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Abstract—There is an increasing demand for next-generation
flexible electronics in emerging low-cost applications such as smart
packaging and smart bandages, where conventional silicon elec-
tronics cannot enter due to cost and form factor. In these domains,
ultra-low-cost, high flexibility, and customizability are required.
In this regard, printed electronics emerge as a complementary
solution offering the aforementioned properties. To respect the
constraints in those application scenarios and equip printed
devices with the fundamental capability to process information,
analog printed neuromorphic circuits offer multiple advantages,
including strong expressiveness, streamlined circuit primitives,
and a highly efficient machine learning-based design process. In
this work, we focus on designing low-power printed neuromorphic
circuits at the algorithmic level. By developing accurate power
models for the circuit primitives, the power consumption can be
considered into the design process. Subsequently, Pareto analysis
is employed to examine the relationship between accuracy and
power consumption. Experimental results reveal that, with the
proposed approach, 2× reduction of the power consumption can
be realized while maintaining 95% of classification accuracy. This
approach has significant implications for the future development
of energy-efficient printed neuromorphic circuits and their poten-
tial applications in IoT and AI intersections.

I. INTRODUCTION

As the proliferation of the Internet of Things (IoT) and
artificial intelligence (AI) continues, numerous emerging appli-
cations, including smart packaging [1] and smart bandages [2],
necessitate the implementation of ultra-low-cost, super-soft, and
highly customizable electronics for the measuring and process-
ing signals at the edge [3]. However, even the cheapest tradi-
tional silicon-based electronics, such as Application-Specific
Integrated Circuits (ASICs)1 or Micro-controller Units2, are
unable to achieve the desired cost efficiency and flexibility.
In this regard, printed electronics (PE) is considered as a
viable complementary solution. Since PE can be manufactured
additively, highly bespoke circuits can be fabricated at (sub-
cent) ultra-low costs, regardless of the volume of demand.
Furthermore, by selecting appropriate materials and substrates,
printed devices can also exhibit highly flexibility [4, 5] and bio-
compatibility [6].

To provide printed devices with the foundational capacity to
handle basic sensor processing tasks, such as classification, the
incorporation of printed computing circuits become necessary.

♣Authors contributed equally to this work.
1https://www.sigenics.com
2https://pic-microcontroller.com/world-top-10-cheapest-microcontrollers-mcus

Considering the characteristics of PE and the necessity for low-
cost in the application scenario, analog computing is typically
adopted. Because it can significantly reduce the device counts
by eliminating various components, such as analog-digital con-
verters (ADCs), and simplifying arithmetic operations. Among
the various analog computing paradigms, analog neuromorphic
circuits [7] are deemed a favorable option owing to their
strong (nonlinear) expressiveness [8], streamlined circuit prim-
itives, and machine learning (ML) based off-device design and
optimization. Printed neuromorphic circuits refer to printed
circuits that perform equivalent operations to those in articifial
neural networks (ANNs), primarily including weighted-sums
and nonlinear activations. The weighted-sum operations are
realized through resistor crossbars, while nonlinear activations
are generally facilitated by inverter-based circuitry. In addition,
as crossbars can only emulate positive weights, negative weight
circuits for converting the inputs to negative ones are also
indispensable.

The design of low-power electronics an ongoing area of
interest, as it increases battery life and diminishes reliance
on high-capacity power suppliers, which is critical for mobile,
portable, and edge devices. Although many studies have been
conducted for the low-power design of traditional electron-
ics [9, 10], research for printed analog neuromorphic circuits
has predominantly concentrated on printing technologies and
materials [11], device and circuit configuration [7], depend-
ability design [12], etc. In contrast, there has been a relative
scarcity of studies aimed at designing energy-efficient printed
neuromorphic circuits.

In this work, we present an approach for reducing the power
consumption of given printed neuromorphic circuits from al-
gorithmic level. By leveraging circuit principles and SPICE
simulations, we establish accurate power consumption models
for resistor crossbars and nonlinear circuits, which allows for
estimating the power of the circuits during the designing and
training phase. By modifying the objective of the circuit design,
the power consumption of the circuit can be optimized in
consideration of different trade-offs with respect to the circuits’
performance (e.g., accuracy in classification task). Ultimately, a
Pareto front is employed to enable the selection of the optimal
accuracy-power trade-off based on design requirements.

In short, the contributions of this work are summarized as
follows:

https://www.sigenics.com
https://pic-microcontroller.com/world-top-10-cheapest-microcontrollers-mcus
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Fig. 1. Schematic of typical printing technologies: (a) gravure printing and
(b) inkjet printing.

• We modify the structure of printed neuromorphic circuits
to enable lower power consumption.

• We develop accurate and differentiable power consump-
tion models for printed crossbars and printed nonlinear
circuits.

• We use the aforementioned models to estimate the power
consumption and modify the design objective to jointly
optimize for low energy consumption and circuit perfor-
mance (e.g., accuracy).

• We train a great number of models to examine the trade-
off between accuracy and power consumption. This allows
us to identify Pareto-optimal solutions between accuracy
and power consumption.

The experiments demonstrate that 2× reduction in power
could be achieved, while maintaining 95% of the baseline
classification accuracy.

The rest of this paper is structured as follows: Sec. II in-
troduces PE, printed neuromorphic circuits, and related works.
Sec. III describes the development of power models and their
integration into the design objective of the printed neuromor-
phic circuits. In Sec. IV, the proposed approach is evaluated and
discussed. Finally, Sec. V concludes this work and discusses
possible future works.

II. PRELIMINARIES

A. Printed Electronics

Printed solution-processed electronics (PE) is an additive
manufacturing process that encompasses a set of emerging tech-
nologies. Compared to conventional lithograph-based silicon
electronics, PE requires less infrastructure and procedures for
fabrication, and thus, exhibits lower manufacturing cost. By
selecting appropriate printing technologies, printed electronic
devices can be adapted to various production quantities and
various requirements on device precision. In addition, diverse
selections of printing materials can provide printed devices
with important features in next-generation electronics, such
as flexibility [4] and bio-compatibility [6]. These unique ad-
vantages make PE a strong competitor to traditional silicon-
based technologies in numerous emerging IoT applications,
such as wearables devices [13], Radio-Frequency identification
(RFID) [14], disposable electronics [15], and implantable sen-
sors [16].

Although the best performance of printed devices is generally
achieved using vacuum-deposited highly purified molecules,
solution-processed methods like spin-coating and inkjet print-
ing have gained significant interest due to their simple fabrica-
tion processes and therefore low manufacturing cost. Printing
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Fig. 2. Schematic of a printed nEGT: (a) top view and (b) front view.

technologies can be broadly divided into two categories based
on production scale: a) replication printing, such as gravure
printing (Fig. 1, left) and b) jet printing, such as inkjet printing
(Fig. 1, right). The former is designed for high-volume printing,
while the latter is suitable specifically for manufacturing highly
customized circuits with low quantity demand. Hence, by ratio-
nally selecting and combining different printing technologies,
PE can effectively cater to the requirements of manufacturing
devices with different quantities and types.

Most state-of-the-art inkjet printed field-effect transistors
(FETs) are implemented using organic materials, which use
lithographically structured organic semiconductors as channels
between source and drain electrodes. Generally, organic FET
(OFET) structures are based on P-type materials, which have
very low field-effect mobility [17] and operate at a high
supply voltage range (≥ 25V). Consequently, OFET technology
exhibits limited attractiveness for the intended application do-
mains of PE, as the electronics in these scenarios are generally
powered by energy harvesters or low-capacity power suppliers.
Therefore, the low-power devices are more favored. In this
respect, inorganic oxide semiconductors are more feasible
candidates [18]. Current research in inorganic PE is focused
on inkjet printing using N-type Electrolyte-Gated Transistor
(nEGT) channels (Fig. 2), as no reliable P-type EGT has been
reported yet [17, 19]. This may be due to the band-structure of
electrons and holes, as the metallic oxide’s band structure favors
high field-effect charge carrier mobility for electrons compared
to holes. Owing to their high gate-capacitance, nEGTs can be
operated at a supply voltage of sub-1V, making them well-
suited for applications powered by low-capacity batteries or
reliant on energy harvesting systems.

B. Printed Analog Neuromorphic Circuits

To tackle challenges in targeted application domains, such as
determining fruit ripeness [1], monitoring wound healing [2],
or detecting human stress levels [20], printed circuits should be
equipped with the foundational computing capabilities. Since
the target tasks of PE generally exhibit low complexity and that
PE is characterized by the large feature sizes, printed computing
circuits should be designed with a few device counts. In this
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(b) Negative weight circuit
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(c) Printed tanh-like circuit
negative weight circuit printed tanh-like circuit

(a) Exemplary printed neuron
Fig. 3. Schematic of printed neuromorphic circuits. (a) Example of a 3-input and 3-output printed neuron based on crossbar array. (b) Schematic of inverter-based
negative weight circuit. (c) Schematic of inverter-based printed tanh-like circuit.

regard, the circuits are favored to process signals directly in the
analog domain, as the analog approach enables the exclusion
of ADCs and significantly reduces the need for hundreds of
transistors in digital circuits [7].

Within the realm of analog computing approaches, neu-
romorphic computing has emerged as one of the most fa-
vored solutions. This is primarily due to the development of
AI, where ANNs have demonstrated excellent capabilities in
solving highly complex problems [21]. More notably, these
powerful capabilities rely solely on a series of simple primitive
operations, namely weighted-sum operations and nonlinear
activation functions. Therefore, this streamlined but efficient
computing paradigm has resulted in a growing interest in
printed neuromorphic circuits.

1) Hardware Primitives: Fig. 3 exemplifies the circuit
schematics of a neuron in printed neuromorphic circuits.
Fig. 3(a) represents a printed neuron with 3-input and 3-
output based on crossbar array and printed tanh-like circuits
(red blocks). Some negative weight circuits (blue blocks) are
also incorporated in case required. Fig. 3(b) and (c) show
the specific schematics of the negative weight circuit and the
printed tanh-like circuit. In the following, we will provide a
detailed introduction of these circuit primitives.

a) Crossbar array: The array-like structure in Fig. 3(a)
shows the most fundamental architecture in printed neuromor-
phic circuits, which is the resistor crossbar array, resembling
the weighted-sum operations in ANNs. This structure has been
widely adopted in various applications, including in-memory
computing [22] and ReRAM-based accelerators for ANNs [23].
According to Kirchhoff’s law [24],

∑
j

V j
in − V 1

z

RC
j1

+
Vb − V 1

z

RC
b1

− V 1
z

RC
d1

= 0.

By expressing the resistance R as the corresponding conduc-
tance g = 1/R and fixing Vb = 1V, this equation can be
formulated to

V 1
z =

∑
j

gCj1
G1

V j
in +

gCb1
G1

, (1)

where G1 refers to the summed conductance of the first row
in the crossbar array, i.e.,

∑
i g

C
i1 + gb1 + gd1. In this case, the

output voltage V 1
z can be seen as the weighted-sum of the input

voltages V j
in, with conductances representing the weights and

bias. Therefore, by designing proper conductance values, the
desired weights and biases can be implemented.

b) Negative weight circuit: Since the conductances of the
crossbar resistors can only represent positive weights, some
resistors in Fig. 3(a) are prepended by inverter-based negative
weight circuits, see Fig. 3(b) for detailed circuit schematic.
This is done to emulate a multiplication with negative weights
via inverted input voltages. The transfer characteristic of the
negative weight circuit can be described by a modified negative
tanh function, namely

Vn = neg(Vp) = −
(
ηN1 + ηN2 · tanh

((
Vp − ηN3

)
· ηN4

))
,

where ηN = [ηN1 , η
N
2 , η

N
3 , η

N
4 ] are auxiliary parameters

that modify the original tanh function, which is ul-
timately determined by the physical quantities qN =
[RN

1 , R
N
2 , R

N
3 , R

N
4 , R

N
5 ,W

N, LN] in the circuit. Here, WN and
LN are the geometric features of the transistor TN.

c) Printed tanh-like circuit: Following the crossbar array,
the signals are passed through the printed tanh-like circuits to
resemble the activation functions in ANNs. The circuit diagram
is illustrated in Fig. 3(c). Analogous to the negative weight
circuit, the characteristic curve can be represented by a modified
tanh function, i.e.,

Vout = ptanh(Vz) = ηA1 + ηA2 · tanh
((
Vz − ηA3

)
· ηA4

)
with the auxiliary parameters ηA = [ηA1 , η

A
2 , η

A
3 , η

A
4 ] deter-

mined by qA = [RA
1 , R

A
2 ,W

A
1 , LA

1 ,W
A
2 , LA

2 ]. By optimizing
qA, the shape of tanh-like function can be tuned to better fit
specific target tasks.

2) Design and Optimization: By interconnecting the afore-
mentioned circuit primitives, expressive computing functionali-
ties can potentially be achieved. To fully harness the potential of
the circuits, a design and optimization process is required. Con-
sidering the target application and the significant requirement
for cost-efficiency, these circuits do not employ reconfigurable
components for implementing on-device training during the
usage. Rather, they are designed and optimized off-device at the
software level. Subsequently, the fabrication process takes place
after the circuit design has been completed. Note that, this does
not limit applicability, as PE, due to additive manufacturing,
allows for convenient and low-cost on-demand fabrication via
diverse printing technologies.

To design and optimize printed neuromorphic circuits, such
as determining suitable conductances in the crossbar array and



identifying the requirement of negative weight circuits, a ML-
based design framework named printed neural network (pNN)
is proposed [7]. This framework serve as simulation models
for printed neuromorphic circuits. By training a pNN on the
target dataset (of the target task), optimal physical quantities
can be obtained and subsequently employed for the fabrication
process.

In pNNs, the learnable parameter for each crossbar array
is denoted as Θ ∈ R(M+2)×N , where M and N refer to
the number of inputs and outputs. The absolute value of each
element in Θ represents the conductance, while the sign of
each element indicates whether a negative weight circuit needs
to be pre-connected for emulating a negative weight. In this
way, the output voltages of the crossbar array can be written
as

V z = V in ·
(
W ⊙ 1{Θ≥0}

)
+ neg(V in) ·

(
W ⊙ 1{Θ<0}

)
,

where V z = [V 1
z , ..., V

N
z ] summarizes the weighted-summed

voltages, V in = [V 1
in, ..., V

M
in , 1V, 0V] summarizes the input

voltages extended with Vb and GND, and ⊙ denotes the
element-wise product. 1{·} is an indicator function that returns
1 if the respective condition is true, else 0. It is applied element-
wise on Θ. Moreover, the weight matrix W is composed by

W = |Θ| · diag(|Θ|⊤ · 1M+2)
−1 ∈ R(M+2)×N , (2)

where 1M+2 ∈ RM+2 is a vector of all ones, | · | refers to an
element-wise absolute operation, and diag(·) yields a diagonal
matrix from the given vector. Subsequently, the output voltages
V z will pass through the ptanh function for activation, i.e.,
the output of the printed neuron V out = [V 1

out, ..., V
N
out] can be

obtained through

V out = ptanh (V z) .

By cascading the weighted-sum operations and activation func-
tions multiple times, deeper and more complicated printed
neuromorphic circuits can be established.

Apart from Θ, the physical quantities qN and qA of the
nonlinear circuits can also be learned [25]. By employing
differentiable surrogate nonlinear circuit models, qN and qA

can be transformed into the auxiliary parameter ηN and ηA,
which can then be integrated into the inference process of
pNNs. Consequently, the partial derivatives of the loss function
with respect to qN and qA can be obtained through backprop-
agation [26], allowing them to be learned alongside Θ through
gradient-based optimization.

C. Low-Power Electronic Design

With the growing prominence of edge devices in IoT con-
texts, an increasing focus on low-power electronics design can
be observed. Because this shift towards high power-efficiency
not only improves user experience by prolonging device work-
ing time per charge, but also promotes environmental conser-
vation.

Although neuromorphic computing has already been shown
to be significantly more power-efficient compared to conven-
tional approaches [27, 28], there is ongoing research to further

reduce the power consumption of neuromorphic circuits. For
example, [29] developed novel devices to decrease the power
required for the activation functions, such as ReLU. The work
of [30] utilized hardware-software co-design to optimize circuit
structure for data flow in the computing process. Regard-
ing computational paradigms, numerous studies have adopted
brain-inspired spiking neural networks to minimize power
consumption in analog [31], digital [32], or mixed-signal [33]
domains. Moreover, various ML techniques can also indirectly
contribute to the reduction of the circuit power consumption at
the software level by reducing the complexity of the ML mod-
els, and thus the corresponding hardware. These approaches
may involve network quantization [34], pruning [35], neural
architecture search [36], and other techniques [37, 38].

Nevertheless, most of the existing research primarily ad-
dresses the reduction of circuit power as an implicit objec-
tive. In contrast, this work emphasizes modelling the power
consumption of the circuits and explicitly incorporating these
models into the circuit design objectives at the algorithmic
level. Moreover, the research subject in this work is printed
analog neuromorphic circuits implementing multilayer percep-
trons (MLPs), where comparable methodologies remain scarce
in the existing approaches.

III. METHODOLOGY

In many target applications of PE such as smart packaging,
the printed devices are possibly disposable and consequently
may not be accessible for recharging. Therefore, they are gen-
erally powered by their initial printed batteries [39] or printed
energy harvesters [40]. In this case, the low power consumption
of the circuit becomes particularly crucial. Moreover, due to
resistive nature of weighted sum crossbar and lack of P-type
transistors in this printed technology, the need for low-power
design is even further justified.

In this work, we first modify the existing circuit structure
in a more power-efficient way, and then propose power-aware
training for pNN by explicitly integrating power models into the
objective function. Specifically, we derive the accurate power
models for the circuit primitives in the printed neuromorphic
circuits. Afterwards, by integrating these models into the pNN
framework, the power of the circuits can be estimated during
the training process. Finally, by combining the original loss
function (for classification accuracy) with the estimated power,
a Pareto front of power-accuracy trade-offs can be established.

A. Modified Power-Efficient Circuit Structure

In Fig. 3(a), negative weight circuits are prepended to the
respective resistors whenever negative weights are necessitated.
However, this approach is suboptimal regarding power con-
servation, as some inputs are repetitively converted to their
corresponding negatives (e.g., V 3

in at RC
32 and RC

33). To eliminate
this redundancy and thus reduce the power, we modified the
circuit design, as shown in Fig. 4. With this modified structure,
only one single negative weight circuit is required for each
input. Subsequently, resistors may be connected to either V i

in or
neg(V i

in), depending on the sign of the corresponding weights.
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Fig. 4. Modified power-efficient design of a printed neuron.

To validate the new circuit design and assess other charac-
teristics such as latency of both circuits (Fig. 3 and Fig. 4), we
performed SPICE simulation with the printed Process Design
Kit (pPDK) [41]. The new circuit structure yields the same
output and similar latency as the previous design, however,
the power consumption w.r.t. V 3

in decreases due to the reduced
number of negative weight circuits.

B. Power Consumption Model

Due to the structural simplicity of resistor crossbar arrays,
we directly employ fundamental circuit formulae to derive
analytical solutions for the power consumption. In contrast, due
to the complexity of the nonlinear circuits, we obtain the power
models by approximating data from SPICE simulation based
on the pPDK [41]. Specifically, after the SPICE simulation
with various circuit configurations, ANNs are employed to
approximate the transformation from the physical quantity (qN

and qA) to the circuit power (PN and PA). We refer to this
ANN-based transformation as the surrogate power consumption
models for the nonlinear circuits.

1) Power Consumption Model for the Crossbar: Due to the
pure resistivity of the resistor crossbar array (excluding the
negative weight circuits), the analytical power model can be
directly obtained from the formula of electronic power. For
each individual resistor, the power can be calculated by

P =
∆V 2

R
= ∆V 2 · g,

wherein ∆V refers to the potential difference between the two
ends of the resistor. Therefore, the power consumption for the
crossbar excluding negative weight circuits can be modeled as

PC = ((Ṽ in ⊙1{Θ≥0} +neg(Ṽ in)⊙1{Θ<0})− Ṽ z)
2 ⊙ |Θ|,

where (·)2 denotes an element-wise square operation, moreover,

Ṽ in =
[
V ⊤

in, · · · ,V
⊤
in

]
∈ R(M+2)×N ,

and

Ṽ z =


V z

...

V z

 ∈ R(M+2)×N .

In this way, each element in the matrix PC represents the power
of the corresponding resistor. By summing all elements in PC,
the over all power consumption of the crossbar can be obtained
by

PC = 1⊤
M+2 · P

C · 1N , (3)
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Fig. 5. Left: Power of some negative weight circuits with input voltages Vin

ranging from −2V to 2V, the legend shows the configuration of the circuit
components qN, the right bottom box shows the shape of the pink curve. Right:
visualization of the results from the surrogate power consumption model. The
x-axis and the y-axis refer to the true power P and predicted value P . Blue,
green, and red colors denotes the data from training, validation, and test sets.

where 1M+2 ∈ RM+2 and 1N ∈ RN are a vector with all the
elements being 1.

2) Surrogate Power Consumption Models for Nonlinear Cir-
cuits: For the nonlinear circuits, i.e., negative weight circuits
and printed tanh-like circuits, estimating the power consump-
tion based on the physical quantities qN and qA is chal-
lenging. We therefore train ANNs to approximate the power
consumption of these circuits based on SPICE simulations.
Note that since the operations in ANNs are fully differentiable,
the physical quantities can be optimized for reducing the circuit
power through gradient-based algorithms.

Since the methodologies for both negative weight circuits and
the printed tanh-like circuits are identical, we only describe our
approach for the negative weight circuit as an example.

We firstly define the feasible design space QN to guar-
antee the desired negative tanh shapes of the characteristic
curves. QN consists of MIN-MAX constraint on each physical
quantity, i.e., qN ∈ [qN

min,q
N
max] and inequality constraints

among individual values, i.e., RN
1 > RN

2 , RN
3 > RN

4 , and
WN > LN. Subsequently, we employ a Quasi Monte-Carlo
method with Sobol sequence to sample 10 000 points within
the feasible space, with each point referring to a unique circuit
configuration. Afterwards, we performed SPICE simulations
using the pPDK [41] to gain the power consumption of each
sampled circuit.

The left side in Fig. 5 exemplifies the power of multiple
negative weight circuits, with input voltage Vin ranging from
−2V to 2V. The legend denotes the corresponding circuit
configuration qN. It is notable that, although the power varies
with changing input voltage, as shown by the pink curve in
the right bottom box, the variation is so small that the power
consumption can be regarded as a constant w.r.t. the DC input
voltage Vin. Moreover, due to the absence of a priori knowledge
for the magnitude of input voltages, the distribution of the input
voltages should be assumed as a uniform distribution ranging
between −2V and 2V according to the principle of maximum
entropy [42]. Consequently, the expected power consumption
PN is represented by the mean value w.r.t. input voltages.

After obtaining the sampled value qN
i , i = 1, ..., 10 000 and

the corresponding power consumption PN
i , we can train an

ANNs as the surrogate power consumption model, which is
denoted by PN(qN).

To train the ANN, we randomly split the dataset
{qN

i , P
N
i }10 000

i=1 into training set (70%), validation set (20%),
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and test set (10%). The training set serves to guide the
training process, the validation set stops the training to prevent
overfitting, and the test set is used to evaluate the trained ANN.

To enhance performance of the ANN, we employ some typ-
ical techniques, such as data normalization, neural architecture
search, and hyperparameter tuning on the learning rate. Finally,
a 15-layer ANN is chosen as the surrogate power model.

The performance of the surrogate model is demonstrated on
the right side of Fig. 5, where the horizontal axis denotes the
true power consumption from SPICE simulation and the vertical
axis refers to the predicted power from the surrogate model. We
can qualitatively conclude that, the surrogate model generates
acceptable power estimations. Moreover, the losses on training
and test sets indicate that the model generalizes well.

C. Power Estimation for a Printed Neuron

Building upon the developed power consumption models,
we are able to estimate the power of each printed neuron by
accumulating the power of each circuit primitive, namely:

P = PC +NN · PN +NA · PA, (4)

where NN and NA denote the number of negative weight
circuits and printed tanh-like circuits. Moreover, PN and PA

are the estimated power consumption from the surrogate power
models.

It is notable that, according to the SPICE simulation, despite
the similar inverter-based structures between negative weight
circuits and printed tanh-like circuits, their power consumptions
differ by orders of magnitude. Specifically, the power of the
inverter circuits is at the mW level, whereas for the activation
function is at the µW level. This difference can be attributed
primarily to the feasible range of resistor values. Consequently,
reducing the power consumption of negative weight circuits
becomes even more significant. However, since we want to
leverage gradient-based optimization to reduce the power con-
sumption, we require useful gradient information of the power
with respect to all our design parameters. Unfortunately, NN

in Eq. 4, representing the number of negative weight circuits,
depends on Θ but represents a piece-wise constant function.
Specifically, NN is expressed by

NN = 1⊤
M+2 · rowmax

{
1{Θ<0}

}
, (5)

where rowmax(·) returns the row-wise maximum values. The
blue curve in Fig. 6 visualizes the indicator function 1{Θ<0}. It
is evident that, except for Θij = 0, all gradients are 0, meaning
that, within the context of gradient-based optimization, Θ will
not be modified for the purpose of reducing NN. To address
this issue and enable the optimization of NN through Θ, we
introduce the soft count of negative weight circuits, denoted

objective
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Fig. 7. Computation graph of the power-aware training of the printed neural
networks with one neuron. The orange part refers to previous work, while the
green part denotes the contribution of this work.

by NN
soft. In the forward pass of the soft count, NN

soft is still
calculated by Eq. 5, however, in the backpropagation, a relaxed
function,

1⊤
M+2 · rowmax {1− sigmoid(Θ)} ,

is employed to generate the gradient for updating Θ. Compared
to Eq. 5, the indicator function is relaxed as a sigmoid function,
as shown by the orange curve in Fig. 6. This kind of separate
treatment for the forward and backward pass is also referred to
as the straight-through gradient estimator [43].

By replacing NN in Eq. 4 with soft count of the negative
weight circuits, the resulting power estimation of the printed
neuron can be formulated as

P = PC +NN
soft · PN +NA · PA. (6)

The computation graph for the complete power estimation
is shown by the green part in Fig. 7. Note that this figure
only represents the computation graph for one neuron. In case
multiple neurons are adopted, the V out of one neuron will be
passed to the next neuron as the input voltages. Consequently,
the output of the last neuron will be regarded as the actual
output. Moreover, the power consumption of all neurons will
be summed up, serving as the final estimate for the power
consumption.

D. Power-Aware Training

For training ANNs, loss functions are generally utilized to
guide the optimization process and reflect the performance of
the ANNs. A typical loss function for classification tasks is
cross-entropy. However, to account for hardware limitations,
such as minimal distinguishable voltages, a modified multi-
class hinge loss [7] is employed to guide the training of pNNs.
It can be expressed as

L(Θ, qN, qA) = ((m+ T − V out)⊙ V target · 1N )
+

+(max{(m+ V out)⊙ (1− V target))
+
,

where T represents the measuring threshold, m denotes the
sensing margin, (·)+ = max{0, ·}, and V target refers to
the target class after one-hot encoding. This loss function
encourages the voltage for the correct class to exceed m+ T ,
while suppressing outputs corresponding to incorrect classes.



TABLE I
RESULT OF THE EXPERIMENT ON 13 BENCHMARK DATASETS

Dataset
α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

Accuracy Power (mW) Accuracy Power (mW) Accuracy Power (mW) Accuracy Power (mW) Accuracy Power (mW)

Acute Inflammation 1.000 ± 0.000 52.0 ± 2.5 1.000 ± 0.000 35.1 ± 6.7 1.000 ± 0.000 31.0 ± 3.3 0.999 ± 0.002 28.8 ± 2.0 0.461 ± 0.018 8.3 ± 1.3

Balance Scale 0.901 ± 0.017 47.3 ± 4.3 0.901 ± 0.028 43.4 ± 4.3 0.895 ± 0.016 39.5 ± 2.7 0.893 ± 0.020 33.4 ± 4.0 0.435 ± 0.018 10.0 ± 1.2

Breast Cancer Wisconsin 0.971 ± 0.001 114.2 ± 9.9 0.969 ± 0.002 82.0 ± 4.0 0.966 ± 0.001 57.9 ± 4.8 0.915 ± 0.020 45.8 ± 2.3 0.740 ± 0.021 9.7 ± 3.4

Cardiotocography 0.880 ± 0.007 196.6 ± 45.0 0.863 ± 0.019 125.2 ± 11.4 0.844 ± 0.011 97.0 ± 12.6 0.824 ± 0.014 71.7 ± 6.9 0.770 ± 0.003 16.1 ± 7.7

Energy Efficiency (y1) 0.911 ± 0.019 76.7 ± 6.3 0.914 ± 0.013 63.6 ± 4.8 0.919 ± 0.013 52.3 ± 4.4 0.918 ± 0.014 46.6 ± 4.0 0.657 ± 0.010 11.8 ± 1.9

Energy Efficiency (y2) 0.895 ± 0.016 80.9 ± 4.7 0.897 ± 0.008 59.6 ± 5.2 0.899 ± 0.006 52.7 ± 3.0 0.892 ± 0.010 48.4 ± 2.8 0.656 ± 0.009 11.5 ± 1.3

Iris 0.964 ± 0.005 52.1 ± 3.5 0.964 ± 0.003 42.4 ± 4.4 0.962 ± 0.004 40.6 ± 2.8 0.958 ± 0.009 32.2 ± 1.6 0.539 ± 0.011 9.2 ± 1.0

Mammographic Mass 0.791 ± 0.003 63.8 ± 6.8 0.789 ± 0.003 55.2 ± 3.0 0.792 ± 0.003 42.1 ± 2.9 0.789 ± 0.006 32.2 ± 3.0 0.635 ± 0.031 10.6 ± 0.7

Pendigits 0.617 ± 0.054 160.1 ± 19.5 0.536 ± 0.041 116.8 ± 7.4 0.479 ± 0.041 91.5 ± 5.5 0.371 ± 0.034 65.9 ± 12.3 0.068 ± 0.009 9.7 ± 11.9

Seeds 0.903 ± 0.031 80.4 ± 6.6 0.900 ± 0.015 65.0 ± 9.1 0.895 ± 0.017 56.2 ± 5.7 0.900 ± 0.015 50.4 ± 2.9 0.476 ± 0.035 12.8 ± 0.8

Tic-Tac-Toe Endgame 0.999 ± 0.001 115.3 ± 6.1 0.998 ± 0.001 92.9 ± 7.5 0.926 ± 0.047 59.7 ± 6.5 0.818 ± 0.004 40.6 ± 1.2 0.594 ± 0.052 14.4 ± 4.1

Vertebral Column (2 cl.) 0.829 ± 0.007 62.7 ± 4.0 0.827 ± 0.004 55.6 ± 3.0 0.824 ± 0.009 51.6 ± 2.9 0.768 ± 0.038 35.2 ± 4.1 0.664 ± 0.017 5.5 ± 1.4

Vertebral Column (3 cl.) 0.808 ± 0.010 68.2 ± 7.1 0.817 ± 0.006 57.7 ± 8.3 0.817 ± 0.007 50.3 ± 7.8 0.819 ± 0.004 42.3 ± 3.7 0.445 ± 0.007 10.8 ± 1.3

Average 0.882 ± 0.013 90.0 ± 9.7 0.875 ± 0.011 68.8 ± 6.1 0.863 ± 0.013 55.6 ± 5.0 0.836 ± 0.015 44.1 ± 3.9 0.549 ± 0.018 10.8 ± 2.9

Consequently, to jointly optimize both classification accuracy
and power consumption, the power-aware training objective of
the pNN is given by

L(Θ, qN, qA) = (1− α) · L(Θ, qN, qA) + α · P, (7)

where α ∈ R+ denotes a scaling factor to express the trade-
off between loss and power consumption. If α = 0, the
training objective entirely corresponds to the accuracy of the
classification tasks. In this case, the trained pNN should achieve
the highest accuracy, which can be regarded as the upper
bound. However, since power consumption is totally ignored,
the corresponding power should also be regarded as an upper
bound. Conversely, if α = 1, power P dominates the training
objective whereas the accuracy is disregarded. Therefore, the
trained pNNs may exhibit the lowest power consumption but,
at the same time, also the poorest accuracy. Since the trade-off
between power and accuracy is only implicitly influenced by α,
and, considering that a specific trade-off will be chosen based
on different application scenarios, we decide to train pNNs with
different α ∈ [0, 1] and construct a Pareto front to facilitate the
selection of various trade-offs with Pareto optimality.

E. Discussion

In this section, we established the accurate power consump-
tion models for each circuit primitive in the printed neuro-
morphic circuits. Subsequently, we proposed the power-aware
training for pNNs for optimizing both classification accuracy
and power consumption jointly. From Eq. 1 we can see that,
the weights are scale-invariant with respect to the resistances.
Thus, the resistances can be scaled up to save power, while
the weights remain unchanged. Consequently, for estimating
the lowest power for the crossbar with given weights, the
resistances are first up-scaled to the highest feasible values,
which depends on the printing technology and the latency
of the circuit. In this work, the maximal feasible resistance
has been identified to be 1MΩ through SPICE simulation.
Regarding the nonlinear circuits, it is notable that the changes
in qN and qA not only impact the circuit power, but also
influence their transfer characteristics, and thus, the accuracy
of the classification. In this work, we employ the same qN and
same qA shared inside an entire pNN, rather than allowing each

neuron to have independent qN and qA. Although the latter
strategy offers higher degrees of freedom for optimization, it
empirically yields worse result than the former strategy [25, 44].

IV. EVALUATION

To evaluate the effectiveness of the power-aware training
of pNNs, we implemented the proposed approach3 with Py-
Torch [45] and conduct experiments on the 13 benchmark
datasets, which were also used in the related works, such as [12]
and [25]. Moreover, these benchmark datasets exhibit a com-
plexity and scenario that matches the target application domains
of PE. The experiment is conducted at simulation level based on
the pPDK [41]. The functionality of the printed neuromorphic
hardware has been experimentally validated in [7] and [46].

A. Experiment Setup

We first split the datasets into training (60%), valida-
tion (20%), and test (20%) sets. Subsequently, we use a
consistent topology (#inputs-3-#outputs) for all pNNs on
each dataset. The learnable parameter Θ is randomly initial-
ized, while for the nonlinear circuits, qN and qA are ini-
tialized as [463Ω,109Ω, 10kΩ, 9kΩ, 24kΩ, 283µm, 69µm] and
[205MΩ, 7kΩ, 80µm, 80µm, 480µm, 40µm]. The corresponding
auxiliary parameters are ηN = [−0.006, 1.024, 0.016, 1.006]
and ηA = [0.290, 0.710,−0.017, 20], respectively. Regarding
the training, we employ full-batch training with the Adam [47]
optimizer in default parameterization to update parameters in
pNNs. To prevent overfitting, we calculated the loss on vali-
dation set for early-stopping [48] after each parameter update.
We start with an initial learning rate of 0.1 and halve it after a
patience (updates without improvement on objective function)
of 100-epochs on the validation set. Additionally, the training
process is stopped, when the learning rate was halved 10 times.
In investigate the trade-off between accuracy and power, we
uniformly select 50 values in α ∈ [0, 1].

The training is repeated 10 times (with seeds varying from
1 to 10) for different initialization for each value of α to make
sure to achieve a sufficiently good solution for each value of
α. Finally, the hardware-related hyperparameters in the loss

3https://github.com/Neuromophic/Power-Aware-Training

https://github.com/Neuromophic/Power-Aware-Training
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function, i.e., measuring threshold and margin, are chosen to
be T = 0.1 and m = 0.3 to keep in line with other works [7].
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Fig. 9. Scatter plot of normalized accuracy versus power for all runs. The red
curve displays the Pareto front, and the bold points denote different possible
trade-offs on with Pareto optimality.

B. Result

After training, we evaluate the trained pNNs on the
test sets. Tab. I reports the accuracies and powers with
α ∈ {0, 0.25, 0.5, 0.75, 1}.

To analyze the impact of α more clearly and to eliminate
the disparate difficulties among different tasks, we normalize
the accuracy by the baseline (α = 0), which refers to the
power-unaware training, and should theoretically achieve the
best accuracy. Note that this is not always true in practice due
to the complex nature of the non-convex optimization problem
that neural network training resembles. The resulting curves are
displayed in Fig. 8(a). Analogously, the power consumption is
also normalized by the baseline power consumption. Because
compared to the exact values, the relative power reduction
serves as a more informative metric. The normalized powers
are visualized in Fig. 8(b).

To investigate the effectiveness of the power-aware training
within a comprehensive and generic scenarios, we calculate
the averaged normalized accuracy across all tasks, which is
intended to exemplify the expected performance of the pNNs
on multiple datasets. The statistical result (w.r.t. 10 random
seeds) of the averaged normalized accuracy (blue curve) and
power (red curve) are summarized in Fig. 8(c).

In order to obtain the Pareto front, we plot the entirety of
normalized powers versus their respective normalized accura-
cies for all runs (random seeds) and all values of α by the green
points in Fig. 9. Subsequently, we can delineate the Pareto front
by the red curve.

C. Discussion
As expected, for α = 0 (no consideration of the power

consumption) pNNs yield the highest accuracies and power
consumption (Fig. 8). As α progressively increases to 1, both
accuracy and power decline. However, the reduction in accuracy
is less significant than that in power. This phenomenon enables
the power conservation without a substantial drop in accuracy.

The Pareto front in Fig. 9 illustrates the relationship between
power and accuracy. In comparison to power-unaware training
(black point), if accuracy is allowed to decrease by 10%, 2.5×
power reduction can be achieved (blue point). Furthermore, if
a 20% accuracy drop is allowed, the power consumption can
be reduced to 3.6×. Other examples of trade-offs with Pareto
optimality are reported in Tab. II. Beyond the examples listed,
every point on the Pareto front may be chosen in consideration
of the specific design requirements and application contexts.

It is notable that, when power decreases from 100% to 50%,
the accuracy reduces in a gradual way. Conversely, a more
substantial decrease in accuracy can be observed as the power
budget continues to diminish from 50%. Thus, within the scope
of this experiment, employing 2× power reduction to achieve
95% accuracy may represent a reasonable trade-off.

TABLE II
ACCURACY-POWER TRADE-OFF

Accuracy (%) 100 95 90 85 80 75 70

Power (%) 100 50 40 34 28 23 18

V. CONCLUSION

In this work, we target the design of power-efficient printed
analog neuromorphic circuits. By establishing analytical and
ANN-based power consumption models, the circuit power can
be explicitly incorporated into the design objective of the
printed neuromorphic circuits. By introducing a variable trade-
off factor in the training process of pNNs, a Pareto front can
be drawn, from which any optimal trade-offs between accuracy
and power can be chosen according to specific requirements or
application scenarios.

Despite the preliminary progress made in this work, other
methodologies for controlling the power could be explored in
future research: In this study, the power is implicitly regulated
by α. Nonetheless, in many design tasks, the circuits are con-
strained by predetermined power budgets. Consequently, future
work may enable explicit constraints on power consumption.
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