

 Karlsruhe Reports in Informatics 2023,1
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

 A Formalized Classification
Schema for Model Consistency

 Thomas Kühn, Dominik Fuchß, Sophie Corallo, Lars

 König, Erik Burger, Jan Keim, Manar Mazkatli, Timur

 Sağlam, Frederik Reiche, Anne Koziolek, and Ralf

 Reussner

 2023

KIT – The Research University in the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/de.

X =1.00

X =0.01
perf

lossSD
Software Design and Quality

A Formalized Classification Schema for Model
Consistency
Technical Report

Thomas Kühn
1
, Dominik Fuchß

2
, Sophie Corallo

2
, Lars König

2
,

Erik Burger
2
, Jan Keim

2
, Manar Mazkatli

2
, Timur Sağlam

2
,

Frederik Reiche
2
, Anne Koziolek

2
, and Ralf Reussner

2

1
Institute of Computer Science – Martin Luther University Halle-Wittenberg, Germany

2
KASTEL – Institute of Information Security and Dependability, Karlsruhe Institute of Technology,

Germany

17 July 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

A Formalized Classification Schema for Model Consistency

Abstract

Although consistency is a widely used term, there is no common understanding in the modeling

community on what consistency precisely means for model-based engineering. Nevertheless,

most engineers would agree that models should be consistent to a certain degree to be useful.

Although there are use case specific definitions of consistency and its properties, none of them

are generally and independently applicable. As a result, we observed that engineers rarely

employ a precise definition for their consistency notion. In addition, most engineers consider

that models are consistent, neglecting that consistency usually relates model elements instead.

To remedy these issues, we established a focus group of domain experts to derive a generally

applicable and fine-grained notion of consistency. Using this fine-grained notion of consistency,

we introduce a formalized classification schema for consistency covering seven dimensions.

Afterwards this classification schema was applied by each domain expert to one of seven

widely different model-based engineering scenarios. In turn, our schema provides a precise

model-element-based definition of consistency and vocabulary for the modeling community to

distinguish consistency relations. Above all, we aim to raise awareness for different consistency

notions and facilitate a common understanding of consistency in the MBE community.

3

Thomas Kühn et al.

1 Introduction

In model-based engineering (MBE), software and systems are described using multiple models,

whereas each describes a system from a different viewpoint. Thus, no single model represents

all information necessary to create, deploy, and maintain a complete system. Therefore, in

many situations, models describing the system need to be consistent with each other. While

most engineers would see this as a trivial statement, there is no common understanding of

consistency in the MBE community (and in software engineering in general). As a result, it is

hard to discuss and find commonalities or differences between consistency relations. To the best

of our knowledge, the most general definition of consistency in MBE was introduced by [3],

where consistency of two model elements is defined as membership in a binary relation. How-

ever, limiting consistency relations to binary relations neglects consistency relations spanning

arbitrary many models, such as commonalities in [34]. Apart from a classification in terms

of relation properties from set theory, e.g., uniqueness or totality, this consistency relation is

not described any further. Besides [3], most other formal definitions in the literature, e.g., [68],

[13], describe consistency in relation to consistency checking, consistency preservation, or

consistency repair. Usually, the notions are tailored to their specific use case and domain and,

thus, unsuitable for scenarios with multiple heterogeneous models. In most cases, however, the

term is used informally. As a result, it becomes hard to distinguish, communicate and keep an

overview of the various notions of consistency.

In this paper, we aim to provide a formal description of fine-grained n-ary consistency relations

and formalize seven classifying properties of consistency relations that are independent of the

specific use case. In particular, we will answer the following research questions:

(RQ1) How can consistency relations be precisely defined?

(RQ2) What use case independent properties classify consistency relations?

To this end, we performed an initial exploratory database search with Google Scholar for

descriptions of consistency in (model-driven) software engineering to identify existing notions

of consistency (section 2). With these notions as starting point, we established a focus group

of domain experts to derive a generally applicable and fine-grained notion of consistency

relations. As a result, we propose a novel classification scheme for consistency relations

encompassing seven classifying properties focusing on consistency among model elements

rather than models (section 3). We introduced our schema to the focus group and tasked each

domain expert to apply it to an example in their domain. In sum, the experts described seven

distinct MBE scenarios and successfully applied the classification scheme (section 4). To illustrate

the applicability of the formalized classification schema, we additionally outline the analysis

of one selected MBE scenario encompassing two consistency relations. Please note that we

focused on consistency relations independent of the process they are used in, e.g., consistency

checking, preservation, and repair. This entailed, that we omitted properties that are only tied

to one of these processes.

4

A Formalized Classification Schema for Model Consistency

2 Contemporary Notions of Consistency

2.1 Contemporary Consistency Relations

Consistency appears in various works and different contexts. While some authors share a

common understanding, their terminology differs. This requires the clarification of what

notions of consistency are used and what properties are associated with the term consistency.

To the best of our knowledge, there is no common understanding of consistency, neither within

a domain nor shared with others. Consequently, there are a variety of consistency notions in

computer science literature that are unique and sometimes vaguely defined. Still, the notions

are usually not generalized and thus not applicable for the MBE domain.

In contrast to most other domains, in mathematical logic and theoretical computer science, the

term consistency is well defined [56]. Here, a consistent theory is a theory that does not entail

a logical contradiction. This absence of contradictions is typically defined in terms of semantics.

A theory is semantically consistent if there is a function (interpretation) that assigns a meaning

to the symbols of a set of formulas under which all formulas of the theory are true (a theory has

amodel). However, in MBE, models are not always bound to a logical interpretation. In database

systems, consistency is based on states of data and transactions between these states. In 1976,

notions of consistency reached from consistent over temporary inconsistency (inconsistency

between two transactions) to conflict [14]. Nowadays, terms like strong consistency, weak
consistency, eventual consistency, and others are widely used [64]. All these terms are only

defined for databases and not directly applicable to other domains. The same problem applies

to other domains. Even though some notions transitioned from one domain to another, like

sequentially consistent from multi-processors [38] to the caching domain [18], they are often

not defined sufficiently general. In comparison to other domains, this notion also relates more

to correctness than to other notions of consistency.

The distinction between consistency and completeness is also proposed by [24]. For them

in the state-based requirements domain, completeness means that a response is specified for

every possible input, whereas consistency refers to a specification being free of conflicting

requirements and undesired non-determinism. Their understanding recurred some years later

in another domain when [55] adopted it for dynamic migration of business processes.

Similar notions can also appear across different domains. [39] highlighted consistency as a

security requirement for distributed systems with bilateral communication channels. In line

with him, [75] consider equivalent criteria in machine learning but additionally distinguish

between locally and globally applied criteria. Another example of cross-domain notions are

horizontal and vertical consistency as well as syntactic and semantic consistency. Originally, [13]
specify these terms for object-oriented behavioral models. Later, [27] adopted and expanded

the terms for UML-based software development. However, they replace horizontal and vertical
consistency with intra-model and inter-model consistency. We will show that these properties

are not interchangeable. Although there seemed to be disagreement on consistency notions

in UML-based software development, a later literature review from [44] on MBE publications

5

Thomas Kühn et al.

shows that the terms horizontal, vertical were meanly used according to their original definition.

They also found uses of semantic consistency.

While previous notions assume binary consistency notions, [67] describes consistency for model

transformations, such as QVT-R, as an n-ary relation. To handle these relations, she introduces

association classes and treats them as regular binary consistency relations. Moreover, she

introduces inconsistent, shape-consistent, and perfectly consistent as gradations for consistency.
By contrast, [70] introduce consistency conditions that have to be preserved when the respective

models change. Like [75], they distinguish between locally and globally applied conditions.

Instead of classifying the criteria of consistency, [3] investigate properties of binary consistency

relations during the synchronization of heterogeneous artifacts. They classify binary consistency

relations as bijections (one-to-one), surjective functions (many-to-one), and total relations (many-
to-many) depending on the mapping of the common property between two models.

While considering most of these earlier MBE approaches, [33] proposes various properties

of consistency in the context of model transformations. Following [13] distinction between

syntactic and semantic consistency, he defined structural and behavioral consistency. Like [68],
he argues for the purpose of n-ary consistency relations. However, he claims that only struc-

tural n-ary consistency relations can be split into multiple binary relations because behavioral

consistency relations cannot be easily decomposed in general. Besides that, he extends the

scope of the properties of binary consistency relations [3] by distinguishing between univer-
sally quantified, as term for consistency relations that hold for all parts of a shared property,

existentially quantified, as term for consistency relations that hold for at least some parts, and

statistical as term for consistency relations that have a probability to be fulfilled.

In summary, we have revisited various consistency notions of different domains. We have

highlighted that some established notions are very use case specific and bound to a special

domain, e.g. notions from database systems. In some cases, e.g. multi-processors, consistency

is even understood as a kind of correctness. However, there are also notions, like intra-/inter
consistency and syntactic/semantic consistency, that recur in different domains. In MBE, we

found consistency notions that are bijections, surjective functions, or total relations. They can

be distinguished regarding local or global conditions and measured in gradations, quantifiable,

or with statistical criteria. Other properties, such as structural and behavioral consistency are

also considered relevant. While most consistency relations were described informally instead

of explicitly formalized, the recurrence of many consistency notions across different domains

hints at the generalizability of these notions. Finally, the changing terminology of consistency,

missing references to existing consistency notions, and informal descriptions of many works

reveal the need for a common understanding.

2.2 Contemporary Classification Schemes

Similar to us, [73] provide an overview of different consistency notions. Even though their paper

is not yet peer-reviewed, they conducted a systematic literature review to provide an overview

on consistency in context of model-driven engineering. They state that consistencies have a

specification that defines how the consistency is expressed (constraint-based or transformational)

6

A Formalized Classification Schema for Model Consistency

and an application scenario that it appears in, e.g., co-evolution. They proposed the scope
property of consistency, which is divided into the categories: intra-model, inter-model, model-

metamodel, and constraints. Moreover, they separate tolerance of these criteria from consistency

as such. Furthermore, they identify properties of consistency relations, such as relaxation,
ranking, weighting, filtering, and temporal. Most of these classes tolerate some inconsistencies.

Based on their relaxation, ranking, weighting, and filtering, they define the quantifiability of

consistency relations. Finally, they introduce the temporal category for approaches that tolerate

inconsistencies until consistency is restored. We maintain that this is not a property of the

consistency relation, but the process of consistency repair.

For business process transformations, [55] provide a taxonomy of different consistency notions.

They treat business processes as petri nets and compare them. They derived four properties

from which two are relevant consistency properties, in general. The first property defines how

the trace sets are compared (equal, subset, superset). As discussed previously, this is part of the

definition of the inconsistencies and therefore not a property of the consistency relation as such.

The other property measures whether the consistency definition is based on the arrangement of

the elements or their structure itself. However, we argue that this distinction is superficial, since

the position of a model element in an arrangement can be encapsulated in the model element

itself. Thereby, the consistency between two arrangements would be equal to a consistency of

specific properties of model elements and, thus, a consistency based on structures. [61] provide

a classification of consistency requirements of B2B integration approaches. They identify and

locate different consistency relations by analyzing approaches within a general B2B integration

scenario. Even though they create awareness for the different locations of consistency in the

B2B integration domain, they do not derive general properties or requirements.

[57] derive a taxonomy of correctness criteria for database applications. Like us, they first

distinguish between consistency maintenance and consistency unit. Consistency maintenance is

beyond the scope of this paper, as we focus on consistency relations rather than the underlying

process. In contrast, a consistency unit encompasses the data elements involved in a consistency,

rather than the relation itself. They discern whether the entire database, a set of objects, or

individual objects are the elements in the consistency relation. Still, this is also not relevant for

the relation itself, as sets of objects can be considered as a single model element. In addition to

this distinction, they derive correctness properties for their consistencies. Next to the database

specific properties, they list the correctness of transaction results. This class is divided into

absolute and relative categories, depending on whether the result of the transactions leads to a

consistent state or the result is correct within a certain bound. This bound represents a tolerance

criterion similar to [73].

In sum, we have collected contemporary classifications of consistency and noted that no

publication, thus far, specifically targets consistency relations as such. None of them provided a

formalized definition for consistency. While most taxonomies are limited to a specific domain,

we found that similar properties appear in a wide range of research areas. Thus, we aim to create

a common understanding and raise awareness of consistency relations and their properties

across different domains.

7

Thomas Kühn et al.

3 Classification Schema

To derive our classification schema, we devised a four phase process. In the first phase, we aimed

to identify commonalities and differences between consistency notions in different domains.

Therefore, we conducted four bi-weekly focus group [36] sessions with five to eight domain

experts from academia. Thereby, the experts were sensitized for different notions and we

elucidated the different contexts, relations, prerequisites, and notions of consistency. In the

second phase, we informally defined the consistency notions and asked the focus group to

identify and describe consistency relations of representative MBE scenarios in their individual

domains. In the third phase, we used the insights of all previous focus groups to formalize

the consistency relations and classes. In the final phase, we introduced our formalization to

the focus group and tasked the experts to apply it to the previously collected MBE scenarios.

Henceforth, we introduce the formalized classification schema for consistency relations.

3.1 Mathematical Preliminaries

Notation Our formalization relies on first-order logic and set theory. We use the lower case

letters 𝑖 , 𝑗 , and 𝑛 to indicate natural numbers, whereas other lower case letters, e.g.,𝑚 and 𝑘 ,

denote model elements. The upper case letters 𝑅, 𝑆 , and𝑇 denote consistency relations, whereas

all other upper case letters, e.g.,𝑀 , 𝑋 , and Ω represent sets of model elements. All calligraphic

letters, such as, M, E, and P denote sets of sets. Any (partial) (pre)orders are represented with

binary operators, e.g., ≻, ≤, and ⊲, and functions with lower case names, such as, e.g., 𝑙𝑣𝑙 , 𝑝𝑟𝑜𝑝 ,

𝑝ℎ𝑎𝑠𝑒 , and 𝑠𝑐𝑜𝑟𝑒 . We write 2
𝑀
to denote the power set of set 𝑀 , i.e., the set of all subsets of

𝑀 .

Definition 1 A hyper-graph 𝐺 := (𝑉 , E) consists of a set of vertices V and a set of hyper-edges
E ⊆ {𝑋 |𝑋 ⊆𝑉 ∧|𝑋 | ≥ 2}.

Please note that we require that each hyper-edge 𝑋 in E connects at least two vertices from 𝑉

and that the same hyper-edge 𝑋 cannot occur multiple times in E.

3.2 Formalization of Consistency Relations

[69] defines consistency relations as hyper-edges among models but not model elements. Thus,

to provide a more fine-grained definition of consistency relations, we extend her definition to

model elements. Hence, our consistency relation defines a hyper-graph over model elements of

(different) models, whereas multiple hyper-edges exist that connect model elements with a joint

purpose within the consistency relation.

8

A Formalized Classification Schema for Model Consistency

Service

m()
ComponentImpl

m()

Service

Security Level: 2

Component

(a) Consistency among models

𝑐1 𝑐2 𝑐3

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5

𝐶

𝑈

(b) Represented as hyper-graph

𝑆 :=
(
{𝐶,𝑈 }, {{𝑐1, 𝑢1, 𝑢2}, {𝑐2, 𝑢1}}

)
𝑇 :=

(
{𝐶}, {{𝑢3, 𝑢4}}

)
(c) Represented as tuple

Figure 1: Illustrative consistency relations (thick lines) among a component model 𝐶 and a

corresponding UML class diagram𝑈 (a), their representation as hyper-graph (b) among

model elements of 𝐶 and𝑈 , as well as formal tuple (c).

Definition 2 Let M := {𝑀1, . . . , 𝑀𝑛} be a finite non-empty set of mutually disjoint models and
Ω := {𝑚 ∈𝑀 | 𝑀 ∈M} the corresponding set of all model elements𝑚 in M.

Then a consistency relation 𝑅 := (M, E) consists of the set of models M, as well as a set of
correspondences E ⊆ {𝑋 | 𝑋 ⊆Ω ∧ |𝑋 | ≥ 2}, whereas 𝑋 ∈E reflects a joint purpose of the included
model elements, such that 𝑅 defines a hyper-graph 𝐺 := (Ω, E). 𝑅 is denoted non-empty, iff E is
not empty.

Defined as such, consistency relations can span arbitrary many models, whereas each corre-

spondence 𝑋 ∈E links at least two model elements. The hyper-graph defined by a consistency

relation contains all model elements𝑚 of all models𝑀 that are part of the consistency relation.

The hyper-edges of the hyper-graph directly reflect the correspondences connecting all model

elements with a joint purpose w.r.t. the consistency relation. Considering the consistency

relations illustrated in Figure 1a, the necessity for multiple hyper-edges per consistency relation

becomes apparent. Here, the consistency of a component model with its realization in an UML

class diagram is depicted (thick blue lines), whereas the Service and Interface (plus implements

relation) correspond to each other as well as Component and ComponentImpl. While both

correspondences belong to the same consistency relation, each is represented as a separate

hyper-edge (see Figure 1b) to reflect the joint purpose of the corresponding model elements.

Obviously, this does not exclude consistency relations with only one hyper-edge, e.g., the

consistency between the interface method m() and its implementation in ComponentImpl (thick
dashed green line). The corresponding formal notation is showcased in Figure 1c.

Employing this definition, we can precisely define the classifying properties of consistency

relations. Henceforth, we will use the examples in Figure 1 to illustrate each property. Moreover,

we provide additional examples and counter-examples for each classifying property.

9

Thomas Kühn et al.

Figure 2: Feature model depicting our classification schema.

3.3 Classification Schema for Consistency Relations

As an overview for the following classification schema, in Figure 2, we present a feature model

that concisely and comprehensibly captures the dimensions and classes of our schema. This

figure, is meant to be employed in future systematic literature reviews or mapping studies.

3.3.1 Abstraction

According to [65], models are abstractions (“Verkürzungen”, literally reductions) of their orig-
inals. Thus, they can be ordered by their level of abstraction. For example, specifications or

requirements of a system are typically seen on a higher level, i.e., very abstract, while pro-

gram code is seen as on a lower level, i.e., less abstract. The Model-Driven Architecture [50]

defines models on three succinct levels of abstraction, i.e., the computation-independent model,

platform-independent model, and the platform-specific model. Although one might assume

levels to be strictly ordered, we argue that this is not always the case, especially, when models

from different domains are involved. We acknowledge that some models, such as UML, encom-

pass model elements of different levels of abstraction. In turn, we assign abstraction level to

model elements. Like [13], we distinguish consistency relations that cross different levels of

10

A Formalized Classification Schema for Model Consistency

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

R S

≻

Figure 3: Illustration of horizontal (𝑆) and vertical (𝑅) consistency relations. The arrow from 𝑘2
to𝑚2 indicates that𝑚2 is an abstraction of 𝑘2.

abstraction from those that remain on the same level as vertical and horizontal consistency,
respectively.

Definition 3 Given a non-empty consistency relation 𝑅 and a strict partial order (Ω, ≻), where
for all model elements𝑚1,𝑚2 ∈Ω with𝑚1≠𝑚2,𝑚1≻𝑚2 denotes that𝑚2 is an abstraction of𝑚1.

𝑅 has vertical abstraction, iff there is an 𝑋 ∈E with𝑚1,𝑚2 ∈𝑋 , such that𝑚1≻𝑚2.

𝑅 has horizontal abstraction, iff there is no 𝑋 ∈E and𝑚1,𝑚2 ∈𝑋 , such that𝑚1≻𝑚2.

In short, a consistency relation is denoted vertical, if a correspondence (hyper-edge) connects
model elements at different levels of abstraction. Considering the illustrative example (Figure 1),

both Service 𝑐1 and Component 𝑐2 are more abstract then the corresponding Service 𝑢1 interface
and ComponentImpl𝑢3. As a result, given 𝑐1 ≻ 𝑢1 or 𝑐2 ≻ 𝑢3, the consistency relation 𝑆 is vertical.
By contrast, a consistency relation is horizontal if all model elements in all correspondences are

on the same abstraction level. Conversely, 𝑇 would be denoted horizontal.

In addition, Figure 3 illustrates the notion of horizontal and vertical abstraction using Def. 3.

Here, we assume that only 𝑘2 ≻ 𝑚2 holds, i.e.,𝑚2 is an abstraction of 𝑘2. This relation is shown

as arrow from 𝑘2 to𝑚2. Considering that𝑚2 ≻ 𝑘2 is the only abstraction, then 𝑅 has vertical
abstraction, as it contains a hyper-edge connecting the model elements𝑚2 and 𝑘2. Conversely,

𝑆 has horizontal abstraction.

3.3.2 Metalevel

According to [5], model elements can always be assigned to (exactly) one metalevel. These levels

can be fixed, as in the classical four-level architecture of UML, or variable, as in multi-level/deep

modeling approaches [5].

Definition 4 Given a non-empty consistency relation 𝑅 and a function 𝑙𝑣𝑙 : Ω→N0 that assigns
the metalevel to every model element𝑚 ∈Ω.

𝑅 is intra-metalevel, iff there is an 𝑙 ∈ N0, such that for all 𝑋 ∈ E and all 𝑚 ∈ 𝑋 it holds that
𝑙𝑣𝑙 (𝑚)=𝑙 .

𝑅 is inter-metalevel, iff there is an 𝑋 ∈E and𝑚1,𝑚2 ∈𝑋 , such that 𝑙𝑣𝑙 (𝑚1)≠𝑙𝑣𝑙 (𝑚2) holds.

11

Thomas Kühn et al.

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

R S

T

(M2)

(M1)

Figure 4: Showcase of intra-level (𝑅) and inter-level (𝑆) consistency relation, as well as one (𝑇)

that is neither. All elements of𝑀 belong to metalevel 2 and all of 𝐾 belong to 1.

We distinguish intra-metalevel and inter-metalevel consistency relations by whether they

connect model elements on the same or at different metalevels. While [27] considers the

metalevel property to coincide with abstraction and refinement, we maintain that it as a special

case of refinement (see subsubsection 3.3.1), where most horizontal relation are intra-metalevel,

and inversely, most inter-metalevel relation are vertical. In fact, metalevels are coarse-grained

in the dimension of abstraction and refinement, such that one might find an intra-metalevel

consistency relation along a vertical abstraction, if elements of different abstraction levels are

assigned to the same metalevel. This case is shown in Figure 1, where UML components and

UML classes are connected. To showcase Def. 4 in Figure 4, we assign all model elements

𝑘 ∈ 𝐾 to metalevel 𝑙𝑣𝑙 (𝑘) = 1 and all model elements𝑚 ∈ 𝑀 to metalevel 𝑙𝑣𝑙 (𝑚) = 2 Here,

the consistency relation 𝑅 is an inter-level consistency relation, whereas 𝑆 is an intra-level
consistency relation. Notably though, 𝑇 is neither, as each hyper-edge connects elements of a

different metalevel.

Although the model elements are on different levels of abstraction (cf. subsubsection 3.3.1),

thus indicating a vertical consistency relation, they are on the same metalevel. Therefore,

the consistency relation is also intra-metalevel. When specifying inter-metalevel consistency

relations, one should additionally mention the crossed levels, e.g., inter-metalevel between user
model and metamodel.

3.3.3 Position

Consistency can be defined within or between models. Of course, this consideration depends on

the definition of what a model is, and where the model boundaries are. In theory, it is therefore

often not relevant whether a consistency relation is inter- or intra-model [73]. In practice,

however, this has many implications, since the model boundary also determines which tools

are used, how models are persisted, and other aspects of the development process.

Definition 5 Given a non-empty consistency relation 𝑅.

𝑅 represents an intra-model consistency, iff there is an𝑀 ∈ M such that for each 𝑋 ∈ E it holds
that 𝑋 ⊆ 𝑀 .

𝑅 represents an inter-model consistency, iff there is an 𝑋 ∈ E and 𝑀1, 𝑀2 ∈ M with 𝑀1 ≠ 𝑀2,
such that 𝑋 ∩𝑀1 ≠ ∅ and 𝑋 ∩𝑀2 ≠ ∅.

12

A Formalized Classification Schema for Model Consistency

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

R S
T

Figure 5: Depiction of intra-model (𝑆), inter-model (𝑇), and coupled-model (𝑅) consistency

relations.

𝑅 represents a coupled-model consistency, iff |M| ≥ 2 and for every 𝑋 ∈ E and every𝑀 ∈ M it
holds that 𝑋 ∩𝑀 ≠ ∅.

We say that a consistency relation is intra-model if it only connects model elements that are

within the same model and inter-model if it connects model elements from different models. A

coupled-model consistency relation describes an inter-model consistency relation where each

correspondence between model elements contain elements of all involved models. All cases are

depicted in Figure 1. The model 𝐶 contains the elements 𝑐1 and 𝑐2, whereas𝑈 contains 𝑢1, 𝑢2,

and 𝑢3. The consistency relation 𝑆 (thick blue line) between them is therefore an inter-model

and, in particular, a coupled-model consistency. As the consistency relation 𝑇 (thick green

dashed line) only connects model elements of 𝑈 , 𝑇 is intra-model. Additionally in Figure 5,

the distinction between intra-model and inter-model consistency relations becomes obvious,

as it denotes whether hyper-edges cross the boundary of a model. In this case, 𝑅 is a coupled-
model consistency relation and 𝑆 an intra-model consistency relation. In contrast to 𝑅, 𝑇 is an

inter-model consistency relation, yet not a coupled-model consistency relation.

Since model boundaries are often set such that elements in one model are at one level of

abstraction, intra-model consistency is often horizontal.

3.3.4 Observed Property

As model elements describe the structure and/or behavior of a system, consistency relations can

be distinguished between whether they observe structural or behavioral properties (represented

by model elements). [33] argued that structural properties can be statically checked, such as the

equality of values or the presence of elements, behavioral properties require dynamic analysis,

e.g., abstract interpretation, model checking or co-simulation. Please note, that the purpose of a

model determines which of these properties are relevant for its model elements.

Definition 6 Given a non-empty consistency relation 𝑅, the set of observed properties 𝑂 :=

{𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙, 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙} and a labeling function 𝑝𝑟𝑜𝑝Ω : Ω → (2𝑂 \∅) that assigns observed
properties to all model elements𝑚 ∈ Ω.

𝑅 observes a property 𝑜 ∈𝑂 , iff there is an 𝑋 ∈E and an𝑚 ∈𝑋 , such that 𝑜 ∈𝑝𝑟𝑜𝑝Ω (𝑚) holds.

𝑅 focuses on a property 𝑜 ∈𝑂 , iff for all 𝑋 ∈E and all𝑚 ∈𝑋 𝑜 ∈𝑝𝑟𝑜𝑝Ω (𝑚) holds.

13

Thomas Kühn et al.

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

R S

struct.

model

beh.

model

Figure 6: Here, all elements of model𝑀 observe structural properties, whereas elements of 𝐾

observe behavioral features. Thus, while a consistency relation can focus on structural

properties (𝑆), others (𝑅) observe both.

The function 𝑝𝑟𝑜𝑝Ω assigns observed properties, i.e., structural and behavioral, to each model

element, whereas an element can observe both properties. A consistency relation is then said

to observe one of these properties, if it contains at least one correspondence with a connected

model element that observes this property. As this is a rather weak classification, we state that a

consistency relation focuses on a property, if all model elements in all correspondences observe

this property, albeit not exclusively. In the running example, all elements of the component

model 𝐶 and UML class diagram 𝑈 observe a structural property of the system. However, the

model element 𝑢5 also observes the systems behavior, as it represents the implementation of

method m(). Thus, both consistency relations 𝑆 (thick blue line) and 𝑇 (thick green dashed

line) focus on structural properties, whereas only 𝑇 also observes behavioral properties (via

𝑢5). For the sake of simplicity, in Figure 6, we assume that all model elements𝑚 ∈ 𝑀 observe

structural properties whereas all model elements 𝑘 ∈ 𝐾 observe behavioral properties. Thus,

when considering Def. 6, the consistency relation 𝑅 observes both structural and behavioral
properties. In contrast, the consistency relation 𝑆 focuses on structural properties.

Besides that, our definition permits to adapt the set of observed properties to include other

properties, e.g., quality.

3.3.5 Development Phases

Consistency can be expressed for model elements that belong to one or several phases in the

life cycle of a system, e.g., specification time, design time, and run time. This notion should

be understood as a model element being a main artifact of these development phases. The

mere presence of a model element in a phase is not sufficient, since model elements of earlier

phases are always relevant in later development phases, even if they are not directly used.

Consequently, we distinguish between intra-phase and intra-phase consistency relations by

whether they connecting model elements belonging to one phase or belonging to different

phases.

Definition 7 Given a non-empty consistency relation 𝑅, a non-empty set of development phases
𝑃 and a labeling function 𝑝ℎ𝑎𝑠𝑒Ω : Ω → (2𝑃 \∅) that assigns to each model element𝑚 ∈ Ω the
development phases to which it belongs.

14

A Formalized Classification Schema for Model Consistency

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

R S

design impl

T

Figure 7: To illustrate implementation-phased (𝑆), intra-phased (𝑇) and inter-phase (𝑅) consis-

tency relations two arrows indicate, which model elements belong to the design and

implementation phase, respectively.

𝑅 is intra-phase, iff there is a 𝑝 ∈𝑃 , such that 𝑝 ∈𝑝ℎ𝑎𝑠𝑒Ω (𝑚) for all 𝑋 ∈E and all𝑚 ∈𝑋 .

𝑅 is inter-phase, iff
⋂
𝑚∈𝑋 𝑝ℎ𝑎𝑠𝑒Ω (𝑚)=∅ for an 𝑋 ∈E.

In short, a consistency relation is denoted intra-phase, if all model elements in all correspon-

dences belong to at least a given phase 𝑝 . An inter-phase consistency relation contains a

correspondence where there is no phase every connected model element belongs to. In the

running example, we can assume that model elements of the component model belong to the

specification time, whereas UML classes belong to the design time. Then, the consistency relation

𝑆 is an inter-phase relation, whereas𝑇 is an intra-phase consistency relation. To illustrate intra-
phase and inter-phase consistency relations introduced in Def. 7, we consider two development

phases 𝑃 := {𝑑𝑒𝑠𝑖𝑔𝑛, 𝑖𝑚𝑝𝑙} in Figure 7. Lets assume 𝑝ℎ𝑎𝑠𝑒M (𝑚𝑖) = 𝑝ℎ𝑎𝑠𝑒M (𝑘𝑖) = {𝑑𝑒𝑠𝑖𝑔𝑛}
if 𝑖 ∈ {1, 2} and 𝑝ℎ𝑎𝑠𝑒M (𝑚𝑖) = 𝑝ℎ𝑎𝑠𝑒M (𝑘𝑖) = {𝑖𝑚𝑝𝑙} if 𝑖 ∈ {3, 4, 5}. Then we can consider

three different consistency relations. As a result, the consistency relation 𝑅 is an inter-phase
consistency relation, as for the hyper-edge {𝑚2, 𝑘2, 𝑘3} the elements have no common phase, i.e.,

𝑝ℎ𝑎𝑠𝑒M (𝑚2) ∩𝑝ℎ𝑎𝑠𝑒M (𝑘2) ∩𝑝ℎ𝑎𝑠𝑒M (𝑘3) = ∅. Conversely, 𝑆 is an impl-phase and consequently
also an intra-phase consistency relation. In contrast, 𝑇 is considered intra-phased and not

inter-phased, as for each hyper-edge a unique phase is present albeit not the same between the

hyper-edges.

While we do not assume a particular set of phases, we argue that, for a linear development

process, this classifier is correlated with the level of abstraction since models of a later de-

velopment phase refine models from earlier phases. In this case, all inter-phase consistency

relations would also be vertical. In our opinion, this was Engel’s understanding of horizontal

and vertical consistency in [13], where vertical consistency is between elements before and after

refinement, and horizontal consistency between elements at the same time of development. We

maintain that these properties are indeed orthogonal, especially when considering non-linear

development.

15

Thomas Kühn et al.

3.3.6 Quantification

While most consider consistency as a qualitative property denoting that corresponding model

elements are either consistent or not, there are cases where consistency can be quantified, i.e.,

the connected model elements can be seen as more or less consistent [3]. This is useful for

repairing inconsistencies, if there are multiple options improving consistency. Then, alternatives

can be ordered by the degree of consistency they achieve, and the best one can be picked.

Definition 8 Given a non-empty consistency relation 𝑅 and a total function 𝑠𝑐𝑜𝑟𝑒Ω : (2Ω\∅) →
[0, 1] that assigns a quantitative measure to each possible hyper-edge.

The function 𝑠𝑐𝑜𝑟𝑒Ω is a consistency score for the consistency relation 𝑅, iff 𝑋 ∈ E implies
𝑠𝑐𝑜𝑟𝑒Ω (𝑋)>0 for all 𝑋 ∈2Ω\∅. Then 𝑅 is denoted quantifiable with 𝑠𝑐𝑜𝑟𝑒Ω.

The 𝑠𝑐𝑜𝑟𝑒Ω functions assigns a value to each potential correspondence (hyper-edge), indicating

how consistent the connected model elements are. This function is a consistency score for a

consistency relation, if all correspondences yield a value greater then zero. We then say that the

consistency relation is quantifiable with this scoring function. We consider that lower values

indicate less consistency among connected model elements, whereas higher values indicate

a higher degree of consistency. Thus, a correspondence with a score of 0 means that the

encompassed model elements are inconsistent. More importantly, we require that 𝑠𝑐𝑜𝑟𝑒Ω is

normalized to the interval [0, 1], while we concede this to be a sizable restriction, we maintain

that in most cases a given scoring function can be normalized. For the running example, we

could employ a normalized string similarity measure, e.g., a normalized Levenshtein distance,

to compare the names of model elements. Then, the consistency relation 𝑆 is quantifiable with

this score. The correspondence between 𝑐2 and 𝑢3 yields ≈ 0.69, as 𝑐1 is named Component and
𝑢1 ComponentImpl. In contrast, the correspondence between 𝑐1, 𝑢1 and 𝑢2 would yield 1.0, as

the named model elements (𝑐1 and 𝑢1) are named Service. To illustrate quantifiable consistency

relations, we need to introduce a simple scoring function over Ω := 𝑀 ∪ 𝐾 :

𝑠𝑐𝑜𝑟𝑒Ω (𝑋) =
2 |{𝑖 ∈ N | 𝑚𝑖, 𝑘𝑖 ∈ 𝑋 }|

|𝑋 |

Simply put, this scoring function determines the fraction of pairs𝑚𝑖, 𝑘𝑖 ∈ 𝑋 with the same index

𝑖 ∈ {1, . . . , 5} in 𝑋 , whereas𝑚𝑖 ∈ 𝑀 and 𝑘𝑖 ∈ 𝐾 . Albeit not useful in practice, this function is

helpful to illustrate the quantification of consistency relations shown in Figure 8. Here, the

score of each hyper-edge is shown close to the center of each rounded box in the color of the

corresponding consistency relation. Consequently, we can see that both consistency relations 𝑅

and 𝑆 are quantifiable with the 𝑠𝑐𝑜𝑟𝑒 function. In contrast,𝑇 is not quantifiable with the scoring

function, due to the score of 0.0 of its hyper-edge {𝑚4,𝑚5}. Although 𝑠𝑐𝑜𝑟𝑒 cannot quantify 𝑇 ,
there might be scoring functions that make 𝑇 quantifiable.

16

A Formalized Classification Schema for Model Consistency

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

1.0

R

0.6

0.0

T

1.0

S

Figure 8: Showcase of consistency relations quantifiable (𝑅 and 𝑆) and not quantifiable (𝑇) by

the scoring function 𝑠𝑐𝑜𝑟𝑒 . Here, each hyper-edge is annotated with its score.

3.3.7 Gradual Consistency

There can be criteria that lead to the gradual tolerance of inconsistencies between models [73].

This tolerance is usually tied to a quantifiable notion of consistency; if the system reaches a

certain threshold in this quantified notion, it is declared consistent. To put it bluntly, although the

model elements are not fully consistent, they are considered consistent enough. This acceptance
can also be determined by further composition of other consistency notions, e.g., if a sufficient

number of sub-systems are consistent or by defining a path to a consistent state that can

be reached eventually. We distinguish between tolerating and strict quantifiable consistency
relations.

Definition 9 A consistency relation 𝑅 is 𝑡-tolerating with 0 < 𝑡 < 1, iff it is quantifiable with
𝑠𝑐𝑜𝑟𝑒Ω (𝑋) and 𝑠𝑐𝑜𝑟𝑒Ω (𝑋) ≥ 𝑡 for all 𝑋 ∈ E. 𝑅 is strict, iff it is qualitative or it is quantifiable
with 𝑠𝑐𝑜𝑟𝑒Ω (𝑋)=1 for all 𝑋 ∈E.

A 𝑡-tolerating consistency relation reflects that a quantifiable consistency relation considers

those correspondences as consistent, whose 𝑠𝑐𝑜𝑟𝑒Ω yields a value greater or equal then 𝑡 .

Here, a tolerating consistency relation with a small 𝑡 is more tolerant, as correspondences are

allowed to be less consistent, than a relation with a 𝑡 close to 1. A qualitative consistency

relation is always considered strict, whereas a quantifiable consistency relation is only strict

if all its correspondences have a score of 1.0. This reflects that they dos not tolerate any

inconsistencies. When reconsidering the running example and the normalized string similarity

(subsubsection 3.3.6), we could classify the quantifiable consistency relation 𝑆 as 0.6-tolerating,
as each correspondence yields a higher score than 0.6. Simply put, the consistency relation

tolerates the inconsistency between the names Component and ComponentImpl. In turn, the

quantifiable consistency relation 𝑇 is strict, as the score yields 1.0 for the single correspondence.
Last but not least, we showcase gradual consistency relations in Figure 9 employing the scoring

function 𝑠𝑐𝑜𝑟𝑒 introduced in the previous subsubsection. Please note, that we defined gradual

consistency regarding the threshold 𝑡 that all hyper-edges in a quantifiable consistency relation

must reach using its scoring function. In this example, 𝑅 could be classified as a 𝑡-tolerating
consistency relation with 𝑡 = 0.6. Conversely, 𝑆 could be classified as a strict consistency relation.
Notably though, any non-quantifiable consistency relation is considered strict, as it has no

consistency score and thus cannot be 𝑡-tolerating.

17

Thomas Kühn et al.

𝑚1

𝑘1

𝑚2

𝑘2

𝑚3

𝑘3

𝑚4

𝑘4

𝑚5

𝑘5

𝑀

𝐾

1.0

R

0.6

0.0

T

1.0

S

Figure 9: This diagram highlights strict (𝑆) and 𝑡-tolerating consistency relations (𝑅 with 𝑡 = 0.6).

Each hyper-edge is annotated with its score.

While most engineers consider temporal inconsistencies, i.e., a sequence of inconsistent states

between consistent states, as a form of tolerating inconsistencies, we argue that all intermediate

states are strictly inconsistent until a consistent state is reached. Instead, we classify consistency

relations that are to a certain yet tolerated degree inconsistent as gradually tolerating.

4 Example Scenarios

Henceforth, we present seven MBE scenarios contributed by the domain experts of the focus

groups. While we concede that the scenarios might not be representative, we argue that it is

almost impossible to collect a set covering all relevant scenarios. Nonetheless, the focus group

has collected a diverse set of examples that highlight the different properties of consistency

relations. For each scenario, first the purpose of the consistency relation is described, then the

classification schema is applied and finally selected consistency relations are classified.

4.1 Multi-View Modeling

In MBE, views on a model allow modelers to see it from different viewpoints [6], such that

modelers can focus on a particular aspect. A view might abstract, aggregate, or filter information

from its underlying model, thus, reducing the complexity by providing only relevant information

for a specific concern. The problem of updating the model of an editable view when the

view is changed is denoted the view-update problem [8]. Solving this problem for models

requires restoring the consistency between the model and its views to ensure the absence of

contradicting information [17]. For this purpose, consistency relations are specified between

the metamodel and viewtype [21], e.g., by utilizing model transformations. After a view is

created, the consistency relation establishes a trace link between elements of the view and

elements of the underlying model. As views can be read-only or editable and permit state-based

or change-based differencing [59], not all combinations need to employ consistency relations,

e.g., read-only or state-based views. Please note that for brevity, we henceforth do not consider

views combining multiple models, e.g., [11].

18

A Formalized Classification Schema for Model Consistency

Abstraction A model-view consistency relation can be horizontal or vertical. In the former

case, a view only shows selected parts of the underlying model. In the latter case, a view

abstracts from the underlying model.

Metalevel Model-view consistency relations are, per definition, intra-metalevel.

Position As trace links connect elements from a view to elements of the underlying model, they

classify as coupled-model consistency relations.

Observed Property As the model is projected into a view, depending on the underlying model,

the consistency relation observes either structural, behavioral, or both.

Development Phase All consistency relations are intra-phased, as a view belongs to the same

phase as its underlying model.

Quantification In general, model-view consistency relations are qualitative. However, [66, 35]

propose model differencing to quantify the degree of model-view consistency.

Gradual Consistency Model-view consistency relations are strict, as concurrent changes to the

view and model directly lead to an inconsistent view.

The consistency relation between a view and its source model is intra-metalevel, coupled-model,

intra-phased, qualitative, and strict. However, the abstraction and observed properties depend

on the particular view type.

4.2 Metamodel Evolution and Co-Evolution

Metamodel evolution is the process of applying changes to metamodels. This impacts other

artifacts that depend on these metamodels, e.g., instances, transformations, generator templates,

and editors. When metamodels evolve, these artifacts have to be co-evolved so that they stay

consistent with the metamodels. This has been extensively researched for co-evolution of

instances in [26, 10, 23].

Abstraction Artifacts other than metamodels that have to co-evolve are at a lower level of

abstraction. Thus, the consistency relation is vertical.

Metalevel For several artefacts, the metalevel classification does not apply (e.g., transformations,

generators, and editors). For co-evolution of metamodels and instances, the relation is

inter-metalevel.

Position Co-evolution always implies inter-model consistency relations. Typically, these are

also coupled-model consistency relations, e.g., [10].

Observed Property Depending on the kind of artifacts, consistency is mainly determined by

syntactical properties, such as being a valid instance of a class or a valid word in a

language, or semantic properties, for example preserving the desired behavior of model

transformations.

19

Thomas Kühn et al.

Development Phase In most development processes, metamodel design is a separate phase,

and metamodel changes are heavy-weight and seldom. Thus, the consistency relation is

inter-phase.

Quantification Changes to metamodels can be quantified by the impact on depending artifacts

and the effort needed to co-evolve them.

Gradual Consistency The consistency relation is strict, as tolerated metamodel changes would

inevitably lead to invalid artifacts, either syntactically or semantically.

The consistency relation between a metamodel and its co-evolving instance [10] is vertical, inter-

metalevel, and has coupled models. It observes structural properties, is inter-phase, quantifiable,

and strict.

4.3 Sketches and Informal Diagrams

During software development, teams use informal diagrams of software architecture to ease

communication with other stakeholders and planning activities [22], e.g., during discussions

at a white board. Therefore, diagrams have to be aligned with existing architecture models

[19] or with existing source code artifacts [7]. In case of a hand-drawn sketch, the image must

first be translated into a machine-readable diagram, e.g., using image recognition approaches.

Afterwards, the machine-readable diagram encompassing shapes, lines, and texts is mapped

to the existing architecture. Thus, this case covers two types of consistency relations: (1) The

interpretation between the sketch and the interpreted machine-readable diagram ensures that

every sketched element is present in the generated machine-readable diagram. (2) The mapping
of the machine-readable diagram to the architecture model assigning each shape and line to the

corresponding architectural elements. Both consistency relations connect different models to

provide tracing information for developers.

Abstraction The interpretation a horizontal consistency relation, since we consider informal

but technical sketches. In contrast, mapping is a vertical consistency relation, as the

architecture model contains more detailed information, e.g., method names in interfaces

omitted in sketches.

Metalevel Consistency of diagrams and architecture models is intra-metalevel, since connects

corresponding representations of elements in different artifacts.

Position Typically, both are coupled-model consistency relations.

Observed Property Regarding the observed property, these consistency relations considers

structural models, e.g., class diagrams or component diagrams.

Development Phase Since sketches and diagrams can be used in any phase of a project, the

consistency relations can be inter- or intra-phase.

Quantification The interpretation is typically quantifiable using confidences, e.g., object detec-

tion algorithms using machine learning [60]. Although the properties of the mapping are

still being researched, we expect that it will be quantifiable with heuristics.

20

A Formalized Classification Schema for Model Consistency

Gradual Consistency Inconsistencies can be tolerated in this case depending on the purpose

of the diagram. If the diagram is used to explain an extension of the current system,

new elements have no corresponding elements in the current system model. Therefore,

they can be tolerated. If the diagram should show a representation of a current system,

inconsistencies are not tolerated.

The interpretation is horizontal, intra-metalevel, coupled-model, observes structural properties,

can be inter- or intra-phased, is typically quantified and tolerates inconsistencies. In contrast to

that, the mapping is vertical.

4.4 Natural Language Descriptions

Natural language (NL) descriptions are present in every software development project [28]

and range, among others, from requirements over architecture documentation to source code

documentation. For example, software architecture documentation captures and preserves

knowledge about the architecture of a system, including knowledge about certain design deci-

sions, e.g., alternatives and reasoning [32, 15]. NL descriptions of a system are a different view

on the system and, therefore, need to match to other views like code or architecture models.

There are different kinds and reasons for inconsistencies [32, 74], e.g., outdated documenta-

tion after system evolution [48] or descriptions differing from other artifacts due to varying

interpretation or understanding. Therefore, consistency here means that the interpretation

of statements needs to be unambiguous and fit to other artifacts like source code or models.

The consistency relations in this case show that, e.g., requirements are implemented correctly

or documentation correspond to code. In addition, there are consistency relations within a

description artifact [48], e.g., within requirement documents where the consistency relations

help avoiding contradictions.

Abstraction There can be both, horizontal abstraction, e.g., between requirements, and vertical

abstraction, e.g., between documentation and source code.

Metalevel Most of the time, the consistency relation is intra-level. However, there are cases

where, e.g., classes and concrete objects are described, which results in inter-level consis-

tency relations.

Position As there are consistency relations within and between artifacts, there are intra- as

well as inter-model consistency relations. Consequently, depending on each concrete

case, there can be coupled-model consistency (e.g., between NL documentation of the

architecture and architecture model), but this is not the general case.

Observed Property Descriptions can cover structural (e.g., existing components and their or-

chestration) and behavior aspects (e.g., functionality or performance).

Development Phase NL descriptions like requirements, documented design descriptions, and

code documentation are created in every phase. The consistency relation can cover all

kinds, intra-phase (e.g., code documentation fits to code) and inter-phase (e.g., requirement

is implemented in code correctly).

21

Thomas Kühn et al.

Quantification In many cases, the consistency relation is qualitative. However, there are quan-

titative consistency relations. For example, for a prescriptive NL description, there can be

a score that states the degree of fulfillment, thus quantifying the consistency relation. For

example, there can be a relation between a requirement and one or more classes and the

quantification shows how much of the requirement is already realized.

Gradual Consistency Inconsistencies in this case are usually tolerated. For example, inconsis-

tencies based on prescriptive documentation, e.g., requirements, shows the parts that are

not yet fully realized. Additionally, inconsistencies are not problematic per se [49] and for

each inconsistency, developers can decide to either tolerate or fix it, e.g., based on impact

and required effort.

The consistency between NL architecture documentation and source code is vertical, intra-level,

coupled-model, observes structural properties, is intra-phase. Sometimes, they are quantifiable

and tolerate inconsistencies.

4.5 Composition of Analyses

Sometimes multiple analyses must be employed to show properties of the system [71]. For static

security analyses, for instance, static data flow analysis on the software architecture is combined

with a data flow analysis on the corresponding implementation to make statements about secu-

rity aspects of the system. Since not all models cover all aspects of the system, security analyses

are forced to make assumptions about missing aspects [62]. When the software architecture

does not capture the components’ behavior, security leaks by illegal information flows cannot be

analyzed [63]. Therefore, for a static architectural security analysis, it is assumed that the behav-

ior does not induce leaks through illegal information flows. Even if the components’ behavior

was specified, the conformance between the software architecture and its implementation must

be assumed [52]. In all cases, architectural models and security assumptions need to be kept

consistent with the specifications and implementations to ensure that the system is correctly

represented when analyzed. For analysis, the assumptions in a software architecture can be

verified by checking the assumed aspect against its implementation [20]. Here, consistency

relations between the design artifacts are utilized, e.g., between the software architecture with

security information and the implementation with analysis specific annotations. In addition,

this consistency relation can be used to transfer modifications in the implementation back to

the software architecture if assumptions are affected.

Abstraction The outlined consistency relations are vertical, as they connect elements of an

abstract software architecture and concrete source code [20, 52, 62].

Metalevel We classify the consistency relation as intra-metalevel, as all model elements belong

to the same metalevel. However, when source code analysis results are included in the

consistency relation, it is inter-metalevel.

Position The consistency relations is inter-model yet not a coupled-model consistency, as it

connects elements of the software architecture and security specification with the source

code if they are fulfilled.

22

A Formalized Classification Schema for Model Consistency

Observed Property As the coupled analysis of architectures and implementations with security

annotations involves model elements observing structural, behavioral as well as quality

properties, some consistency relations focus on structural properties, on quality properties

(i.e., security) or on behavioral properties [51], whereas more general consistency relations

observe both structural, behavioral, and quality properties [58].

Development Phase The consistency relations are inter-phased, as they connect architectural

elements belonging to specification time with source code at design time.

Quantification The consistency relations in the composition of analysis are qualitative, as any

slight inconsistency likely invalidates the analysis results.

Gradual Consistency As no inconsistency are allowed for analysis, the consistency relations are

strict.

The consistency relation between a software architecture and the corresponding implementation

in the context of security analyses [58] is vertical, intra-metalevel, and inter-model. It observes

both structural, behavioral, qualitative properties, and is inter-phase, qualitative, and strict.

4.6 Performance Modeling and Measurement

In agile software development, the performance measurement for future scenarios, e.g., al-

ternative workload, design, deployment, is expensive. The Architecture-based Performance

Prediction (AbPP) reduces such costs but requires an accurate architectural performance model.

The accuracy of the modeled or extracted performance model can be affected by frequent

source code changes during development and adaptations of the system during its operation,

e.g., changes in system composition, deployment, or execution environment. The continuous

integration of architectural performance models (CIPM) approach [42] addresses this problem

by keeping the software system and the corresponding performance model consistent. Since

the system monitoring makes detecting system adaptations and system usage possible, CIPM

preserves the consistency between the software system, performance model, and measurements

to ensures the accuracy of performance predictions [40]. In detail, CIPM combines three con-

sistency relations: (1) between the source code and the performance model to prevent drift or

erosion [41]; (2) between the performance model and software architecture extracted from the

measurements to reflect the adaptation of the software system at run time [45]; (3) between the

source code, the performance model and measurements to ensure the accuracy for predicting

the performance of the system [42, 72].

Abstraction All consistency relations are vertical since the performance model is an abstraction

of both the source code and measurements.

Metalevel The consistency relations are on multiple metalevels. Although both the performance

model and source code are on the model level, measurements are on the instance level.

Thus, the first consistency relation is intra-metalevel and the others are inter-metalevel.

Position All consistency relations are coupled-model consistency relations.

23

Thomas Kühn et al.

Observed Property Since the performance model captures both structural and behavioral prop-

erties of the software system, the consistency relations observe both properties. However,

while the first two focus on structural properties the last focuses on behavioral properties.

Development Phase While the first consistency relation is intra-phased, the others are inter-

phased between development, testing, and operations.

Quantification All consistency relations are quantifiable using different scores [42, 45], e.g., the

Wasserstein Distance [43] quantifies the difference between the measured performance

and its prediction.

Gradual Consistency While the first two consistency relations are strict, the third is always

tolerating, as both performance predictions and measurements have margins of error.

The consistency relations between software architecture, performancemodel, and corresponding

measurements are vertical, intra-(1) or inter-metalevel (2,3), and coupled-model. They focus on

structural (1,2) or behavioral (3) properties. They are intra-(1) or inter-phase (2,3), quantifiable,

and either strict (1,2) or tolerating (3).

4.7 Variability Management

Variability denotes “the ability to derive different products from a common set of artifacts” [4].
Software product line (SPL) engineering [29, 54, 12] is an established approach to systematically

engineer and manage the reusability and extensibility of software by utilizing an explicit

variability model to configure and combine a set of reusable artifacts to derive an individual

product variant [54]. During SPL engineering, the variability demanded in the variability model

must correspond to the variability enabled by reusable artifacts, whereas inconsistencies between

demanded and enabled variability can lead to broken products or unrealized potential. During

SPL evolution, changes to the variability model might invalidate previously valid configurations

and changes to reusable artifacts can impact the enabled variability. While [1] identified 14

types of inconsistencies in SPLs, in general, these consistency relations ensure that the managed

variability is equally reflected in the variability model and valid configurations in the problem
space, e.g., [46, 25, 37], as well as the reusable artifacts and derived product variants in the

solution space, e.g., [2, 31, 9].

Abstraction While consistency relations within a space are usually horizontal [9, 47, 25], con-

sistency relations between problem and solution space are vertical [2, 16].

Metalevel Usually, the consistency relations are intra-metalevel, as variability and its realization

co-exists on the same metalevel, with the exception of delta-oriented approaches, that

elevate variability to the metamodel level [53].

Position Although most consistency relations are coupled-model consistencies such as vari-

ability model–configuration, configuration–derived product variant, specific intra-model

consistencies exist, e.g., consistency of variability models [25] or well-formedness of a

product variants [31].

24

A Formalized Classification Schema for Model Consistency

Observed Property As the problem and solution space describe the variability of both structural

and behavioral elements, most consistency relations usually observe both structural and

behavioral properties of the variable system.

Development Phase Considering the feature-oriented SPL engineering process [4], almost all

consistency relations are inter-phased, with the exception of the intra-model consistency

of variability models.

Quantification Although most consistency relations in SPL engineering are not quantified, sev-

eral approaches determine the impact of changes or minimal number of repair operations

to guide users towards a consistent SPL, e.g., [47].

Gradual Consistency In SPL, all consistency relations are strict, as inconsistencies lead to unre-

alized variability and/or broken product variants.

Although exceptions exist in multiple classes, most consistency relations in SPLs are either

horizontal or vertical, intra-metalevel, coupled-model, observe both structural and behavioral

properties, are inter-phased, qualitative and strict.

4.8 Summary

After applying the classification schema to the above MBE scenarios, Table 1 summarizes the

classification of the main consistency relation for each scenario. Here, multiple classifications

for a relation are separated by a slash (/). In case of Sketches and Informal Diagrams and

Performance Modeling, the above classification was applied to the specific consistency relations

that have been identified. However, as there are a multitude of consistency relations in Variability

Management and NL Descriptions alone, we refrained from a classification of each individual

consistency relation.

While most classified consistency relations are vertical, we have found horizontal consistency

relations in Sketches and Informal Diagrams, NL Descriptions, and Variability. Likewise, most

consistency relations stay within a metalevel, however, consistency relations in Metamodel

Evolution, in Performance Modeling and in NL Descriptions are inter-metalevel. Interestingly,

we have found that most of our scenarios contain coupled-model consistency relations, albeit

we have identified particular intra-model and inter-model consistency relations in Variability

management and Composition of Analyses, respectively. Similar surprising was the wide range

of properties observed by consistency relations, such that some focus on structural or behavioral

properties while some combine both. In particular, for the Composition of Analyses, we have

identified quality as another observable property. Moreover, we have counted equally many

inter-phased and intra-phased consistency relations. In regard to Quantification and Gradual

Consistency, we have discovered that most consistency relations are quantifiable with specific

scoring functions, whereas only Multi-View Modeling and Composition of Analyses feature

qualitative consistency relations. Nonetheless, while most consistency relations are strict,

Sketches and Informal Diagrams and Performance Modeling feature tolerating consistency

relations.

25

Thomas Kühn et al.

A
bs
tr
ac
ti
on

M
et
al
ev

el

Po
si
ti
on

O
bs
er
ve

d
Pr

op
er
ty

D
ev

el
op

m
en

tP
ha

se
s

Q
ua

nt
ifi
ca
ti
on

G
ra
du

al
C
on

si
st
en

cy

Multi-View Modeling h/v a c s/b a l i

Metamodel Evolution v e e/c s/b e q i

h
Sketches and Informal Diagrams

v

a c s a/e q t/i

NL Descriptions h/v a/e a/e s/b a/e q t

Composition of Analyses v a e s/b/q e l i

a s a i

e s e iPerformance Modeling v

e

c

b e

q

t

Variability h/v a c/a s/b a/e l/q i

Table 1: Mapping of Classifiers to MBE Scenarios

h/v: horizontal/vertical a/e: intra-/inter-(level/model/phase)

c: coupled-model s/b/q: structural/behavioral/quality

l/q: qualitative/quantitative t/i: tolerating/strict

26

A Formalized Classification Schema for Model Consistency

Our System

Logic UI
needs

(a) Hand-drawn sketch

OurSystem

UILogic
needs

(b) Machine readable diagram

«BasicComponent»
Logic

«Interface»
BusinessLogic

«BasicComponent»
UserInterface

<<Provides
Role>>

<<Requires
Role>>

(c) Visualized Architecture Model

Figure 10: A hand drawn sketch (a) a machine readable version (b) and a corresponding Archi-

tecture Model (Palladio Component Model) (c) for a small example architecture.

In conclusion, Table 1 shows that each consistency relation could be classified and each property

of our classification appears at least once. While some properties occur more frequent than

others, for most properties, we found at least three out of seven occurrences. Exceptions are

intra-model relations in Position that only occurs twice and quality in Observed Property that

only appears once.

5 Illustrative Application to an Example Scenario

To highlight how an example scenario was investigated, in this section we illustrate the applica-

tion of the formal definitions to classify the consistency relations found in the scenario. For

this illustration, we again focus on the example scenario of Sketches and Informal Diagrams

(discussed in subsection 4.3).

5.1 Example

Figure 10 shows an example based on Sketches and Informal Diagrams. It encompasses a

hand-drawn sketch of a software architecture, its machine readable version that is created

by some object detection (e.g., machine learned model), and a formal architecture model (e.g.,

Palladio Component Model) that is created by a software architect.

The hand-drawn sketch is depicted in Figure 10a. It consists of the following elements: First,

there is the caption of the sketch, which is Our System. Second, there are two sketched boxes

with the labels Logic and UI. Finally, there is the drawn arrow between the two boxes, which is

labeled with needs.

To create a machine readable version of the sketch, we assume a machine learning model that

detects boxes and arrows in images. The result of this interpretation is depicted in Figure 10b.

As you can see, the machine readable version is not perfectly detected as the caption is missing

a space. The other elements have been detected correctly. Since, we used a machine learning

model, we can also provide a confidence score for each detected element. In this example,

27

Thomas Kühn et al.

𝑠1

𝑟1

𝑠2

𝑟2

𝑠3

𝑟3

𝑠4

𝑟4

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5

Sketch

Diagram

Architecture

0.7 1.0 0.8 1.0

Interpretation

𝑀𝑎𝑝𝑝𝑖𝑛𝑔

Figure 11: Illustration of the Interpretation (blue) and Mapping (teal) consistency relations

between model elements of the sketch and the diagram as well as the diagram and

the architecture.

we assume that the confidence for the detected boxes are 1.0, the confidence for the detected

dependency-arrow is 0.8, and the confidence for the detected caption is 0.7. For simplicity, we

will use the confidence scores directly to quantify the consistency relation between the sketch

and the machine readable diagram.

The final model we need for this example is the formal architecture model. In this example, we

use the Palladio Component Model (PCM) depicted in Figure 10c. The architecture consists of

two BasicComponents, namely Logic and UserInterface. The UserInterface has a dependency to

some implementation of the BusinessLogic interface, which is, in turn, provided by the Logic.

In total, the architecture model has five elements, i.e., two BasicComponents, two Roles, and

one Interface.

While the consistency relation between the sketch and the machine readable diagram in this

example is a 1:1 mapping, the consistency relation between the machine readable diagram and

the formal architecture model is more complex. The two detected boxes in the machine readable

diagram are mapped to the two BasicComponents in the architecture. The detected arrow is

mapped to the dependency between the two BasicComponents. This dependency corresponds to

the two Roles and the Interface. The caption of the machine readable diagram is not mapped to

any element in the PCM. We visualize the consistency relations as hyper-graph in Figure 11.

The elements of the sketch are the caption 𝑠1, the box Logic 𝑠2, the arrow 𝑠3, and the box UI
𝑠4. The elements of the machine readable diagram are the caption 𝑟1, the box Logic 𝑟2, the
dependency-arrow 𝑟3, and the box UI 𝑟4. Finally, the elements of the architecture model are

the BasicComponent Logic𝑚1, the Interface BusinessLogic𝑚2, the two Roles𝑚3,𝑚4, and the

BasicComponent UserInterface𝑚5.

The interpretation consistency relation connects the sketch with the machine readable diagram

and is drawn in blue. Since, we use the confidences for quantification, the values are directly

marked on the edges. Themapping consistency relation connects the machine readable diagram

with the architecture model and is drawn in teal.

28

A Formalized Classification Schema for Model Consistency

5.2 Interpretation

Since the sketch and machine readable diagram do not contain elements that abstract from

elements in one another, the consistency relation is horizontal. Furthermore, the elements of

both models are on the same metalevel. Therefore, the consistency relation is intra-level. Every

edge of the interpretation connects elements of both models, therefore the consistency relation

is coupled w.r.t. Position. Additionally, the consistency relation focuses on structural properties
since the elements of both models are structural elements. The development phase is not set for

this example, but we assume that the sketches and also the diagrams belong to an early design

phase in this scenario; if this would be the case, the consistency relation would be intra-phase.
Regarding quantification, we can see that the confidence values can be used as scores for the

hyper-edges of the interpretation. Therefore, the consistency relation is quantifiable. Finally,
the interpretation is t-tolerating with 𝑡 = 0.6 since the confidence values of the correct edges

are greater than 𝑡 .

5.3 Mapping

Since the dependency-arrow in the machine readable diagram is an abstraction of the interface

and roles in the architecture model, the consistency relation mapping is vertical. Nevertheless,
the models are on the same metalevel and therefore, the consistency relation is intra-level. The

consistency relation is coupled w.r.t. Position, since each hyper-edge contains at least one element

of the machine readable diagram and one element of the architecture model. The consistency

relation focuses on structural properties since the elements of both models are structural elements.

Again, it is not clear in which development phase the models are created, but if we imagine that

the diagram is created in an early design phase and the architecture model in a later design

phase, the consistency relation would be inter-phase. Regarding quantification, heuristics could

provide some confidence values for the mapping here as well. If such confidences exist, they

could be used as scores for the hyper-edges of the mapping analogous to the interpretation.

In summary, we have presented a detailed application of our classification to two consistency

relations from the sketches and informal diagram domain. We have shown how the classification

is applied and able to capture the characteristic differences of the consistency relations.

6 Discussion and Findings

We have established a focus group to elucidate the notion of consistency relations and their

properties. These properties were applied by the domain experts to classify seven of their MBE

scenarios. Consequently, we can answer our research questions:

(RQ1) How can consistency relations be precisely defined? While we have found existing, precise

descriptions of consistency and its properties for specific use cases and scenarios, none

of them provided a generally applicable formalization and classification of consistency

relations (cf. subsection 2.2). Even though [57] provide some formalization, they focus on

29

Thomas Kühn et al.

database applications. [73] do not provide a formalization for their consistency classes. In

contrast to them, our classification provides more fine grained properties to describe the

scope of consistency relations. Moreover, they do not fully separate between consistency

relations and consistency preservation or repair. Unlike their work, we argue that for

precisely describing consistency relations it is necessary to define them among model

elements. This novel perspective was crucial to be able to formally define both consistency

relations and classifying properties when discussing them in the focus groups. Thus, in

this paper, we have provided a comprehensible formalization that enables further research

of consistency relations in MBE. As the domain experts could easily apply the classification

schema to their MBE scenario, we gained evidence that the classification schema is precise,

comprehensive, and generally applicable.

(RQ2) What use case independent properties classify consistency relations? Based on existing clas-

sification schemes, we have identified seven generally applicable properties of consistency

relations: Abstraction, Metalevel, Position, Observed Property, Development Phases, Quan-

tification and Gradual Consistency. From the formalization of the classification schema, it

follows that all classifiers are independent except 𝑡-tolerating, which requires a quantifiable

consistency relation. Besides that, we have observed dependencies between abstraction

and Metalevel as well as Development Phases. In all observed cases, an inter-metalevel or

inter-phase consistency relation is a vertical abstraction. Regardless, six of seven properties

are orthogonal. As the classification schema could be easily applied to seven different

MBE scenarios, we maintain that our classification schema is generally applicable to MBE

scenarios. Notably, we have identified two additional properties. Dominance describes
consistency relations with certain models that represent the ground truth for other models.

For example, measurements of the system provide the ground truth to which a performance

prediction must adhere to. Description distinguishes between prescriptive and descriptive

consistency relations [33]. Both properties are out of scope, as they consider consistency

preservation and repair, but not consistency relations themselves. Besides that, while

consistency relations between an analytical model and measurements exist in Performance

Modeling, it is still unclear whether this holds true for all analytical or data-defined models.

In general, Table 1 shows, that each consistency relation of our scenarios has been classified

and each property of our classification is needed. In future work we will investigate a

larger corpus of consistency relations to gather evidence on the sufficiency, distribution,

and correlation of the classifying properties.

7 Threats to Validity

Here, we discuss how we addressed threats to validity. To ensure the construct validity of

our classification schema, we opted to formalize both consistency relations and its classifying

properties in addition to regular descriptions. This avoided ambiguities and ensured orthog-

onality of the classification schema. The only exception is 𝑡-tolerance which depends on a

quantifiable consistency relation. We retrieved the relevant classifying properties from existing

related classification schemes and our focus group. The applicability was indicated within our

30

A Formalized Classification Schema for Model Consistency

focus group, whereas each expert performed the classification of her/his scenario individually.

While we focused on the classification’s structural suitability, we have not yet evaluated our

classification schema with taxonomy evaluation methods, e.g., [30], this will be future work.

Regarding the internal validity, we first identified contemporary definitions of consistency and

classification schemes for consistency focusing on peer-reviewed publications within and beyond

the field of MBE. We established focus groups with experts in MBE from academia to elucidate a

fine-grained notion of consistency relations and classifying properties. For the scenario selection,

we encouraged the domain experts to propose their own MBE scenario, while we ensured that

each scenario was distinct. For the classification phase, we provided a brief introduction to

the formalized classification schema to the focus group, such that each domain expert could

individually classify the consistency relations in her/his scenario. The resulting classification

was then reviewed by the group moderators, to uncover misunderstandings. Beyond that, we

cannot rule out annotator bias. Please note that as the description and classification of each

scenario was done by a domain expert, we added each of them as co-author.

To improve external validity, by establishing a focus group, we aimed to uncover a fine-grained

definition of consistency. However, as the MBE scenarios were proposed by the domain experts,

we cannot consider them as a representative subset, especially, as neither analytical models

nor data-derived models are considered. While this significantly limits the generalizability of

our findings regarding the classified consistency relations, we maintain that our definition of

consistency relations and our classification schema is generally applicable to the MBE domain.

Nevertheless, a large scale study and analysis of MBE scenarios should be conducted in future

works to show the generalizability of our results.

8 Conclusion

In this paper, we define a precise and fine-grained notion of consistency relations for the

MBE community, as there were neither an established common understanding nor use-case-

independent definitions. To remedy this, we established focus groups and elucidated fine-grained,

notion of consistency relations over model elements. From this notion, we derived our formalized

classification schema of consistency relations encompassing seven classifying properties based

on set theory and hyper-graphs. We have illustrated the applicability of our classification

schema by having experts apply it to their MBE scenarios. Although these scenarios are widely

different, we could completely and distinctly classify each identified consistency relation. In

general, each property class is needed, as its class occurred at least once in these scenarios.

In conclusion, we argue that our classification schema provides a precise fine-grained definition

and vocabulary for the MBE community to distinguish consistency relations. This, in turn, can

help to raise awareness for the different consistency notions and facilitate a common ground for

understanding, discussing, and finding commonalities of consistency in the MBE community. In

future work, we will investigate a wider range of consistency relations to classify and evaluate

our classification schema according to [30].

31

Thomas Kühn et al.

References

[1] Sofia Ananieva. “Consistent Management of Variability in Space and Time”. In: Proceedings
of the 25th ACM International Systems and Software Product Line Conference – Volume
B. New York, NY, USA: Association for Computing Machinery, 2021, pp. 7–12. doi:

10.1145/3461002.3473067.

[2] Sofia Ananieva, Thomas Kühn, and Ralf Reussner. “Preserving Consistency of Interrelated

Models during View-Based Evolution of Variable Systems”. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences.
GPCE 2022. Auckland, NewZealand: Association for ComputingMachinery, 2022, pp. 148–

163. doi: 10.1145/3564719.3568685.

[3] Michał Antkiewicz and Krzysztof Czarnecki. “Design Space of Heterogeneous Synchro-

nization”. In: Generative and Transformational Techniques in Software Engineering II: Inter-
national Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 3–46. doi: 10.1007/978-3-540-88643-3_1.

[4] Sven Apel et al. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer, 2013.

[5] Colin Atkinson and Thomas Kühne. Rearchitecting the UML Infrastructure. In: ACM
Trans. Model. Comput. Simul. 12.4 (Oct. 2002), pp. 290–321. doi: 10.1145/643120.643123.

[6] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software Modeling:

A Practical Approach to View-Based Development”. In: Evaluation of Novel Approaches
to Software Engineering. Vol. 69. Communications in Computer and Information Science.

Berlin, Heidelberg: Springer, 2010, pp. 206–219. doi: 10.1007/978-3-642-14819-4_15.

[7] Sebastian Baltes, Peter Schmitz, and Stephan Diehl. “Linking sketches and diagrams

to source code artifacts”. en. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. Hong Kong China: ACM, Nov. 2014,

pp. 743–746. doi: 10.1145/2635868.2661672.

[8] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. In: ACM Trans.
Database Syst. 6.4 (Dec. 1981), pp. 557–575. doi: 10.1145/319628.319634.

[9] Paul Maximilian Bittner et al. “Feature Trace Recording”. In: Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE 2021. Athens, Greece: Association for

Computing Machinery, 2021, pp. 1007–1020. doi: 10.1145/3468264.3468531.

[10] Erik Burger and Boris Gruschko. “A Change Metamodel for the Evolution of MOF-Based

Metamodels”. In: Proceedings of Modellierung 2010. Vol. P-161. GI-LNI. Klagenfurt, Austria,
Mar. 2010, pp. 285–300.

[11] Erik Burger et al. View-based model-driven software development with ModelJoin. In:

Software & Systems Modeling 15 (2016), pp. 473–496. doi: 10.1007/s10270-014-0413-5.

[12] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2001.

32

https://doi.org/10.1145/3461002.3473067
https://doi.org/10.1145/3564719.3568685
https://doi.org/10.1007/978-3-540-88643-3_1
http://books.google.com/books?vid=ISBN9783642375200
https://dx.doi.org/10.1145/643120.643123
https://doi.org/10.1145/643120.643123
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1145/2635868.2661672
https://dx.doi.org/10.1145/319628.319634
https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/3468264.3468531
https://dx.doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-014-0413-5

A Formalized Classification Schema for Model Consistency

[13] Gregor Engels et al. “A Methodology for Specifying and Analyzing Consistency of Object-

Oriented Behavioral Models”. In: Proceedings of the 8th European Software Engineering
Conference Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ESEC/FSE-9. Vienna, Austria: Association for ComputingMachinery,

2001, pp. 186–195. doi: 10.1145/503209.503235.

[14] K. P. Eswaran et al. The Notions of Consistency and Predicate Locks in a Database System.

In: Commun. ACM 19.11 (Nov. 1976), pp. 624–633. doi: 10.1145/360363.360369.

[15] R. Farenhorst and H. van Vliet. “Understanding how to support architects in sharing

knowledge”. In: ICSE Workshop on Sharing and Reusing Architectural Knowledge. 2009,
pp. 17–24. doi: 10.1109/SHARK.2009.5069111.

[16] Kevin Feichtinger et al. Guiding featuremodel evolution by lifting code-level dependencies.

In: Journal of Computer Languages 63 (2021), p. 101034. doi: https://doi.org/10.1016/j.cola.
2021.101034.

[17] J. Nathan Foster et al. Combinators for Bi-Directional Tree Transformations: A Linguistic

Approach to the View Update Problem. In: SIGPLAN Not. 40.1 (Jan. 2005), pp. 233–246.
doi: 10.1145/1047659.1040325.

[18] Michael J. Franklin, Michael J. Carey, and Miron Livny. Transactional Client-Server Cache

Consistency: Alternatives and Performance. In: ACM Trans. Database Syst. 22.3 (Sept.

1997), pp. 315–363. doi: 10.1145/261124.261125.

[19] Dominik Fuchß. “Sketches and Natural Language in Agile Modeling”. In: Companion
Proceedings of the 15th European Conference on Software Architecture (ECSA-C). Vol. 2978.
CEUR Workshop Proceedings. 2021. doi: 10.5445/IR/1000139435.

[20] Johannes Geismann, Bastian Haverkamp, and Eric Bodden. “Ensuring threat-model as-

sumptions by using static code analyses”. In: ECSA 2021 Companion Volume, Virtual
(originally: Växjö, Sweden), 13-17 September, 2021. Vol. 2978. CEUR Workshop Proceedings.

CEUR-WS.org, 2021.

[21] Thomas Goldschmidt, Steffen Becker, and Erik Burger. “Towards a Tool-Oriented Tax-

onomy of View-Based Modelling”. In: Proceedings of the Modellierung 2012. Vol. P-201.
GI-Edition – Lecture Notes in Informatics (LNI). Bamberg: Gesellschaft für Informatik e.V.

(GI), Mar. 2012, pp. 59–74.

[22] Wilhelm Hasselbring. “Software Architecture: Past, Present, Future”. en. In: The Essence
of Software Engineering. Cham: Springer International Publishing, 2018, pp. 169–184. doi:

10.1007/978-3-319-73897-0_10.

[23] R. Hebig, D. E. Khelladi, and R. Bendraou. Approaches to Co-Evolution of Metamodels

and Models: A Survey. In: IEEE Transactions on Software Engineering 43.5 (May 2017),

pp. 396–414. doi: 10.1109/TSE.2016.2610424.

[24] Mats Per Erik Heimdahl and Nancy G. Leveson. Completeness and consistency in hierar-

chical state-based requirements. In: IEEE transactions on Software Engineering 22.6 (1996),

pp. 363–377. doi: 10.1109/32.508311.

33

https://doi.org/10.1145/503209.503235
https://dx.doi.org/10.1145/360363.360369
https://doi.org/10.1145/360363.360369
https://doi.org/10.1109/SHARK.2009.5069111
https://dx.doi.org/https://doi.org/10.1016/j.cola.2021.101034
https://doi.org/https://doi.org/10.1016/j.cola.2021.101034
https://doi.org/https://doi.org/10.1016/j.cola.2021.101034
https://dx.doi.org/10.1145/1047659.1040325
https://dx.doi.org/10.1145/1047659.1040325
https://doi.org/10.1145/1047659.1040325
https://dx.doi.org/10.1145/261124.261125
https://dx.doi.org/10.1145/261124.261125
https://doi.org/10.1145/261124.261125
https://doi.org/10.5445/IR/1000139435
https://doi.org/10.1007/978-3-319-73897-0_10
https://dx.doi.org/10.1109/TSE.2016.2610424
https://dx.doi.org/10.1109/TSE.2016.2610424
https://doi.org/10.1109/TSE.2016.2610424
https://dx.doi.org/10.1109/32.508311
https://dx.doi.org/10.1109/32.508311
https://doi.org/10.1109/32.508311

Thomas Kühn et al.

[25] Marc Hentze et al. “Hyper Explanations for Feature-Model Defect Analysis”. In: VaMoS’21:
15th International Working Conference on Variability Modelling of Software-Intensive Sys-
tems, Virtual Event / Krems, Austria, February 9-11, 2021. ACM, 2021, 14:1–14:9. doi:

10.1145/3442391.3442406.

[26] Markus Herrmannsdörfer, Sander D. Vermolen, and GuidoWachsmuth. “An extensive cata-

log of operators for the coupled evolution ofmetamodels andmodels”. In: Proceedings of the
Third international conference on Software language engineering. SLE’10. Berlin/Heidelberg:
Springer, 2011, pp. 163–182. doi: 10.5555/1964571.1964585.

[27] Zbigniew Huzar et al. “Consistency Problems in UML-Based Software Development”. In:

UMLModeling Languages and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg,

2005, pp. 1–12.

[28] Michael Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press/Addison-Wesley Publishing Co., 1995.

[29] Kyo C. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep.
Carnegie-Mellon University Software Engineering Institute, Nov. 1990. doi: 10.1.1.606.

7899.

[30] Angelika Kaplan et al. “Introducing an EvaluationMethod for Taxonomies”. In: Proceedings
of the International Conference on Evaluation and Assessment in Software Engineering 2022.
EASE ’22. Gothenburg, Sweden: Association for Computing Machinery, 2022, pp. 311–316.

doi: 10.1145/3530019.3535305.

[31] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “Consistency-preserving edit scripts

in model versioning”. In: Proceedings of the 28th International Conference on Automated
Software Engineering (ASE’13), Silicon Valley, USA. IEEE, 2013, pp. 191–201. doi: 10.1109/
ASE.2013.6693079.

[32] Jan Keim and Anne Koziolek. “Towards Consistency Checking Between Software Archi-

tecture and Informal Documentation”. In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). Mar. 2019, pp. 250–253. doi: 10.1109/ICSA-C.2019.00052.

[33] Heiko Klare. “Building Transformation Networks for Consistent Evolution of Interrelated

Models”. PhD thesis. Karlsruhe, Germany: Karlsruhe Institute of Technology (KIT), 2021.

428 pp. doi: 10.5445/IR/1000133724.

[34] Heiko Klare and Joshua Gleitze. “Commonalities for preserving consistency of multiple

models”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). IEEE. 2019, pp. 371–378. doi: 10.1109/
MODELS-C.2019.00058.

[35] Dimitrios Kolovos et al. “Different models for model matching: An analysis of approaches

to support model differencing”. In: 2009 ICSE Workshop on Comparison and Versioning of
Software Models. 2009 ICSE Workshop on Comparison and Versioning of Software Models.

May 2009, pp. 1–6. doi: 10.1109/CVSM.2009.5071714.

34

https://doi.org/10.1145/3442391.3442406
https://doi.org/10.5555/1964571.1964585
https://dx.doi.org/10.1.1.606.7899
https://doi.org/10.1.1.606.7899
https://doi.org/10.1.1.606.7899
https://doi.org/10.1145/3530019.3535305
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1109/ICSA-C.2019.00052
https://doi.org/10.5445/IR/1000133724
https://doi.org/10.1109/MODELS-C.2019.00058
https://doi.org/10.1109/MODELS-C.2019.00058
https://doi.org/10.1109/CVSM.2009.5071714

A Formalized Classification Schema for Model Consistency

[36] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. The Focus GroupMethod as an Empirical

Tool in Software Engineering. In: Guide to Advanced Empirical Software Engineering. Ed.
by Forrest Shull, Janice Singer, and Dag I. K. Sjøberg. London: Springer London, 2008,

pp. 93–116. doi: 10.1007/978-1-84800-044-5_4.

[37] Matthias Kowal, Sofia Ananieva, and Thomas Thüm. “Explaining Anomalies in Feature

Models”. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences. GPCE 2016. Amsterdam, Netherlands: Association

for Computing Machinery, 2016, pp. 132–143. doi: 10.1145/2993236.2993248.

[38] Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

Programs. In: IEEE Transactions on Computers C-28.9 (1979), pp. 690–691. doi: 10.1109/TC.
1979.1675439.

[39] Ueli Maurer. “Towards a Theory of Consistency Primitives”. In: Distributed Computing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 379–389.

[40] Manar Mazkatli and Anne Koziolek. “Continuous Integration of Performance Model”. In:

Companion of the 2018 ACM/SPEC International Conference on Performance Engineering.
ICPE ’18. Berlin, Germany: ACM, 2018, pp. 153–158. doi: 10.1145/3185768.3186285.

[41] Manar Mazkatli et al. Continuous Integration of Architectural Performance Models with

Parametric Dependencies – The CIPM Approach. In: submitted to Automated Software
Engineering Journal (2023). doi: 10.5445/IR/1000151086.

[42] Manar Mazkatli et al. “Incremental Calibration of Architectural Performance Models

with Parametric Dependencies”. In: IEEE International Conference on Software Architecture
(ICSA 2020). Salvador, Brazil, 2020, pp. 23–34. doi: 10.1109/ICSA47634.2020.00011.

[43] Facundo Mémoli. Gromov-Wasserstein Distances and the Metric Approach to Object

Matching. In: Foundations of Computational Mathematics 11.4 (2011), pp. 417–487. doi:
10.1007/s10208-011-9093-5.

[44] ParastooMohagheghi, Vegard Dehlen, and Tor Neple. Definitions and approaches tomodel

quality in model-based software development–A review of literature. In: Information and
Software Technology 51.12 (2009), pp. 1646–1669. doi: 10.1016/j.infsof.2009.04.004.

[45] David Monschein et al. “Enabling Consistency between Software Artefacts for Software

Adaption and Evolution”. In: 2021 IEEE 18th International Conference on Software Architec-
ture (ICSA). 2021, pp. 1–12. doi: 10.1109/ICSA51549.2021.00009.

[46] Michael Nieke, Christoph Seidl, and Thomas Thüm. “Back to the Future: Avoiding Para-

doxes in Feature-Model Evolution”. In: Proceedings of the 22nd International Systems and
Software Product Line Conference - Volume 2. SPLC ’18. Gothenburg, Sweden: Association

for Computing Machinery, 2018, pp. 48–51. doi: 10.1145/3236405.3237201.

[47] Michael Nieke et al. Guiding the evolution of product-line configurations. In: Software
and Systems Modeling (2021). doi: doi.org/10.1007/s10270-021-00906-w.

[48] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency in software develop-

ment. In: Computer 33.4 (2000), pp. 24–29. doi: 10.1109/2.839317.

35

https://dx.doi.org/10.1007/978-1-84800-044-5_4
https://dx.doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1145/2993236.2993248
https://dx.doi.org/10.1109/TC.1979.1675439
https://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3185768.3186285
https://dx.doi.org/10.5445/IR/1000151086
https://dx.doi.org/10.5445/IR/1000151086
https://doi.org/10.5445/IR/1000151086
https://doi.org/10.1109/ICSA47634.2020.00011
https://dx.doi.org/10.1007/s10208-011-9093-5
https://dx.doi.org/10.1007/s10208-011-9093-5
https://doi.org/10.1007/s10208-011-9093-5
https://dx.doi.org/10.1016/j.infsof.2009.04.004
https://dx.doi.org/10.1016/j.infsof.2009.04.004
https://doi.org/10.1016/j.infsof.2009.04.004
https://doi.org/10.1109/ICSA51549.2021.00009
https://doi.org/10.1145/3236405.3237201
https://dx.doi.org/doi.org/10.1007/s10270-021-00906-w
https://doi.org/doi.org/10.1007/s10270-021-00906-w
https://dx.doi.org/10.1109/2.839317
https://dx.doi.org/10.1109/2.839317
https://doi.org/10.1109/2.839317

Thomas Kühn et al.

[49] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Making inconsistency re-

spectable in software development. In: Journal of Systems and Software 58.2 (2001), pp. 171–
180. doi: https://doi.org/10.1016/S0164-1212(01)00036-X.

[50] OMG. Model Driven Architecture (MDA): Guide Revision 2.0 of MDA Guide Version 1.0. 1
(12 June 2003). 2014.

[51] Sven Peldszus et al. “Secure data-flow compliance checks between models and code

based on automated mappings”. In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems (MODELS). IEEE. 2019, pp. 23–33. doi:
10.1109/MODELS.2019.00-18.

[52] Sven Matthias Peldszus. Static Security Compliance Checks. In: Security Compliance in
Model-driven Development of Software Systems in Presence of Long-Term Evolution and
Variants. Wiesbaden: Springer Fachmedien Wiesbaden, 2022, pp. 165–219. doi: 10.1007/

978-3-658-37665-9_8.

[53] Christopher Pietsch et al. “Delta-oriented development of model-based software product

lines with DeltaEcore and SiPL: A comparison”. In: Model Management and Analytics for
Large Scale Systems. Elsevier, 2020, pp. 167–201. doi: 10.1016/B978-0-12-816649-9.00017-X.

[54] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, 2005.

[55] Ahana Pradhan and Rushikesh Krishnakant Joshi. A Taxonomy of Consistency Models in

Dynamic Migration of Business Processes. In: IEEE Transactions on Services Computing
11.3 (2018), pp. 562–579. doi: 10.1109/TSC.2017.2735413.

[56] Alexander Prestel and Charles N. Delzell. Mathematical Logic and Model Theory. Springer
London, 2011. doi: 10.1007/978-1-4471-2176-3.

[57] Krithi Ramamritham and Panos K. Chrysanthis. A taxonomy of correctness criteria in

database applications. In: The VLDB Journal 5.1 (Jan. 1996), pp. 85–97. doi: 10 .1007/

s007780050017.

[58] Frederik Reiche et al. Model-driven Quantification of Correctness with Palladio and KeY .
Tech. rep. Karlsruher Institut für Technologie (KIT), 2021. doi: 10.5445/IR/1000128855.

[59] Timur Sağlam and Thomas Kühn. “Towards the Co-Evolution of Models and Artefacts of

Industrial Tools Through External Views”. In: 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C), Fukuoka, J,
October 10-15, 2021. 24th ACM/IEEE International Conference on Model Driven Engineer-

ing Languages and Systems. MODELS 2021 (Online, Oct. 10–15, 2021). IEEEXplore, 2021,

pp. 410–416. doi: 10.1109/MODELS-C53483.2021.00064.

[60] Bernhard Schäfer, Margret Keuper, and Heiner Stuckenschmidt. Arrow R-CNN for hand-

written diagram recognition. en. In: International Journal on Document Analysis and
Recognition (IJDAR) (Feb. 2021). doi: 10.1007/s10032-020-00361-1.

[61] Andreas Schönberger and Guido Wirtz. “Taxonomy on Consistency Requirements in the

Business Process Integration Context.” In: SEKE. 2008, pp. 593–598. doi: 10.1.1.527.2969.

36

https://dx.doi.org/https://doi.org/10.1016/S0164-1212(01)00036-X
https://dx.doi.org/https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/10.1109/MODELS.2019.00-18
https://dx.doi.org/10.1007/978-3-658-37665-9_8
https://doi.org/10.1007/978-3-658-37665-9_8
https://doi.org/10.1007/978-3-658-37665-9_8
https://doi.org/10.1016/B978-0-12-816649-9.00017-X
http://books.google.com/books?vid=ISBN3540243720
http://books.google.com/books?vid=ISBN3540243720
https://dx.doi.org/10.1109/TSC.2017.2735413
https://dx.doi.org/10.1109/TSC.2017.2735413
https://doi.org/10.1109/TSC.2017.2735413
https://dx.doi.org/10.1007/978-1-4471-2176-3
https://doi.org/10.1007/978-1-4471-2176-3
https://dx.doi.org/10.1007/s007780050017
https://dx.doi.org/10.1007/s007780050017
https://doi.org/10.1007/s007780050017
https://doi.org/10.1007/s007780050017
https://dx.doi.org/10.5445/IR/1000128855
https://doi.org/10.5445/IR/1000128855
https://doi.org/10.1109/MODELS-C53483.2021.00064
https://dx.doi.org/10.1007/s10032-020-00361-1
https://dx.doi.org/10.1007/s10032-020-00361-1
https://doi.org/10.1007/s10032-020-00361-1
https://doi.org/10.1.1.527.2969

A Formalized Classification Schema for Model Consistency

[62] Sophie Schulz et al. “Continuous Secure Software Development and Analysis”. In: Pro-
ceedings of Symposium on Software Performance 2021. SSP’21. Nov. 2021. doi: 10.5445/IR/
1000143320.

[63] Stephan Seifermann et al. Detecting Violations of Access Control and Information Flow

Policies in Data Flow Diagrams. In: The Journal of Systems and Software 184 (2022). doi:
10.1016/j.jss.2021.111138.

[64] Marc Shapiro and Pierre Sutra. Database Consistency Models. In: Encyclopedia of Big Data
Technologies. Cham: Springer International Publishing, 2018, pp. 1–11. doi: 10.1007/978-3-

319-63962-8_203-1.

[65] Herbert Stachowiak. Allgemeine Modelltheorie. Wien: Springer Verlag, 1973.

[66] Matthew Stephan and James R. Cordy. “A Survey of Model Comparison Approaches

and Applications”. In: Proceedings of the 1st International Conference on Model-Driven
Engineering and Software Development - Volume 1: MODELSWARD, INSTICC. SciTePress,
2013, pp. 265–277. doi: 10.5220/0004311102650277.

[67] Perdita Stevens. Bidirectional model transformations in QVT: semantic issues and open

questions. In: Software and Systems Modeling 9.1 (Jan. 2010), pp. 7–20. doi: 10.1007/s10270-
008-0109-9.

[68] Perdita Stevens. “Bidirectionally Tolerating Inconsistency: Partial Transformations”. In:

17th International Conference on Fundamental Approaches to Software Engineering (FASE
2014). Vol. 8411. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2014, pp. 32–46. doi: 10.1007/978-3-642-54804-8_3.

[69] Perdita Stevens. Maintaining consistency in networks of models: bidirectional transfor-

mations in the large. In: Software and Systems Modeling 19.1 (Jan. 2020), pp. 39–65. doi:

10.1007/s10270-019-00736-x.

[70] Patrick Stünkel et al. Multi-Model Evolution through Model Repair. In: Journal of Object
Technology 20.1 (Jan. 2021). Workshop on Models and Evolution (ME 2020), 1:1–25. doi:

10.5381/jot.2021.20.1.a2.

[71] Carolyn Talcott et al. Composition of Languages, Models, and Analyses. In: Composing
Model-Based Analysis Tools. Cham: Springer International Publishing, 2021, pp. 45–70.

doi: 10.1007/978-3-030-81915-6_4.

[72] Sonya Voneva et al. “Optimizing Parametric Dependencies for Incremental Performance

Model Extraction”. In: Software Architecture. Cham: Springer International Publishing,

2020, pp. 228–240.

[73] Nils Weidmann, Suganya Kannan, and Anthony Anjorin. Tolerance in Model-Driven
Engineering: A Systematic Literature Review with Model-Driven Tool Support. Unpublished.
2021.

[74] Rebekka Wohlrab et al. “Improving the Consistency and Usefulness of Architecture

Descriptions: Guidelines for Architects”. In: 2019 IEEE International Conference on Software
Architecture (ICSA). Mar. 2019, pp. 151–160. doi: 10.1109/ICSA.2019.00024.

[75] Dengyong Zhou et al. “Learning with local and global consistency”. In: Advances in neural
information processing systems. 2004, pp. 321–328.

37

https://doi.org/10.5445/IR/1000143320
https://doi.org/10.5445/IR/1000143320
https://dx.doi.org/10.1016/j.jss.2021.111138
https://dx.doi.org/10.1016/j.jss.2021.111138
https://doi.org/10.1016/j.jss.2021.111138
https://dx.doi.org/10.1007/978-3-319-63962-8_203-1
https://doi.org/10.1007/978-3-319-63962-8_203-1
https://doi.org/10.1007/978-3-319-63962-8_203-1
http://books.google.com/books?vid=ISBN3-211-81106-0
https://doi.org/10.5220/0004311102650277
https://dx.doi.org/10.1007/s10270-008-0109-9
https://dx.doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/978-3-642-54804-8_3
https://dx.doi.org/10.1007/s10270-019-00736-x
https://dx.doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-019-00736-x
https://dx.doi.org/10.5381/jot.2021.20.1.a2
https://doi.org/10.5381/jot.2021.20.1.a2
https://dx.doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/978-3-030-81915-6_4
https://arxiv.org/abs/2106.01063
https://arxiv.org/abs/2106.01063
https://doi.org/10.1109/ICSA.2019.00024

	Introduction
	Contemporary Notions of Consistency
	Contemporary Consistency Relations
	Contemporary Classification Schemes

	Classification Schema
	Mathematical Preliminaries
	Formalization of Consistency Relations
	Classification Schema for Consistency Relations
	Abstraction
	Metalevel
	Position
	Observed Property
	Development Phases
	Quantification
	Gradual Consistency

	Example Scenarios
	Multi-View Modeling
	Metamodel Evolution
	Sketches and Informal Diagrams
	NL Descriptions
	Composition of Analyses
	Performance Modeling
	Variability
	Summary

	Illustrative Application to an Example Scenario
	Example
	Interpretation
	Mapping

	Discussion and Findings
	Threats to Validity
	Conclusion

