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ABSTRACT 

 
Our research concerns the investigation of 

bubble-induced turbulence using direct numerical 
simulation (DNS) of bubbly two-phase flow. DNS 
computations are performed for the bubble-driven 
liquid motion induced by a regular train of 
ellipsoidal bubbles rising through an initially 
stagnant liquid within a plane channel with two solid 
walls. DNS data are used to evaluate balance terms 
in the exact conservation equation for liquid phase 
turbulence kinetic energy. The evaluation comprises 
single-phase-like terms (diffusion, dissipation and 
production) as well as interfacial terms. Special 
emphasis is placed on the procedure for evaluation of 
interfacial quantities. Quantitative analysis of the 
conservation equation of liquid phase turbulence 
kinetic energy shows the importance of the 
interfacial terms which are the only source term. The 
results are further used to validate closure 
assumptions employed in modelling of the liquid 
phase turbulence kinetic energy transport in gas-
liquid bubbly flows. In this context, performance of 
respective closure relations in the transport equation 
for liquid turbulence kinetic energy within the two-
phase k-ε approach is evaluated.  
 
1. INTRODUCTION 
 

The relative motion of bubbles through liquid 
causes velocity fluctuations in the continuous phase. 
These fluctuations are induced not only by the 
nonlinearity of the flow, but also by the discrete 
buoyancy distribution of the gas phase, the wake 
motion behind the bubbles and the deformation of 
bubble interfaces. Such an agitation of the liquid 
motion gives rise to Reynolds stresses and associated 
phenomena inherent to turbulence. The phenomenon 

is called bubble-induced turbulence (BIT). Although 
BIT shares with ordinary turbulence the fluctuating 
character, its structure is essentially different from 
the single phase turbulence.  

A large volume of experimental research 
covering various forms of bubbly flows has been 
published during last decades. In these investigations 
turbulence structure is considered as one of the key 
issues. Different trends have been observed. In most 
cases the liquid phase turbulence level is increased 
due to the bubble presence, but an unexpected 
phenomenon of turbulence suppression by bubbles 
is, also, reported (Serizawa, Kataoka and 
Michiyoshi, 1975).  

Numerical studies of the phenomenon of BIT 
have, also, been accumulating quite rapidly last years 
(a brief overview is given in section 5 of this paper). 
However, reliable and general models for turbulence 
in bubbly flows are still missing. In approaches 
currently used it is common to extend respective 
transport equations of well-established single-phase 
turbulence models by closure terms that account for 
interfacial effects. These interfacial closure terms are 
modelled more or less empirically with little 
possibility to include details of basic flow 
mechanisms.  

On the other side, significant progress has 
been achieved in analytical studies, i.e. in the 
derivation of basic equations of two-phase flows 
(Kataoka and Serizawa, 1989). Coupling this matter 
with recent great improvements in computer 
performances provided the basis for direct numerical 
simulations of two-phase flows (DNS). DNS of 
bubbly flow is based on local instantaneous field 
equations and auxiliary algorithms for tracking gas-
liquid interfaces and requires no empirical 
constitutive equations. Consequently, it offers a 
significant advantage in studying bubbly flow 
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dynamics, that is, the full information on the 
instantaneous three-dimensional flow field around 
bubbles and the interface topology is available. 
Although serious limitations concerning the number 
of bubbles that can be tracked are associated with 
DNS, this method opens a new promising way to get 
detailed insight into mechanisms governing BIT and 
validate existing mathematical models. Namely, 
important information on BIT can be obtained 
monitoring the effects of dispersed phase on simple 
well-investigated single-phase flows. Among these, 
the simplest case concerns studying liquid phase 
fluctuations induced by injection of gas bubble(s) 
into stagnant liquid since the generated fluctuating 
flow field is a result only of the bubble rise and the 
influence of the shear-induced turbulence is 
excluded. A prominent example of such a flow is 
encountered in bubble columns widely used in 
chemical and processing industry. 

In this context, we performed DNS of bubble 
driven liquid motion induced by a regular train of 
ellipsoidal bubbles rising in a rectangular channel. 
The data obtained are used for statistical analysis of 
liquid velocity fluctuations. In this paper we present 
a quantitative analysis of the conservation equation 
of liquid phase turbulence kinetic energy (kL). The 
presentation is organised as follows. In section 2 an 
outline of the methodology employed to perform 
DNS of the bubble-train flow is presented. Further, 
geometrical and physical input parameters are given. 
Section 3 deals with theoretical considerations of the 
exact kL equation. Methodology used for the 
evaluation of balance terms in this equation and 
corresponding  results obtained using DNS data on 
the bubble-train flow are presented in section 4. 
Comparison of balance terms in the exact kL equation 
with closure assumptions employed in the modelled 
form of this equation is given in section 5. All the 
results are accompanied by corresponding 
discussions. The paper is completed by conclusions. 
 
2. DIRECT NUMERICAL SIMULATION OF 

BUBBLE-TRAIN FLOW 
 
2.1. Mathematical and numerical background 
 

The direct numerical simulations are 
performed with our in-house computer code 
TURBIT-VOF (Sabisch et al., 2001). The code is 
based on a single set of balance equations for the 
entire domain which express conservation of mass 
(equation 1) and momentum (equation 2) for two 
immiscible incompressible continuous Newtonian 
fluids:   
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The set of equations is completed with the transport 
equation for the liquid volumetric fraction: 
 

( ) 0
u ff

t x
α

α

∂∂
+ =

∂ ∂
.        (3) 

 
In the equations above subscripts α and β denote 
components of Cartesian coordinates. The equations 
are given in non-dimensional form. The following 
scaling applies: 
 

*

*

refL
xx = ;    

*

*

refU
uu = ;       

*

**

ref

ref

L
Ut

t = ;    

*

*

Lρ
ρρ = ;     

*

*

Lµ
µµ =   and  

* ** *

* *2
L

L ref

p g xp
U
ρ
ρ
− ⋅

= , 

 
where *

refL  and *
refU  are reference length and 

velocity, respectively, and * indicates a dimensional 
variable. The reference Reynolds (Reref), Weber 
(Weref) and Eötvös (Eöref) number are defined as: 
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Using subscripts L and G to indicate quantities of the 
liquid and gas phase, respectively, the mixture 
velocity, density and viscosity are expressed as:  
 

(1 )L GL Gf u f uu ρ ρ
ρ

+ −
=  

(1 )L Gf fρ ρ ρ= + −  

(1 )L Gf fµ µ µ= + − . 

 
Note that Lu  and Gu  are not field quantities. 
However, when they are multiplied with f  and 
(1 )f− , respectively, the corresponding products are 
defined for all time and space domains. Therefore, 
when a mesh cell is fully occupied by the liquid 
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phase the expression for mixture velocity reduces to 
Lu u=  and in cells occupied only by the gas phase 
Gu u= . In interfacial cells where 0 1f< < , the 

local homogeneous model is employed, i.e. the 
equality of phase velocities is assumed L Gu u u= = . 
The same holds for pressure. 

The last term in equation (2) expresses the 
contribution of the surface tension force. There κ is 
the interface curvature, G Ln n n= = −  is the unit 
normal vector to the interface pointing from the gas 
into the liquid and ain is the interfacial area 
concentration. Details of derivation of equations (1)-
(3) are given in Wörner et al. (2001). 

To account for the phase-interface evolution 
the volume fraction of the continuous phase is 
tracked using Volume of Fluid procedure. The liquid 
volumetric fraction is advected using equation (3) 
while the interface within a mesh cell is 
reconstructed using the PLIC (Piecewise Linear 
Interface Calculation) method EPIRA (for details see 
Sabisch et al., 2001).  
  
2.2. Numerical setup 
 

With the term ‘regular bubble train’ we 
indicate a quasi-steady flow pattern where bubbles 
rise with the same velocity through the channel 
whose length is much larger than its hydraulic 
diameter. Bubbles have an identical shape and are 
uniformly distributed along the channel. In such a 
situation one can extract a unit cell containing a 
single bubble that fully characterises bubble-train 
flow. Taking the dimensions of the computational 
domain equal to the size of the unit cell (see Figure 
1), the bubble-train flow can be successfully 
simulated keeping the domain fixed and letting 
bubbles move through it. The presence and influence 
of the neighbouring unit cells can be taken into 
account imposing periodic boundary conditions in 
respective directions. The computational domain 
used in our DNS of bubble train flow is a cube of 
(non-dimensional) size Lx×Ly×Lz=1×1×1. Boundary 
conditions are no-slip ones at the lateral rigid walls 
(z=0 and z=1) and periodic ones in vertical (x) and 
span-wise (y) direction. The domain is discretized by 
643 uniform mesh cells. The following parameters 
are specified: reference length L*

ref=4m, reference 
velocity U*

ref=1m/s, gravity g*=9.81m/s2, density 
ratio ρG

*/ρL
*=0.5, viscosity ratio µG

*/µL
*=1, bubble 

Eötvös number EöB=3.065, and Morton number 
M=3.06⋅10-6. According to these values reference 
dimensionless numbers are computed: reference 
Eötvös Eöref=49.05, Weber Weref=2.5, and Reynolds 
number Reref=100.  

Initially, a spherical bubble of the diameter ¼ 
is positioned in the middle of the channel filled with 

stagnant liquid. Using the time step width ∆t=0.0001 
in total 65,000 time steps are computed. Within this 
time the gas-liquid system has reached the quasi-
steady state, where the mean velocity of the liquid 
phase and the bubble rise velocity can be considered 
as constant. Also, the bubble shape is steady: an 
axisymmetric ellipsoid with the axis aspect ratio 
1.635. Bubble rises along an almost rectilinear path. 
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Figure 1. Geometry of computational domain. 

 
3. CONSERVATION EQUATION OF LIQUID 

TURBULENCE KINETIC ENERGY  
 

Under the assumption of incompressibility  
liquid phase turbulence kinetic energy is defined as:  

 
'2 2L Lk u α= .     

 
For a gas-liquid flow, the production, 

dissipation and transport of the liquid phase 
turbulence kinetic energy, kL, and its interplay with 
flow parameters such as velocity field, phase 
distribution, and interfacial structures is 
mathematically described by the following balance 
equation (Kataoka and Serizawa, 1989): 
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This equation is obtained using basic 
conservation equations for the fluctuating 
components of mass and momentum whose 
derivation is based on the local instant and averaged 
formulations of gas-liquid two-phase flow. 
Therefore, the  equation (4) is the exact kL equation. 

The following notation is used. Subscript in 
denotes liquid phase quantities at the gas-liquid 
interface and ΦL is the characteristic function of the 
liquid phase. The single overbar indicates 

averaging and the double overbar indicates phase-
weighted averaging that is for an arbitrary physical 
quantity, AL, defined as: 

 

LL L LA A= Φ Φ . 
    

Fluctuating parts of  physical quantities (denoted by 
'  in equation 4) are evaluated as: 

 

LLL AAA −='   and  

LLinLin AAA −=' ,   
 
where AL and ALin are instantaneous values of 
considered quantity within the cell containing liquid  
and at the L side of the interface, respectively.  

On the right-hand-side of equation (4) two 
distinguishing groups of terms appear. The first one 
is the group of terms associated with the mean liquid 
volumetric fraction, LΦ . Except for being multiplied 
with LΦ , these terms are basically of the same form 
as the ones involved in the single-phase turbulence 
kinetic energy equation. Therefore, one can 
recognize diffusion, production and  dissipation 
term. For this reason these are called single-phase-
like terms. The last two terms associated with the 
interfacial area concentration, ain, represent 
interfacial turbulence transport due to bubbles and 
are called interfacial terms.  
 
4. EVALUATION OF BALANCE TERMS IN 

EXACT kL EQUATION 
 
4.1. Averaging procedure 

 
In the problem considered the bubble rises in 

vertical (x) direction. Since all the analyses 
performed concern developed flow regime, the mean 
velocity of the liquid phase in x direction is constant, 
i.e., averaged quantities show no gradients in this 
direction. Besides this, when periodic boundary 
conditions at the inlet/outlet of the channel are taken 
into account, one may claim that the turbulence 
structure along a certain x line (y=const, z=const) is 

homogeneous. In such a situation averaging along x 
lines can be applied. In the context of the equation 4 
this line averaging corresponds to the single 
overbar). The procedure is here demonstrated on the 
example of evaluation of the mean liquid volumetric 
fraction: 

 

1

( , ) ( , , )
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L L
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j k f i j k IM
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where: f is the local liquid volumetric fraction, IM is 
the number of cells in x direction and i, j, k are mesh 
cell indices in x, y and z direction, respectively.  
 
4.2. Evaluation of liquid phase interfacial 

quantities  
 

Using the DNS data provided by TURBIT-
VOF in procedures described in the text above one 
can evaluate all the single-phase-like terms in 
equation (4). On the other side, for the evaluation of  
interfacial terms some additional information is 
necessary. Namely, TURBIT-VOF simulations 
provide the data on the pressure and velocity in 
interfacial cells. However, since these cells are 
occupied with two-phase mixture, and locally 
homogeneous two-phase flow model is used, these 
data can not be used as representative quantities of 
the liquid phase at the interface.  

The problem of determining the liquid 
interfacial pressure, pLin, is solved assuming that it is 
equal to the pressure in a neighbouring cell fully 
occupied with liquid phase.  

The procedure used for evaluation of the 
liquid phase interfacial velocity, Linu , is more 
complicated and is here shortly outlined. Since no 
phase change is considered, the phase interfacial 
velocities are equal and the following notation is 
used hereafter: 

 
 Lin Gin inu u u= = .            (5) 

 
The velocity inu can be split into its tangential,  intu , 
and normal, innu , component: 

 
in int innu u u= + .                   (6) 

 
Tangential component is defined to be equal to the 
tangential velocity of a fluid particle lying at the 
interface (Ishii, 1975). As in our case interfacial cells 
contain two-phase mixture, intu  is set to be equal to 
the tangential component of the mixture velocity tu : 

 

( )int t L Lu u u u n n= = − ⋅ ⋅ .          (7) 
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The normal component of interfacial velocity can be 
presented in the following way: 
 

( )inn in L Lu u n n= ⋅ ⋅ .             (8) 

 
The projection of interfacial velocity on the normal 
vector is given as (Kataoka, 1986): 
 

( ) ( ) ( )2 2 2
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where: ( ), , , 0F x y z t =  is the equation of the gas-
liquid interfacial surface. In TURBIT-VOF at any 
time step, the interface is defined via the unit normal 
vector, ( ), ,L Lx Ly Lzn n n n , and a point lying on the 

interface, M(bx,by,bz) (Sabisch et al., 2001):  
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Therefore, the problem of determining F t∂ ∂  arises. 
The procedure applied for solving this problem is as 
follows. Consider two subsequent time steps t0 and 
t1=t0+∆t in which the interfacial surface passes 
through the point M0(bx0,by0,bz0) and through the 
point M1(bx0+δx,by0+δy,bz0+δz), respectively, i.e. the 
surface equation satisfies: 
 
( )0 0 0 0, , , 0x y zF b b b t =                    (11) 

( )0 0 0 0, , , 0x y zF b x b y b z t tδ δ δ+ + + + ∆ = .    (12) 

 
If the distance between M0 and M1 is small, function 
F given by equation (12) can be expanded into a 
Taylor series. Assuming that terms of second and 
higher order in this expansion can be neglected, after 
some simple mathematical rearrangements, one 
obtains the expression for the time derivative of 
function F needed in equation (9): 
 

( )0 0 0
1

Lx Ly Lz
F n x n y n z
t t

δ δ δ∂
= − + +

∂ ∆
.      (13) 

 
In practice, the evaluation of equation (13) 

from our DNS data is not straightforward. The 
problem appears because the data in restart files are 
available only for certain time instances (here for 
every 500th). The data required in equation (13), i.e. 
coordinates of the point M1 are determined as 
follows. Firstly, the advection algorithm 
implemented in TURBIT-VOF is employed. After 
this, the data on liquid volumetric fraction at time 

t0+∆t are known and the TURBIT-VOF 
reconstruction step can be performed providing the 
information on position of the point  M1.  

 
4.3. Balance of kL equation for bubble-train flow 
 

Before presenting results for the balance terms 
in the kL equation we give profiles of turbulence 
kinetic energy itself. Thus, in Figure 2 wall-normal 
profiles of kL evaluated using the DNS data on the 
bubble-train flow are presented. 

 

Figure 2. Wall-normal profiles of turbulence kinetic 
energy (displayed with dimension [m2/s2]) for the 
following span-wise positions, y:  0.492  0.523 

 0.555  0.586  0.617  0.648.  
 
In Figure 3 wall-normal profiles of the terms 

on the right-hand-side of the exact kL equation for 
different span-wise positions are presented. The 
following can be observed. Profiles of all the terms 
are symmetric with respect to the channel axis. Non-
zero values of all the terms are noticed only in the 
central part of the channel, i.e. in the domain where 
bubbles are rising. Strong gradients of the liquid 
phase quantities in the region between the part of the 
channel through which bubbles rise and the one that 
is always occupied with liquid phase cause sharp 
peaks of all the terms at these locations. These peaks 
are especially remarkable for the diffusion term. In 
Figure 3 one can see that both, the profiles of the 
mean gas volumetric fraction, 1G LΦ = −Φ , and the 
balance terms, are continuous, but not continuously 
differentiable. Consequently, the peaks are expected 
to be reduced in a bubbly flow with smoother 
profiles of GΦ , i.e. when instead of the bubble-train 
a bubble swarm flow is considered.  

The term that is called production, and in 
shear flows is always positive, is negative here. 



 

6 Copyright  2003 by JSME 

  

  

  
Figure 3. Wall-normal profiles of balance terms in equation (4) calculated for different span-wise positions. 
Legend:  diffusion,  production,  dissipation,  interfacial terms calculated from equation (4)  interfacial 
terms estimated from equation (14). Balance terms from kL equation are displayed with dimension [m2/s3]. Mean 
value of gas phase volumetric fraction is represented by solid red line. 
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Although this result can seem surprising and bring 
into discussion the name of this term, physics lying 
behind it is easy to understand taking into account 
that the movement of the liquid phase is caused by 
rising bubbles, i.e. that the energy in the liquid flow 
is transferred from the fluctuating velocity field 
caused by moving bubbles to the mean flow.  

Taking into account that the diffusion term 
does not have any net contribution, but represents the 
redistribution of turbulence kinetic energy over  the 
flow domain, the following can be stated. In the case 
of the bubble driven liquid motion considered here 
the turbulence kinetic energy of liquid phase is 
gained only by interfacial terms, while it is lost not 
only through the dissipative, but also through the 
production term (magnitude of production is lower 
than that of dissipation). This conclusion confirms 
the importance of studying the interfacial terms. 

For a fully developed flow the magnitude of 
the terms on the left-hand-side of equation (4) is 
approximately zero. Consequently, the magnitude of 
interfacial terms can be estimated via the sum of the 
single-phase-like terms, i.e.: 

 
( )balanceIF D P ε= − + + ,                (14) 

 
where D is diffusion, P is production and ε is 
dissipation term. Comparison of results obtained 
applying equation (14) with the interfacial terms 
evaluated according to equation (4) shows good 
agreement in the central part of the channel. 
Discrepancies appear at the bubble hips due to 
already mentioned strong gradients of liquid phase 
quantities in these regions. This situation becomes 
evident in Figure 3 in the graph for span-wise 
position y= 0.648. 

5. EXACT VERSUS MODELLED kL 
EQUATION 

 
In engineering applications turbulence models 

with a modelled form of liquid phase turbulence 
kinetic energy equation are employed. Among these 
the most popular approach employs the two-phase k-
ε model that is derived by an extension of the well 
known single-phase k-ε  model. Turbulence kinetic 
energy equation in the two-phase k-ε  model contains 
closure assumptions for diffusion and production 
terms (dissipation is modelled by separate transport 
equation) and a model term that accounts for the 
existence of gas-liquid interfaces. A short overview 
of corresponding approximations follows. 

 
5.1. Overview of closure assumptions in modelled  

kL equation 
 

Closure assumptions used for modelling the 
production term are given in Table 1 and the ones for 
the diffusion term in Table 2. The following notation 
is used: I is the unit tensor, LS αβ  is the mean strain 
rate imposed to the liquid phase and t

Lν  is the eddy 
viscosity expressed in the same way as in the single-
phase k-ε model: 20.09 /t

L L Lkν ε= . It is noted that, 
due to the normalisation, reference Reynolds number 
appears instead of the molecular viscosity.  

Several authors dealt with modelling 
interfacial terms. All of them use the approach that 
the interfacial terms in kL equation can be expressed 
as the work of interfacial forces. In these models the 
contribution of the work of drag force, WD, is 
considered to be dominant one. 

 
Table 1. Closure assumptions for production term used in kL equation of two-phase k-ε  model. 
 Reference Production term [-] 

P1 
Troshko and Hassan, 2001; 
Morel, 1997; 
Hill et al.,1995; 

22
3

L Lt t
LL L L L L

u uS k k I
x x

α α
αβ

β β

α ν ν
  ∂ ∂

− +   ∂ ∂   
 

P2 de Bertodano et al., 1994;  
Boisson and Malin, 1996; Lain et al., 2001 ; 

2 Lt
LL L

uS
x

α
αβ

β

α ν ∂   ∂
 

P3 
Pfleger and Becker, 2001;  
Grienberger and Hofmann, 1992; 
Svendsen et al.,1992; 

12 Lt
LL L

ref

uS
Re x

α
αβ

β

α ν
   ∂

+    ∂   
 

 
Table 2. Closure assumptions for diffusion term used in kL equation of two-phase k-ε  model. 
 Reference Diffusion term [-] 

D1 
Lain et al.,2001; Pfleger and Becker,2001;  
Svedsen et al. 1992;  
Grienberger and Hofmann, 1992; Hill et al. 1995; 

1 t
L L

L
ref k

k
x Re xβ β

να
σ

  ∂ ∂
⋅ + ⋅   ∂ ∂   

 

D2 Lopez de Bertodano et al.,1994; Morel, 1987;   
Troshko and Hassan, 2001; Boisson and Malin, 1996;  

t
L L

L
k

k
x xβ β

να
σ

 ∂ ∂
⋅ ⋅  ∂ ∂ 
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Table 3. Contribution of the work of drag force in interfacial terms  
Reference WD [-] D

LM α [-] CD [-] 

Morel, 1997 
2 ( )
3 B LEö f α⋅  

de Bertodano et al.,1994 

D
RLM u αα  

not given 
Pfleger and Becker, 2001 1.44 D

RL LM u ααα  

3
4

D
R RG

b

C U u
D

αα  

0.44 

Svendsen et al., 1992 0.75 D
RLM u αα  not given 

Hill et al., 1995 
3 2 ( 1)
4 0.3

RG D G
R L t

b ref L G

C u xU k C
D Re

α αα α
α α

 ∂ ∂
+ −  

 
 

not contained 
explicitly  

in expression  
for WD 

2 ( )
3 B LEö f α⋅  

 
Different approaches used to express WD are listed in 
Table 3. The following notation is used: 

R R RU u uβ β=  is the intensity and R G Lu u uα α α= −  
is α component of the mean relative velocity, 

LLα = Φ  and 1 LGα = −Φ  are volumetric fraction of 
the liquid and gas phase, respectively; CD is the drag 
coefficient and Db denotes the equivalent bubble 
diameter. Function f(αL) is defined as:  

 
{ }21.3 1.5( ) (1 17.67 ) (18.67 )L L Lf α α α= + . 

 
For the definition of Ct in model of Hill et al. (1995) 
see the corresponding reference. 

The contribution of the work of other 
interfacial forces is neglected by most of the authors. 
Only Morel (1997) took into account work of the 
added-mass force: 
 

( )1 1 2 .
2

G LAM G G L
G L G

L

D u D uW u u
Dt Dt

α α
α α

α α
α

 +
= − − 

 
 

 
 
5.2. Validation of closure assumptions employed 

in modelled kL equation 
 
Using DNS data on bubble-train flow both the 

single-phase-like (production and diffusion) and 
interfacial terms are evaluated employing the closure 
assumptions presented in Tables 1-3. When  results 
are compared with terms evaluated via the exact kL 
equation the following can be seen.  

According to all the closure assumptions listed 
in Table 1 positive values of production term are 
evaluated, that is opposite to the exact one which is 
always negative (see Figure 4). The exact production 
term is almost zero in the central part of the channel. 
On the other side non-zero values within this domain 
are evaluated by models, especially when the 
molecular viscosity is taken into account (model P3 
in Table 1). 

In Figure 5 the comparison between the wall-
normal profiles of the exact and modelled diffusive 
term is given. A strong underestimation of this term 
is obtained  when closure relations given in Table 2 
are employed. Analysing the profiles of sub-terms 
contained in the exact diffusive term, we observed 
that the pressure correlation dominates the triple 
correlation and molecular diffusion. In k-ε model the 
pressure diffusion term is, however, grouped with 
the triple correlation and the sum assumed to behave 
as a gradient-transport process: 
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∂
. 

 
From the results presented here the following 

can be stated: the closure relation for pressure 
correlation used in the k-ε model is not appropriate 
for bubble driven liquid flows. A similar observation 
was reported by Wörner and Grötzbach (1998) who 
analysed DNS data on the single-phase natural 
convection in horizontal fluid layers. 

Finally, some encouraging results concerning 
modelling interfacial terms are presented in Figure 6. 
Namely, when the profiles of these terms evaluated 
from the model of Morel (1997) are compared to the 
ones obtained according to the exact expression, 
great discrepancies are not observed. Taking into 
account the high lateral inhomogenity of the flow 
field considered here (only one bubble within 
computational domain), one can expect that the 
model of Morel (1997) will give even better results 
for the case of the liquid motion driven by bubble 
swarms.  

It is noted that the contribution of the work of 
added-mass force is an order of magnitude lower 
than that of drag force. This result seems reasonable 
since the evaluation is performed only for the steady 
flow regime.  

Both the model of Hill (1995) and the model  
of Pfleger and Becker (2001) underestimated the 
magnitude of interfacial terms.  
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Figure 4. Wall-normal profiles of production term 
(dimension [m2/s3]) at y=0.586. Exact term is denoted 
by ■ and models from Table 1 by:  ▲ P1  P2  P3.  

Figure 5. Wall-normal profiles of diffusion term 
(dimension [m2/s3]) at y=0.586. Exact term is denoted 
by ■ and models from Table 2 by:   D1 ▲ D2.  

  

  
Figure 6. Wall-normal profiles of interfacial terms (dimension [m2/s3]) at different span-wise positions, y.  
indicates exact term. Model assumptions listed in Table 3 are denoted as:  Morel (1997)  Pfleger and Becker 
(2001)  Hill et al. (1995). The black solid line represents mean gas volumetric fraction. 
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Comparison of forms of models proposed by Morel 
(1997) and Pfleger and Becker (2001) and their 
performances for the case of the bubble-train flow 
revealed the following. In both approaches the same 
definition of the drag force is used. Pfleger and 
Becker (2001) try to incorporate the characteristics 
of the flow introducing liquid volume fraction, αL, in 
the expression for the work of the drag force, WD. On 
the other side, they use the constant value of the drag 
coefficient, CD=0.44. Morel (1997) applies 
‘standard’ definition of the work of the drag force. 
However, through the correlation for CD not only the 
global flow characteristics are  taken into account 
(through αL and αG), but also some of the local 
details concerning bubbles (through EöB). Since this 
approach gave better results a conclusion can be 
drawn: in the development of improved model 
assumptions for evaluation of interfacial terms in 
modelled turbulence kinetic energy equation details 
of local flow features should be incorporated as 
much as possible. 
 
6. CONCLUSION 
 

The present paper deals with the quantitative 
analysis of the conservation equation for the 
turbulence kinetic energy of the liquid phase (kL 
equation). According to this equation there are two 
governing mechanisms which determine the 
turbulence characteristics. The first group of terms is 
associated with liquid phase volumetric fraction and 
includes turbulence energy diffusion, dissipation and 
production terms. The other group of terms is 
associated with the interfacial area concentration and 
is thus peculiar to two-phase flow systems. 

To provide the data for the analysis, direct 
numerical simulations of a regular train of ellipsoidal 
bubbles rising through an initially stagnant liquid are 
performed using the computer code TURBIT-VOF.  

The analysis of the budget of the liquid phase 
turbulence kinetic energy reveals the importance of 
interfacial terms. Namely, these terms are the only 
source of turbulence kinetic energy. Surprisingly, the 
production term is negative. In the diffusive term the 
contribution of the pressure correlation is dominant.  

The present analysis is further used for 
scrutiny and validation of closure assumptions 
employed in kL equation of two-phase k-ε model. As 
concerns the case of the bubble-train flow studied 
here, the conventional modelling of production and 
diffusion terms totally fails: the production term 
predicted by models is positive while it should be 
negative and the diffusive term is strongly 
underestimated. When modelled interfacial terms are 
tested against the exact ones the importance of taking 
into account local flow details is recognised. The 
model of Morel (1997) includes some of these 
information through the correlation for coefficient of 
the drag force. The interfacial terms evaluated using 

this model showed rather good agreement with the 
exact ones. Closure assumptions used by other 
authors did not perform well.  

Finally, one can argue that the case of regular 
bubble train considered in this paper is somewhat 
academic and this can be the reason why certain 
models do not perform well. However, this flow 
configuration is convenient for developing the 
computational tool to perform the quantitative 
analysis of the exact kL equation and the validation of 
closure relationships employed in its modelled form. 
In future work we intend to apply the presented 
methodology to the case of liquid motion induced by 
a rising bubble swarm. 
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