. [9] for a recent review of the RRG model and
its relations to the MBL. These works have yielded a rather
detailed understanding of various key properties of the RRG
model. These include, in particular, the thermodynamic-limit
value of the critical disorder Wc, values of critical exponents,
and many observables characterizing statistics of eigenstates
and of energy levels. On a qualitative level, the most important
features of the localization transition on RRG are as follows.
First, the critical point has a localized character. Second, the
delocalized phase is ergodic. Third, the “correlation volume”
in the Hilbert space (beyond which the ergodicity is reached)
grows exponentially when the transition point is approached
from the delocalized side. Fourth, there are strong finite-size
effects that induce a drift of the apparent transition point
toward stronger disorder with increasing system size as well
as a nonmonotonic flow of various observables on the delo-
calized side. Analytical and numerical studies of the MBL
transitions in genuine many-body problems indicate that they
share similar properties, although analytical results for the
MBL problem are much less rigorous than for RRG.

Despite these analogies between the MBL and RRG
problems, the structure of the Hamiltonian of a genuine many-
body problem in the corresponding Fock space is of course
more complex than that of the RRG model. In particular, the
role of Fock-space correlations in MBL problems was empha-
sized (for models with a real-space structure) in Ref. [39]. We
will return to this issue (in the context of Fock-space MBL in
quantum dots) in Sec. II B.

The link to Anderson localization on RRG can be made
particularly explicit in the case of MBL models with long-
range interaction decaying as 1/rα with distance r. An
important class of such models include models with random
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1/rα interaction of spins (or pseudospins), with d � α � 2d ,
where d is the spatial dimensionality [40–44]. It was found
[44] that the MBL transition in such a model can be ap-
proximately mapped to Anderson transition on RRG with a
large coordination number m (increasing as a power of the
system size L). A relation to the RRG with a large m emerges
also for “most-long-range” models characterized by α = 0;
we will term them “quantum dots,” see Sec. II B. It is worth
emphasizing that the critical disorder Wc is a nontrivial func-
tion of system size L in models with long-range interaction: it
increases with L according to a power law, with an additional
logarithmic factor. (For quantum-dot models, the role of L is
played by the number of orbitals n.) Thus, to study the MBL
transition, one should investigate observables as functions of
W/Wc(L). This situation was termed a “nonstandard thermo-
dynamic limit” in Ref. [45].

B. Fock-space MBL transition in quantum dots

The localization physics in a model of fermionic quantum
dot model was studied analytically in Refs. [11,16,46–50]
and numerically in Refs. [46,51–57]. Recently, an analogous
Majorana quantum-dot model (expected to have essentially
the same properties) was considered in Refs. [58–63]. Related
questions were earlier addressed in computer simulations of a
similar model in the nuclear-physics context [64,65].

The model (see Sec. V for a formal definition of the
Hamiltonian) involves n single-particle fermionic orbitals
( j = 1, . . . , n), all coupled by a random two-body interaction,
with characteristic magnitude V of the interaction matrix ele-
ments Vi jkl . In addition, single-particle states j have random
energies ε j with a distribution of width W . Setting V = 1,
we are left with two parameters, n and W . Eigenstates of
the noninteracting part of the Hamiltonian serve as a basis
in the Fock space. If one thinks about them as vertices and
associates links connecting them with interaction matrix ele-
ments, then one gets a graph. For the case of half-filling, each
vertex is connected to m ≈ n4/64 vertices, whose energies
are distributed in the interval of width ∼ W . We thus get
a structure reminding an RRG with a coordination number
m ∼ n4 and disorder W . The critical disorder W RRG

c of this
RRG model scales as m ln m. However, such an approximation
by an RRG discards important correlations in the quantum-dot
model [11]. Indeed, consider, starting from a given basis state,
two second-order processes: in one of them we first move
two particles i, j �→ k, l and then another pair i′, j′ �→ k′, l ′,
while in the second one we do the same in the opposite order.
Clearly, we get the same final state, which is at variance with
a loopless structure of RRG at short distances. Furthermore,
the amplitudes of these two processes are correlated since
they involve the same matrix elements. These correlations
tend to enhance localization. While these arguments are not
mathematically rigorous, they strongly suggest that the RRG
critical disorder serves as an upper boundary for the transition
point Wc in the quantum-dot model:

Wc � W RRG
c , W RRG

c ∼ n4 ln n. (1)

At first sight, correlations can modify even the leading, power-
law factor n4 (i.e., can lower the exponent 4) in the scaling
of Wc. It turns out, however, that interaction-induced shifts

of single-particle energies (known as spectral diffusion) ef-
ficiently counteract these correlations, thus enhancing the
many-body delocalization and making the quantum-dot model
much closer to the RRG approximation. Specifically, it was
argued in Ref. [11] that the quantum-dot critical disorder Wc

satisfies

Wc ∼ n4 lnμ n, (2)

with − 3
4 � μ � 1, i.e., differs from W RRG

c at most by a power
of the subleading logarithmic factor.

Another related model—that of a spin quantum dot—was
introduced in Ref. [11]. It involves n spins subjected to a
random Zeeman field along z axis, with a distribution of
a width ∼W . The interacting part of the Hamiltonian (see
Sec. V for a precise definition) includes all pairwise interac-
tions between spin components, with random amplitudes ∼V .
Setting V = 1, we are again left with two parameters, n and
W . The relation to an RRG model is obtained in essentially
the same way as for a fermionic dot, with the main difference
that the coordination number m now scales as m ≈ n2/2. This
yields [11], in analogy with Eqs. (1) and (2),

Wc � W RRG
c , W RRG

c ∼ n2 ln n, (3)

and

Wc ∼ n2 lnμ n, μ � 1. (4)

The status of Eqs. (3) and (4) is the same as that of Eqs. (1)
and (2): There is a strong analytical evidence in favor of them
but a rigorous proof is missing.

III. OBSERVABLES

As a central observable, we use in this paper the (averaged)
inverse participation ratio (IPR) defined as

P2 =
〈∑

r

|ψα (r)|4
〉
,

where ψα (r) are eigenfunctions of the Hamiltonian. The av-
eraging 〈. . .〉 is performed over realizations of disorder and
over eigenstates ψα in a window of energies around the band
center. (The exact parameters of averaging are specified below
for each of the models). The basis r corresponds to eigenstates
of the Hamiltonian in the limit of infinite disorder, W → ∞
(or, equivalently, zero hopping in the RRG model and zero
interaction in the quantum-dot models), so that P2 = 1 in this
limit.

The IPR characterizes spreading of eigenstates ψα over the
basis states r and thus serves as a very useful characteristics of
the evolution from ergodicity to localization. In particular, in
the RRG model, the IPR scales as P2 ∝ 1/N with the number
of sites N (in the large-N limit) in the ergodic phase and is
P2 ∼ 1 in the localized phase. Furthermore, the coefficient in
front of 1/N provides an important information about different
regimes in the ergodic phase (in particular, about the correla-
tion volume in a vicinity of the transition). Importantly, the
IPR is a suitable observable both for numerical and analytical
investigations.

It is worth mentioning that, in the MBL phase of models
with real-space localization of single-particle states, the IPR
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shows a fractal scaling P2 ∝ N−τ with the Hilbert-space vol-
ume. A numerical evidence of this behavior was presented in
Ref. [66]. As was shown in Refs. [11,44], such a fractal scal-
ing with τ (W ) ∝ 1/W originates from short-scale resonances.
A detailed analysis of the multifractality of eigenstates in the
MBL phase of a Heisenberg chain was carried out in Ref. [67].
Like in the RRG model, the delocalized phase was found to
be ergodic (with P2 ∝ 1/N), and the critical point essentially
sharing properties of the localized phase. In view of a close
relation between the quantum-dot and RRG models, one may
expect that P2 ∼ 1 in the MBL phase of quantum-dot models.

For quantum-dot models, we complement the investiga-
tion of IPR of eigenstates by a numerical study of the level
statistics. It is well known that the level statistics has the
Wigner-Dyson form in the ergodic phase and the Poisson form
in the localized phase, thus serving as an indicator of the
transition. Specifically, we consider the mean adjacent gap
ratio r, which is a very convenient and broadly employed
spectral observable for locating an ergodicity-to-localization
transition [68–70]. It is defined as a mean ratio of the smaller
and the larger of two consecutive level spacings si and si+1,

r =
〈

min(si, si+1)

max(si, si+1)

〉
.

In the localized phase, one has Poisson statistics, with r =
0.386. On the other hand, in the ergodic phase, the level
statistics is as in the Gaussian Orthogonal Ensemble (GOE),
Gaussian Unitary Ensemble (GUE), or Gaussian Symplectic
Ensemble (GSE) of the random matrix theory, depending on
the symmetry of the system; the corresponding values of r are
r = 0.536 (GOE), r = 0.603 (GUE), and r = 0.676 (GSE).

IV. RANDOM REGULAR GRAPHS WITH LARGE
CONNECTIVITY

A. Model and regimes

We consider a tight-binding model for a particle hopping
over an RRG with N � 1 sites, coordination number m +
1 � 1, and a potential disorder,

Ĥ = V
∑
〈i, j〉

(ĉ†
i ĉ j + ĉ†

j ĉi ) +
N∑

i=1

εiĉ
†
i ĉi, (5)

where V is the hopping and the summation in the first term
goes over pairs of nearest-neighbor sites. The random po-
tentials εi are independent random variables sampled from
a distribution γ (ε). In Sec. IV we will mainly focus on the
case of a box distribution γ (ε) (i.e., a uniform distribution on
[−W/2,W/2]) but the analysis is straightforwardly extended
to a generic distribution (as will be done later in Sec. VI where
we will use the RRG model for an approximate treatment of
a quantum-dot model). On a qualitative level, the results are
independent of the form of γ (ε) as long it is characterized by
a single parameter (width) ∼W and vanishes (or decays fast)
for larger energies ε. Further, we will focus on zero energy,
E = 0 (i.e., the middle of the band).

Before embarking in more accurate and technical analyti-
cal calculations, it is useful to perform estimates that permit
to understand what regimes are expected and what are cor-
responding disorder ranges. For this purpose, let us consider

states with energies εi localized on individual sites i as a
starting point and analyze how they are mixed (and thus
broadened in energy) by hopping. Each site is coupled to m
sites with energies distributed in the range W , implying a level
spacing W/m of directly coupled states. The self-consistent
Golden-rule formula for the broadening � reads

� ∼ mV 2

max{W, �} . (6)

Here, and in analogous estimates below, we keep only the
parametric dependence, discarding numerical factors of order
unity. The self-consistency is operative when � exceeds W ,
so that the bare density m/W of coupled states is replaced by
m/�. From Eq. (6), we infer the following regimes:

(1) Random-matrix theory (RMT) regime,

W/V � m1/2. (7)

In this regime, the broadening is � ∼ m1/2V and satisfies � �
W , which implies that all states are mixed. We thus expect the
IPR to be P2 
 3/N as in the Gaussian ensemble of RMT,
which explains the name that we give to this regime.

(2) Golden-rule regime,

m1/2 � W/V � m. (8)

The broadening in this regime is given by the conventional
Golden-rule formula, � ∼ mV 2/W , and is smaller than the
total disorder-induced band width, � � W . Thus, only states
within the energy window � get strongly mixed, implying
NP2 ∼ W/� ∼ W 2/mV 2.

(3) Precritical and critical regimes,

m � W/V < Wc/V, (9)

where Wc/V ∼ m ln m.
Once W increases above the upper border mV of the

Golden-rule regime, the broadening � as calculated by the
Golden-rule formula becomes smaller than the spacing W/m
of states coupled by hopping to a given one. This indicates
that the Golden-rule calculation is not valid any more and
suggests that the system approaches the localization transi-
tion. However, the transition point Wc is larger by a factor
∼ ln m � 1 than mV , which implies that the regime mV <

W < Wc is parametrically broad for large m. At the same
time, one can expect that the actual critical regime, with the
power-law divergence of the correlation length, takes place
sufficiently close to the critical point, (Wc − W )/Wc � 1. It
follows that there should be an intermediate regime (that we
call precritical) between the Golden-rule and critical regimes.

Note that, when one speaks about the critical regime,
one should distinguish two situations, depending on the re-
lation between the system size N and the correlation volume
Nξ [28,29]. The correlation volume increases when W ap-
proaches the transition point, diverging in the limit W → Wc.
If N is larger than Nξ , then we have an ergodic regime of
“critical metal”, with IPR P2 proportional to 1/N . On the other
hand, if N is smaller than Nξ , then the system is essentially at
the critical point and, in particular, P2 ∼ 1.

(4) Localized regime,

W > Wc, (10)

for which P2 ≈ 1.
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In Sec. IV B we carry out a detailed analysis that fully
confirms these estimates and provides accurate results for P2

in all the regimes.

B. Analytical treatment

1. Generalities

The general analytical approach to statistics of eigenfunc-
tions on RRG is presented in detail in Ref. [28] (see also
a subsequent work in Ref. [29] and a review in Ref. [9]).
Using a supersymmetric field-theory formalism for the par-
tition function of the problem, one derives a saddle-point
equation (justified for a large system size N), which is a non-
linear integral equation for a function g(	) of a supervector
	 [Eq. (24) of Ref. [28]]. For symmetry reasons, the solution
g(	) depends on two scalar variables. This equation turns
out to be identical to the self-consistency equation as ob-
tained by supersymmetry approach for a model of an infinite
Bethe lattice [71], which establishes a relation between
the two problems. Upon Fourier-Laplace transformation, the
equation takes a form of a self-consistency equation for distri-
bution of local Green functions G as originally derived in the
seminal paper by Abou-Chacra, Thouless, and Anderson [72]
that pioneered the investigation of the Anderson transition on
Bethe lattice.

A compact form of the saddle-point (self-consistency)
equation is

G(m) d= 1

E + iη − ε − V 2
∑m

i=1 G(m)
i

, (11)

where η is infinitesimal positive and the symbol
d= denotes

the equality in distribution for random variables. Here G(m)

is the (retarded) Green function with equal spatial argu-
ments, G(m) = GR(0, 0; E ) = 〈0|(E − H + iη)−1|0〉, defined
on a modified lattice, with the site 0 having only m neigh-
bors. On the right-hand side of Eq. (11), G(m)

i represent
independent copies of the random variable G(m), while ε is a
random variable with distribution γ (ε). Clearly, Eq. (11) can
be equivalently written as a nonlinear integral equation for the
distribution of G(m). Equation (11) contains all the information
about the position of the localization transition and the critical
volume Nξ . Furthermore, with a solution of this equation at
hand, one can determine the distribution of the Green func-
tion G(m+1) on an original lattice (where all sites have m + 1
neighbors), which is given by

G(m+1) d= 1

E + iη − ε − V 2
∑m+1

i=1 G(m)
i

. (12)

From this distribution, one can in particular calculate the IPR
P2 in the RRG model. The distributions of G(m) and G(m+1)

are very similar. Furthermore, since we are interested in the
behavior of the model at large m in this paper, the difference
between G(m) and G(m+1) is negligible.

2. RMT and golden rule regimes

We begin the analysis of the behavior of average IPR
of eigenstates from the regime of relatively weak disorder,
W/V � m (that can be termed “good metal”). The corre-
sponding calculation is closely related to that in Ref. [47]

where fluctuations of the local density of states at a Bethe
lattice with large connectivity were considered. In the regime
under consideration, the solution g(	) of the supersymmetric
self-consistency equation is Gaussian (up to small corrections)
[47], which leads to a major simplification of the self-
consistency equation. The result can be obtained by averaging
Eq. (11) over disorder realizations and assuming that summa-
tion over m terms in the denominator justifies a replacement of
G(m) by its average. Defining g0 = (i/2)V 2〈G(m)〉, we reduce
this equation to the form

g0 = V 2

4

∫
dεγ (ε)

1

mg0 − i
2 (E − ε)

, (13)

which is Eq. (16) of Ref. [47]. It is easy to see that Eq. (13)
is nothing but the self-consistent Born approximation (or a
weak-disorder limit of the coherent potential approximation).
We are interested in the solution with � g0 > 0 and discard the
infinitesimal η (as it is negligible in comparison with � g0).
Choosing the energy in the band center, E = 0, as well as a
box distribution γ (ε),

γ (ε) = 1

W
�

(
W

2
− |ε|

)
, (14)

and also setting the hopping to be V = 1, we get

g0 = 1

4W

∫ W/2

−W/2
dε

1

mg0 + i
2ε

. (15)

The integral is straightforwardly calculated, and the equa-
tion takes the form

g0 = 1

W
arctan

W

4mg0
. (16)

Let us consider two limiting cases—of small and large ar-
guments of the arctangent—which correspond to two distinct
regimes:

(i) mg0 � W , in which case the self-consistency—i.e., the
term proportional to g0 in the denominator of Eq. (13)—is
crucial. The equation takes the form g0 
 1/4mg0, yielding
the solution

g0 
 1

2
√

m
. (17)

This is applicable in the disorder range

W � m1/2, (18)

which is exactly the RMT regime identified above [Eq. (7)].
As discussed below in more detail, properties of the system
in this regime are largely equivalent to those of a Gaussian
ensemble of RMT. In particular, the density of states ρ(E ) has
a semicircular form and the IPR is given by P2 
 3/N .

(ii) mg0 � W . In this case (when g0 in the denominator of
Eq. (13) can be neglected), the solution reads

g0 
 π

2W
. (19)

This is the Golden-rule regime, which is realized in the disor-
der range

m1/2 � W � m, (20)

in agreement with Eq. (8).
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With a solution for g0 at hand, we can evaluate averaged
moments of the local density of states (LDOS) on an infinite
Bethe lattice, which is what we need to find to calculate the
average IPR of the RRG model. Let ν(E , j) be the LDOS on
a site j at energy E for a given disorder realization. We define
ρ1(E , ε) = 〈ν(E , 1)〉ε1=ε, with averaging going over disorder
realizations with a condition ε1 = ε, where 1 is a certain fixed
lattice site. Further, let ρ(E ) be the global density of states.
Clearly,

ρ(E ) =
∫

dεγ (ε)ρ1(E , ε). (21)

We have

ρ1(E , ε) = − 1

π
�G(m+1)

= 1

2π
� 1

(m + 1)g0 − i
2 (E − ε)

, (22)

which yields, after neglecting the difference between m + 1
and m and setting E = 0 (in which case g0 is real),

ρ1(0, ε) = 1

π

2mg0

(2mg0)2 + ε2
. (23)

Importantly, the spectral function ρ1(E , ε) is self-averaging
in the RMT and Golden-rule regimes: when calculated with-
out disorder averaging (with the only condition ε1 = ε), it is
found to fluctuate only weakly from one disorder realization
to another one [47]. Substituting Eq. (23) in Eq. (21), we get
the global density of states,

ρ(0) = 1

πW

∫ W/2

−W/2
dε

2mg0

(2mg0)2 + ε2
= 2

π
g0, (24)

where we used on the last step the self-consistency equa-
tion (15). Equation (24) is of course in full agreement with
ρ = −(1/π )�〈G(m+1)〉 and g0 = (i/2)〈G(m)〉.

Up to this point [i.e., in the derivation of Eqs. (23) and
(24)], we followed Ref. [47], adjusting the calculation per-
formed there to the box distribution (14) chosen in the present
work. Now we can use these results for the LDOS on an
infinite Bethe lattice to calculate the IPR the average IPR P2

of the RRG model. Indeed, the sought IPR is given by [28]

P2 = 3

N

〈ν2(E , 1)〉
〈ν(E , 1)〉2

, (25)

where the averages in the right-hand-side are calculated
on an infinite Bethe lattice (or, equivalently, from the
self-consistency equation). Note that this formula holds ev-
erywhere in the metallic phase, W < Wc, as long as the RRG
system is sufficiently large, N � Nξ . Using the self-averaging
of ρ1(E , ε) in the considered range of disorder, W � m, we
obtain

NP2 = 3
∫

dεγ (ε)

[
ρ1(0, ε)

ρ(0)

]2

= 3

W

∫ W/2

−W/2
dε

[
m

(2mg0)2 + ε2

]2

. (26)

In the second line of Eq. (26), we used Eqs. (23) and (24).

In the RMT regime (18), g0 is given by Eq. (17). Substitut-
ing it in Eq. (26), one gets

NP2 
 3, (27)

as expected. In the Golden-rule regime (20), g0 is given by
Eq. (19). The integral in Eq. (26) can be then extended to ±∞,
yielding

NP2 
 3m2

W

∫ ∞

−∞
dε

1[(
πm
W

)2 + ε2
]2 = 3

2π2

W 2

m
. (28)

To describe accurately both (RMT and Golden-rule) regimes,
as well as a crossover between them, we calculate the integral
in Eq. (26) exactly,

NP2 = 3

8g3
0

[
4mg0W

16g2
0m2 + W 2

+ arccot
( 4mg0

W

)
mW

]
. (29)

Substituting here g0 as obtained by a numerical solution of
Eq. (16), we obtain P2 in the whole range W � m.

For stronger disorder, W � m, the local spectral function
acquires strong fluctuations signaling an approach of the sys-
tem to the critical point Wc, and the above approximation
ceases to be applicable. This regime can be analyzed by a
different approach, as we are now going to discuss.

3. Precritical and critical regimes

To calculate analytically the scaling of IPR in the precriti-
cal and critical regimes, m � W < Wc, we extend the analysis
presented in Ref. [29]. While in that work (where the focus
was on the case of coordination number m = 2) only the
critical regime was considered, here we are interested in the
limit of large m, which implies the emergence of a broad
precritical regime, as discussed above. The starting formulas
(summarized below) are, however, the same as in Ref. [29].

For m � W < Wc, a large correlation volume Nξ (W )
emerges, which governs a broad distribution of the local den-
sity of states and thus all associated observables. In particular,
under the condition of a sufficiently large system, N � Nξ ,
the IPR scales as

P2 ∼ Nξ /N. (30)

To calculate Nξ , one starts with the self-consistency integral
equation [that is equivalent to Eq. (11)] and performs its
linearization, which yields

mλβ = 1, (31)

where λβ is the largest eigenvalue of a certain integral opera-
tor. For large W , the eigenvalue λβ is found to be

λβ 
 1

β − 1/2

1

W − 4/W

[(
W

2

)2β−1

−
(

W

2

)−2β+1
]

.

(32)
The value β = 1/2 corresponds to the transition point Wc.

Taking the limit β → 1/2 in Eq. (32), one gets the large-m
equation for Wc,

Wc = 4m ln
Wc

2
. (33)
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In the leading order, this yields the large-m asymptotics of the
critical disorder of the form

Wc 
 4m ln m. (34)

It is worth mentioning that Wc as obtained from Eq. (33) is in
excellent agreement with the exact value of Wc (found from
mλ1/2 = 1 with λ1/2 computed numerically by determining
the largest eigenvalue of the corresponding integral operator)
already for rather small m. In particular, for m = 2, Eq. (33)
gives Wc = 17.23, while the exact value is Wc = 18.17 [29].
Further, for m = 3, Eq. (33) yields Wc = 34.00, whereas the
exact value reported in Ref. [34] is Wc = 34.95. Therefore, for
large m, the value of Wc predicted by Eq. (33) can be viewed as
exact. At the same time, the asymptotic formula (34) discards
terms that have a relative smallness ∼ ln ln m/ ln m and thus
decay rather slowly. As a result, even for a large value of con-
nectivity such as m = 200, the value of Wc given by Eq. (34)
turns out to be smaller than the exact one by a factor ≈1.5.

The eigenvalue λβ (W ), when considered around the point
W = Wc and β = 1/2, decreases as a function of W and has
a minimum (on the real axis of β) at β = 1/2. Thus, for W <

Wc, the solution of Eq. (31) for β has the form

β = 1/2 ± iσ, (35)

with a real σ . Once β (and thus σ ) is determined, as a function
of W , from Eq. (31), the correlation volume Nξ is obtained via

Nξ ∼ exp

(
π

σ

)
. (36)

Up to here [i.e., in Eqs. (30)–(36)] we followed Ref. [29].
The key idea underlying our analysis starting from this point
is that, for m � 1, this formalism can be used to determine
Nξ (and thus P2 and other related observables) not only in
the critical regime, Wc − W � Wc (as in Ref. [29]), but in a
much broader disorder range, m � W < Wc, which includes
also the (parametrically broad) precritical regime. It is worth
noting at this point that, as our numerical simulations below
show, the critical regime becomes in fact unaccessible to exact
diagonalization for m � 1, whereas the precritical regime can
be observed numerically.

Substituting Eq. (35) in Eq. (32), we rewrite Eq. (31) as

2m

W σ
sin

(
2σ ln

W

2

)
= 1. (37)

Further, this equation can be cast into the form

sin x

x
= f (W )

f (Wc)
, f (W ) = W

ln W
2

, (38)

where we have introduced

x = 2σ ln
W

2
(39)

and used Eq. (33) for the critical disorder Wc.
For a given disorder W , Eq. (38) can be easily solved

numerically for x. By virtue of Eq. (39), this yields σ , which
in turns allows us to determine Nξ and P2 by using Eqs. (36)
and (30). In this way, we can obtain NP2 ∼ Nξ as a function
of W in the whole range m � W < Wc, i.e., in the precritical
and critical regimes and in the crossover between them. Let us
emphasize again the role of the condition m � 1: it ensures

that ln m in Eq. (34) is large and thus that a parametrically
broad precritical regime m � W � Wc emerges.

We can also proceed analytically for each of the two
regimes. Consider first the critical regime, for which the sys-
tem is close to the transition point,

W < Wc, Wc − W � W. (40)

In this case, f (W )/ f (Wc) in Eq. (38) is close to unity, imply-
ing that x � 1. Expanding sin x ≈ x − x3/6 in Eq. (37) and
solving the resulting equation for σ , we obtain

σ 
 1

ln W
2

[
3

2

(
1 − W

4m ln W
2

)]1/2

. (41)

Equation (36) yields now the correlation volume

ln Nξ = π

σ
= π ln

W

2

[
3

2

(
1 − W

4m ln W
2

)]−1/2

. (42)

In the leading approximation, this becomes

ln Nξ 
 π ln m

[
3

2

(
1 − W

Wc

)]−1/2

. (43)

Equation (43) is the known critical behavior of the corre-
lation volume Nξ and of the associated correlation length
ξ = ln Nξ / ln m on the delocalized side of the transition, with
the critical exponent νdel = 1/2 [29].

The following comment is in order here. As has been
pointed out above, the localization transition on RRG is
strongly “asymmetric”: the critical point shares many key
properties of the localized phase. In particular, P2 ∼ 1 at W =
Wc, and the levels statistics has (in the large-N limit) the Pois-
son form, as in the localized phase. For this reason, we largely
focus in this work on the disorder range W < Wc, where the
evolution from ergodicity to localization takes place. This
asymmetry is also reflected in values of critical exponents.
While the delocalized side, W < Wc is described by the above
exponent νdel = 1/2, on the localized side, W > Wc, aver-
age and typical observables can be characterized by different
exponents νloc = 1 and ν̃loc = 1/2 [33]. The physics on the
localized side is governed by rare resonances [32]. While
this is an interesting physics that has its direct counterpart in
many-body problems, it is beyond the scope of this paper.

Let us now turn to the analysis of the precritical regime,
which is located between the Golden-rule and critical regimes,

m � W � Wc. (44)

Here, f (W )/ f (Wc) 
 W/Wc � 1, which implies, according
to Eq. (38), that x = π − δ with δ � 1. Equation (38) then
yields δ 
 πW/Wc and thus x = π (1 − W/Wc) and, conse-
quently,

σ 
 π
(
1 − W

Wc

)
2 ln W

2

. (45)

According to Eq. (36), this gives the correlation volume

Nξ ∼ eπ/σ ∼ W 2e
W
2m . (46)

We see that the correlation volume Nξ (as thus the IPR
P2) grows exponentially with W in the precritical regime.
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FIG. 1. NP2 as a function of disorder W for RRG with large
connectivity m. Schematic presentation of the regimes on log-log
scale: (1) RMT, (2) golden rule, (3) precritical, (4) “critical metal,”
(5) critical point, (6) localized. It is assumed in this figure that the
system size N is much larger than N cr

ξ marking the crossover between
the precritical and critical regimes, Eq. (48). In the opposite case,
N < N cr

ξ , the “critical metal” regime will not be probed. Dashed line
shows the behavior of NP2 in the “thermodynamic limit” N → ∞.
In this limit, W∗ → Wc and the regime 5 shrinks to a single point Wc.

Furthermore, we observe that W 2 factor in Eq. (46) is in
perfect correspondence with the W dependence of IPR in the
Golden-rule regime, Eq. (28). The only mismatch between
the two formulas at the boundary between the two regimes,
W ∼ m, is due to a factor ∼1/m in Eq. (28). This is not
surprising as such a preexponential factor is beyond the ac-
curacy of Eq. (36) that was used in course of the analysis of
the precritical regime. To have a full matching, we include
the preexponential factor ∼1/m in Eq. (36), Nξ ∼ m−1eπ/σ ,
which yields the final result for the precritical regime,

Nξ ∼ 1

m
eπ/σ ∼ W 2

m
exp

(
W

2m

)
, m � W � Wc. (47)

This formula works reasonably well up to W ≈ Wc/2, where it
crosses over to the critical behavior, Eq. (43). To estimate the
value of NP2 ∼ Nξ at the crossover between the precritical
and critical regimes, we substitute W = Wc/2 into Eqs. (38)
and (39), and the resulting σ into Nξ ∼ m−1eπ/σ . This yields
an estimate Ncr

ξ of the correlation volume Nξ at the beginning
of the critical regime:

Ncr
ξ (m) ∼ 1

m

(
Wc(m)

2

)γ

∼ 1

m
(2m ln m)γ ; γ ≈ 3.3. (48)

It is worth recalling at this point that we consider the
IPR in an RRG model with a finite (although large) number
of sites N . When the disorder W increases toward Wc, the
correlation volume Nξ at some point reaches N . Let us call this
disorder W∗(N ); it is defined by the condition Nξ (W∗) = N .
Clearly, limN→∞ W∗(N ) = Wc, so that W∗(N ) can be viewed
as a finite-size approximation to the critical disorder Wc. When
W increases beyond W∗(N ), the IPR P2 exhibits saturation to
its maximal value NP2 = N . Depending on the value of N
with respect to Ncr

ξ , the point W∗(N ) can be located either in
the critical or in the precritical regime (or in the crossover
between them). In Fig. 1, a sketch of the dependence of NP2

on disorder W is shown, with all regimes indicated. In this

FIG. 2. NP2 of RRG as a function of W for various system sizes:
(a) m = 2, (b) m = 20, (c) m = 100, (d) m = 200. Full lines are
results of exact diagonalization for various systems sizes N = 2L

(Sec. IV C), while dashed lines represent N → ∞ analytical predic-
tion for the RMT and Golden-rule regimes (Sec. IV B 2) and for the
precritical and critical regimes (Sec. IV B 3).

sketch, it is assumed that N is very large (much larger than
Ncr

ξ ), so that W∗(N ) is deeply in the critical regime. We note
that, for m > 10, the crossover value Ncr

ξ , Eq. (48), becomes
larger than system sizes N accessible by exact diagonaliza-
tion. Thus, for large m, the point W∗(N ) will be within the
precritical regime if exact diagonalization is used, as we are
going to see in Sec. IV C. In that case, the curve NP2(W ) will
not probe the “critical metal” regime.

C. Exact-diagonalization numerical simulations

We have calculated the averaged IPR on RRG with large
coordination number, m = 20, 100, and 200 by numerical
diagonalization of systems of sizes N from 210 to 215. Note
that for large m the Hamiltonian matrix is much less sparse
(in comparison with, say, m = 2), which affects the upper
boundary for system sizes than can be efficiently treated by
exact diagonalization. For each realization of disorder, N/16
eigenstates in the middle of the spectrum (i.e., around E = 0)
were determined by the shift-invert techniques. In addition,
the IPR was averaged over 100 disorder realizations. The
results are shown in Fig. 2. To better illustrate the evolution
with increasing m, we include also the data for m = 2 for
the same range of N . The black and red dashed lines in this
figure represent large-m analytical results for the RMT and
Golden-rule regimes (Sec. IV B 2) and for the precritical and
critical regimes (Sec. IV B 3), respectively. By inspecting
the theoretical curves, we see that the Golden-rule regime,
where the theoretical curves agree with each other, becomes
well developed for m = 200. Furthermore, we observe that the
agreement between exact-diagonalization data and analytical
predictions improves with increasing m, becoming essentially
excellent for m = 200. This agreement with the numerics
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FIG. 3. The same as Fig. 2 but in the form of a logarithmic
derivative α(W ) = d ln(NP2)/d ln W . At m = 200, development of
the Golden-rule plateau at α = 2 is clearly visible. The maxima
of curves, which yield finite-size estimates W∗(N ) of the transition
point, move toward Wc with increasing N . For large m = 20, 100, and
200, the maxima are in the precritical (rather than critical) regime for
all accessible system sizes, W∗(N ) < Wc/2.

serves as an additional confirmation of the validity of our
large-m analytical treatment.

We recall that the analytical curves shown in Fig. 2 are
derived under the assumption N � Nξ . As expected, the nu-
merical data follow the analytical curve up to the point W∗
where NP2 ∼ Nξ approaches the system size N and then sat-
urate at the value NP2 = N . With increasing system size N ,
the “finite-size critical disorder” W∗(N ) increases toward Wc

as predicted, i.e., the numerical data reproduce the analytical
curve up to an increasingly large disorder. At the same time,
even for our largest system size N = 215, the point W∗(N )
for m = 100 and m = 200 models is located well on the
precritical side, W∗(N ) < Wc/2, of the precritical-to-critical
crossover. Therefore, an exact-diagonalization numerical in-
vestigation of the asymptotic “critical-metal” regime (Wc −
W � Wc and N � Nξ ) is essentially impossible for large-m
RRG models due to system-size limitations.

In Figure 3 we present the same numerical and analytical
results as in Fig. 2 but in the form of a logarithmic derivative,

α(W ) = d ln(NP2)

d ln W
. (49)

This presentation of the data is useful in two respects.
First, maxima of the curves nicely visualize the position

of W∗(N ) (finite-size approximation to the critical disorder)
defined above. It is seen that W∗(N ) increases toward the true
(N → ∞) critical point Wc as predicted analytically. At the
same time, the maximum remains well below Wc/2 (i.e., in
the precritical regime) for m = 20, and especially for m = 100
and 200. This shows that the critical regime (in the sense
of “critical metal”: Wc − W � Wc and N � Nξ ) is totally
inaccessible to exact diagonalization for large m.

Second, the logarithmic derivative α(W ) is a sensitive
indicator of the Golden-rule regime. Indeed, a power-law
scaling NP2 ∝ W 2 in this regime implies α(W ) = 2. There-
fore, for large m, when the Golden-rule regime is predicted,
we expect to see a plateau at α(W ) = 2. Indeed, the exact-
diagonalization data for m = 200 and sufficiently large N in
Fig. 3(d) clearly exhibit a shoulder near α = 2, demonstrating
the Golden-rule regime. Furthermore, the fact that α(W ) for
our largest N raises to values substantially larger than 2 around
the maximum (i.e., to the right of the Golden-rule regime)
demonstrates that the system probes well also the precritical
regime, where α(W ) grows as

α(W ) = 2 + W

2m
(50)

according to Eq. (47).

D. Population dynamics

In the above, we used two distinct methods to calculate the
disorder dependence of IPR in an RRG model with large m:
an analytical approach (based on supersymmetric field theory)
in Sec. IV B and numerical exact-diagonalization approach in
Sec. IV C. Now, we are going to present results of one more
approach that combines analytical (field theory) and numer-
ical (population dynamics) tools. This approach is described
in detail in Ref. [29], where it was implemented for the m = 2
model. We first follow the analytical route (see Sec. IV B 1),
by using the field-theoretical formalism, leading, in the large-
N limit, to the saddle-point equation (11) (equivalent to the
self-consistency equation on an infinite Bethe lattice). This is
a nonlinear integral equation for the probability distribution
P (� G,� G) of the Green function G(m) ≡ G. We now solve
this equation numerically by using the population dynamics
(also known as pool method). Within this computational ap-
proach, a large pool of values of G represents its distribution.
We iterate the self-consitsency equation (11) starting with a
randomly initialized pool until the convergence is reached.
Once the distribution P (� G,� G) is determined in this way,
we calculate the IPR (at N � Nξ ) by using Eq. (25),

NP2 = 3
〈ν2〉
ρ2

, (51)

where ν = (−1/π )� G is the (fluctuating) local density of
states and ρ is its average, ρ = 〈ν〉.

A numerical limitation to the method is set by the pool size
M. We have implemented the method for the m = 200 model,
by using the pool size M = 222. Remarkably, it was found in
Ref. [29] (in the analysis of the m = 2 model) that, within this
method, one can proceed controllably up to NP2 ∼ Nξ scaling
as Nξ ∼ M1/κ with κ ≈ 0.46, i.e., many orders of magnitude
larger than the pool size M. The same happens in our simu-
lations for m = 200, allowing us to get population-dynamics
results up to NP2 as large as 1013.

The imaginary part η in Eq. (11) sets an upper bound ∼η−1

on the correlation volume that can be calculated within this
approach. Thus, η should be chosen to be sufficiently small.
We have taken ln η = −73.6, so that η is negligibly small in
comparison with N−1

ξ for the largest Nξ that can be reached.
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FIG. 4. Population-dynamics results for RRG with m = 200
(blue dots), in comparison with purely analytical results for the RMT
and Golden-rule regime (black dashed line) and for the precritical
and critical regimes (red dashed line). (a) NP2 as a function of dis-
order W . (b) Flowing correlation-length exponent νdel(τ ), Eq. (52),
as a function of τ = − ln(1 − W/Wc ). The asymptotic (τ → ∞, i.e.,
W → Wc) value νdel(τ ) = 1/2 is shown by a horizontal dashed line.

Results of the population-dynamics calculation of NP2 are
presented in Fig. 4(a). For comparison, we also show the
results obtained by purely analytical means (for RMT and
Golden-rule regimes as well as for precritical and critical
regimes). An excellent agreement is observed, providing an
additional evidence of the validity and accuracy of all ap-
proaches used. It is seen that the population dynamics allows
us to proceed up to disorder W somewhat above Wc/2, i.e., to
cover the whole precritical regime and also an initial part of
the critical regime.

In Fig. 4(b), we display results for the flowing correlation-
length exponent

νdel(τ ) = d ln ln NP2

dτ
, (52)

where τ is a parameter characterizing closeness to the criritcal
point,

τ = − ln

(
1 − W

Wc

)
. (53)

In the critical regime, τ � 1, the IPR scales as ln(NP2) ∼
τ 1/2, see Eq. (43). Thus, νdel(τ ) tends to the asymptotic
value νdel = 1/2 in the limit τ → ∞ (corresponding to W →
Wc). Figure 4(b) illustrates how this asymptotic value is ap-
proached.

It is worth noting that the position W∗ of the maximum in
Fig. 3(d) for the largest N in exact-diagonalization simula-
tions is nearly one order of magnitude smaller than Wc. Thus,
exact diagonalization allows us to proceed (within the regime
N � Nξ ) only up to τ ≈ 0.1 for the m = 200 model. It is seen
from Fig. 4(b) how far the corresponding value νdel(τ ) is from
its τ → ∞ asymptotics. This demonstrates once more that it
is impossible to extract controllably the asymptotic critical
behavior (i.e., the exponent νdel(∞) = 1/2) using solely the
exact-diagonalization data.

V. FERMIONIC AND SPIN QUANTUM-DOT MODELS:
NUMERICAL STUDY

In this section, we perform a numerical study of the IPR
and the level statistics in fermionic and spin quantum dot
models by means of exact diagonalization. Our main focus
in this section is one the scaling of the critical disorder Wc(n)
with the number of fermions (respectively, spins) n and on the
sharpness of the transition. We begin by defining the models
to be studied.

The fermionic quantum dot can be described by the follow-
ing Hamiltonian written in the basis of exact eigenstates of the
noninteracting problem:

Ĥ =
∑

i

εiĉ
†
i ĉi +

∑
i jkl

Vi jkl (ĉ
†
i ĉ†

j ĉk ĉl + H.c.). (54)

Here single-particle orbital energies εi are random, we choose
them to be uniformly distributed on the interval [−W,W ].
Further, the interaction matrix elements Vi jkl are random as
well; they are chosen as Gaussian random variables with zero
mean and variance unity. (We can always rescale Ĥ to make
the variance equal to unity, so that this assumption does not
restrict the generality.) The number of particles is conserved,
and we consider n/2 fermions occupying n orbitals.

Models of the type (54), with some variations, were pro-
posed for description of complex nuclei and atoms under
the names “two-body random ensemble”, “embedded two-
body ensemble”, and “two-body random interaction model”
[73,74]. More recently, they attracted attention in the context
of Fock-space MBL physics [11,16,46–57] as “quantum dot”
models; we use this terminology in the present paper. (We
refer the reader to Refs. [16,75] for a derivation of the Hamil-
tonian (54) for a model of electrons in a disordered quantum
dot with Coulomb interaction.) In the last few years, a very
similar model (usually defined in terms of Majorana fermions)
was studied under the name of SYK2 + SYK4 model (where
SYK is an abbreviation for Sachdev-Ye-Kitaev) in several
works [58–63]. We note that in the SYK2 + SYK4 formu-
lation, the quadratic part of the Hamiltonian is defined as
random Gaussian matrix. Transforming to a basis in which
the quadratic part is diagonal, one gets the form (54). There
is a small difference with respect to our model, as single-
particle energies εi will then exhibit level repulsion, while we
assume them to be uncorrelated for simplicity. This difference
is, however, immaterial since interaction-induced transitions
corresponding to moving two (in the lowest order) or more
(in higher orders) particles, and the corresponding many-body
energies do not exhibit level repulsion.

The model of spin quantum dot that we explore is defined
by the Hamiltonian

Ĥ =
n∑

i=1

εiŜ
z
i +

n∑
i, j=1

∑
α,β∈{x,y,z}

V αβ
i j

(
Ŝα

i Ŝβ
j + H.c.

)
. (55)

Here Ŝα
i = 1

2σα
i with i = 1, . . . , n and α = x, y, z are spin-

1
2 operators (σα

i are Pauli matrices), εi are random fields
uniformly distributed on [−W,W ], and interaction matrix ele-
ments V αβ

i j are gaussian random variables with zero mean and
variance unity.
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FIG. 5. Level statistics from exact diagonalization of the
fermionic quantum dot with n = 10, 12, 14, 16, and 18. Left: Mean
adjacent gap ratio r(W ) for various system sizes; Right: same data
plotted as r(W/(m ln m)), where m is the coordination number (56).

For each disorder realization, we average over N/10 states
in the middle of the many-body band (where N is the
dimension of the Hilbert space). In addition, the average
over disorder realizations is performed; their number ranges
from 104 for the smallest systems to 102 for the largest
systems.

In Fig. 5, we show the evolution of the level statistics in
the fermionic quantum dot model (54) for number of orbitals
n growing from n = 10 to n = 18. Specifically, we plot the
mean adjacent gap ratio r(W ), which is known to be a very
convenient spectral observables for detecting a transition from
ergodicity to localization, as a function of disorder W . The
value r = 0.536 corresponds to an ergodic system, with level
statistics as in the Gaussian Orthogonal Ensemble (GOE),
whereas r = 0.386 corresponds to Poisson statistics, i.e., lo-
calization. As is clearly seen in the left panel, the upper
border of the “ergodicity region” (i.e., of the range of W
in which r(W ) is close to its GOE value) quickly moves to
the right with increasing n. In other words, for any fixed
W the system becomes ergodic when n is sufficiently large.
This is a manifestation of the fact that the critical disorder
Wc(n) grows fast with n. To analyze this growth, we now test
the RRG approximation for the scaling of critical disorder,
W RRG

c ∼ m ln m, where m is the coordination number for the

fermionic quantum dot model,

m =
[

n
2

(
n
2 − 1

)]2

4
. (56)

For this purpose, we plot in the right panel of Fig. 5 the
same data for the gap ratio with the disorder axis rescaled
as W/(m ln m). In these rescaled coordinates, the ergodicity
region is nearly identical for four largest system sizes (n from
12 to 18). Thus, the level statistics data support the RRG-like
scaling of the critical disorder:

Wc(n) ∼ W RRG
c ∼ m ln m. (57)

The following comment is in order here. As always, one
should be cautious when trying to make a conclusion on the
behavior in the limit of a large system size on the basis of
numerical results for not too large systems. Obviously, these
numerical data cannot rigorously prove anything concerning
the asymptotic behavior. When analyzing the data, we make
a plausible assumption that the trends that we observe in
numerical simulations survive in the large-n limit.

In Fig. 6, we show the evolution of the IPR P2 in the
fermionic quantum-dot model. The left panel displays the
dependence of NP2 on disorder W for different values of n.
Here N = n!/[(n/2)!]2 is the dimension of the Hilbert space.
For weak disorder we have P2 
 3/N as in GOE; for strong
disorder P2 
 1 as expected in the localized regime. The
evolution between these two limits is qualitatively similar to
that in the RRG model, see Fig. 2; we relegate a quantitative
comparison to Sec. VI, focusing now on the position of the
transition point Wc(n). For this purpose, we use the numerical
data to calculate the logarithmic derivative α(W ) defined by
Eq. (49). The dependences α(W ) for different system sizes
are shown in the middle panel of Fig. 6. The maximum of
α(W ) provides an estimate for the finite-size position of the
transition Wc(n), cf. Fig. 3 for the RRG model in Sec. IV C.
We observe that the position of the maximum [and thus Wc(n)]
rapidly increases with n, in full agreement with the analogous
conclusion made on the basis of level statistics, Fig. 5. In the
right panel of Fig. 6, the date are plotted as a function of
W/(m ln m). It is seen that, upon this rescaling, the position of
the maximum is nearly independent of n (in fact, even slightly

FIG. 6. Average IPR P2 of eigenstates in the fermionic quantum dot model with n = 10, 12, 14, 16, and 18 as obtained by exact
diagonalization. Left: NP2 as function of disorder W for various system sizes. Middle: same data in the form of a logarithmic derivative
α(W ), Eq. (49). Right: same data with rescaled disorder axis: α as a function of W/(m ln m), where m is the coordination number. The position
of the maximum is nearly independent of n for n � 12. For the largest system size, a shoulder near α = 2 is observed, which corresponds to
the Golden-rule regime.
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FIG. 7. IPR in the localized phase of the fermionic quantum-dot
model as a function of the Hilbert space dimension N for several
values of W/m ln m.

drifting to the right) for n from 12 to 18. This provides a
further support to the RRG-like scaling of Wc(n), Eq. (57).

A comment on the observed behavior of the IPR in the
MBL phase is in order at this point. In Fig. 7, we plot ln P2

as a function of ln N for several values of W/m ln m. (Fixing
W/m ln m corresponds, at least approximately, to fixing W/Wc

as discussed above.) We see that P2 stays close to unity and
is essentially independent of N . This behavior, P ∼ 1, in the
MBL phase of a quantum dot model can be contrasted to the
fractal scaling of IPR in the MBL phase of models with spatial
structure, P2 ∼ N−τ , see Sec. III for more detail, including
relevant references. This difference has the following reason.
In the MBL phase of a large system with spatially localized
one-particle states, there are many short-scale (adjacent-site)
resonances, which lead to the above fractal scaling. However,
in quantum-dot models, the critical disorder scales (at least
approximately) as Wc ∼ m ln m, where m is a coordination
number on the Fock-space lattice. Thus, in the MBL phase
(W > Wc), we also have W > m, so that typically there is no
resonances at all. This explains the behavior P2 ∼ 1, which is
analogous to that in the localized phase of the RRG model.

In Figs. 8 and 9, numerical results for the level statistics
(mean gap ratio) and the IPR of the spin quantum dot model

FIG. 8. Level statistics from exact diagonalization of the spin
quantum dot with n = 10, 12, 14, and 16. Left: mean adjacent gap
ratio r(W ) for various system sizes. Right: same data plotted as
r(W/(m ln m)), where m is the coordination number (58).

(55) are shown. The presentation of data in these two figures is
fully analogous to that for fermionic quantum dot in Figs. 5
and 6, respectively. The rescaling of disorder W in the right
panels is done in the same way, W → W/(m ln m), where m is
now the coordination number of the spin quantum dot model,

m = n(n − 1)

2
. (58)

The Hilbert space dimension in this case is N = 2n. The
conclusion that can be made from these figures is essentially
the same as for the case of a fermionic quantum dot. The
critical disorder Wc(n) rapidly increases with increasing n, as
indicated both by level statistics and by IPR. Upon rescaling
of W by m ln m, the upper border of the ergodic regime in
the right panel of Fig. 8 and the position of the maximum
in the right panel of Fig. 9 become essentially n-independent
for our larger values, n = 14, 16. This provides support to the
RRG-like scaling (57) also for the spin quantum dot model.

We turn now to the question of sharpness of the localization
transition; the corresponding criterion was discussed in the
end of Sec. II B. For a finite n, we have a crossover from
ergodicity to localization of a certain width �Wc(n). If the
ratio �Wc(n)/Wc(n) 
 � ln Wc(n) tends to zero at n → ∞,
then we can speak about a sharp transition in the large-n limit;
otherwise, it remains a crossover also in this limit. A quick
look at Figs. 5 and 8 for the level statistics is sufficient to see
that the crossover becomes sharper (on the logarithmic scale)
with increasing n, suggesting that

� ln Wc(n) → 0 at n → ∞, (59)

i.e., a sharp transition. This is made more quantitative in
Figs. 10(a), 10(b) and 11(a), 11(b) for fermionic quantum
dot and spin quantum dot, respectively. In these figures, we
analyze the width of the transition region from the Wigner-
Dyson to Poisson statistics. The results are consistent with a
power-law sharpening of the transition,

� ln Wc(n) ∼ n−κ , (60)

with κ ≈ 1. Notably, the behavior for the fermionic and spin
quantum dots is very similar. In Figs. 10(c), 10(d) and 11(c),
11(d) a similar analysis is performed on the basis of IPR data.
Specifically, we estimate the evolution of the width of the tran-
sition region between the ergodic P2 � 1 and localized P2 
 1
regimes. We observe again the behavior of the type (60),
although with a smaller value of the exponent, κ 
 0.5 − 0.6.

As we showed in Sec. IV C, the exact diagonalization is
not capable to probe the asymptotic critical behavior for the
large-m RRG model and can only reach the precritical regime,
where the flowing exponent νdel is far from its asymptotic
value. It is plausible that the situation is similar in the case of
quantum dot models. In view of this, the above values of the
exponent κ should be taken with a grain of salt, and one should
not be too surprised by the difference between κ obtained
by using different observables. It is crucial that the data for
both types of quantum dots and both observables consistently
indicate that the crossover sharpens with increasing n, thus
suggesting a true transition in the sense of Eq. (59).
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FIG. 9. Average IPR P2 of eigenstates in the spin quantum dot model with n = 10, 12, 14, and 16, as obtained by exact diagonalization.
Left: NP2 as function of disorder W for various system sizes. Middle: same data in the form of a logarithmic derivative α(W ). Right: same data
with rescaled disorder axis: α as a function of W/(m ln m), where m is the coordination number.

VI. SPIN QUANTUM DOT: QUANTITATIVE COMPARISON
WITH RRG-LIKE APPROXIMATION

In Sec. V we reported exact-diagonalization numerics for
fermionic and spin quantum dots. We have found that the
scaling of the critical disorder Wc(n) supports the analytical
predictions of Ref. [11], Eqs. (2) and (4). Moreover, the data
are consistent with the exponent μ in these formulas being
equal to the upper border, μ = 1, i.e., with the RRG scaling
(57). In the present section, we perform a detailed quantitative
comparison of the quantum dot model with the corresponding
RRG-like approximation. For this purpose, we choose the spin
quantum dot since the corresponding coordination number
(58) is smaller than for the fermionic quantum dot [Eq. (56)].
As a result, the exact-diagonalization numerics for the spin
quantum dot model accesses substantially better the physics
beyond the Golden rule (the counterpart of the precritical
regime of the RRG model). This is clear from a comparison
of Figs. 6 and 9; whereas for the fermionic quantum dot the

FIG. 10. Width of the transition for fermionic quantum dot.
(a) r(W ) for various system sizes with two horizontal lines showing
a fixed interval �r; (b) corresponding width � ln W as a function of
n on log-log scale, with a power-law fit (straight line); (c) P2(W ) with
two horizontal lines showing a fixed interval �P2; (d) corresponding
width � ln W as a function of n on log-log scale, with a power-law
fit.

maximal numerically reached value of α(W ) is 2.6, i.e., not
so much above the Golden-rule value α = 2, for the spin
quantum dot a much larger value α(W ) = 8 is reached.

We proceed now with calculating the IPR of the spin-
quantum-dot model in the RRG-like approximation. In
analogy with Sec. IV, we first perform estimates of the
regimes (as in Sec. IV A) and then carry out a careful cal-
culation extending the analysis of Sec. IV B.

A. Overview of regimes

The (approximate) correspondence between the spin-
quantum-dot and the RRG models is established in the
following way. The nodes of the graph correspond to basis
states in the many-body Hilbert space, i.e., spin configurations
that are eigenstates of the operators σ z

i for all i = 1, 2, . . . , n.
These states are coupled by spin-flip terms that thus play a
role of hopping terms, i.e., links in the random-graph model.
Most important are terms that flip two spins, which yields the
coordination number

m = n(n − 1)

2

 n2

2
. (61)

(The Hamiltonian (55) contains also terms that flip only
one spin. They give a much smaller contribution (n) to the

FIG. 11. Same as Fig. 10 but for spin quantum dot.
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coordination number and can safely be neglected for the es-
timate of the regimes. We will discuss such terms in more
detail later and will show that they play only a minor role.)
All basis states coupled to a given one by two-spin-flip terms
are in an interval of width ∼ W . The magnitude of spin-flip
terms is V ∼ 1 in our choice of the quantum-dot Hamiltonian.
The (approximate) mapping to RRG now yields, according to
Eq. (6), the broadening �:

� ∼ m

max{W, �} . (62)

This implies a sequence of regimes that we are going to
discuss, ordering them from weak to strong disorder, as in
Sec. IV A.

If disorder W is smaller than the level broadening �, then
the self-consistency in Eq. (62) is important, � ∼ m/�, i.e.,

� ∼ √
m ∼ n. (63)

This regime can be further subdivided into two regimes:
(1) RMT regime,

W � n1/2. (64)

In this regime, the broadening � exceeds the characteristic
energies ∼n1/2W of many body states. This implies that es-
sentially all many-body states are mixed and thus the IPR is

NP2 
 2, (65)

as in the Gaussian unitary ensemble (GUE) of RMT. We
note that GUE (rather than GOE) is applicable here since
spin-flip terms in the Hamiltonian (55) break the time-reversal
symmetry.

(2) Self-consistent Golden-rule regime,

n1/2 � W � n, (66)

in which case W < � < W n1/2. In this situation, the energy
window �, within which the many-body states are strongly
mixed, is smaller than the total many-body bandwidth W n1/2,
implying that

NP2 ∼ W n1/2

�
∼ W

n1/2
. (67)

With further increase of disorder, Eq. (62) takes the form
of the conventional Golden-rule formula,

� ∼ m/W ∼ n2/W. (68)

(3) Golden-rule regime,

n � W � n2, (69)

with the IPR scaling

NP2 ∼ W n1/2

�
∼ W 2

n3/2
. (70)

The upper border of the Golden-rule regime is determined by
the condition � ∼ �, where � ∼ W/n2 is the level spacing of
basis states (sites in the random-graph representation) directly
connected to the given one.

(4) Precritical and critical regimes,

n2 � W < Wc(n). (71)

Within the mapping to RRG, the critical disorder is given by

Wc(n) = W RRG
c (n) ∼ n2 ln n. (72)

(5) Localized regime,

W > Wc, (73)

with P2 ≈ 1.
We turn now to an accurate calculation (within the RRG

approximation) of P2 in these regimes by extending the anal-
ysis of Sec. IV B.

B. Golden-rule regimes

We proceed in analogy with Sec. IV B 2. Several mod-
ifications are, however, needed to take into account that
distributions of energies and of transition matrix elements in
the RRG-like approximation to the quantum dot model differ
from those in the RRG model considered in Sec. IV.

Consider a certain basis many-body state (i.e., a site in the
random-graph representation) with an energy ε(0). We focus
on states near the band center and can set ε(0) = 0. Consider
now all sites (basis states) that are connected to this chosen
state by a direct link (i.e., two-spin-flip process). The corre-
sponding energies are

ε(1) = ε(0) ± εi ± ε j, (74)

where i and j are indices of flipped spins. The energies εi

and ε j are taken independently from the box distribution
on [−W,W ] in our model. Calculation the distribution of
±εi ± ε j , we get a “triangular” distribution γ1(ε) for energies
of states coupled to a given one,

γ1(ε) =
{

ε+2W
4W 2 , −2W < ε � 0,

2W −ε
4W 2 , 0 � ε < 2W ,

(75)

and γ1(ε) = 0 everywhere else. The distribution γ1(ε)
replaces the distribution γ (ε) (box distribution on
[−W/2,W/2]) that we assumed for site energies in the
RRG model in Sec. IV B 2.

The second modification is related to the distribution of
transition matrix elements. In the RRG model of Sec. IV B 2
they were simply constant (equal to V ) and we subsequently
set V = 1. Let us calculate the distribution of couplings M be-
tween directly coupled states in the spin-quantum-dot model
(55). Consider two basis states that differ from each other by
flips of spins on position i and j, with M given by

M =
〈
... ↓

i
... ↓

j
...|Ĥ |... ↑

i
... ↑

j
...

〉
. (76)

We recall that V αβ
i j are independent real Gaussian variables

with zero mean and unit variance. It is then easy to see that M
is a complex Gaussian variable with zero mean and

〈|M|2〉 = 1
16 × 2 × 4 × 4 = 2. (77)

Here the factor 1/16 originates from the factors 1/2 relating
spin operators to Pauli matrices, the factor 2 from accounting
for (i, j) and ( j, i) contributions in Eq. (55), one factor 4 from
summing over α = x, y and β = x, y, and another factor 4
from the Hermitian conjugated contribution in Eq. (55) that
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doubles all relevant transition amplitudes M. Clearly, the con-
stant V 2 is replaced by 〈|M|2〉 in the case of fluctuating matrix
elements M in the Golden-rule (and self-consistent Golden
rule) regime, i.e., in Eq.(13).

It is worth noting that the above modifications in dis-
tributions of diagonal energies and matrix elements do not
affect the parametric estimates of the regimes performed in
Sec. VI A.

The self-consistency equation (13) thus becomes

g0 = 〈|M|2〉
(4W )2

[∫ 0

−2W
dε

ε + 2W

mg0 + i
2ε

+
∫ 2W

0
dε

2W − ε

mg0 + i
2ε

]
.

(78)

Evaluating the integrals, we bring this equation to the form

g0 = 1

W
arctan

W

mg0
+ mg0

2W 2
ln

(
1 + W 2

(mg0)2

)
. (79)

This is a counterpart of Eq. (16) for the RRG model in
Sec. IV B.

Equation (23) for the local density of states (at zero energy,
E = 0) ρ1(0, ε) remains unchanged:

ρ1(0, ε) = 1

π

2mg0

(2mg0)2 + ε2
. (80)

To calculate the global density of states ρ(0) we use a coun-
terpart of Eq. (21),

ρ(E ) =
∫

dεγtot (ε)ρ1(E , ε), (81)

where γtot (ε) is now the distribution of energies ε of all many-
body basis states. Such an energy is a sum of random energies
of individual spins, with random signs:

ε = 1

2

∑
i

siεi, si = ±1. (82)

For large n, the central limit theorem applies, yielding a Gaus-
sian probability distribution

γtot (ε) = 1√
2πσtot

exp

(
− ε2

2σ 2
tot

)
, with σ 2

tot = nW 2

12
. (83)

Substituting Eqs. (80) and (83) into Eq. (81), we get the
following result for the global density of states at the band
center (E = 0):

ρ(0) =
∫ ∞

−∞
dεγtot (ε)ρ1(0, ε) = 1√

2πσtot

ey2
erfc(y), (84)

where erfc(y) denotes the complementary error function and

y =
√

2mg0

σtot
=

√
6

n1/2(n − 1)g0

W
. (85)

Finally, the IPR is given, in full analogy with Eq. (26), by

NP2 = 2
∫ ∞

−∞
dεγtot (ε)

[
ρ1(0, ε)

ρ(0)

]2

= 2

π
e−y2

erfc−1(y)

[
e−y2

erfc−1(y) −
√

π

y

(
y2 − 1

2

)]
.

(86)

Solving Eq. (79) numerically for a given disorder W ,
we obtain g0. Using then Eq. (85) for y and plugging the
result in Eq. (86), we find IPR P2 as a function of W in
the whole Golden-rule range W � n2, including the proper
Golden-rule, self-consistent Golden-rule, and RMT regimes
(and crossovers between them). We will show the correspond-
ing curves in Sec. VI D, where we will confront them with the
results of exact diagonalization.

We expand now on a comment below Eq. (61) concerning
the terms with a single spin flip. These are terms of the type
Ŝz

i Ŝα
j with α = x, y. Considering only such terms, we would

have the coordination number m̃ = n, the zero-energy den-
sity γ̃1(0) = 1/2W , and the averaged squared matrix element
〈|M̃|2〉 = n. (We use a tilde to label quantities associated
with single-spin-flip processes.) The Golden-rule rate � is
controlled by the product γ1(0)m〈|M|2〉, which is equal to
n2/2W for the two-spin-flip processes. Interestingly, we ob-
tain exactly the same value for single-spin-flip processes,
γ̃1(0)m̃〈|M̃|2〉 = n2/2W . This implies that � gets an addi-
tional factor 2 in the Golden-rule regime and factor

√
2

in the self-consistent Golden-rule regime, so that NP2 ac-
quires the factors 1/2 and 1/

√
2, respectively. Thus, including

single-spin-flip terms would only lead to relatively minor
modifications. Furthermore, the upper border of applicability
of the Golden-rule formula for single-spin-flip processes is
parametrically lower than for two-spin-flip processes. Indeed,
comparing the characteristic matrix element M̃ ∼ n1/2 with
the level spacing �̃ ∼ W/m̃ = W/n, we get the upper border
W ∼ n3/2, much lower than that for the two-spin-flip pro-
cesses (W ∼ n2). Thus, single-spin-flip processes do not play
any role for W � n3/2, i.e., in the upper part of the Golden-rule
regime and in the precritical and critical regimes.

C. Critical behavior in RRG-like approximation

When the disorder W increases above m, the RRG model
enters the precritical regime where fluctuations get large and
the IPR grows exponentially. With further increase of disor-
der, the system enters the critical regime, where NP2 tends
to diverge at W → Wc. The corresponding calculations for
the RRG model in the disorder range m � W < Wc were
performed in Sec. IV B 3. We derived there that the IPR is
given by

P2 ∼ Nξ

N
, Nξ ∼ 1

m
exp

(
π

σ

)
, (87)

where σ is the solution of Eqs. (38) and (39). Here (in
Sec. VI C) we make an assumption (without a priori justifi-
cation) that the same mechanism is operative in the precritical
and critical regimes of the quantum-dot model. In this way,
we extend the formulas of Sec. IV B 3 to the quantum-dot
model. In Sec. VI D, we will compare the results with exact
diagonalization, which will allow us to judge on the accuracy
of the assumption.

In analogy with Sec. VI B, we have to take into account
that distributions of energies and transition matrix elements in
the effective random-graph representation of the quantum-dot
model differ from those in the RRG model considered in
Sec. IV B 3. Most importantly, we need to find the correct
numerical prefactor in the formula for Wc. In the standard
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RRG model, it is determined by the equation [this is Eq. (33)
with restored hopping V ]:

1 = 4m
V

W
ln

W

2V
, (88)

originally derived in Ref. [72]. Equation (88) holds for a
box distribution of energies on [−W/2,W/2] and a constant
hopping equal to V . We have instead the distribution γ1(ε) of
energies given by Eq. (75) (and parametrized by the disorder
W ) and a Gaussian-distributed complex hopping M with zero
mean and variance 2, Eq. (77). We focus on determining the
correct numerical prefactor in the correspondingly modified
Eq. (88). (The numerical factor of order unity in the argument
of logarithm is clearly mush less important; we do not attempt
to determine it accurately for the case of generic distributions
but rather replace it by unity.) Inspecting the derivation of
the criterion (88) in Ref. [72] and extending it to the case
of generic distribution γ1(ε) and P(M ), we get a generalized
criterion for the transition point Wc:

1 = 4m〈|M|〉γ1(0) ln
1

γ1(0)〈|M|〉 . (89)

The fact that 2/W in Eq. (88) is replaced by γ1(ε = 0) has a
simple explanation. The logarithmic factor in Eq. (88) origi-
nates from an integral

∫
dε/ε, with the lower and upper limits

being V and W/2, respectively. For a generic distribution of
energies, this becomes

∫ ∞
V (dε/ε)γ1(ε). Since the large log-

arithm comes from energies ε � W , one can replace here,
to the leading approximation, γ1(ε) → γ1(0) ≡ 〈δ(ε)〉. The
same conclusion can be made by an inspection of the deriva-
tion of the condition for Wc by inspection of the convergence
of the perturbative expansion as performed in Refs. [16] and
[50] (see, in particular, the Supplemental Material of the latter
paper). To take into account also fluctuations of the transition
matrix elements M (at variance with the standard RRG model,
where they are equal to a constant V ), we note that the energies
ε enter in the perturbative expansion always in a form of a ra-
tio ε/M. This implies a replacement V 〈δ(ε)〉 → 〈δ(ε/M )〉 =
〈δ(ε)〈|M|〉 = γ1(0)〈|M|〉, yielding Eq. (89).

For the triangular distribution (75), we have

γ1(0) = 1

2W
. (90)

Further, the transition amplitude M, Eq. (76), has real (M1)
and imaginary (M2) parts with equal Gaussian distributions:
M = M1 + iM2 with

P(M1, M2) = 1

2π
e− 1

2 (M2
1 +M2

2 ), (91)

so that

〈|M|〉 =
∫

dM1dM2

2π
|M|e−|M|2/2 =

√
π

2
. (92)

Using Eqs. (90) and (92), we bring Eq. (89) for Wc to an
explicit form

Wc =
√

π

2
n(n − 1) ln

(√
8

π
Wc

)
. (93)

Asymptotically (at n → ∞), the solution of Eq. (93) is

Wc 

√

2π n2 ln n ≈ 2.51n2 ln n. (94)

FIG. 12. RRG-like approximation for IPR P2 in spin quantum
dot. Black lines correspond to Golden-rule regimes (including RMT
and self-consistent Golden rule), Sec. VI B, whereas red lines cor-
respond to precritical and critical regimes, Sec. VI C. (a) NP2 as
function of disorder W for a quantum dot with n = 16 spins; (b) same
data plotted as logarithmic derivative α(W ), Eq. (49); (c), (d) same as
(a), (b) but for n = 100. Red dashed lines are finite-size interpolation
(96) taking into account the finite-size N = 2n of the Hilbert space.

Let us emphasize that this result corresponds to an RRG-like
model inspired by spin quantum dot [in particular, with coor-
dination number (61) determined by n] in the “thermodynamic
limit” N → ∞. Of course, in a true quantum-dot model, the
Hilbert-space volume N is exponentially large but still finite
and, furthermore, is also determined by n, namely, N = 2n.
We will return to the discussion of the effect of finite N below.

To get the critical behavior of the correlation volume Nξ

and of the IPR P2, we use Eqs. (38) and (39) derived for the
standard RRG model, with the modifications just discussed:

sin x

x
= f (W )

f (Wc)
, x = 2σ ln

1

γ1(0)〈|M|〉 ,

f (W ) = W

ln 1
γ1(0)〈|M|〉

. (95)

Substitution of the solution σ in Eq. (87) yields Nξ and P2.
In Fig. 12, the dependence of NP2 on disorder W calculated

in the RRG approximation is shown for n = 16 [Fig. 12(a)]
and n = 100 [Fig. 12(c)]. Figures 12(b) and 12(d) display the
corresponding logarithmic derivative α(W ), Eq. (49). Curves
in this figure are analogous to analytical curves in Figs. 2 and
3. Black lines are the Golden-rule result given by Eq. (86)
in combination with Eqs. (79) and (85). Red lines represent
the precritical and critical regime as given by Eq. (87) with
σ calculated from Eq. (95). As in Sec. IV B 3, the results
in the precritical and critical regime are applicable as long
as NP2 is smaller than its maximal value N . Since N = 2n

grows exponentially with n, while m ∼ n2 only as a power-
law, this restriction does not prevent the system to go deeply
into the critical regime for large n, as is seen in the panel (c)
of Fig. 12, where the results for n = 100 are shown. In this
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FIG. 13. Spin quantum dot: comparison between exact-
diagonalization numerics for NP2 (Sec. V, Fig. 9) and RRG-like
approximation Secs. VI B and VI C, Fig. 12). (a) n = 10, (b) n = 12,
(c) n = 14, (d) n = 16. The coordination number m = n(n − 1)/2 is
indicated on each panel.

case, the upper cutoff for NP2 is as big as 2100 ≈ 1030. On
the other hand, for moderately large n accessible for exact
diagonalization, such as n = 16, the upper cutoff intervenes
much earlier. To illustrate this, we show by red dashed lines
an interpolation

NP2 =
(

1

2n
+ 1

Nξ

)−1

, (96)

where Nξ is calculated in the N → ∞ limit as above. It is
worth emphasizing that this interpolation is somewhat sim-
plistic; if applied to a standard RRG model, it would yield a
sharper crossover to the saturated value than the exact diag-
onalization (Fig. 2). A rigorous derivation of the crossover
around the “finite-size transition point” W∗(N ) in the RRG
model remains a problem for future research.

D. Comparison of exact diagonalization and predictions
of RRG-like approximations

We are now in a position to compare the exact-
diagonalization results for the IPR in spin-quantum dot model
[Sec. V] with the predictions of the RRG approximation,
Secs. VI B and VI C. This comparison of the corresponding
curves NP2(W ) is presented in Fig. 13.

First of all, we see that there is a very good agreement
between the numerical (exact-diagonalization) and analytical
(RRG-like approximation) results for NP2 in the Golden-rule
range, W � m. There is only a small (within ∼20%) system-
atic downward deviation of numerically obtained NP2 from
the analytical curve in a part of this regime. This implies that
the Golden-rule width � is somewhat larger (again, within
∼20%) than its analytical value. We attribute this to the ef-

FIG. 14. Same as Fig. 13 in the form of a logarithmic derivative,
α(W ), Eq. (49).

fect of single-spin-flip terms, which we have neglected in the
analytical calculation; see a discussion in the end of Sec. VI B.

With further increase of W , i.e., in the precritical and crit-
ical regimes, m < W < Wc, a substantial difference emerges
between the numerical data and the RRG-like approxima-
tion. Specifically, the numerical NP2 increases considerably
faster toward the maximum (localized) value NP2 = N than
predicted by the analytic approximation. Importantly, this
deviation becomes increasingly more pronounced with in-
creasing n, suggesting that a large difference remains in the
n → ∞ limit. The same data are presented in the form of
the logarithmic derivative α(W ) in Fig. 14; this representation
additionally emphasizes deviations.

Our results thus provide an indication that, while the RRG-
like approximation describes very well the physics of the
quantum-dot model in the Golden-rule range, W < m, it be-
comes much less accurate in the critical domain, m < W <

Wc. Since the deviation of numerics in the range W > m
in the direction of stronger localization, our results indicate
that the critical disorder of the quantum-dot model satisfies
m < Wc < W RRG

c . These conclusions are in full agreement
with the results of Ref. [11] implying that [see Eq. (4)]

Wc ∼ m lnμ m, μ � 1. (97)

Our numerical data suggest that 0 � μ � 1. If the exponent μ

has the same value μ = 1 as in the RRG model (the scenario
suggested by the right panel of Fig. 9; see a discussion in
Sec. V), then a prefactor in Eq. (97) for the quantum dot
should be considerably smaller than for the associated RRG-
like model, so that Wc < W RRG

c .
Substantial difference between the quantum-dot model and

RRG approximation in the critical region can be attributed to
the effect of correlations between transition matrix elements
that are discarded in the RRG approximation [11], see a
discussion in Sec. II B. Whether the critical behavior in the
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quantum-dot model is the same as in the RRG model (and, if
not, how essential are differences) remains an important open
question.

A part of our analysis in Sec. VI bears similarity with
the investigation of a fermionic (Majorana) quantum dot in
Ref. [60], where the RRG-like approximation was derived as
an effective-medium approximation within the supersymmet-
ric field-theory formalism. A very good agreement between
the results of this approximation and exact-diagonalization
data in the Golden-rule regime (“regime III” in notations
of Ref. [60]) was found there, in full consistency with our
findings. The precritical and critical regimes were not ana-
lyzed in Ref. [60]. (In fact, these regimes are essentially not
accessible by exact diagonalization for a fermionic quantum
dot, as we discussed in the beginning of Sec. VI.) It is also
worth mentioning that the Golden-rule regime was classified
as “nonergodic” in Ref. [60]. This is a misleading terminol-
ogy: there is a full hybridization of states within the energy
window � (Golden-rule width) containing a macroscopically
large number of states [resulting in the Wigner-Dyson level
statistics and in the IPR (70)], which is in full correspondence
to the standard notion of ergodicity in statistical physics. This
terminological issue was corrected by the authors of Ref. [60]
in a subsequent publication, Ref. [61].

VII. SUMMARY AND OUTLOOK

In this paper, we have carried out a detailed analytical
and numerical study of the transition from ergodicity to lo-
calization in two closely related classes of models. First, we
explored RRG models with large connectivity m. Second, we
studied many-body quantum-dot models, in the fermionic and
spin versions. (The fermionic version is essentially equivalent
to a model termed SYK2 + SYK4 in recent literature.) Ar-
guably, the quantum-dot models are the simplest models of
the (Fock-space) MBL transition (by analogy with all-to-all
interacting spin models, which are the simplest models of
second-order phase transition). Understanding the evolution
from ergodicity to MBL in these models is thus of funda-
mental importance. The large-m RRG models serve as toy
models for MBL transitions in the Fock space of many-body
quantum dots and are amenable to a controllable analytical
investigation. We have studied what parametric regimes occur
on a way from ergodicity to localization in large-m RRG and
in quantum-dot models and which of these regimes can be ob-
served in systems of realistic size (accessible to numerical or
experimental studies). For the quantum-dot models, we have
used the numerical data to study the scaling of critical disorder
Wc with the system size and to analyze whether a sharp MBL
transition emerges in the thermodynamic limit. Further, we
have developed an RRG-like approximation to a quantum-dot
model and compared it to the numerical simulations. We used
the IPR P2 to characterize eigenfunctions of the system. For
quantum-dot models, we also used the mean adjacent gap ratio
r as a complementary observable characterizing spectral prop-
erties of the system. Below, we summarize the most salient
results of the work.

We have shown that, for large m, the ergodicity-to-
localization evolution of the RRG model includes the RMT,
Golden-rule, precritical, critical, and localized regimes, and

calculated analytically the IPR P2 in all of them. A particularly
interesting property of the large-m model is the emergence of
a parametrically broad precritical regime, in which the IPR de-
creases exponentially (or, equivalently, the correlation volume
Nξ increases exponentially) with disorder W . For the m = 200
RRG model, we have complemented the purely analytical
treatment by a numerical solution of the (analytically derived)
self-consistency equation by population dynamics. This has
allowed us to study numerically systems with correlation vol-
ume as large as N ∼ 1013, thus reaching the critical regime,
Wc/2 < W < Wc. The population-dynamics results are in ex-
cellent agreement with those of the purely analytical study.
We have also carried out exact diagonalization of the RRG
model with a large coordination number up to m = 200, and
evaluated the average IPR as a function of W , in an excellent
agreement with our analytical predictions. In view of limi-
tations on the system size N , the exact diagonalization does
not allow one to probe the “critical metal” regime for large
m (such as m = 100 or m = 200), since in the corresponding
disorder range Wc/2 < W < Wc the correlation volume Nξ

becomes much larger than N . At the same time, the exact
diagonalization permits us to proceed sufficiently far into the
precritical regime, m < W < Wc/2, for these values of m.

Exploring by exact diagonalization the evolution of the
level statistics and of the IPR in fermionic and spin quantum-
dot models, we have found that the transition from the
ergodicity to localization becomes sharper with increasing
number n of orbitals (respectively, spins). Thus, importantly,
exact-diagonalization data provide an evidence of a true phase
transition in the large-n limit, i.e., � ln Wc(n) → 0. Our results
further support the analytically predicted scaling of the transi-
tion point Wc(n) with n, Eqs. (2) and (4). While a limited range
of n accessible to exact diagonalization makes it difficult to
unambiguously determine the power μ of logarithm, the data
are consistent with its upper limit, μ = 1, as in the RRG
model. We have constructed an RRG-like approximation for
the spin-quantum-dot model, which takes into account the
Hilbert-space structure and the statistics of random energies
but discards correlations between transition matrix elements.
Comparing NP2 calculated within this approximation with the
results of exact diagonalization, we find a good agreement in
the Golden-rule range, W < m. At the same time, substantial
deviations emerge closer to the transition point, i.e., in the pre-
critical and critical regime: a stronger tendency to localization
is found in the spin-quantum-dot model in comparison to the
RRG approximation. This is consistent with the fact that the
RRG-like approximation neglects correlations between matrix
elements on links of the effective graph in the many-body
space, thus overestimating delocalization effects.

This work paves a way to addressing a number of chal-
lenging open questions in the physics of the MBL transition.
Before closing the paper, we briefly discuss some of them.

(1) Reaching full understanding of the critical and precrit-
ical regimes in quantum-dot models remains a challenge. It
will be useful to perform a further study of RRG-like mod-
els inspired by quantum dots within a combined analytical,
population-dynamics, and exact-diagonalization treatment. A
comparison to exact diagonalization for genuine quantum-dot
models will permit to understand better the role of correlations
discarded in the RRG-like approximation. Also, it will be
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instructive to extend the analysis to a modified spin-quantum-
dot model, with only single-spin-flip processes allowed (so
that m = n). A model of this type was recently considered in
Ref. [57], with a focus on level statistics. A not so large m is
advantageous for addressing numerically the critical regime.
We expect that insights gained by these approaches will be
helpful for developing a controllable analytical theory of the
MBL transition in quantum-dot models.

(2) While our analysis of many-body systems focused on
quantum dots, we expect that the ideas and results of this work
will also permit to better understand the MBL transition in
models with real-space structure. Such models exhibit more
complex MBL physics, in view of effects of rare anomalously
ergodic or anomalously localized spatial regions. At the same
time, a large body of recent work shows that the Fock-space
view (properties of many-body eigenstates, matrix elements,
and resonances) is very useful also for systems with spatial
structure, with many analogies between them, quantum-dot
models, and RRG models [9,32,44,57,67,76–81]. Importantly,

there is also an impressive progress in experimental studies
of associated properties (such as Fock-space dynamics and
statistics of many-body energies) of systems of coupled qubits
across the MBL transition [82–86]. It is also interesting to
extend our analysis to MBL transitions in models with long-
range interactions induced by a central spin, qudit, or cavity
[87–90].

(3) When analyzing properties of eigenstates, we focused
in this work on the average IPR. While this is a primary eigen-
state observable characterizing the evolution from ergodicity
to localization, it is interesting to consider a broader class of
observables describing eigenstate correlations [9,28,32].
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