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ABSTRACT 

In this paper we present results of volume-of-fluid method based direct numerical simulations of two 
types of gas-liquid flow in confined geometries. The first flow under consideration is the co-current 
upward flow of a regular train of gas bubbles within silicon oil in a square vertical mini-channel. 
Particular attention is given to the influence of the length of the flow unit cell and on the relation 
between bubble diameter and capillary number. The second type of flow under investigation is that of 
a swarm of eight bubbles within a narrow plane vertical channel. The numerical data are used to 
evaluate the budget of the turbulence kinetic energy equation for the liquid phase and to test common 
closure assumptions for the interfacial term appearing in this equation. 

1. INTRODUCTION 

Within the last decade great progress has been made in the development of advanced numerical 
methods for computation of gas-liquid flows with deformable interfaces. Among these methods for 
“direct numerical simulation” (DNS) of two-phase flow, the volume-of-fluid (VOF) method originally 
introduced by Hirt & Nichols (1981) has been significantly improved while the level-set method 
(Sussman et al., 1994) and front-tracking method (Univerdi & Tryggvason, 1992) have newly 
emerged. Today’s computer power is, however, far from what is needed to apply these methods for 
technical two-phase flow problems. Nevertheless, these methods have two main merits. First they 
allow to get a deeper insight into the underlying mechanisms of gas-liquid flows and thus foster their 
physical understanding. Second, they can provide a unique database of the three-dimensional velocity 
and pressure field and the phase distribution with high spatial and temporal resolution. Such a database 
can be used to develop and improve physical models for computational fluid dynamics (CFD) codes 
and engineering flow computations. 
 
 In this paper we exemplify both merits of two-phase DNS by considering two types of gas-liquid 
flows in confined geometry. In section 2 we first present the governing equations and give some 
details of the VOF method used to perform the numerical simulations. With respect to the first merit, 
i.e. the enhancement of the basic understanding of two-phase flows, simulations of the bubble train 
flow in a square vertical mini-channel are presented in section 3. With respect to the second merit, i.e. 
supporting the development of models for engineering computations, in section 4 DNS data of the rise 
of a bubble swarm within a narrow plane vertical channel are used to scrutinize closure assumptions 
for statistical modeling of bubble induced turbulence. The paper is closed by conclusions in section 5. 

                                                      
1 Corresponding author 
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2. GOVERNING EQUATIONS AND NUMERICAL METHOD 

2.1 Governing equations 

We consider two immiscible Newtonian fluids with constant density and viscosity that are separated 
by a phase interface. The motion of each fluid is governed by the conservation equations of mass and 
momentum. At the interface the jump of normal stresses is balanced by surface tension. Here, we 
assume that the coefficient of surface tension is constant. Then, the governing equations can be written 
in the following non-dimensional single-field formulation: 
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The non-dimensional mixture density, center-of-mass velocity and mixture viscosity are defined by 
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where we use subscripts L and G to denote the (continuous) liquid and (disperse) gas phase, 
respectively, and use superscript * to indicate dimensional quantities. For normalization we use a 
reference length scale Lref

* and a reference velocity scale Uref
*. 

 
 In our simulations we will use periodic boundary conditions in one or two coordinate directions. 
The pressure field is, however, not periodic because of the hydrostatic contribution. To circumvent this 
problem we have introduced in Eq. (2) the “reduced pressure” 
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Here, |∆p*| is the (constant) pressure drop in axial direction over the distance of the reference length. 
The present formulation of the pressure term implies that for mesh cells where 0 < f < 1 we assume pL

* 
= pG

* = p*. Due to the decomposition of Eq. (4) the influence of gravity is accounted for in the 
momentum Eq. (2) by the buoyancy force which involves the unit vector in direction of gravity, eg. 
Similarly, a potentially imposed external pressure drop results in a body force term that involves the 
unit vector in axial direction, ep. The last term in the mixture momentum equation (2) represents the 
surface tension force. There, ain = ain

* Lref
* is the non-dimensional volumetric interfacial area 

concentration in the mesh cell, κ = κ* Lref
* is twice the non-dimensional mean curvature of the 

interface and nin is the unit normal vector to the interface pointing into the continuous phase, i.e. the 
liquid. The definitions of the reference Reynolds number (Reref), reference Eötvös number (Eoref), 
reference Weber number (Weref) and reference Euler number (Euref) appearing in Eq. (2) are 
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 The set of equations is completed by the transport equation for the liquid volumetric fraction  
 

 m 0f f
t

∂ + ∇ ⋅ =
∂

u  (6) 

 
which expresses - in the absence of phase change - the mass conservation of the liquid phase. The 
derivation of the above set of equations is given in Wörner et al. (2001). Here, the equations are 
already in simplified form. Namely, it is assumed that within a mesh cell both phases move with the 
same velocity, i.e. the center-of-mass velocity um. This assumption corresponds to a locally 
homogeneous model. 

2.2 Numerical method 

We now give a short outline of the numerical method used in our in-house computer code TURBIT-
VOF. The code is based on the finite volume method, uses Cartesian co-ordinates, and employs a 
regular staggered grid. The general solution strategy is based on a projection method where a 
conjugated gradient method is used to solve the resulting pressure Poisson equation. For 
approximation of spatial derivates a second order central difference scheme is used. The integration in 
time is done by a third order explicit Runge-Kutta method. The transport equation for the liquid 
volumetric fraction, Eq. (6), is solved by a volume of fluid method which involves two steps. First, for 
each mesh cell that instantaneously contains both phases, the interface orientation and location is 
reconstructed by the algorithm EPIRA (Exact Plane Interface Reconstruction Algorithm) that locally 
approximates the interface by a plane. In a second step the fluxes of liquid across the faces of the mesh 
cell are computed. For details about the numerical method we refer to Sabisch et al. (2001) and 
Ghidersa (2004). 

3. BUBBLE TRAIN FLOW IN A SQUARE VERTICAL MINI-CHANNEL 

3.1 Motivation 

The prevailing trend to miniaturize conventional fluidic systems and devices for applications in 
chemical engineering has fostered recent interest in multiphase transport in small channels. Potential 
applications include miniaturized heat exchangers (Schubert et al., 2001), evaporators, condensers, 
distillation units, liquid-liquid and gas-liquid reactors, monolithic catalyst reactors (Boger et al., 2004), 
and multiphase extraction and separation units. For multiphase micro process engineering a large 
benefit stems from operating with gas and liquid layers of defined geometry with a defined interface, 
unlike most macroscopic disperse systems which typically have a size distribution of bubbles in the 
continuous liquid (Hessel et al., 2004). Related to this, a further potential benefit is the operation in 
many parallel channels, each having the same two-phase flow pattern. For practical applications, this 
should allow for a favorable numbering up approach instead of scaling up. 
 
 The design and optimization of miniaturized devices require knowledge of the basic hydro-
dynamical phenomena of the two-phase flow in a single channel. The typical two-phase flow pattern 
in narrow channels is known as bubble train flow. This term refers to the flow of a regular train of 
elongated bubbles (Taylor bubbles), having identical shape and distance from each other and moving 
with the same velocity. Bubble train flow is, therefore, fully described by a flow unit cell (UC).  
 
 The dominant forces for two phase flow in small channels are the viscous force and the surface 
tension force. The ratio between these two forces constitutes the capillary number 
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where UB
* is the translational velocity of the bubble. Quantities of interest such as the bubble diameter 

DB
* or the liquid film thickness are therefore usually correlated in terms of CaB. In the remainder of 

this chapter we summarize results of our recent numerical studies (Ghidersa et al. 2004, Wörner et al. 
2004) of the co-current air-oil bubble train flow in a square vertical mini-channel of 2 mm width. In 
particular we discuss the bubble shape and flow structure for different values of the capillary number 
and analyze the influence of the length of the flow unit cell. 

3.2 Simulation parameter 

3.2.1 Fluid properties 

One goal of our simulations is to investigate the influence of the capillary number. In the experiments 
of Thulasidas et al. (1995) e.g. a wide range of capillary numbers is realized by using silicon oil of 
different viscosity. Here, we adopt an equivalent procedure and perform simulations for two different 
values of the liquid viscosity. The viscosity of case A is about ten times lower than in case B. For the 
gas phase we use, unlike in Thulasidas et al. (1995) not air, but a gas with ten times higher density and 
viscosity, see Table 1. This is to increase the computational efficiency of our explicit time integration 
scheme, which results in severe time step restrictions in the case of very low density ratio (Wörner, 
2002). This increase of the gas density is justified due to the results of the numerical study of Wörner 
(2003). In that paper the influence of the gas-liquid density ratio is investigated for the buoyancy 
driven rise of an oblate ellipsoidal bubble and a spherical cap bubble. It is found that under proper 
scaling the steady bubble shape and the velocity field inside the bubble and in the liquid are invariant 
with respect to a variation of the gas-liquid density ratio. In order to keep the ratio of the Reynolds 
numbers in the gas and liquid flow similar to the experiment, we increase the dynamic viscosity of the 
gas in the computations by a factor of 10, too. Therefore, the gas-liquid kinematic viscosity ratio is the 
same in the experiment and in our computations. The physical properties given in Table 1 result in a 
Morton number 
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This value is only 1% lower than the value in the experiment of Thulasidas et al. (1995), where M = 
0.00498. 
 
 

Case ρL
* ρG

* µL
* µG

* σ* 
A 913 kg/m3 11.7 kg/m3 0.0046 Pa s 1.84 ×10-4 Pa s 0.02218 N/m 
B 957 kg/m3 11.7 kg/m3 0.048 Pa s 1.84 ×10-4 Pa s 0.02218 N/m 

 
Table 1: Physical properties of liquid and gas used in the bubble train simulations for case A and B 

 
 
In Table 2 we list the reference scales and the non-dimensional groups that appear in the mixture 
momentum equation. Note that the reference Euler number is estimated from the pressure drop of the 
single phase flow with the same liquid flow rate as in Thulasidas et al. (1995). 
 
 

Case Lref
* Uref

* Reref Eoref Weref Euref 
A 0.002 m 0.0626 m/s 24.85 1.59 0.323 0.2 
B 0.002 m 0.0264 m/s 1.0527 1.67 0.060 27.03 

 
Table 2: Reference scales and dimensionless numbers for the bubble train simulations 
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3.2.2 Computational grid 

We consider the co-current upward directed bubble train flow in a square vertical channel with side 
length W * = 2 mm. In our numerical simulation we model the flow unit cell by considering one bubble 
only and by using periodic boundary conditions in axial direction to account for the influence of the 
leading and trailing bubble. At the four side walls of the channel no-slip boundary conditions are 
imposed. We choose a Cartesian co-ordinate system with y* as stream-wise vertical direction and x* 

and z* as horizontal wall-normal directions. Thus, the gravity vector points in negative y* direction 
while ep points in positive y* direction. We normalize all length scales by Lref

* = W * = 2 mm so that the 
non-dimensional size of the computational box is 1 × Luc × 1. For the physical parameters of case A 
we perform only one simulation with a cubic flow unit cell, while for the physical parameters of case 
B we perform six simulation runs with five different values of Luc, see Table 3. Thus, by the 
simulations for case B we investigate the influence of the length of the flow unit cell. 
 
 In all computations the grid is uniform. In case A1 and B1F it consists of cubic mesh cells of size 
h = 1/64. To investigate the influence of the grid simulation run B1C is performed with the same 
parameters as case B1F but a mesh size of h = 1/48. As will be shown below, the difference of the 
results is very small (see also Ghidersa et al., 2004). This justifies the use of the coarser grid for the 
other runs of case B. 
 
 In all simulations the gas volumetric fraction in the flow unit cell is ε = 33%. The initial bubble 
shape is spherical for cases A, B1F and B1C, and is an elongated body of revolution for the other cases 
(see Wörner et al., 2004). All simulations are started from a quiescent state and several ten thousand 
time steps are computed. The non-dimensional time step width ∆t corresponds to a Courant-
Friedrichs-Levy number (based on the terminal bubble velocity) of about CFL = UB ∆t / ∆x ≈  0.02 
for case A and about 0.005 for case B. 
 

Case Luc computational domain grid ∆t time steps 
A 1 1 × 1 × 1 64 × 64 × 64 1.0×10-4 14,000 
B1F 1 1 × 1 × 1 64 × 64 × 64 1.0×10-5 60,000 
B1C 1 1 × 1 × 1 48 × 48 × 48 2.5×10-5 24,000 
B2 1.25 1 × 1.25 × 1 48 × 60 × 48 2.5×10-5 24,000 
B3 1.5 1 × 1.5 × 1 48 × 72 × 48 2.5×10-5 26,000 
B4 1.75 1 × 1.75 × 1 48 × 84 × 48 2.5×10-5 26,000 
B5 2 1 × 2 × 1 48 × 96 × 48 2.5×10-5 28,000 

 
Table 3: Geometrical and computational parameters for the bubble train simulations 

 

3.3 Results 

3.3.1 Verification 

In Table 4 the terminal values of the capillary number are given for the different simulations. For case 
A the capillary number has a value of 0.043 while for the simulations of case B the value of CaB is 
about five to six times higher. Table 4 also lists the values of the non-dimensional diameter, DB

 = DB
* / 

Lref
*, of the bubble in the cross-section where the liquid film thickness is smallest. The bubble diameter 

is computed as follows. First, for each mesh cell fi,j,k that contains both phases (0 < fi,j,k < 1) the 
centroid of the plane representing the phase interface is computed. The centroid of neighboring mesh 
cells are then connected to form triangles or quadrangles. This yields a closed surface (see Fig. 2). By 
this procedure it is possible to determine the bubble dimensions with a resolution that is smaller than 
the actual mesh width h. Also given in Table 4 are values of the ratio of bubble velocity and mean 
velocity in the liquid slug, V ≡  UB

* / Usl
* and for the relative bubble velocity Z ≡  (UB

* − Usl
* ) / UB

*. 
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 To validate our simulations we compare the computed values for DB, V and Z with the respective 
experimental data of Thulasidas et al. (1995), who display their results in graphical form as function of 
CaB. For case A the computed values for V and Z given in Table 4 agree very well with the 
experimental data. However, the computed value of DB is slightly too low. In the simulations for case 
B the range of the capillary number is 0.204 ≤ CaB ≤ 0.253. For this range Thulasidas et al. (1995) 
give values falling (with some scattering) in the range 0.82 < DB < 0.86, 1.68 < V < 1.84 and 0.435 < Z 
< 0.475, respectively. Thus, our computational results for V and Z listed in Table 4 do well agree with 
these experimental data. For the bubble diameter we obtain good agreement for simulations B2, B3 
and B4, where Luc ≥ 1.25 while for runs B1F and B1C the computed value of DB is somewhat too 
small. The reason for this discrepancy will be discussed in section 3.3.4. For information we also list 
in Table 4 the terminal values of the bubble Reynolds number ReB ≡  ρL

* DB
* UB

* / µL
*. 

 
 

Case Luc CaB DB V Z  ReB 
A  1 0.043 0.92 1.55 0.355 82.87 
B1F  1 0.205 0.81 1.80 0.446  3.80 
B1C  1 0.206 0.81 1.80 0.445  3.79 
B2  1.25 0.207 0.84 1.75 0.430  3.80 
B3  1.5 0.219 0.85 1.75 0.430  4.03 
B4  1.75 0.238 0.85 1.78 0.438  4.39 
B5  2 0.257 0.85 1.80 0.445  4.74 

 
Table 4: Results for the different bubble train simulations 

 
 

3.3.2 Bubble shape 

We now discuss the bubble shape for the different bubble train simulations. The generally accepted 
minimum value of the capillary number for which the bubble shape in a square channel remains 
axisymmetric (i.e. the bubble cross-section at any axial position is circular) is Caaxi = 0.04 (Ratulowski 
& Chang, 1989; Thulasidas et al., 1995). The smallest value of the capillary number in our simulations 
is obtained for case A, where CaB = 0.043. Indeed, for this case and all the other cases the computed 
bubble shape is axisymmetric. 
 
 

 
Figure 1: Bubble shape and flow structure within the bubble for case A (left) and case B1F (right). 
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Figure 2: Bubble shape and velocity field in vertical mid-plane for fixed frame of reference (left half) and for 
frame of reference linked to the bubble (right half) for (a): case B1C, (b): case B2, (c): case B3, (d): case B4, (e): 
case B5. In y-direction only every 8th vector is displayed. 
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 Figure 1 compares the computed steady bubble shape in a vertical mid-plane for case A and B1F. 
We see that for case A the bubble shape is close to spherical while in case B it is rather elongated. 
Accordingly, for case A the thickness of the liquid film is much smaller than for case B1F. Also 
shown in Fig. 1 is a visualization of the flow structure within the bubble for a referential system 
moving with the bubble. This visualization is obtained by inserting mass-less particles at different 
positions inside the bubble and observing their advection by the velocity field. For case B1F the flow 
inside the bubble forms a single toroidal vortex, while in case A a second vortex appears at the rear of 
the bubble. The latter vortex is driven by a counter-rotating vortex inside the liquid slug, see Ghidersa 
et al. (2004) for a detailed discussion. 
 
 Figure 2 shows the left half of the steady bubble shape for the simulations B1C, B2, B3, B4 and 
B5. To allow for a good visualization for each case the results are given for an instant in time when the 
bubble tip is almost at the top of the computational domain. A detailed comparison of the bubble shape 
shows that the radius of curvature of the bubble tip, rtip, is almost the same for case B1C and B2. Also 
for case B3, B4 and B5 the value of rtip is about the same, but is somewhat smaller than for case B1C 
and B2. The radius of curvature at the bubbles rear is a little bit smaller for case B1C than for case B2, 
both being smaller than those of case B3, B4 and B5 which is almost the same for these three cases. 
 

3.3.3 Velocity field 

 Figure 2 additionally shows the velocity field in the axial mid-plane for five different simulations 
of case B. In the left half of the figure the velocity field is shown for a fixed frame of reference while 
in the right half it is displayed for the frame of reference moving with the bubble, i.e. the bubble 
velocity is subtracted from the vertical velocity component. We begin our discussion with the velocity 
field in the fixed frame of reference. The velocity profile in the liquid slug has the form of a parabola 
and is similar for all five cases. In the region where the liquid film is very thin the liquid velocity is 
almost zero. In the frame of reference moving with the bubble the flow inside the bubble can be 
analyzed. We find that there is one big vortex which occupies almost the complete bubble. In the rear 
part of the bubble, however, the velocity is almost zero in the frame of reference moving with the 
bubble. As regards to the flow in the liquid, the velocity profiles in this frame of reference indicate that 
part of the liquid slug that is moving with the velocity of the bubble. 
 

3.3.4 Capillary number dependence of the bubble diameter 

We now discuss for the simulations of case B the dependence of the bubble diameter on the capillary 
number. The results displayed in Figure 3 show that there is first an increase of DB with CaB (cases 
B1C, B2, B3) but then there is a decrease (cases B3, B4 and B5). This result is in contrast to the 
experimental study of Thulasidas et al. (1995) who find a monotonic decrease of the bubble diameter 
with increasing capillary number. We interpret this finding as follows: in the experiments of 
Thulasidas et al. (1995) the bubble length is always larger than the width of the channel, while in our 
simulations this is not the case and the ratio LB = LB

* / W * ranges from 0.93 in case B1C to 1.53 for 
case B5 (see Wörner et al., 2004). In Figure 3 we also show the variation of LB with CaB. The data 
suggest that there may exist a critical bubble length LB,crit ≈  1.2. For values smaller than LB,crit the 
bubble diameter increases with increasing capillary number while for values larger than LB,crit it 
decreases. However, the accurate determination of LB,crit requires further simulations especially in the 
range 1.25 < Luc < 1.75. While the computational results for DB over CaB in Fig. 3 show a local 
maximum, we find for the dependence of V and Z on Luc and CaB a local minimum (Wörner et al., 
2004). These results suggest that there is a significant change in the flow conditions when the bubble 
length exceeds LB,crit. 
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Figure 3: Non-dimensional bubble diameter and bubble length as function of the capillary number for the 
bubble train simulations of case B. 
 
 

4. ANALYSIS OF LIQUID PHASE TURBULENCE KINETIC ENERGY 
EQUATION FOR BUBBLE SWARM FLOW 

4.1 Motivation 

While modelling of turbulent single phase flows has already reached a certain level of maturity, 
models for the turbulence in bubbly flows are still under development. Most of the difficulties faced in 
the development of advanced turbulence models for bubbly flows concern the pure understanding of 
mechanisms in which bubbles alter generation, dissipation and redistribution of turbulence kinetic 
energy in the liquid phase. Analytically, these mechanisms were formulated by the derivation of the 
balance equation for liquid turbulence kinetic energy in gas-liquid flows (Kataoka & Serizawa, 1989). 
Although known for more than a decade this equation could not be exposed to an appropriate 
quantitative analysis, because highly resolved data on the flow field and phase interface structure 
required for such an analysis have not been available. 
 
 In this chapter we use DNS data of the rise of a bubble swarm in a vertical channel through an 
otherwise stagnant liquid to scrutinize closure assumptions for statistical modelling of bubble-induced 
turbulence (BIT). The cornerstone of many models is given by the transport equation for turbulence 
kinetic energy within the liquid phase, kL. Here, we evaluate the different terms in the analytical form 
of this equation from our DNS data and obtain by this way the budget of kL. Furthermore, we analyse 
the performance of models proposed in literature for the closure of so called interfacial term in the kL -
equation. A similar analysis has already been performed for bubble train flow (Ilić et al., 2004). 
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4.2 Computational set-up 

The modeling of BIT is of special importance for situations where the only force driving the flow is 
given by buoyancy. An example of such a flow is encountered in bubble columns which are widely 
used in chemical engineering. For investigation of such flows in a laboratory often flat bubble columns 
are used. In such a flat tank filled with an otherwise stagnant liquid, bubbles are injected at the bottom. 
The bubbles rise in the central part of the bubble column and induce a re-circulatory motion of the 
liquid, see Figure 4. Because there is no net upward liquid flow, the liquid flows downward close to 
the four side walls. 
 
 In our simulations we want to mimic the situation in a flat bubble column. Because of limited 
computer resources we can, however, not consider the entire tank with thousands of bubbles. Instead 
we consider only a small part of the flat bubble column. Namely, our computational domain consists 
of two rigid side walls while in the vertical and span-wise direction we use periodic boundary 
conditions. The non-dimensional size of this domain is 1 × 1 × 1 and it is discretized by 643 uniform 
mesh cells. The reference length is Lref

* = 4 m and the reference velocity is Uref
* = 1 m/s. In the 

computational box eight spherical bubbles with non-dimensional diameter dB ≡  dB
* / Lref

* =0.25 are 
placed, see Figure 5. This corresponds to an overall gas content of ε = 6.5 %. The value of the gas-
liquid density ratio is 0.5, that of the gas-liquid viscosity ratio is 1, the Morton number is 3.06×10-6 
and the bubble Eötvös number is EoB ≡  (ρL

* − ρG
*)g*dB

*2 / σ* = 3.065. The values of the reference 
input numbers are Reref = 100, Eoref = 49.05, Euref = 0 and Weref = 2.5. The simulation is started from 
stagnant conditions. In total about 60,000 time steps with a time step width ∆t = 0.5×10-4 are 
computed. We note that to obtain a down-flow of the liquid phase close to the walls, we have 
introduced an additional body force in the momentum equation. Therefore, the buoyancy term in 
momentum equation (2) is replaced by 
 

 ref
g

ref

(1 ) Eof
We

ε− − − e  (9) 

 
 

 
 

 

Figure 4: Sketch of flow in a flat bubble column. The 
small red box illustrates the computational domain. 

Figure 5: Initial configuration of bubble swarm 
simulation. 
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4.3 Liquid phase turbulence kinetic energy equation 

For an incompressible liquid phase the non-dimensional specific turbulent kinetic is given by 
 

 * *
L L L L L* 2

ref

1 1 1
2 2

' 'k
U

′ ′≡ ⋅ = ⋅u u u u  (10) 

 
The transport equation for kL has been derived by Kataoka and Serizawa (1989). With the 
normalization used in the present paper, it translates in the following non-dimensional form 
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a⋅ ⋅


u n
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 (11) 

 
where the non-dimensional fluctuating viscous stress tensor of the liquid phase is given by 
 
 ' ' ' T

L L L L( )µ  = ∇ + ∇ u uT  (12) 

 
 The following notation is used. Subscript ‘L;in’ denotes liquid phase quantities at the gas-liquid 
interface and αL is the mean liquid volumetric fraction defined as  
 
 L LXα ≡ , (13) 
 
where XL(x,t) is the characteristic function of the liquid phase, which is unity if point x is within the 
liquid at time t and is zero otherwise. The single overbar ─ indicates averaging and the double overbar 
═ denotes so-called phase-weighted averaging. For an arbitrary physical quantity of the liquid phase, 
AL, this averaging is defined as 

 L L L L
L

LL

A X A XA
X α

≡ =  (14) 

 
Fluctuating parts of physical quantities are evaluated as  
 

 '
L L LA A A≡ −    and   '

L;in L;in LA A A≡ −  (15) 
 
 On the left-hand-side of Eq. (11) we have the unsteady and convective transport term. On the 
right-hand-side of Eq. (11) two distinctive groups of terms appear. The first one is the group of terms 
associated with the mean liquid volumetric fraction, αL. Except for being multiplied with αL, these 
terms are basically of the same form as the ones involved in the single-phase turbulence kinetic energy 
equation, i.e. the diffusion, production and dissipation term can be recognized. For this reason these 
terms are called single-phase-like terms. The last term, that is associated with the interfacial area 
concentration ain, represents a source of liquid turbulence attributed to the presence of bubble 
interfaces and is called interfacial term. Derivation of equation (11) is based on the local instant 
formulation of the mass and momentum conservation laws for two-phase flow, i.e. no model 
assumptions are made. In this context, Eq. (11) is called ‘exact’ kL equation in order to distinguish it 
from the modelled kL equation employed in turbulence models. 
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 To evaluate the individual terms in Eq. (11) we replace the phase indicator function XL by its 
discrete counter-part, the liquid volumetric fraction fi,j,k in a mesh cell. For the averaging procedure we 
take advantage from the fact that in our simulation we use periodic boundary conditions in vertical and 
stream-wise direction. Thus, both directions can be considered as homogeneous, so that statistical 
quantities will not depend on x1 and x2 but only on the wall-normal direction x3. Assuming an 
equidistant grid we therefore adopt the following plane averaging procedure 
 

 
1 2

L L
1 11 2

1 N N

;k i, j,k ;i, j,k
i j

A f A
N N = =

= ∑∑    and   

1 2

1 2

L;
1 1

L

1 1

N N

i, j,k i, j,k
i j

;k N N

i, j,k
i j

f A
A

f

= =

= =

=
∑∑

∑∑
 (16) 

 
where k = 1,...,N3 and N1, N2 and N3 represent the number of mesh cells in x1 (i) , x2 (j) and x3 (k) 
direction, respectively. 
 
 The evaluation of the interfacial term in Eq. (11) requires knowledge of the pressure and velocity 
on the liquid side of the interface. The procedure adopted to compute these quantities is described in 
Ilić et al. (2004) and will not be repeated here. 
 
 The plane averaging procedure described above applies to a certain instant in time. We carry out 
this procedure for a number of instants in time (typically 40) for which DNS data have been stored on 
disk. The profiles obtained for the different instants in time are then linearly averaged. As only time 
levels that represent statistically fully developed flow are used, the unsteady term in Eq. (11) should be 
close to zero. 

4.3 Results 

4.3.1 Bubble shape 

To give an overall impression of the flow structure we show in Figure 6 the shape and distribution of 
the bubbles for a certain instant in time from a lateral side and from top. Additionally shown is the 
velocity field in a certain plane. The bubbles have a shape that is close to an axisymmetric ellipsoid. 
The major axis of the bubbles is nearly horizontal, but does not exactly lie within a horizontal plane. 
Although some differences in the shape of individual bubbles can be observed, these are in general 
small and the average ratio of the major to the minor axis of the ellipsoidal bubbles is about 1.52. 
 

  
Figure 6: Visualization of bubble swarm flow. Lateral view with velocity field in plane x2 = 0.78 (left) and view 
from top with velocity field in plane x1 = 0.59 (right). 
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4.3.2 Profiles of mean quantities 

In Figure 7 we show wall-normal profiles of certain plane averaged non-dimensional mean quantities. 
The marker-less red solid line represents the mean gas volumetric fraction αG ≡ 1 − αL. The profile is 
saddle type with αG being zero close to the walls and small in the central part of the channel. The two 
maxima are located at a distance from the wall which is about 25% of the channel width. This profile 
is consistent with the bubble distribution shown in Figure 6. The profile of the mean vertical liquid 
velocity shows that the liquid flows upward where αG is large but flows downward close to both walls 
and in the middle of the channel. The mean vertical gas velocity is positive (i.e. upward directed) 
almost every where and its maximum value is about 2.8 times higher than that of the liquid. The wall-
normal profile of the non-dimensional liquid turbulent kinetic energy is zero close to the walls and 
shows a plateau with some variations in the center of the channel. 
 

4.3.3 Balance of exact kL equation 

In Figure 8 we show wall-normal profiles of the balance terms on the right-hand-side of Eq. (11). Note 
that due to the plane averaging procedure adopted here, the convective term on the left-hand-side of 
Eq. (11) is zero. We also do not evaluate the unsteady term. Its order of magnitude can be estimated 
from the sum of the terms on the right-hand-side of Eq. (11). The ‘out-of-balance’ profile in Figure 8 
shows that the unsteady term is close to zero and the flow is therefore statistically fully developed. 
 
 We start our discussion of the budget of kL with the production term. In single phase flow this 
term is the only source term in the kL-equation. It is related to the shear of the mean velocity field. 
From Figure 8 we see that for the present bubble swarm flow the production term is almost zero. The 
main source of kL is due to the interfacial term while the main sink is due to the dissipation term. Both 
terms are large where αG is large. However, the interfacial term and the dissipation term are not in 
local equilibrium. As a consequence the diffusion term redistributes turbulence kinetic energy from 
regions of high αG to regions of low αG. 
 

4.3.4 Modeling of the interfacial term 

The budget of the liquid phase turbulence kinetic energy has shown that for bubble driven flows − in 
the absence of a significant mean shear rate − the interfacial term is the only source term in the kL 
equation. In engineering CFD computations the interfacial term must be modeled to close the kL 
equation. The reliable modeling of this term is therefore of paramount importance for bubble driven 
flows. In Table 5 five different models for closure of the interfacial term are presented. It is generally 
assumed that bubbly flows are drag dominated. Namely, as it can be seen in Table 5, the work of the 
drag force, WD

*, is included in all models, while in models 2, 3 and 5 it is even the only contribution. 
The evaluation of WD

* is in models 2−5 based on the mean relative velocity, but in model 1 the 
terminal velocity UT

* of a single bubble is used. The drag coefficient in models 1−4 is evaluated as 
 

 
21.3

0.5 L
B 1.5

L

2 1 17.67
3 18.67DC Eo α

α
 +=  
 

, (17) 

 
while the constant value CD = 0.44 is used in model 5. Van Driest’s function, fw, used in model 1 is 
formulated in the same way as in single phase flows. For the definition of the coefficient Ct see Hill et 
al. (1995). Non-drag contributions, WND

*, are in model 1 included through an additional term that 
accounts for absorption of liquid phase turbulence by bubbles, while in model 4 the work of the added-
mass force is considered. 
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Figure 7: Wall-normal profiles of plane averaged non-dimensional mean quantities. 
 
 

 
 

Figure 8: Wall-normal profiles of balance terms in liquid phase turbulence kinetic energy equation. 
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Reference Work of drag force, WD
* Other contributions, WND

* 

Kataoka & Serizawa (1997) 
Model 1, KS 

*3D
w G T*

B

30.075
4

Cf U
d

α 
 
 

 
*3/ 2
L

G *
B

k
d

α−  

Hill et al. (1995) 
Model 2, HWGI 

* * *
* *G D L R G
R L t* *

B L L G

3 2 ( 1)
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C k C
d

α µ α
ρ α α
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uu uu  
None 

Lahey & Drew (2000) 
Model 3, LD ( )

3
*
R

4 3
L D G *

B

1 1
4

C
d

α α+
u
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Morel (1997) 
Model 4, M 

3
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G R*
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C
d
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Pfleger & Becker (2001) 
Model 5, PB 

3
*D

L G R*
B

31.44
4

C
d

α α 
 
 

uu  
None 

 
Table 5: Closure assumptions for (dimensional) interfacial term in modeled kL

*-equation 
 
 In Figure 9 we compare the predictions of the models listed in Table 5 with the exact interfacial 
term as evaluated from our DNS data and thus make an ‘a priori’ test of the models. We see that model 
4 (M) performs best, though it somewhat overestimates the interfacial term. All other models 
underestimate the magnitude of the interfacial term. Comparison of the profiles for model 4 (M) and 
model 5 (PB) reveals the importance of the proper choice of the drag coefficient CD. Namely, although 
the ‘standard’ definition of the work of the drag force used in model 4 is in model 5 multiplied with 
1.44αL (an expression that is here greater than 1), due to the inappropriate value of CD = 0.44 (valid for 
particulate Reynolds number higher than 1000) this model underestimates the interfacial term. Since 
the terminal bubble velocity is of the same order of magnitude as the mean relative velocity, the 
underestimation of the interfacial term by the model 1 can be attributed to the factor 0.075fw. 

 

 
Figure 9: Wall-normal profiles of interfacial term. Comparison of the predictions by the models listed in Table 5 
with exact term evaluated from DNS data. 



16/19  177ème Session du comité scientifique et technique de la Société Hydrotechnique de France 
Progrès récents des méthodologies de modélisation des écoulements diphasiques, Lyon, France, 24-26 novembre 2004. 

Advances in the modelling methodologies of two-phase flows, Lyons, France, November 24-26, 2004. 

5. CONCLUSIONS 

In the first part of the paper direct numerical simulations of the co-current bubble train flow in a 
square vertical mini-channel have been presented. The focus was to study the influence of the capillary 
number and the influence of the length of the flow unit cell. For the dependence of the bubble diameter 
on the capillary number the new result was obtained that there is a regime where the bubble diameter 
increases with the capillary number and another regime where it decreases with increasing capillary 
number. It appears that the criterion determining the transition between both regimes is related to a 
critical ratio of bubble length to channel width of about 1.2. 
 
 The second part of the present paper has dealt with the quantitative analysis of the balance 
equation for the liquid phase turbulence kinetic energy in gas-liquid bubbly flows. To provide the data 
for the analysis, simulations of a swarm of eight ellipsoidal bubbles rising through an initially stagnant 
liquid within a narrow plane vertical channel are performed. The analysis of the budget of the 
turbulence kinetic energy equation for the liquid phase reveals the importance of the interfacial term 
which is the only source of turbulence kinetic energy. Models proposed in literature for closure of the 
interfacial term have been analyzed and critically evaluated. 
 

NOMENCLATURE 

ina  non-dimensional interfacial area concentration -  

DC  drag coefficient -  

BCa  capillary number - Eq. (7) 
*
BD  largest diameter of Taylor bubble  m  
*
Bd  equivalent bubble diameter m  

ge  unit vector in direction of gravity -  

pe  unit vector in direction of axial pressure drop -  

refEo  reference Eötvös number - Eq. (5) 

refEu  reference Euler number - Eq. (5) 

f  liquid volumetric fraction within a mesh cell -  
*g  gravitational acceleration m2 s-1  
*g  gravity vector m2 s-1  

h  non-dimensional mesh width -  

I  unit tensor -  

Lk  non-dimensional liquid phase turbulence kinetic energy -  
*
refL  reference length m  

1 2 3, ,N N N  number of mesh cells  -  

inn  unit normal vector to interface pointing in continuous phase -  
*p  pressure Pa  

P  reduced pressure - Eq. (4) 

refRe  reference Reynolds number - Eq. (5) 
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*t  time  s  
*
BU  bubble velocity m s-1  
*
refU  reference velocity m s-1  

u  velocity field -  

V  ratio between bubble velocity and slug velocity -  
*W  channel width m  
* *

D ND,W W  work of drag force and non-drag forces J  

refWe  reference Weber number -  

LX  phase indicator function of liquid phase -  

x  position vector, ( , , )x y z=x  or 1 2 3( , , )x x x=x  -  

Z  relative bubble velocity -  

    

 Greek symbols   
   
α  local mean volumetric fraction -  

ε  overall gas holdup in computational domain -  
*κ  interface curvature m-1  
*ρ  density kg m-3  
*µ  dynamic viscosity Pa s  
*σ  coefficient of surface tension N m-1  

    

 Subscripts   
   
B  bubble   

crit  critical value   

G  gas phase   

in  interface   

L  liquid phase   

m  mixture quantity   

R  relative   

sl  slug   

uc  unit cell   

    

 Superscripts   
   
* dimensional quantity   
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