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Abstract To model convective heat transfer for a spatially periodic two-phase flow in a channel with large
length-to-hydraulic diameter ratio, a new concept, called periodic fully developed flow and heat transfer, is
proposed. After a few hydraulic diameter away from the channel inlet the flow characteristics are free from
entrance effects. For this region, the identification of the periodicity characteristics of the flow enables to reduce
the analysis of the flow field and temperature distribution to a single isolated module. Using this method the
flow of a train of large bubbles uniformly distributed along a 2 mm wide channel with square cross-section is
simulated. The convective heat transfer inside the channel due to a uniform wall heat flux is considered and the
modification of the temperature field due to the presence of the bubble is analyzed.

1 Introduction

Microfabrication techniques developed within last decades made possible the building of miniaturized
devices with high mixing and favorable heat transfer characteristics (Ehrfeld et al., 2000; Schubert et
al. , 2001). Consisting of large number of nominally identical flow channels with hydraulic diameter
of order of 1 mm or smaller, these devices are increasingly used in different fields of chemistry due
to their capabilities that are exceeding those of conventional macroscopic systems (Jensen , 2001).
Compact heat exchangers with enhanced heat transfer rates and micro-reactors with increased specific
interfacial areas, compared with classical devices, are only two examples of industrial applications,
where such kind of systems are intended to replace the existing technologies in order to increase the
efficiency. In many of these applications frequently gas-liquid two-phase flow occurs. Because the
importance of surface tension increases with decreasing channel size the hydrodynamics of gas-liquid
two-phase flow in small channels in principal differ from that in a macro-channel with direct impact
on the heat transfer characteristics of the flow. For design, optimization and safe operation of devices
built from micro-channels the understanding of the basic phenomena in a single channel is mandatory.

Our goal here is to define a method that enables the direct numerical simulation (DNS) of 3D
gas-liquid flows in rectangular mini-channels when heat transfer is considered. The direct numerical
simulations are performed with an extended version of our in-house computer code TURBIT-VOF,
which was originally developed for investigation of bubbly flow in large channels (Sabisch et al. ,
2001). The code is based on a volume-averaged set of equations for the entire domain, which ex-
presses the conservation of mass, momentum and enthalpy (Ghidersa, 2003). To account for the
phase-interface evolution the volume fraction of the continuous phase is tracked using a Volume of
Fluid method.

Small channels are characterized by large length-to-hydraulic diameter ratio, therefore, after a few
hydraulic diameters away from the channel inlet, the flow characteristics are free from entrance ef-
fects. For this region, the identification of the periodicity characteristics of the flow enables to reduce
the analysis of the velocity field to a single isolated module and use of periodic boundary conditions
to take in account the influence of the upstream and downstream flow (Ghidersa et al., 2004). In
contradistinction, the temperature distribution is not independent of the stream-wise coordinate even
if the flow is fully developed. However, when the heating of the channel is done by a uniform wall
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heat flux, the temperature could be decomposed in a linear variation along the channel and a reduced
temperature field characterizing the local distribution in the module. This method has been already
used successfully by Patankar et al. (1977) to model heat transfer for single phase flows in ducts with
stream-wise-periodic variations of the cross-sectional area. In section 2 this procedure is extended
to model periodic two-phase flows and a new concept, called periodic fully developed flow and heat
transfer, will be introduced. As typical example of periodic gas-liquid two-phase flow, the slug flow
in small channels is considered. In section 3 the flow of a train of large bubbles uniformly distributed
along a 2 mm wide channel with square cross-section will be simulated. The convective heat transfer
inside the channel due to a uniform, both axially and perimetrically, wall heat flux will be analyzed.
Finally, section 4 presents a summary and the conclusions.

2 Convective heat transfer for a spatially periodic two-phase flow

We consider the case of a slug flow of two incompressible fluids in a straight rectangular mini-channel.
The flow consists of a regular (periodic) train of bubbles which occupy most of the channel cross-
section and are often denoted as Taylor bubbles. The individual bubbles are separated by liquid slugs
which are, in narrow channels, free of smaller bubbles. This type of flow is also referred as bubble-
train (BT) flow (Thulasidas et al. , 1995).

Let us consider the case when the channel is heated/cooled by an axially uniform wall heat flux (q).
Since the flow is periodic with a periodicity length L it means that the temperature profiles for y,
y + L, . . . have the same slope at the wall1. Thus, in the case of the periodic thermally developed
regime the temperature profiles at the stream-wise positions y, (y + L), (y + 2L), . . . will have
identical shape and, for the case of heating, will be displaced one above the other by the same distance:

Tϕ(x, y + L, z) − Tϕ(x, y, z) = Tϕ(x, y + 2L, z) − Tϕ(x, y + L, z) = . . . ϕ = 1, 2 (1)

Further, for each phase ϕ, let us define:

θϕ(x, y, z) =
Tϕ(x, y + L, z) − Tϕ(x, y, z)

L
ϕ = 1, 2 (2)

and subdivide the temperature field in two components:

Tϕ(x, y, z; t) = yθϕ(x, y, z; t) + Θϕ(x, y, z; t) ϕ = 1, 2 (3)

Further on we will refer to θ as linear temperature coefficient and to Θ as the reduced temperature
field2. For now, θ is assumed to vary both spatially and in time, and it is defined separately for each
fluid ϕ.

The periodic fully developed heat transfer condition (1) implies that θϕ is periodic in stream-wise
direction (y), that is:

θϕ(x, y, z; t) = θϕ(x, y + L, z; t) = θϕ(x, y + 2L, z; t) = . . . ϕ = 1, 2 (4)

as well as the reduced temperature Θϕ:

Θϕ(x, y, z; t) = Θϕ(x, y + L, z; t) = Θϕ(x, y + 2L, z; t) = . . . ϕ = 1, 2 (5)

This means that, in case of heat transfer problems subject to (1) the temperature field can be described
using two periodic fields, one that takes in account the overall temperature variation along the channel
(θ) and the other (Θ) giving the temperature distribution due to the local heating.

1In this paper the channel is assumed to be parallel with y-axis with walls at x = 0, x = 1 and z = 1, z = 2.
2The term ”reduced” refers to the fact that, inside each module of length L the temperature θ has the same spatial

distribution.
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For each fluid ϕ, in the bulk region, the heat transfer and convection is governed by the local
enthalpy equation:

∂ρϕCp,ϕTϕ

∂t
+ ∇ · (ρϕCp,ϕTϕ�vϕ) =

1

Pe
∇ · (λϕ∇Tϕ) (6)

where the contribution of the pressure work and heat dissipation due to viscous forces in the energy
balance are neglected because the fluids are assumed to be incompressible. The volumetric heat
source term was omitted in (6). This has been done for a simpler presentation and because it does not
play any role in the development of the method provided that it varies periodically along the channel.
Using the decomposition (3) the previous equation becomes:

∂ρϕCp,ϕΘϕ

∂t
+ ∇ ·

(
ρϕCp,ϕΘϕ�vϕ − 1

Pe
λϕ∇Θϕ

)
= −ρϕCp,ϕvϕθϕ +

2

Pe
λϕ

∂θϕ

∂y

− y

[
∂ρϕCp,ϕθϕ

∂t
+ ∇ ·

(
ρϕCp,ϕθϕ�vϕ − 1

Pe
λϕ∇θϕ

)]
(7)

where vϕ is the component of the velocity �vϕ in stream-wise direction.
In this paper, we consider incompressible fluids only. Also, we assume that the temperature

variations are small and, therefore, the fluids properties can be considered as constant. Since all the
quantities and the fluid properties in the equation above are periodic in y with the same periodicity
length the last term in (7) has to be equal to zero:

∂ρϕCp,ϕθϕ

∂t
+ ∇ ·

(
ρϕCp,ϕθϕ�vϕ − 1

Pe
λϕ∇θϕ

)
= 0 ϕ = 1, 2 (8)

This represents the advection-diffusion equation for θϕ. It depends only on the flow characteristics
and there is no dependence on the reduced temperature Θϕ.

The equation for the reduced enthalpy Cp,ϕΘϕ is then

∂ρϕCp,ϕΘϕ

∂t
+ ∇ ·

(
ρϕCp,ϕΘϕ�vϕ − 1

Pe
λϕ∇Θϕ

)
= −ρϕCp,ϕvϕθϕ +

2

Pe
λϕ

∂θϕ

∂y
ϕ = 1, 2 (9)

Note that in this equation two additional terms appear. The first one (−ρϕCp,ϕvϕθϕ) represents the
influence of the heat convection while the other one ( 2

Pe
λϕ

∂θϕ

∂y
) takes in account the heat conduction

in stream-wise direction.

2.1 Interface jump conditions
To describe the behavior of the new quantities at the interface, jump conditions has to be specified.
For a two-phase system with reversible heat transfer at the interface the temperature is continuous
over the interface (Ishii , 1975), that is:

T1i = T2i (10)

Using the definition for the linear temperature coefficient and the fact that the flow is spatially peri-
odic, it implies that θ is also continuous:

θ1i = θ2i (11)

Introducing the temperature decomposition (3) in (10) and using the jump relation (11) the jump
condition for the reduced temperature is:

Θ1i = Θ2i (12)

which means that both θ and Θ fields are continuous in all the computational domain, the same as the
temperature.
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For the heat transfer problems, a second jump condition concerning the interface heat fluxes exists.
Using the Fourier law to express the heat flux, this jump condition is

−λ1
∂T

∂n

∣∣∣∣
1i

+ λ2
∂T

∂n

∣∣∣∣
2i

= 0 (13)

Since the flow is periodic it means that if (xi, yi, zi) is a point on the interface separating the two
fluids, the point (xi, yi + L, zi) is also an interface point and the jump condition (13) applies. Thus,
for the linear temperature coefficient one has:

λ1
∂θ1

∂n

∣∣∣∣
1i

= λ2
∂θ2

∂n

∣∣∣∣
2i

(14)

The interface jump condition for the flux of the reduced temperature can be obtained introducing the
decomposition (3) in (13). Using this procedure and taking in account the jump condition (14) one
has:

λ1
∂Θ

∂n

∣∣∣∣
1i

+ λ1θ1i�ey · �n = λ2
∂Θ

∂n

∣∣∣∣
2i

+ λ2θ2i�ey · �n (15)

One can see that the flux for θ across the interface is continuous while in the case of the reduced
temperature Θ a supplementary term appears.

2.2 Boundary conditions
In order to have a complete system, the boundary conditions have to be specified. For stream-wise
direction periodic boundary conditions for both θ and Θ are imposed since the heat transfer is fully
developed.

For the other two directions the channel is bounded by straight walls. Using the definition for θ
and the fact that the wall heat flux is uniform one gets:

λ1
∂θ1

∂n

∣∣∣∣
wall

= λ1
∂T1(x, y + L, z)

∂n

∣∣∣∣
wall

− λ1
∂T1(x, y, z)

∂n

∣∣∣∣
wall

= q(x, y + L, z) − q(x, y, z) = 0 (16)

which means that the linear temperature coefficient obeys an adiabatic wall boundary condition. In
the above formula it has been assumed that there is only fluid 1 near the walls (wetted walls).

For the reduced temperature, since the walls are parallel to the flow direction, one has:

λ1
∂Θ

∂n

∣∣∣∣
wall

= λ1
∂T

∂n

∣∣∣∣
wall

− yλ1
∂θ

∂n

∣∣∣∣
wall

= q (17)

where, n denotes the direction normal to the wall, i.e. either x or z. Note that the temperature T and
the reduced temperature Θ have the same wall boundary condition.

The equation (8) together with the boundary conditions (16) and the jump relations (11) and
(14) indicate that for the linear temperature coefficient one has the same type of problem as for the
temperature in an adiabatic flow. This implies that, for a fully developed convective heat transfer, θ is
constant both in time and space:

θϕ(x, y, z; t) = θ = const. (18)

Thus, it is not necessary to solve the partial differential equation (8). Instead, θ can be determined
directly from an algebraic equation, see subsection 2.4.



5th International Conference on Multiphase Flow, ICMF’04
Yokohama, Japan, May 30-June 4, 2004

Paper No.567

2.3 Volume-averaged equation for the reduced temperature
Since we use a finite volume method, we derive the governing equations by averaging the local equa-
tions over a fixed control volume Ω (see Sabisch et al. (2001) and Ghidersa (2003) for details). The
heat convection equation for the reduced enthalpy can be obtained applying the averaging operator

〈Ψ〉 =
∑

ϕ=1,2

1

V

∫
Ω

ΨXϕ(�x, t) dV (19)

to the local energy equation (9). In the above formula, Xϕ is the characteristic function for fluid ϕ
inside Ω

Xϕ(�x, t) =

{
1 , �x ∈ Ωϕ(t),

0 , otherwise.
(20)

where Ωϕ(t) is the that part of the control volume that is occupied by fluid ϕ and, V is the volume of
the domain Ω. Since θ is constant the last term in (9) vanishes and the equation is

∂

∂t
〈ρCpΘ〉 + ∇ ·

(
〈ρCpΘ�v〉 − 1

Pe
〈λ∇Θ〉

)
= −〈ρCpv〉θ − 1

Pe
(λ1 − λ2)θ

1

V

∫
Si

�ey · �n dS (21)

The last term in (21) appears because of the interface heat flux jump condition (15).

2.4 Linear temperature coefficient
To find the value of θ one can use the equation (21) where Ω is taken to be the entire computational
domain [0, Lx] × [0, L] × [0, Lz]:

∂

∂t

∑
ϕ=1,2

∫
Ω

ρϕCp,ϕΘϕXϕ dV +
∑

ϕ=1,2


∫

SL

ρϕCp,ϕΘϕvϕXϕ dS −
∫
S0

ρϕCp,ϕΘϕvϕXϕ dS




− 1

Pe

∑
ϕ=1,2


∫

SL

λϕ
∂Θϕ

∂y
Xϕ dS −

∫
S0

λϕ
∂Θϕ

∂y
Xϕ dS




=
1

Pe

Q

L
− θ

∑
ϕ=1,2

∫
V

ρϕCp,ϕvϕXϕ dV − θ(λ1 − λ2)

∫
Si

�ey · �n dS (22)

where S0 and SL designate the inflow and, respectively, the outflow cross sections, V is the volume of
Ω, and Si is the interface separating the two fluids. Q is the rate of heat addition through the channel
walls defined as

Q =
2(Lx + Lz)

LxLz

q (23)

Since the heat transfer is fully developed and all the quantities are periodic in stream-wise direction all
the terms on the l.h.s. of equation (22) are zero. Also, Si can be considered as a closed surface since
the bubbles along the channels have the same shape. This means that the last term in the equation is
equal to zero. Thus, for θ one has

θ =
1

Pe

Q

L
∑

ϕ=1,2

∫
V

ρϕCp,ϕvϕXϕ dV

(24)
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(a) NTIM=11800 (b) NTIM=13400

Figure 1: Temperature field in a longitudinal plane containing the channel axis for two different
instants in time.

2.5 Numerical method
To approximate numerically the equation (21) a finite volume procedure is used. In order to reduce the
oscillations of the solution near the interface the convective fluxes are constructed using an upwind
scheme. While a central differences approach would be stable only for Pe numbers smaller then
2, the upwind approximation is not limited by this parameter. For the conductive term, the heat
fluxes at the cell faces are approximated using a formula proposed by Patankar et al. (1977). This
formula computes the heat flux through a certain face of the cell exactly in the case when the interface
between the fluids and that face are coincidental. When the interface is cutting the cell the heat flux
is approximated assuming that each cell is filled with a fluid with the same properties as the mixture
from that cell. The time integration is done using an explicit third order Runge-Kutta scheme. Further
details on the numerical method can be found in Ghidersa (2003).

3 Results and discussions

This section presents the results of a simulation using the model introduced in section 2 as imple-
mented in our computer code TURBIT-VOF (Ghidersa, 2003) for the flow of a train of large bubbles
uniformly distributed along a 2 mm wide channel with square cross-section. The channel is vertical
and the fluids are moving co-currently in upward direction. The computational domain is a cube of
size 2 mm and the non-dimensional size is 1 × 1 × 1. This box is discretized by 64 × 64 × 64 uni-
form mesh cells. At the four side walls of the square channel an uniform heat flux is imposed while in
stream-wise direction the presence and influence of the neighboring unit cells is simulated by periodic
boundary conditions.

For this numerical simulation we take a density ratio of ρ2/ρ1 = 0.013, a viscosity ratio of
µ2/µ1 = 0.04, a specific heat capacity ratio of Cp,2/Cp,1 = 0.2401 and a thermal conductivity ra-
tio of λ2/λ1 = 0.0451. The Prandtl number for the liquid is Pr = 2.34 which means that for the gas
one has Pr = 0.5.

The simulation is started with gas and liquid at rest and a constant pressure drop in stream-wise
direction is imposed. Initially, the temperature in the channel is assumed to be uniform. The flow
is considered to be fully developed, both hydrodynamic and thermal, when the superficial velocity
becomes constant and the mean temperature in the computational domain is stationary.
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(a) Through the slug (b) Through the bubble

Figure 2: Isolines of the temperature field in a transversal plane at NTIM=11400.

In this paper we present only the results concerning the heat transfer. A detailed analysis of the
flow structure, bubble shape and film thickness can be found in Ghidersa (2003) and Ghidersa et al.
(2004). In Figure 1 the structure of the temperature field inside the bubble and in the liquid slug
is visualized. The presence of the gas in the channel modifies the temperature field as compared
to single phase heat convection. The isothermal lines show that gas has higher temperature in the
region where the bubble interface is closer to the walls. However, moving towards the center of the
channel the temperature decreases slower in the bubble than it does in the liquid phase. Since the heat
conductivity of the gas is lower than the one corresponding to the liquid the only explanation for this
behavior is the strong recirculation inside the bubble which transports the hotter gas near the interface
towards the center of the bubble. For the liquid slug this mixing effect is smaller and there is a region
in the center of the channel where the liquid remains colder. This can be observed also comparing
the temperature field in two cross-sections, one through the liquid slug (Fig. 2(a)) and the other at the
position, along the channel, where the bubble has the largest diameter (Fig. 2(b)). In these figures
the temperature isolines are represented using the same number of iso-levels between the maximum
and the minimum temperature. These limits are computed for the whole domain therefore one can
directly correlate the magnitude of the temperature gradient with the density of the isolines. Thus,
in the slug one can identify a region with large temperature gradients making the transition from the
higher temperature in the corners of the channel to the lower temperature in the central region. In
the cross-sections where the bubble is present the temperature gradients are larger in the liquid layer
surrounding the interface at the corners of the channel. Inside the bubble the gradient is much smaller
because of the heat convection due to inner recirculation.

An other interesting aspect about the transverse temperature distribution is the direction of the
temperature gradients. For the single phase heat convection problem, when the flow is laminar, the
heat transfer is done only by conduction in the direction perpendicular to the wall. The temperature
isolines are, in this case, concentric circles and the temperature gradient points toward the center of
the channel. For the bubble train flow, the isolines pattern changes. Because of the lateral movement
of the liquid induced by the passage of the bubbles, a part of the heat from the middle of the wall is
transported towards the channel corners. In the liquid slug (see Fig. 2(a)), looking along a diagonal,
the isolines are first concentric arcs with the center in the corner of the channel. Moving towards the
center of the channel, there is a region where the temperature is constant in the direction perpendicular



5th International Conference on Multiphase Flow, ICMF’04
Yokohama, Japan, May 30-June 4, 2004

Paper No.567

0.00 0.25 0.50 0.75 1.00

1.5

2.0

2.5

3.0

T*

w,max

y

(a)

0.00 0.25 0.50 0.75 1.00
0.4

0.5

0.6

0.7

0.8

T*

w,min

y

(b)

Figure 3: Normalized maximum and minimum wall temperature variation along the channel for two
different time-steps: (+): NTIM=11400; (×): NTIM=12600; continuous line: single phase flow.

(a) NTIM=11400 (b) NTIM=12600

Figure 4: Wall temperature (Tw) isolines at two different time steps.

to the diagonal while, close to the center the isolines form concentric circles. The same picture holds
in a cross-section through the bubble, the isolines being slightly deformed due to the presence of the
interface (see Fig. 2(b)). This pattern suggests that, compared to the single phase situation, the heat
transfer improves in the middle part of the wall while it diminishes in the corners of the channel. This
observation is confirmed by comparing the normalized maximum and minimum wall temperatures
given by

T ∗
w,max =

Tw,max − Tc

Tw,m − Tc

(25)

T ∗
w,min =

Tw,min − Tc

Tw,m − Tc

(26)

with the corresponding values for the single phase flow. In the formulas above Tc is the temperature
on the center line of the channel, Tw,m is the mean temperature at the wall and, Tw,max, Tw,min are
the maximum and, respectively, minimum temperature at the wall. In Figure 3 the variation along
the channel for T ∗

w,max (Fig. 3(a)) and T ∗
w,min (Fig. 3(b)) are presented. Two different time steps are
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considered: one (NTIM=11400) corresponding to the moment when the mixture temperature of the
unit cell is close to its maximum value and the other one (NTIM=12600) close to its minimum value.
The values of T ∗

w,max and T ∗
w,min for the single phase are represented with continuous line. From

this figures one can see that the normalized maximum wall temperature, which corresponds to the
temperature in the corner, is always larger in the case of bubble-train flow than when the single phase
flow is considered. For the normalized minimum wall temperature, corresponding to the temperature
in the middle of the wall, the values for bubbly flow are relatively close to the single phase value in the
region of the liquid slug and smaller in other parts of the computational domain. For easy reference
the position of the bubble and temperature isolines at the wall are given in Figure 4.

4 Conclusion

For spatially periodic two-phase flows in small channels a new concept to model convective heat
transfer, called periodic fully developed flow, has been introduced. Based on the periodical charac-
teristics of the flow, the velocity field analysis can be confined to a single isolated module. A similar
analysis is done for the temperature field, but the periodicity conditions are of a different nature. For
axial uniform wall heat flux the temperature itself is periodic, provided that a linear term related to
the bulk enthalpy change is subtracted.

Using this method, the bubble-train flow along a square channel with uniform wall heat flux has
been simulated. Both axial, and transverse temperature variation could be analyzed, and the changes
due to the presence of the gas bubble could be studied. Thus, in the liquid, an improvement of the
heat transfer in the middle of the channel faces could be observed due to the liquid movements toward
the channel corners where a decrease of the heat transfer characteristics could be seen. Inside the gas
bubbles the strong mixing has the tendency to reduce temperature gradients.

These results show that this new method is a valuable tool for the numerical analysis of spatially
periodic two-phase flows in channels with heat transfer. Using global quantities as input parameters
the method allows the reconstruction of the local flow or temperature field. For low mass fluxes the
temperature-mass analogy can be also used to compute the local concentrations of different species
in the channel. Here it is referred to the chemical substances that are passively transported by the
flow. When chemical reactions take place and new products are generated an extension of the actual
version of the code has to be done in order to account for these phenomena.

This numerical method is, however, restricted to spatially periodic flows only. This limitation is
quite severe when heat transfer is concerned. When phenomena like phase change at the interface
or exothermal reactions between reactants transported by the flow occur, the heat exchange depends
strongly on local temperature and can not be regarded as periodic anymore. To extend the applicability
of the code for more general cases the introduction of inflow and outflow boundary conditions is
mandatory to replace the periodic boundary conditions.

The absence of experiments from the literature, that could be used to validate the results for heat
transfer, represents, also, a sensible point of this work. Therefore, future experiments to verify the
numerical results measurements of wall temperature or temperature profiles inside the channel should
be performed.

Nomenclature

Cp specific heat
�ey unit vector in stream-wise direction
L periodicity length
�n normal vector to the interface
Pe Peclet number



5th International Conference on Multiphase Flow, ICMF’04
Yokohama, Japan, May 30-June 4, 2004

Paper No.567

Q rate of the heat addition through channel walls
q wall heat flux
Re Reynolds number
Si interfacial area
T temperature
t time
�v velocity field
V volume of the control domain
v stream-wise component of the velocity
X characteristic function for each fluid (phase)
x, y, z Cartesian co-ordinates

Greek symbols

λ heat conductivity
Ω control domain
Θ reduced temperature
θ linear temperature coefficient
ρ density

Subscripts

ϕ associated to phase ϕ
ϕi value at the interface associated to phase ϕ
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