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1. Introduction

Metal foams are of great interest in many
engineering applications since they exhibit
some beneficial material properties. This
involves particular features such as a large
surface-to-volume ratio, as well as relatively
high stiffness at low weight. The structure
of metallic foams can either have close or
open pores, which exhibit different pore
arrangements and size distributions. Metal
foams show good thermal conductivity due
to their large surface area, making them
attractive for energy systems.[1] Open pore
foams also enable a flow through, which
is made use of, for example, in the field of
heat exchangers.[2] Besides thermal applica-
tions, metal foams also exhibit promising
properties with respect to lightweight con-
struction due to their high strength-to-
weight ratio.[3] Another aspect is the high
energy absorption capability,[4] which is of
interest, for example, in crash application.[5]

Besides the metal used for the foams,
their structure geometry has an impact

on the resulting mechanical properties of the foam.[6] Thereby,
not only the volume fraction of the metal plays a role, but the
mechanical properties also strongly depend on the foam
topology.[7–9] The class of foams contains a large variety of complex
structures with a wide range of geometrical parameters, that can
vary, such as the ligament cross-section geometry, the ligament
alignment, as well as the distributions of ligament thickness
and pore size.[9] This spans a large parameter room, which can
be subjected to an optimization in order to have a favorable com-
bination of mechanical properties and low mass density. Additive
manufacturing such as selective laser melting nowadays allows 3D
printing for a wide range of materials, including metals cf., for
example.[10,11] This offers the flexibility to realize arbitrarily com-
plex structures. However, the relatively high cost of these processes
makes it desirable, to identify promising geometries a priori.

Digital methods for generation and investigation of foam
structures offer the possibility for a design space exploration
as well as the systematical investigation of the influence, a spe-
cific geometrical parameter has on the effective material behav-
ior. The present work thereby focuses on mechanical properties
by examining the influence of foam morphology on the effective
stiffness. Therefore, based on preceding work, an advanced
method for digital generation of foam structures with distinct
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Metal foams constitute a promising and emerging material class in the context of
lightweight construction. There exists a variety of different foam topologies, on
which resulting mechanical properties depend. To maximize the potential of
foams in material use under mechanical load, the present work addresses the
question how different geometrical parameters influence the material behaviour.
Therefore, an algorithm for digital generation and design of open pore foam
structures is presented, that allows to regulate the geometry precisely. A method
for retrieving effective mechanical properties from numerical simulations of
compression tests in the elastic regime is introduced. Additionally, the repre-
sentativeness of foam volumes considered for simulations is investigated. This
yields a fully digital workflow, which enables the investigation of geometry
influence on mechanical properties. This approach is used to conduct simulation
studies on generated foam structures with a systematic variation of geometrical
parameters. Herein, a range of effective Young’s moduli varying by up to a factor
of 1.3 for different foam structures at the same porosity is found. This shows a
significant impact of the foam geometry on the elastic properties of metal foams.
The presented methodology yields insights, which can guide design and opti-
mization of materials for specific applications.
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geometrical characteristics is introduced and an approach for
simulation and homogenization of the elastic properties is
presented. This yields a fully digital workflow, which enables
the creation and investigation of different foam structures
regarding their elastic properties. It is applied for simulation
studies addressing the variation of specific geometrical features
of foam structures. Additionally, the workflow offers potential for
automatization, for example within an optimization algorithm
employing heuristic search, which is part of future work.

Regarding the structure generation, we present an advanced
algorithm based on a compact but random sphere packing in
our previous work.[12] The set of middle points of these spheres
is used for a Voronoi decomposition, with subsequent design of
the shape of the ligaments. This algorithmwas preceded bymany
more rudimentary models for the generation of open-pored foam
structures. Gibson and Ashby (GA)[13] have a simple cubic pore
model for calculation of relative density. The ligaments have a
square cal cross section with constant side length. The pore vol-
ume is the same in all pores, and the ligaments are at right angles
to each other. In his pore model, Zhang[14] assumes the cell
geometry of a tetrakaidecahedron. A tetrakaidecahedron has
14 faces, of which 6 faces are quadrilaterals and the remaining
8 faces have 6 corners. Like GA, Zhang also used a square cross
section for the bridges. When these polyhedron cells are lined up,
a very regular structure is created. A generation of foams with
different pore sizes is not possible because tetrakaidecahedrons
of different sizes cannot be combined to form a seamless struc-
ture. Menges and Knipschild[15] used a pore model with cells in
the form of a pentagonal dodecahedron. However, this structure
is not space filling, so it is not possible to line up the polyhedra
without gaps. The ligaments have a triangular cross section, but
the ligament thickness is also constant. Three ligaments meet at
each node. This gives the nodes the shape of a tetrahedron, that
is, a pyramid base has an equilateral triangle and whose three
sides are also equilateral triangles congruent to the base.
There are a few other models[16–18] that all have certain things
in common. They also follow similar approaches to the geometric
models already described. None of these variants go into more
detail about the ligament shape or the distribution of the pores.
Redenbach[19] however made remarkable progress. In her work,
she presents a model that does far more justice to the properties
of real foams like the local heterogeneity of pores and ridges
relating to the shape and the size, as well as the presence of
closed walls. In recent works, structure generation approaches
based on Voronoi tessellation have been applied to model differ-
ent physical properties of closed and open cell foams.[20,21] These
approaches yield foam models representing the structural prop-
erties of real foams. The foam microstructure is modeled with
regard to the randomness of pore sizes, and thus, the character-
istics of real foams are well captured.[22] In the present work, we
introduce an improved algorithm for digital generation of foam
structures. This enables the systematic regulation of the foam
topology and the precise control of geometrical parameters.
To capture the stochastic nature and morphological properties
of real open pore foams, a set of foams with various morpholog-
ical parameters is generated and tested in simulated quasistatic
compression experiments.

Numerical simulations within the elastic regime enable
to access both the effective stiffness and yield strength of a

structure.[23] Since the generated foam structures exhibit a very
complex topology, simulating their response to mechanical load
poses a challenging task with regard to numerical discretization.
Previous research work used finite-element structure mechanics
simulations to investigate the mechanical properties of specific
foam structures.[7,23,24]

Since we aim at considering 3D simulations on a variety of
different geometries, we used a phase-field method for geometry
parameterization of the foam structures. Due to the diffuse inter-
face modeling, the approach enables a numerical treatment on
arbitrary grids.[25] In particular, any topology can be considered
using a Cartesian grid and thus complicated mesh generation is
avoided. This brings the flexibility to simulate various structures
without any specific numerical treatment and therefore also
offers the potential for automatization. We conduct structure
simulations of the generated foam structures in an elastic regime
using a phase-field-based solver for structure mechanics within
the PACE3D framework.[26]

A method for homogenization of the full-field simulation
results is introduced, which assumes isotropic effective behavior
for structures that are generated in a statistically isotropic way.
This method is based on a least squares fit for a single loading
scenario. In contrast to simple homogenization, that only consid-
ers the main loading direction as in ref. [7], the quality of the least
squares fit yields an indicator in order to judge the isotropy
assumption and the representativeness of the considered domain.
Additionally, this approach still avoids simulations of different
loading scenarios for each particular structure, as it would be
required in the general case cf., for example.[27] Thus, it saves
computational cost, which is an important factor if a wide param-
eter space with respect to the geometry should be covered. The
approach for determining the effective stiffness is validated via
application of the present homogenization scheme on simulation
results. Additionally, an investigation of the representative domain
size is done, in order to access information about the volume,
above which a foam structure can be considered as isotropic.
This is a key aspect for numerical simulations to save as much
computational cost as possible by not choosing overly big volumes,
while still obtaining representative and thus reliable results.

The presented framework is applied to conduct parameter
studies of different foam geometries. Therefore, foam
structures with varying morphologies and degrees of order in
pore size are digitally generated. Structure mechanical simula-
tions in the small deformation regime with elastic material
behavior are conducted on the created foam structures. With
the results of these simulations, we investigate the geometry
influence on the effective stiffness. It is shown that the geometry
of the foam structure affects the resulting effective properties sig-
nificantly. This even holds for structures, which exhibit similar
volume fractions of metal and thus the same weight. For exam-
ple, we observe a range of effective Young’s moduli varying by
approximately a factor 1.3 for different foam structures at the
same porosity. It is found that at constant porosity, a lower pore
size with thinner ligaments is favorable with regard to the stiff-
ness of the foam structure. Additionally, an increased stiffness
for structures exhibiting a higher degree of order is observed.
In particular, structures generated with a centroidal pore
distribution showed the largest effective Young’s modulus in
our studies.
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2. Algorithm for the Generation of Foam
Structures

This section describes the construction of digital models of
porous structures used for the numerical simulation of compres-
sion tests performed in the scope of this article. To digitally
generate open pore foam structures with a large morphological
variety, algorithmic generation routines were used, with the aim
to divide space into a cellular structure. These are implemented
as part of the software package PACE3D.[26] The generation
routines comprise a wide variability in structural features, such
as various cell size distributions or ligament shapes. The result-
ing generated structures mimic morphological and topological
characteristics of real foam structures.

The general routine to generate a single structure is based on
arranging points in 3D space according to a spatial Voronoi tes-
sellation. The routine can be divided into the following four
steps. 1) Generation of a set of generator points in the domain.
2) Obtainment of Voronoi tessellation: Division of the domain
into subdomains (polyhedral cells) formed by Voronoi diagram.
A Voronoi diagram consists of the set of points in the domain
which are equidistant to at least two nearest generator points.
3) Identification of cell edges. 4) Creation of ligaments along
the edges.

The steps 2–4 of the foam generation are visualized in
Figure 1. Applying this routine results in the separation of the
domain into two subdomains; one formed by interconnected lig-
aments and the other one filled by pore space.

The number of generator points corresponds to the number of
cells the structure is divided into, which determines the mean
volume of a cell and thus, the resulting pore size of the structure.
To take into account a differing dispersion in the cell diameters
of foams, we use basically two different approaches with differ-
ing features for the cell distribution setting (step 1 and 2). The
first routine creates a spatially random distribution of generator
points. This statistic distribution leads to a generic Voronoi tes-
sellation of the domain and to the formation of cells with arbi-
trary cell volume. The second routine aims to generate foam
structures with predefined cell size distributions. To obtain
the set of generator points which allows for the subsequent

tessellation, we make use of an advanced algorithm as proposed
in our previous work.[12] This algorithm is based on a compact
but random sphere packing. Upon selection of a cell diameter
distribution, a dense packing of spheres with the predefined
diameter distribution is generated within the domain. The
Voronoi tessellation uses the spheres’ centers as generator
points.

To further develop any kind of cell structure obtained by the
described routine, an algorithm creating centroidal tessellations
was applied. The method applied is Lloyd’s algorithm.[28] For a
generated cell structure, the generator point of each cell is itera-
tively reset andmoved toward the barycenter of each cell. Starting
point is an existing cell structure obtained by Voronoi tessellation
of a domain. One loop of the iterative process can be summarized
in the following steps. 1) Calculation of the barycenter of each
cell. 2) Moving of the generator points toward the barycenter.
3) Recalculation of the domain tessellation.

In this work, the described algorithms were applied to gener-
ate structures of open pore foams with circular and triangular
ligament profile. Cellular structures can be characterized, for
example, by their porosity P or the volume fraction Cs of solid
material. They are defined as

cs ¼ V f =Vd (1)

P ¼ ðVd � V f Þ=Vd ¼ 1� cs (2)

with Vd being the total volume of the domain and Vt the volume
of the foam structure. Arbitrary porosity values can be achieved
with the present structure generation method. The generated
structures investigated in this work exhibit porosities in a range
of 74–83%. The effective mass density ρ ¼ ρscs of a foam mate-
rial is determined by the density ρs of the metal in use as well as
the solid volume fraction cs (or porosity P). Thus, comparing
properties of foams at same porosity reveals exclusively the influ-
ence of the structure geometry while maintaining the weight.
Porosity, ligament thickness and pore size of an open pore foam
constitute a set of geometrical parameters, where only two are
independent. To achieve a specific target porosity, there are
two possible iterative approaches. The first is performed along-
side a given pore size distribution and is based on iterative

(a) (b) (c)

Figure 1. Schematic graphic of the algorithmic generation procedure for open pore foam structures: a) randomly distributed Voronoi cells obtained by
generator points, b) cell edges and vertices, and c) generation of ligaments along the cell edges of (b).

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2023, 2300340 2300340 (3 of 13) © 2023 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

 15272648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adem

.202300340 by K
arlsruher Institution F. T

echnologie, W
iley O

nline L
ibrary on [01/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.aem-journal.com


thickening or thinning of ligaments until the target porosity is
reached. Alternatively, the ligament thickness can be kept con-
stant, and the pore size is iteratively varied to obtain the target
porosity. Three types of foam structures with different underly-
ing random distribution of cells are generated and investigated in
the present work. To this end, a set of 54 foam models with
generic as well as predefined cell size distributions are generated.
For the structures with predefined cell diameter, a normal
distribution is used to generate the sphere packing. All models
are created on a cubic domain, which is discretized on a
Cartesian grid consisting of 400� 400� 400 grid cells.
Examples of three generated structures with different pore size
distributions at constant solid volume fraction Cs are depicted in
Figure 2.

3. Simulative Determination and Homogenization
of Mechanical Properties

3.1. Solution Method for the Mechanical Problem

The mechanical problem is solved using the phase-field-based
multiphysics code PACE3D.[26] The stationary momentum bal-
ance for small deformations

div σ ¼ 0 (3)

is considered. Herein σ denotes the Cauchy stress tensor. The
geometry is parametrized using the phase-field method.
Therefore, order parameters ϕα for each phase α are introduced,
which are field variables representing the local volume fraction of
phase α. The transition between two phases is not represented by
a jump, but by a thin transition region, where the order param-
eters exhibit a steep but smooth transition from zero to unity.
The stress tensor is calculated according to Khachaturian[29] by
means of a linearly interpolated stiffness

C ¼
XN
α¼1

ϕαCα (4)

where Cα are the constant phase inherent stiffness tensors. In
our case, a two-phase problem is on hand, where the phase

representing the pores has a vanishing stiffness, which results
in a linear degradation of the metal’s stiffness with its phase var-
iable. With the interpolated stiffness, the constitutive law reads

σ ¼ C½ε�, ε ¼ 1
2
ðgrad uþ grad⊤ uÞ (5)

where the infinitesimal strain tensor ε is the symmetric part of
the displacement gradient and the brackets ½⋅� indicate the linear
mapping of second-order tensors by a fourth-order tensor.
The solution variable is the displacement field u. The momen-
tum balance is solved on a Cartesian grid using a finite-element
discretization with linear shape functions and a conjugated gra-
dient method for the solution of the resulting linear system for
the node displacements.

3.2. Homogenization Method for Retrieving the Effective
Stiffness

The article aims to determine effective elastic properties of metal
foams via numerical simulations. Therefore, a homogenization
method is required to obtain the effective stiffness from the solu-
tion fields’ yield by the simulations. In order to do so, we define
the volume averaged values of the Cauchy stress tensor σ and the
infinitesimal strain tensor ε over the computational domain Ω by
means of

σ ∶¼ σh i ¼ 1
Ω

Z
Ω
σ dV (6a)

ε ∶¼ εh i ¼ 1
Ω

Z
Ω
ε dV (6b)

where ⋅h i indicates the volume average. If the domain Ω is a rep-
resentative volume of the considered metal foam, those averages
are proper representations of the effective stress and strain,
respectively. Note that both the stress and strain field are
obtained by simulations and the respective averages can be cal-
culated from those via numerical integration. In this article, we
make the assumption that the Hill-Mandel[30] condition holds.
This requires the energy equivalence of the effective stress
and strain to the integral energy of the local fields and thus

(a) (b) (c)

Figure 2. Three example foam structures with equal solid volume fraction cs ¼ 0.2, and varying geometries defined by corresponding geometrical param-
eters of pore size distribution: a) generic distribution, b) normal distribution, c) centroidal distribution.
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σ ⋅ εh i ¼ σ ⋅ ε (7)

which implies that the inner power of stress and strain fluctua-
tions ðσ� σÞ ⋅ ðε� εÞh i vanishes. This condition is met for dif-
ferent choices of boundary conditions cf., for example, Saeb
et al.[31]. The constant stress boundary conditions used in this
work are amongst these. With this, the homogenization problem
can be stated such, that an effective stiffness C is to be found,
which maps the effective strain onto the effective stress via

σ ¼ C½ε� (8)

This can be seen as a search for the elastic parameters of a
homogeneous material, which would have the same material
response as the considered composite by means of the macro-
scopic average strain.

The stiffness tensor exhibits the left and right subsymmetry.
Additionally, it is main symmetric since we consider hyperelas-
ticity. Thus, in general, there are 21 independent elastic param-
eters left that need to be determined. Since we consider foams,
which are generated with a statistically isotropic method, it is
convenient to also assume the resulting effective properties to
be isotropic. This of course only holds for a representative vol-
ume, which will be investigated in the next section. The isotropy
assumption reduces the unknown parameters to two and thus,
one load scenario is sufficient to determine those. The isotropic
stiffness tensor is

C ¼ λ1 ⊗ 1þ 2μℐS (9)

where λ and μ are the Lamé constants, 1 the second-order unit
tensor and

ℐS ¼ 1
2
½ð1□1Þ þ ð1□1Þ⊤R � (10)

the fourth-order unit tensor with left and right subsymmetry.
Herein, the superscript ⊤R indicates the transposition of the
right index pair of a fourth-order tensor. The box product □
is defined such, that ðA□BÞ½C� ¼ ABC holds and thus

ð1□1Þijkl ¼ δikδlj (11)

is obtained in index notation, where δij is the Kronecker symbol.
The tensorial Equation (7) in this case yields

σ ¼ λtrðεÞ1þ 2μ ε (12)

In order to solve this equation, we use a least-squares method
(LSQ). If the effective material behavior is exactly isotropic, only
two of the six equations are linearly independent. However, it
cannot be expected that this is exactly the case, since we consider
approximate results yield by numerical simulations. Also, the
considered volume is finite, and thus the assumptions made
for the homogenization are only approximately met. The cost
function for the LSQ reads

Sðλ, μÞ ¼
X3
j¼1

Xj

i¼1

½�σij þ 2εijμþ δijtrðεÞλ�2 (13)

Its minimization is done by demanding the necessary condi-
tion that the gradients with regard to the parameters vanish. The
corresponding partial derivatives are

∂S
∂μ

¼
X3
j¼1

Xj

i¼1

4εij½�σij þ 2εijμþ δijtrðεÞλ� (14)

∂S
∂λ

¼
X3
i¼1

2trðεÞ½�σii þ 2εiiμþ trðεÞλ� (15)

From ∂μS ¼ 0 and ∂λS ¼ 0 the equation system

μ
X3
j¼1

Xj

i¼1

2ε2ij þ λtr2ðεÞ ¼
X3
j¼1

Xj

i¼1

εijσij (16)

2μtrðεÞ þ 3λtrðεÞ ¼ trðσÞ (17)

is obtained. Its solution with respect to the effective Lamé con-
stants is

2μ ¼
3
P3

j¼1

Pj
i¼1 εijσij � trðεÞtrðσÞ

3
P3

j¼1

Pj
i¼1 ε

2
ij � tr2ðεÞ

(18)

λ ¼ 1
3

trðσÞ
trðεÞ � 2μ

� �
(19)

With this, effective values for the Young’s modulus E,
the Poisson ratio ν, and the compression modulus K are
calculated via

ν ¼ 1
2

λ

μþ λ
, E ¼ μ

2μþ 3λ
μþ λ

, K ¼ λþ 2
3
μ (20)

In order to quantify the quality of the least squares fit of
Equation (7), we define some error quantities. The component-
wise root-mean-square (RMS) deviation is

erms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

X3
j¼1

Xj

i¼1

½�σij þ 2εijμþ δijtrðεÞλ�2
vuut (21)

A normalization with the RMS value of the stress tensor

σrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

X3
j¼1

Xj

i¼1

σ2ij

vuut (22)

yields the relative deviation

erel ∶¼ erms

σrms (23)

This measure is used as an indicator for quality of the solution
fit and thus how good the assumption of an isotropic effective
stiffness is. A validation of the presented homogenization
approach with respect to the Eshelby single-inhomogeneity prob-
lem (SIP) can be found in the Appendix A.

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2023, 2300340 2300340 (5 of 13) © 2023 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

 15272648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adem

.202300340 by K
arlsruher Institution F. T

echnologie, W
iley O

nline L
ibrary on [01/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.aem-journal.com


3.3. Description of the Simulation Setup

In order to retrieve the effective elastic properties of a metal
foam, we conduct simulations, where uniaxial tension is applied
on the foam structure. To ensure a comparable loading situation,
the foam is placed in between two plates of the same material,
which exhibits the Young’s modulus Es. On those plates, con-
stant stress boundary conditions t ¼ �σBCey are applied, as
shown in the schematic Figure 3. The averaging domain for
the homogenization excludes the plates and only contains the
actual foam.

3.4. Investigation of the Influence of the Domain Size on
Isotropy

In this section, the presented approach for simulation and
homogenization is applied to an open pore foam structure.
The influence of the domain size on the isotropy of the effective
stiffness is investigated in order to validate this assumption.
Therefore, a Voronoi foam with circular ligaments and a normal
distribution for the cells is considered, which is generated using
the algorithm described in Section 2. This yields a statistical
foam, where the pore-size s and the ligament thickness ds by
means of the ligament diameter obey a Gaussian distribution,
whose expectation value and standard deviation can be specified.
The pore size is defined as the maximum diameter of a sphere
placed in a pore’s barycenter that does not lead to overlap with the
sphere of a neighboring pore, as depicted in Figure 3.

We consider four different domain sizes, where the statistical
properties of the respective foam geometry are similar by means
of the expectation value EWðsÞ of the pore size, its standard devi-
ation σs, and the mean ligament thickness ds. The edge Length L
of the considered domain varies over the four simulations from

four times to ten times the mean pore size and therefore, the
resulting number of pores within the domain goes from 40 to
560 (for details, see Table 1). The length of the smallest domain
LI is used as characteristic length, with respect to which all other
length scales are given. Simulations of a compression test in each
coordinate direction are performed for every structure, respec-
tively, setup. Exemplarily, the results of the three simulations
related to setup III are shown in Figure 4. The resolution for
setup I is 125 � 125 � 125 elements and the element numbers
are increased corresponding to the domain size. For the evalua-
tion, we consider the tuple E ¼ fE1,E2,E3g of effective Young’s
moduli yield by the three compression tests for each structure.
We define the average of this tuple via

Em ∶¼ 1
3

X3
i¼1

Ei (24)

and the deviation

A ∶¼ maxðEÞ �minðEÞ
Em (25)

which yields a relative measure for the difference in effective
Young’s moduli for the different load directions.

Figure 5 shows the tuple mean value Em of the effective
Young’s moduli, which is normalized by the Voigt bound EV

as well as the deviations A and erel. The Voigt bound[32] is the
upper limit for the stiffness and corresponds to the arithmetic
mean of the phase-wise stiffness tensors with the corresponding
volume fraction.[33] Thus, in the present case it is given by

EV ¼ csEs (26)

regarding the Young’s modulus, where cs is the total volume frac-
tion of the foam material and Es its Young’s modulus. The error
bars in the plot represent the maximum deviation of the corre-
sponding value within the simulation tuple of the three loading
directions. For the two small domain sizes, the effective Young’s
modulus is approximated poorly. The deviation between the
three directions is large, which indicates that the effective stiff-
ness is not isotropic for those cases. Additionally, the effective
Young’s modulus is underestimated. Compared to that, the
two larger domains only show small directional variation and

Figure 3. Schematic of a slice in y-direction with boundary conditions,
where t ¼ σn is the stress vector. The pore size is defined by the diameter
s of the sphere placed in the pores center that does not overlap with the
one of a neighboring pore. This is visualized by blue circles.

Table 1. Geometrical parameters of the considered foam. Length scales
are given relative to the smallest domain length LI used as characteristic
value. Tabulated quantities are the number of pores, domain length L=LI,
pore size distribution (L=EWðsÞ, LI=σs), ligament thickness LI=ds, and
resulting volume fraction cs. The ligament thickness and statistical
distribution of pore-size are constant in all setups, while the length of
the domain L (and thus the domain size) is varied.

setup pores L=LI L=EWðsÞ LI=σs LI=ds cs

I 40 1 4 40 12.5 0.31

II 109 3
2

6 40 12.5 0.32

III 279 2 8 40 12.5 0.33

IV 560 5
2

10 40 12.5 0.31
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they both yield similar values for the effective Young’s modulus,
which is in the region around 27% of the Voigt bound.
For the present volume fraction cs � 0.32, this corresponds to
E=Es � 0.086 and thus 8.6% of the full material’s stiffness. In
addition to the first-order Voigt bound, the second-order
Hashin–Shtrinkman (HS) bounds[34] are applicable in this case,
since quasi-isotropic effective behavior is considered. The upper
HS bound is more restrictive than the Voigt bound and introdu-
ces a dependency of the Young’s modulus limit EHS on the solid
materials’ Poisson ratio, which is not the case for the Voigt
bound, if one phase exhibits zero stiffness. For the present struc-
ture of a material with a Poisson ratio of 0.35, EV ¼ 0.32Es and

EHS ¼ 0.19Es are obtained, and thus, the HS bound is

significantly more restrictive. The foam structure reaches
E=EHS ¼ 45:3% with regard to the HS bound.

Based on a modeling of cubic unit cell foams, GA[13] derived
the correlation

E
EV ¼ kcs (27)

for the ratio of the effective Young’s modulus E with the Voigt
bound EV according to Equation (A1). Herein, cs denotes the vol-
ume fraction of foam material and k the structural factor. This
factor was proposed to be near unity for open pore foams.
However, the choice of k � 1 is based on a unit cell model, which

Figure 4. Compression tests of an open pore foam in the three spatial directions displayed for the setup III (see Table 1). Von Mises stress σv:M:

normalized with the boundary stress σBC is applied at the phase-field isosurface with a value of ϕs ¼ 0.2.

Figure 5. Effective properties depending on the considered domain size. The mean values of pore size and ligament thickness remain unchanged. Left:
Effective Young’s modulus by means of Equation (23) normalized with the corresponding Voigt bound EV ¼ csEs. Right: relative error erel according to
Equation (22) and the deviationA according to (22). The error bars mark the maximum deviation with respect to the tuple of the three loading directions
maxi∈f1,2,3gjEm � Eij.

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2023, 2300340 2300340 (7 of 13) © 2023 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

 15272648, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adem

.202300340 by K
arlsruher Institution F. T

echnologie, W
iley O

nline L
ibrary on [01/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.aem-journal.com


assumes a regular structure and the ligaments as beams with
constant cross section[9] and thus, does not account for geomet-
rical irregularities, which have a large impact on the structural
factor, cf., for example.[6,7] A fit to k for results of setup III
and IV yields a value k � 0.88, which is significant below unity.
However, larger structural factors above unity can be realized
also for normal pore distributions by varying the pore size
and ligament thickness, as shown and discussed in Section 4.

From the right graph in Figure 5, it can be seen that for setup
III and IV, and thus L=EWðsÞ ≥ 8, the influence of the loading
direction is very small, such that isotropic effective behavior is a
fair assumption in those cases. This implies, that one simulation
in a single loading direction is sufficient to retrieve a proper
approximation of the effective stiffness and therefore the
computational time for consideration of different loading
scenarios can be saved. The error measure erel for each loading
direction shows the same trend as the actual deviation A.
However, for the small domain sizes, erel shows larger variations.
Hence, it might be an underestimation. Still a large value of the
least squares error as erel ≳ 2% indicates a nonrepresentative and
thus insufficient domain size. Therefore, this error measure still
allows judging the quality of the simulation and homogenization
results. As a result of this investigation, it can be stated that the
size of the computational domain should be at least eight times
the mean pore size in order to retrieve an isotropic effective
behavior. This corresponds to a minimum number of �280
pores inside the domain, which is required for it to be a
representative volume. This is ensured in the following paramet-
ric study.

4. Parametric Studies for Varying Foam
Geometries

The primary objective of this study is to investigate how different
geometrical parameters influence the mechanical material
behavior of a given foam structure. To achieve this goal, a series
of numerical experiments are conducted. Variation of the geo-
metrical parameters and measurement of the resulting changes
inmaterial properties serve as key points for the simulative inves-
tigation. Therefore, digital compression tests in the elastic
regime are used using the numerical method presented in this
work. In all simulations, foam volumes with at least 500 pores
and thus, a domain length approximately above 9 to 10 times
the mean pore diameter are considered ensuring appropriate
representativeness of the domain according to the results of
the previous section. Subsequently, a characteristic length is
used to normalize all other occurring length scales. It also defines
a unit volume, which serves as reference. Since linear elasticity is
considered, the following results are independent of the length
scale. The simulation results yield various information regarding
the mechanical properties arising for a foam structure. This
includes the effective stiffness by means of elastic constants like
Young’s modulus and Poisson ratio. Additionally, field informa-
tion is obtained, for example, for the von Mises stress σv:M:,
whose value indicates, where local plastification will start, if
the yield strength is reached. Thus, the results of these experi-
ments can provide additional insights into the complex

relationship between geometry and material behavior, which
have important implications for the design and optimization
of materials and structures. For example, the results can reveal
points with local high stress amplification by means of σv:M:=σBC,
as shown in Figure 4. This information could be used to actively
optimize structures. However, such analysis is out of scope of
this article. Subsequently, we restrict the evaluation to the effec-
tive Young’s modulus as an indicator to judge the overall
mechanical properties a foam structure exhibits. Thus, the pre-
sented homogenization method is well suited to answer the
objective of the study at hand.

To analyze the impact of foam geometry on the effective stiff-
ness, a set of 3D foam structures with varying structural proper-
ties was generated and examined. At first, different foam
geometries are investigated at a constant solid volume fraction
of cs ¼ 0.2. Thereby, a total of 18 structures are compared.
The structures feature three different types of cell distributions,
generic, normal, and centroidal. For the structures examined in
this study, the ligament profile takes both circular and triangular
shape, with equivalent cross-sectional area. For each type, struc-
tures differing in pore density are considered. A discussion on
the corresponding length scales is given in Appendix B. The
homogenized value of effective stiffness was determined from
spatially resolved field data following the presented homogeniza-
tion approach. Subsequently, the effective Young’s modulus is
given normalized with the Voigt bound EV. This results in a mea-
sure for the ratio with respect to the theoretical maximum stiff-
ness at a given volume fraction cs and thus a reference with
comparable material weight. Therefore, this serves as a more
meaningful choice compared to a normalization with the pure
solid value Es, which is commonly used in literature. Note, that
the relation EV ¼ csEs holds. The results show that the cell struc-
ture, the ligament profile, and the pore density of the materials
play a crucial role in their behavior. Although the porosity
remains at a constant value, the calculated value for the normal-
ized effective Young’s modulus varies depending on the struc-
ture type and pore density. The results of this study are
depicted in Figure 6.

The structures with centroidal distribution show the highest
effective stiffness in the explored range, whereas structures with
normal distribution of cell size yield reduced values, followed by
structures with generic distribution which lead to the lowest val-
ues. This implies that the degree of order in cell structure enhan-
ces effective stiffness. At constant pore size, we find the stiffness
of foams with centroidal and generic distribution varies by a fac-
tor of around 1.3. For all the structure types investigated, the
samples with triangular shaped ligaments are found to have
higher effective stiffness than the ones with circular ligaments.
The results for the pore density variation show that there is an
increasing trend in the normalized effective Young’s modulus
with larger numbers of pores per unit volume. At constant poros-
ity, this indicates that fine structures with small pores and liga-
ments maximize the effective stiffness. In addition, it is observed
that the variation in cell size distribution has stronger influence
compared to changes of the cross-sectional ligament profile. Our
finding that more regular foam structures lead to a higher effec-
tive stiffness is in good agreement with, for example, Kaoua
et al.[35] In their work, they consider foams with quadratic unit
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cells under varying strut alignment and find the stiffness in a
range of approximately factor 1.27 between perfectly aligned
and irregularly aligned struts.

In a second study, three different types of foam geometries are
chosen from the ensemble above. The aim is to investigate the
influence of porosity on effective elastic properties of open
porous structures. The predicted values of the effective stiffness
were analyzed for systematically varied values of porosity. The
first type of geometry features a generic cell size distribution,
the second a predefined normal distribution of cell sizes, and
the third a centroidal distribution. The complete set of geome-
tries evaluated possesses circular ligaments. Due to comparabil-
ity, a set of 13 structures for each type of geometry is evaluated,
where the solid volume fraction varies within a range of
cs ∈ ½0.17, 0.26�. Thereby, cs is regulated over the pore size, while
the ligament thickness is held constant. The reason for this
choice is, that from the results of the preceding study
(cf. Figure 6), we expect higher stiffness if the volume fraction
is altered by reducing the pore size instead of increasing the lig-
ament thickness. The results of this study demonstrate a clear
correlation between porosity, cell size distribution, and the effec-
tive elastic properties of the considered structures. To visualize
the relationship between porosity and normalized effective
Young’s modulus, the data obtained are depicted in the Ashby
plot shown in Figure 7. Using the effective stiffness yield by
these simulations, a fit of the structural factor k is obtained by
means of a LSQ-method of the GA correlation (24). The respec-
tive fits as well as the suggested factor k ¼ 1 from GA[13] are also
plotted in Figure 7. The resulting structural factors of the LSQ-fit
are given in Table 2 alongside the root-mean-square (RMS) devi-
ation with respect to the fit. The latter is given both for the abso-
lute deviation and a relative deviation normalized with the values
of the fit. The relative RMS deviation is below 4% in all cases. For
the normal and generic distribution, the linear fit is less accurate,
while the centroidal structures yield a value of 1.7% and thus,
good agreement of simulation results and the linear GA correla-
tion. This finding is plausible, since the correlation was derived
from regular structures. Hence, a better agreement for structures
with a higher degree of order is expected. A more detailed dis-
cussion on the influence of the random seed used for the

Voronoi tessellation can be found in Appendix C. The different
foam geometries lead to diverse structural factors varying
between 0.87450 and 1.1344. The normal pore size distribution
yields a value very similar to unity as the one proposed by GA.[13]

However, also structural factors significantly below and above
unity can be realized with the generic and centroidal distribution,
respectively. Therefore, a significant impact of the structure
geometry onto the effective stiffness is observed. Structures with

Figure 6. Influence of pore size and ligament thickness at constant solid volume fraction cs ¼ 0.2 (P ¼ 80%). Effective Young’s modulus E normalized
with the Voigt bound EV ¼ csEs over pores per unit volume for different cross-section geometries and pore distributions according to the table on the
right. A higher number of pores per unit volume indicates smaller pore size as well as smaller ligament thickness. The right axis shows E normalized by
the HS bound EHS. The points with �10 pores per unit volume of each structure correspond to the respective values of cs ¼ 0.2 in Figure 7.

Figure 7. Effective Young’s modulus E normalized with the Voigt bound
EV ¼ csEs over the volume fraction cs of solid phase. Foams with circular
ligament cross section and different distributions are considered, namely,
generic, normal, and centroidal, alongside their linear LSQ fit (see
Table 2). Additionally, the GA relation with structural factor k ¼ 1 is plotted
(black). At cs ¼ 0.2, approximately 10 pores per unit volume are consid-
ered (see Figure 6).

Table 2. Least squares fit for linear ansatz of E=EV with respect to cs
according to Equation (26) (GA) for different foam structures. The
structural factor k as well as the absolute and relative RMS deviation of
the fit is given.

Structure k Absolute RMS Relative RMS [%]

Generic 0.87450 0.0070043 3.8994

Normal 0.99294 0.0062808 3.0775

centroidal 1.1344 0.0038999 1.6802
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a higher level of order display greater effective Young’s modulus,
as observed in our studies. In particular, structures generated
with a centroidal pore distribution exhibited the highest values
for effective stiffness. Overall, the proposed methodology proved
to be well suited to investigate the influence geometrical features
of open pore structures have on effective elastic properties at var-
ious porosities.

Subsequently, limitations of the presented study are dis-
cussed. The question of accuracy with regard to the numerically
predicted results arises for different reasons. Discretization
errors are introduced both in the simulation results, as well as
in the numerical integration to retrieve the effective values.
For a single structure, we considered different resolutions and
observed small deviations in the result. However, due to compu-
tational cost, a convergence study could not be performed for all
investigated structures. Additionally, we chose the sample size
just as big, as our investigations with regard to representative-
ness of the domain suggest. Still some errors remain and larger
domains would further increase representativeness and thus the
accuracy, especially since these investigations were only done for
a normal pore size distribution. This may limit the generalizabil-
ity of our findings. Further studies of both resolution and domain
size are desirable to confirm our results quantitatively. To over-
come the limitations associated with synthetic structures, it
would be valuable to focus on utilizing 3D images of real samples
as models for validation to improve the accuracy of conclusions
made about their properties. Furthermore, there are several
structural variables that could influence the results, but were
not controlled for in this study, such as pore size distribution
or inhomogeneity in ligament profile. Future research should
aim to models which represent these structural properties.
Finally, the investigation of further properties should be consid-
ered. In this study, we exclusively use the effective Young’s mod-
ulus as an indicator for the quality of a structure. As already
mentioned, a deeper analysis, for example, of the von Mises
stress or pressure field would be beneficial, since those could
show different trends compared to the effective stiffness.

In summary, the application of the homogenization method
was proven to be a versatile tool to retrieve effective elastic prop-
erties for open-pore metal foams. The main goal of this research
was to understand the impact of various geometric factors on the
mechanical performance of a foam structure. GA-type correla-
tions were established in order to link the effective stiffness with
the porosity under differing structural parameters. The findings
of this work might have the potential to provide further insight
into structure–property relationships of porous materials. The
results suggest that the investigation can be extended beyond
the limitations of this study, opening up new possibilities for
understanding the relationship between geometry and material
behavior. Therefore, further parameter variations could be con-
sidered and besides the Young’s modulus additional quantities
could be analyzed, for example, the Poisson ratio or statistics
regarding the local stress amplification. Furthermore, the appli-
cation of the presented methodology could be extended to other
porous structures to predict their elastic behavior under different
loading conditions. These findings may guide the design and
optimization of open pored metal foams for specific applications
and can be used to develop new porous materials with improved
properties.

5. Conclusion and Outlook

The present work addresses the influence of metal foam topology
on the effective elastic properties of the foam structure. An
improved algorithm for digital generation of foam structures
is introduced, which enables the generation of structures with
defined geometrical parameters, such as the cell distribution
(generic, normal, centroidal), the ligament cross-section geome-
try (circular, triangular), and the pore size distribution. In order
to investigate the mechanical behavior of the generated struc-
tures, numerical simulations of compression tests in the elastic
regime are used. A homogenization method for isotropic foams
based on a least square fit is presented in order to retrieve the
effective stiffness. With this approach, only the conduction of
one simulation is sufficient to retrieve the effective stiffness of
a structure and an error measure is yielded, which allows judging
the quality of the homogenization. The influence of the domain
size is investigated with regard to the isotropy. It is shown that for
the considered open pore foams, a representative volume
requires an edge length of the domain, which is at least eight
times larger than the mean pore size of the foam. This corre-
sponds to a number of at least �280 pores inside the domain.

Using the presented approach consisting of digital foam gener-
ation as well as simulation and homogenization of the correspond-
ing mechanical properties, parametric studies are conducted
considering various different foam geometries. It is found that
the structure geometry strongly influences the mechanical proper-
ties. The structural factor for fitting the GA correlation varies in a
range of 0.87450 and 1.1344, within the parametric study. The
structure with centroidal cell distribution shows themost beneficial
properties with regard to a high effective stiffness. Additionally, at
constant porosity, decreasing the pore size (and the ligament
thickness correspondingly) leads to an increase in stiffness.

An extension to the present work could be the application of
optimization algorithms, which can yield an automated approach
for finding favorable structure geometries with respect to a
defined cost function (e.g., the effective stiffness). Therefore,
methods of heuristic search could be applied, for example, the
particle swarm optimization.[36] Also, the extension of the mate-
rial model to capture the elastoplastic regime is desirable since it
enables the investigation of further important properties, which
are not covered with a purely elastic consideration. Both aspects
will be addressed in future work.

Appendix A

Validation of the homogenization for the Eshelby single
inhomogeneity

We consider the Eshelby SIP[37] consisting of a spherical inho-
mogeneity within an infinitely large matrix and subjected to
Neumann boundary conditions. The stiffness of the matrix mate-
rial is Cm and the inclusion’s stiffness is Ci. For a two-phase prob-
lem with phase-wise constant stiffness, the effective stiffness
tensor can generally be obtained via

C ¼ Cm þ ciðCi � CmÞ Ah ii (A1)

where A is the strain localization tensor with the property
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ε ¼ A½ε� (A2)

In the limit of a dilute defect distribution and thus volume
fractions of the inhomogeneity ci � 1, the strain localization ten-
sor A is given via the analytic strain field. Exploiting this, the
effective compression modulus K and the effective shear modu-
lus μ are

K ¼ Km þ ciðKi � KmÞ
4μm þ 3Km

4μm þ 3Ki
(A3a)

μ ¼ μm þ ciðμi � μmÞ
5μmð4μm þ 3KmÞ

6μið2μm þ KmÞ þ μmð8μm þ 9KmÞ
(A3b)

The isotropic stiffness tensor is retrieved via

C = 3KP1 + 2μP2 (A4)

where the split of stress and strain into a spherical and deviatoric
part is exploited. Herein and are the respective projectors.

The SIP is solved numerically using a phase-field method and
the stress interpolation scheme of Schneider et al.[38] A finite-
element discretization of the momentum balance is used on a
Cartesian grid with 150 � 150 elements. The diffuse interface
width corresponds to five times the length of a finite element.
We consider a rectangular domain of length L, where the size
of the inhomogeneity is varied up to a volume fraction of
ci � 30%. At the boundary, we employ a stress boundary condi-
tion, such that compression with 0.1MPa is done (see Figure 8).
The matrix as well as the inclusion has phase-wise constant prop-
erties according to Table 3.

Figure 9 shows the effective compression and shear modulus
over the volume fraction ci of the inclusion. Depicted are the
homogenized simulation results, the analytic solution, as well
as theoretical bounds. As shown by Hill,[33] the Voigt and

Reuss bound are first-order theoretical limits for the stiffness cor-
responding to an arithmetic and harmonic mean of the stiffness
tensor, respectively. In the isotropic case, this corresponds to the
respective mean value of shear modulus μ and compression
modulus K. Additionally, the second-order Hashin–Shtrinkman
(HS) bounds[34] are plotted, which yield more restrictive, and
thus accurate, limits compared to the first-order bounds. In
the present case, the upper HS bound and the Voigt bound
almost coincide, while the lower HS bound is significantly higher
compared to the Reuss bound. Note, that the analytic solution is
only valid for a dilute defect distribution ci � 1 and thus is an
appropriate validation up to ci ≲ 7%. In that region, we find a
agreement between the simulative results and the theory.

For the case with an inhomogeneity with diameter
0.3 L, which corresponds to a volume fraction of
ci ¼ 0.0225π � 7:1%, Table 4 summarizes the homogenization
results. The deviations between simulation and the analytical
solution are within the region of 1% or below. They also lie within
the theoretical bounds of first and second order, respectively. The
indicator for the deviation to an isotropic effective behavior is
erel ¼ 0:13% and thus the tensor equation is very well met.

Appendix B

Discussion of length scales arising in the considered problems

For the foams considered in this manuscript, in general, three
length scales occur. These are the (mean) pore size s, the (mean)
ligament thickness ds, and the edge length L of the RVE. If a
constant volume fraction cs ¼ const should be achieved, this con-
straint allows only two length scales to be chosen independently.
For the study in Figure 5, the additional constraint ds=s ¼ const
is added. Therefore, only the domain length can be varied, which
is done in this study. This means that similar foam structures are
considered and, as shown in the study, varying L has no impact
as long as the volume is still representative. In contrast, for
Figure 6, the constraints cs ¼ const and L ¼ const are considered
and thus, a fix domain volume is used. Again, only one of the
three length scales can be chosen. If a smaller pore size is con-
sidered, meaning a larger amount of pores in the volume, the
ligament thickness decreases accordingly in order to obtain
the constant solid volume fraction. This yields a different foam
with different mechanical properties, as shown in Figure 6. This
is the case even though all the foams exhibit the same volume
fraction of solid and thus same weight. In Figure 10, the corre-
lations between ligament thickness, pore size, and pores per unit
volume are depicted for the structures from Figure 6.

Appendix C

Influence of the random seed for generic distributions

The structures with the generic pore size distribution are the
most irregular ones investigated in the present article, and thus
they show higher deviations with respect to the effective stiffness
compared to the normal and especially the centroidal distribution
(see Table 2). Therefore, we use different generic distributions to
investigate the influence of the randomness of the strongly

Figure 8. Computational setup for the Eshelby SIP.

Table 3. Material properties of the Eshelby SIP.

Quantity Matrix Inhomogeneity

E in GPa 70 30

ν 0.35 0.35

μ in GPa 25.9 11.1

λ in GPa 60.5 25.9

K in GPa 77.7 33.3
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inhomogeneous structures, which is represented by the random
seed employed in the structure generation algorithm.
Simulations with three different random seeds are performed.
Additionally, an ensemble average of the three seeds is consid-
ered. The results are shown in Figure 11 alongside the corre-
sponding GA fit. Seed 3 and even more seed 1 yield some
nonmonotonic behavior in cs and thus quite large deviation of
the fit. The ensemble of all three yields k ¼ 0.85552, with
RMS error of 4.3187%. Seed 2 yields the best fit and a monotonic
behavior and is therefore used in Figure 7. The relatively high
impact of the random seed limits the high significance of quan-
titative results for the generic distribution. Still, the tendency of
k � 0.85ð�0.05Þ is observed. Thus, a significantly lower struc-
tural factor than normal and centroidal distribution can still

be stated clearly. Note that the normal and centroidal distribu-
tions yield higher degree of order in the resulting structure
and therefore show less deviation and a way better fit to the
GA correlation. This holds in particular for the centroidal distri-
bution. Despite the relatively high deviation of the results for the
generic structures, they still support the key point of the present
article, which is, that a strong influence of the foam geometry
onto the effective stiffness exists.

Table 4. Comparison of effective properties for the SIP with ci � 7:1%.
Simulation result (sim), analytical solution (theo), and the relative
deviation between both. Additionally, the theoretical bounds of both
first and second order are listed. The absolute values are given in GPa.

Quantity sim theo Deviation Voigt Reuss HSþ HS�
E 65.46 66.08 �0:933% 67.17 63.97 65.69 64.99

μ 24.24 24.50 �1:087% 24.88 23.69 24.36 24.10

λ 56.75 56.25 0:901% 58.05 55.29 55.94 55.34

K 72.91 72.58 0:454% 74.64 71.08 72.18 71.40

Figure 10. Correlation between ligament thickness ds by means of the ligaments mean diameter, mean pore size EWðsÞ, and pores per unit volume at
constant solid volume fraction cs ¼ 0.2 with regard to the structures in Figure 6. The length scales are normalized with the characteristic length
Lchar � L=4 corresponding to the edge length of the unit volume.

Figure 11. Comparison of the influence for different random seeds and
the generic pore size distribution. The structural factors for different seeds
are k ¼ 0.84075, k ¼ 0.87450, and k ¼ 0.83193, respectively. The corre-
sponding relative RMS deviations of the fit are 5.5828%, 3.8994%, and
4.6619%.

Figure 9. Effective material properties over the volume fraction of the inclusion. Analytic solution for ci � 1 (theo) according to Equation (A3a,b),
simulation result (sim), and theoretical bounds. These are Voigt[32] and Reuss[39] bound (V/R) as well as the second-order Hashin–Shtrinkman bounds[34]

(HS).
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