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Abstract. Through the increasing interconnection between various sys-
tems, the need for confidential systems is increasing. Confidential systems
share data only with authorized entities. However, estimating the confiden-
tiality of a system is complex, and adjusting an already deployed software
is costly. Thus, it is helpful to have confidentiality analyses, which can
estimate the confidentiality already at design time. Based on an existing
data-flow-based confidentiality analysis concept, we reimplemented a data
flow analysis as a Java-based tool. The tool uses the software architecture
to identify access violations based on the data flow. The evaluation for
our tool indicates that we can analyze similar scenarios and scale for
certain scenarios better than the existing analysis.
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1 Introduction

With increased digitalization, more and more systems and digital services are
integrated into our lives. These systems often gather data to enable efficient
services, like a purchase history in an online shop. This collected data is then
exchanged with other services or systems. For instance, in the case of an online
shop, customer data might be shared with payment providers. Often, the collected
data contains sensitive data, such as the mentioned payment information or a
customer’s address. Therefore, there is a need to preserve the data’s confidentiality.

Confidentiality is described by ISO 27000 as the property “that information
is not made available or disclosed to unauthorized individuals, entities, or pro-
cesses” [11, Section 3.10]. A system violating confidentiality can result in privacy
violations, which can result in costly fines, as seen in the case of H&M [25] or
British Airways [2]. However, identifying confidentiality violations can be difficult,
because the connected services build a complex network of data flows. Hence, a
systematic approach to analyze them is required.

Data flow analyses based on source code, e.g., JOANA [24] or KeY [1],
cannot consider context information, such as deployment. However, deployment
information can be essential for confidentiality, because the deployment can
contain whether the application is deployed on an external cloud provider or
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not. In addition, source code analyses cannot be used in early design phases
because of their need for existing source code. Analyzing the system early at
design time is beneficial, because fixing issues in later phases is usually more
costly [23]. Seifermann et al. [17, 20] proposed an architecture-based data flow
analysis to analyze systems for confidentiality violations. The approach can
consider additional context information, such as the deployment, enabling software
architects to analyze confidentiality during early design phases. However, their
Prolog-based implementation of the analysis is very hard to maintain and has
a high resource (memory) demand, which severely limits the applicability for
large systems. Hence, we decided to reimplement the analysis as a Java-based
open-source Eclipse plugin4.

The approach of Seifermann et al. [17, 20] consists of a metamodel and an
analysis. We explain the metamodel and the scientific concept for the analysis in
Section 2. In Section 3, we describe the reasons for the reimplementation and our
expected benefits. In addition, we give insight into the tool architecture and how
it relates to the scientific concept. Section 4 explains how our developed tool can
be used. We compare the old analysis with our newly developed tool in Section 5.
For the investigated scenarios, our comparison shows that we can identify the
same violations, and we need fewer resources to analyze larger systems. In the
last section, we conclude the paper and discuss future work.

2 Modeling Confidentiality in Software-Architectures

Our analysis approach uses software-architectural models to determine the confi-
dentiality of a software system. Here, we build on the Palladio Component Model
(PCM) [15] as Architectural Modeling Language (ADL). Using PCM is beneficial,
since it supports security analyses [7, 27, 28] as well as performance and reliability
analyses [15], thereby reducing the overall effort required by software architects.
PCM was a foundation in the original data flow analysis [20].

To enhance the description of our modeling and analysis, we present the
running example of an online shop that is deployed within the European Union [6].
Using this online shop, users can browse through the available inventory of items
and select an item to purchase. Here, sensitive information, like the user’s address,
is sent to the online shop, which encrypts this data and stores it in a database
that is deployed outside the EU, as shown in Figure 1. Without encryption, this
data flow would violate confidentiality.

PCM enables us to describe the software architecture of the online shop from
different viewpoints. The structure of the software architecture is modeled as
multiple components, e.g., representing the shop interface and the database, and
connected in the assembly model. The behavior of the system, e.g., calling of
services and processing of data, is modeled as ServiceEffectSpecifications (SEFF).
User behavior is captured in the usage model, which contains multiple usage
scenarios, each describing the service calls by a user. Lastly, the hardware of the
4 Video demonstration available: https://www.youtube.com/watch?v=q3WJsMyqJcA

https://www.youtube.com/watch?v=q3WJsMyqJcA
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Fig. 1. Data flow diagram that represents the flow of user data in the running example

system is represented in the resource environment, and deployment information
is stored in the allocation model.

Seifermann et al. [17, 18, 19, 22] extended PCM to annotate confidentiality-
related properties like data sensitivity or encryption and automatically derive a
data flow diagram from the architecture. Afterward, the diagram is analyzed in a
data flow-based confidentiality analysis [20]. The concept was reused by different
architectural analyses targeting uncertainty [5, 8, 9, 29], Industrial IoT [3] or
estimating attacker impacts [30].

In the remainder of this section, we briefly describe the concept of the data
flow analysis using the running example shown in Figure 1. The automatically
derived data flow diagram contains confidentiality-related information that has
been extracted from the annotated software architecture model. This includes
the behavior of nodes, e.g., encrypting or only forwarding data. Data labels
represent the characteristics of the data within the system, e.g., whether the
data is encrypted. Node labels represent characteristics of the system itself,
e.g., the non-EU deployment location of the database component. All available
characteristics are listed in a data dictionary and can be used to define data
flow constraints [10]. In our running example, we restrict user data labeled as
personal, but not labeled as encrypted, from flowing to a non-EU labeled node.

The data flow analysis checks these constraints using label propagation [20].
Data flows through the data flow diagram and can be altered by the nodes’
behavior, e.g., by adding the encrypted label. In each node, the constraints are
examined, taking into account all propagated data labels and also the node’s
label. In our running example shown in Figure 1, a constraint violation would
occur if we remove the encrypt node, which is highlighted gray. In this case, the
personal label would propagate to a non-EU -labeled node without the encrypted
label, which violates confidentiality. This analysis was originally implemented
using Prolog. By transforming the data flow diagrams and all of their properties
into facts, the Prolog environment can solve queries. Architects can either define
their constraints directly in Prolog or by using a domain-specific language [10].

3 Analysis Architecture

The data flow analysis by [20] as described in Section 2 is made up of four
steps. Figure 2 shows the analysis steps and their sequential order as an activity
diagram. First, the Palladio Component Model (PCM) and analysis-specific
models are loaded and references between model elements are resolved. This
is done automatically by EMF. Using the information from the models and
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annotations, described in Section 2, possible data flows are extracted. As PCM
allows developers to model different use cases, the analysis first needs to determine
all possible starting points of data flows. For each starting point, the analysis
iterates the following calls and adds a node to the data flow for each encountered
element. Calls to Service Effect Specifications (SEFFs) defined in interfaces are
handled differently: For each call encountered, the analysis adds a calling and
returning node in the data flow, as returning values from SEFFs are allowed.

After all data flows are extracted, the analysis propagates the characteristic
labels that are defined in the data dictionary model and have been added to
the PCM models using annotations. Starting at the first node in the data flow,
the analysis evaluates the node characteristics that are present at the given
node. Using the node characteristics applicable at the current node and the
node characteristics from the previous node, the analysis is able to resolve the
defined relationship between inputs/pins and the characteristics of the node.
Furthermore, as data characteristics are applied to variables and parameters,
the analysis filters the variables with their data characteristics to only include
variables that are in scope.

Using the data flows and propagated characteristic labels, data flow constraints
can be checked. For example, by comparing propagated data characteristics with
defined node characteristics, as described in Section 2.

Load Models Extract Dataflows Propagate Labels Check Constraints

Fig. 2. Analysis architecture as performed activities.

The Prolog-based analysis of [20] realized the extraction of data flows and
propagation of labels, by first transforming the PCM models to an explicit DFD
metamodel notation, then transforming the DFD elements to Prolog statements
and rules. Data flow constraints are checked by defining Prolog queries that are
unique to the modeled system and defined data dictionary model. As one DFD
element with characteristics is transformed into multiple Prolog statements, the
Prolog code grows exponentially with the model size. The exponential growth
results in high demand of memory, as the whole Prolog program needs to be fully
loaded by the Prolog interpreter.

Additionally, the formulation of constraints and the debugging of issues can
become complex due to Prolog. A DSL, as proposed by Hahner et al. [10], can
help users to formulate queries to the Prolog model, but the added step of
indirection makes it even more difficult to extend the Prolog-based analysis. As
the analysis is made up of multiple chained transformations and intermediate
model representations, the maintenance of the analysis is made even harder.

Due to the aforementioned reasons, our reimplementation realizes all steps
of the analysis using Java. Our reimplementation is based on the current PCM
version and does not consider plugins labeled as incubation. We extract data flows
and represent them in simple ordered lists called ActionSequence. An Action-
Sequence is made up of ActionSequenceElements, each representing a node in
a data flow. We propagate the characteristic labels for each ActionSequence
individually, by iterating the contained elements and saving the result of the
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1 var analysis = new DataFlowAnalysisBuilder().build(); // simplified
2 analysis.initializeAnalysis();
3 var allSequences = analysis.findAllSequences();
4 var propagationResult = analysis.evaluateDataFlows(allSequences);
5
6 for (var sequence : propagationResult) {
7 var violations = analysis.queryDataFlow(sequence, node -> {
8 if (node.hasNodeCharacteristic("ServerLocation", "nonEU")) {
9 return node.getAllDataFlowVariables().stream().anyMatch(v ->

10 v.hasDataCharacteristic("DataSensitivity", "Personal") &&
11 !v.hasDataCharacteristic("Encryption", "Encrypted"));
12 }
13 return false;
14 });
15 }

Listing 1.1. Code snippet showing how to initialize and how to use the analysis

propagation for each node in the corresponding ActionSequenceElement. Doing
so not only eliminates the requirement of using logical programming languages,
but also removes the need for both transformations and intermediate model
representations of the Prolog-based analysis. Thereby, we drastically simplify and
reduce maintenance effort. We also create ActionSequences with immutable
elements, ensuring that no data is shared between ActionSequences. This sep-
aration of ActionSequences allows for the parallelization of the extraction of
data flows, propagation of labels, and evaluation of constraints in the future.

Additionally, data and node characteristics are propagated independently of
the constraint of the analysis. Due to this reason, our reimplementation is able
to evaluate multiple constraints without propagating characteristic labels again.
Compared to the Prolog-based analysis, this drastically improves the performance
when analyzing a system model for multiple constraints.

4 Tool Application

The Java-based re-implementation of the data flow analysis is available as open
source tool based on Eclipse Ecore and the Eclipse Modeling Tools. Documentation
and installation guidance of our tool can be found in our repository [14]. We
also provide example models that are used as test models to ensure the analysis
produces correct results compared to the Prolog-based analysis. Listing 1.1
demonstrates the usage of the analysis using the running example. We provide a
builder to set up the analysis with required inputs, which is simplified in line 1.
After initializing the analysis in line 2, all possible data flows, i.e., sequences,
are extracted from the architectural model in line 3. In line 4, we propagate all
annotated labels through these data flows. After the label propagation, we search
for constraint violations starting in line 6. For each possible data flow in the
modeled software architecture, we test each data flow node for a predicate that
represents the constraint.
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In our running example, we only look for nodes that are located outside the
EU in line 8. In lines 9 to 11, we evaluate whether one of these nodes receives
personal data that has no encrypted label. If this is the case, for any node in
any possible data flow, the data flow constraint is violated and the violation
is collected. After the execution, the variable violations contains a list of all
constraint-violating nodes within the modeled software system. If no violation
has been found, the list remains empty.

5 Evaluation

For our evaluation, we aim to compare our Java-based analysis to the Prolog-based
analysis. Our evaluation goals are to examine the accuracy and scalability of both
analyses, to show that our reimplementation retains the core functionality of the
Prolog-based analysis, while improving execution times and resource demand.

5.1 Evaluation Design

To examine and compare accuracy, we check whether both analyses are able to
correctly identify violations, using various PCM models. To ensure a good base
for comparison, we reuse the case study-based models that were originally used
by Seifermann et al. [20] to evaluate the accuracy of the Prolog-based analysis.
We selected the case studies using the default call return semantics of the current
stable version of PCM. As a metric, we count correctly identified violations.

To examine and compare scalability, we check the full execution time of both
analyses, when analyzing models with increasing size. To better distinguish the
impact of different features of the models on the scalability, we generate indi-
vidual minimal models with an increasing number of either node characteristics,
characteristic label propagation, variable actions or SEFF parameters. We chose
these elements, as they have the highest impact on either the length of Prolog
code or Java loop iterations, depending on the analysis. For each run, we increase
the model feature under consideration by the power of ten, starting at 100 and
ending with 105. Each analysis is run with a constraint, which finds a violation
at each node, forcing each node to be evaluated once. The constraint ensures a
worst-case execution time for both analyses. We run each test 10 times and take
the median execution time to exclude outliers or measurement anomalies. We
executed the analyses on a dedicated VM. The VM has 4 AMD Opteron 8435
cores together with 97 GB RAM and runs Debian 11 with OpenJDK 11/17.

5.2 Evaluation Results

Regarding accuracy, both analyses were able to correctly identify the 42 violations
that were present in the case study-based models and did not return any false
positives. Table 1 shows the results of the accuracy evaluation and size of analyzed
models. For a better overview, the results have been aggregated based on the
underlying case study that has been analyzed. As both analyses performed the
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same, we assume, that our reimplemented Java-based analysis is functionally
equivalent to the Prolog-based analysis, when analyzing models using the call
return semantics.

Case Study Prolog-based Java-based Components Labels

ContactSMS [12] 10 violations 10 violations 3 4
FlightControl [21] 0 violations 0 violations 6 6
FriendMap [26] 0 violations 0 violations 5 12
Hospital [26] 0 violations 0 violations 4 12
ImageSharing [21] 0 violations 0 violations 1 9
PrivateTaxi [12] 0 violations 0 violations 13 20
TravelPlanner [12] 32 violations 32 violations 7 8
WebRTC [26] 0 violations 0 violations 20 12

Table 1. Results of both analyses compared and size of case study-based models

Regarding scalability, we plotted the results of both analyses as line graphs
for each examined model feature, shown in Figure 3. Each graph contains data
points from both, the Prolog-based analysis, colored red, and the Java-based
analysis, colored blue. Both axes have logarithmic scaling. The x-axis shows the
increasing number of model elements and the y-axis the median of execution
times in milliseconds. Our evaluation showed that the Prolog-based analysis
is not able to complete a run for more than 1000, for node characteristics, or
100, for variable actions and SEFF parameters. As described in Section 3 the
Prolog-based analysis has a high demand in system memory. In our tests, the
analysis ran into out of memory errors or crashed, despite the 97 GB of memory.

When increasing the number of characteristic propagation, the execution time
behavior of both analyses is similar. However, for the other evaluated cases, we
can observe, that our reimplemented Java-based analysis retains a nearly constant
execution time up to 103 elements, while the Prolog-based analysis shows an at
least linear increase in execution times or fails to complete the analysis run.

The exponential increase in execution time of the Java-based analysis for
larger models can be explained by some inefficiencies in sequence finding, overhead
during characteristics propagation, and tradeoffs of our immutable approach to
action sequences. Nonetheless, we reckon that the time required in all cases is
still feasible for design-time analyses. Compared to the Prolog-based analysis,
the feasible execution times and ability to even analyze large models make our
reimplementation more usable for real-world systems. To overcome the lack of
replication packages [13], we provide a data set [16].

6 Conclusion

In this paper, we showcase our Java-based reimplementation of a data flow
analysis, based on the approach and tooling of Seifermann et al. [20]. Related
approaches and tools are described in the previous publications [20, 19]. We show
how to model confidentiality in software architecture and describe the abstract
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Fig. 3. Scalability Results Prolog-based Analysis and Java-based Analysis

architecture of the analysis. We highlight problems of the Prolog-based analysis of
Seifermann et al. [20], including poor maintainability due to complexity and high
demand in system memory, and describe the benefits of our Java-based analysis.
Further, we show how to apply our new tooling and evaluate our Java-based
analysis by comparing it to the existing Prolog-based analysis. In our evaluation,
we show that our reimplemented Java-based analysis is functionally equivalent
to the Prolog-based analysis and is able to analyze larger system models.

In future work, we aim to apply our tool to constraints regarding privacy
as part of a framework for simplified collaboration in legal data protection
assessments [4]. We are also currently working to allow explicitly modeled data
flow diagram system representations as input.
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